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A NOTE ON TOPOLOGICAL LINEARIZATION OF LOCALLY COMPACT

TRANSFORMATION GROUPS IN HILBERT SPACE

J. DE VRIES

§1, Introduction

The purpose of this note is to improve the results of [2] by using the
results of [5] and to give some information about the structure of the
universal linear transformation groups in [1] and [2].

Let G be a locally compact group. A weight function on G is a real-

valued function f on G with the following properties:

(i) f(e) = 1, where e denotes the neutral element of G;

f(g) > 0 for every g € G.

(ii) sup fle) < @ for every g, € G.
f(egg) 0
geG 0

(iii) f e L2(G), where L,

square-summable functions on G with respect to the (right) Haar

(G) is the Hilbert space of real-valued

measure in G.

A group G admitting a weight function is called a W-group (c.f. [1]).
A weight function f satisfying

(ii), f(ge,) > flg,) £(g,) for all g, g, ¢ G

will be called a proper weight function.
A topological transformation group (abbreviated t.t.g.) is a triple

(G,X,m) with G a topological group, X a topological space and

m: G x X > X a continuous function satisfying n(e,x) = x and
ﬂ(g1,ﬂ(g2,x)) = n(g1g2,x) for all g,, g, € G and x € X.

Define 78: X » X and T G> X by 8(x) = nx(g) = n(g,x) (g € G, x € X).
Then it is clear, that {ﬂglg € G} is a group of autohomeomorphisms of X,
and that T is a continuous function of G into X. The t.t.g. (G,X,m) is

called effective if g # h implies & = wh (gsh € G). Throughout this note



we will use the following notation: if H is a Hilbert space, then L(H)
will denote the space of all bounded linear operators in H, and GL(H)
will denote the group of all bounded invertible linear operators in H.
We always assume that GL(H) is provided with the strong operator topo-

logy, that is, the point-open topology on H.

The concept of a W-group was introduced by P.C. Baayen and J. de Groot
in [1]. They proved the following theorem (in a slightly different

formulation):

THEOREM A. Let (G,X,T)be a topological transformation group. If X is

metrizable and if, moreover, G is a W-group, then there exist.a topo-

logical embedding T of X into a Hilbert space K, and an isomorphism
L: ¢ > GL(K), such that for every g € G

L(g) cT=1° 78,

In a subsequent note [2], P.C. Baayen proved, that the isomorphism L is
always an open map and moreover, that it is continuous (hence topologi-

cal) if G has a continuoué weight function f such that sup %%5%j'is a lo-
cally bounded function of h on G (which is the case if %egs c%ntinuous and
has property (ii)o). We shall prove,that the continuity of f may be dropped
from the conditions if 1/f is locally bounded.The proof depends on the fact,
that the space of continuous functions on G with compact support is dense in
L2(G), and the proofs in [2] may easily be adapted to obtain the desired
result. We shall give a slightly different proof, replacing the "Hilbert
integral” of [1] by a Hilbert sum of copies of L2(G) and using a suitable
representation of G in 'GL(L2(G)).

As to the condition that 1/f must be locally bounded we note the following
facts. In [6] A.B. Paalman-de Miranda proved, that the class of W-groups

is exactly the class of o-compact, locally compact groups, and that every
W-group admits a proper weight function. In fact the author proved more.

If G is a o-compact, locally compact group, then there is a sequence

V1_C_'V2 S +.e & Vg S ... of compact subsets of G, such that V, is a neigh-

bourhood of e and G = (3 Vk' Then a function f, satisfying (i), (ii). and
k=1

0



(iii) can be constructed in such a way that

mk:=sup{#g-)- | ge V) <wforallk=1,2, ...

In particular: the function g+ }%ET is locally bounded on G. Indeed,

if gy € G, then gOV1 is a neighbourhood of gy» and for every g € V1 the

inequality

1 1 1 ™

flg,e) = (gg) f(g) — f(go)

oy

1
f(n) ~ (g

) for every h e goV

holds, hence 1°

0
Summarizing:

THEOREM B. Let G be a o-compact, locally compact group. Then there is
a real-valued function f on G satisfying (i), (ii)O
that 1/f is locally bounded. In particular, 1/f is bounded on every

and (iii), such

compact subset of G.

Consequently, theorem A holds for every o-compact, locally compact
group G, and without further restrictions L: G -~ G L(K) may be assumed

to be a topological isomorphism.

§2. A representation theorem

2.1. Let G be a o-compact, locally compact topological group.
Everythinginthis section (and hence §3) can be done if one admits
complex-valued functions, but we assume all functions to be real-valued.
In particular L2(G) is the real Hilbert space, consisting of all real-
valued functions that are square-summable with respect to the right Haar
measure in G.

Let f be a real-valued function on G that satisfies the conditions (i),
(i1),
G. For every g € G, let a mapping pg: L

and (iii) of §1, such that 1/f is bounded on compact subsets of

2(G) -> L2(G) be defined by



(p8x)(n) = x(hg). if h € G and x € Ly(G).

Note that p®(x) € L2(G) for every x € L2(G) and g € G. Indeed, p%x is

'a measurable function, and

£(n')
f(Hg)

| (08x)(n)]? < sup (B2 |x(ng)|? < 2

|x(hg)
neG 2 ¥

£(g)
Since the function h+ f(g)_zlx(hg)l2 is integrable with respect to

the right Haar measure, the function h— |(pgx)(h)|2 is integrable as
well, and hence p%x € L2(G).

It is easy to see, that for all g € G, p®: L2(G) > L2(G) is linear, and
from the inequality above it follows that I]pgx||2 _<__f(g)"1 ||xl|2.
Consequently, p® ¢ L(L2(G)) and ||0®]| :_f(g)-1. A simple computation

shows, that for all g, h € G we have p&* = p8& o o and that o is the
identity operator in L2(G). Hence p® ¢ G L(L2(G)) for all g, and the
g

mapping R: g > p° 1is a homomorphism of the group G into the group

G L(LE(G)).

g

2.2. THEOREM. The mapping R: g+ p* is a faithfull representation of

G as a group of bounded invertible linear operators on the Hilbert

space L,(G). Moreover, R is & topological embedding of G into GL(LE(G)).
Proof.
Part of the theorem is proved in the preceding discussion. We only have

to show that B is a topological embedding.

1°. First we show, that R is g relatiﬁely open injection. To prove
openness, since R is a homomorphism of groups, it is sufficient to
verify the following statement: for every neighbourhood U of e in G

there are a finite set A L2(G) and a real number € > 0 such that
{ge | gcGe& ||pB - x|l2 < e for all x € A} < U.

The proof is easy: let V be a compact, symmetric neighbourhood of e

such that V- < U. Now there is a continuous function x, with support

0
contained in V such that J lxo(h)ledh = 1. For every g ¢ G, g ¢ U we
v



have g ¢ V2, hence Vg_1 nv @, and consequently

[ 108x, - xl 15 = JG ,g&;) x,(he) - xo(h)’zdh

I

J Py EEE;) xo(hg)‘2dh + J |x,(0)[%an > 1.
Vg )

Taking A = {xo} and € = 1 we have the desired result.

To prove that R is a one-to-one mapping it is sufficient to prove that
g=eif ||o8& - x||2 = 0 for all x € L,(G). Assuming g # e, there is

a neighbourhood U of'e’such that g ¢ U; then, using the function x

0
indicated above, we obtain:

|]pgxo - x0||2_1 1 for some x,. € L2(G),

0
contradicting the fact that ||p®x - x||2 = 0 for all x € LQ(G).

So R is a isomorphism.

o

2 . To prove that R: G > G L(L2(G)) is strongly continuous it is

sufficient to prove, that for every x € L.(G) the mapping g— p&(x)

from G into L2(G) is continuous in e € G.2The proof is in two steps:
(a) Suppose first that x is continuous and has a compact support, that
'is: there is a compact set C in G such that x(g) = O whenever g * C.
Let € > 0; let V1 be a compact neighbourhood of e and define

m,:= sup{f(g)_1" g € V1}. For every g € G we have

(1) |le®x - x| IS < JG igg;) - 112 |x(n)|%an + JG (iggé))z. x(hg)-x(n) | 2an
f(h) 2 2 1 2
< -1 (h)|“an + (hg)-x(h)|“dn.
—Jc f(he) ()] £(g)2 JG |x(ng)-x(n) |

Since x is continuous and x has a compact support, x is uniformly
continuous with respect to the left uniform structure of G. Moreover,
X 1s zero outside a set of finite Haar measure, so there is a neigh-

bourhood W1 of e such that



2
J |x(hg) - x(h)lgdh < 62 for every g € W,.
G 2m
1
Consequently,
1 2 12
(2) 5 |x(hg) - x(h)|“an < e for every g e V, n W..
f(g)” ‘G 1

Since CV1
k € CV1. Now

is compact, 1/f is bounded on CV,, say f(k)_1 <M for every

£(h) S o 2 ,
|f<hg> - 1’ * rng)? t£(n) - £(ng)|* < M° [£(h) - £(hg)|
for all h € C and g € V1, hence
f(bi—' ° 2 < 2 * 2
(3) JC [ZRLe 1| Lt 2an < o)1 jG |2(n) - £(ng)|2an.

G), it follows from [31],
of e, such that

Here ||x|lo = sup{|x(h)| |h e C}. As £ ¢ L2(

theorem (20.4), that there is a neighbourhood W,

2

(L) J lf(h) - f(hg)|2dh < for every g € W2.
G

2 2
M| x| [

Combining (1) through (4), we get

||ng - x||2 < e for every g € V1 n W1 n W2.

This proves that the mapping g— p®(x) = (R(g)) (x) from G into L2(G)

is continuous in e.

(b) In the general case, take x e L2(G). Let € > 0. Then there is a

continuous function y with compact support, such that

€
le = yllg < 2(1+m1)

For every g € V, we have |108]] < £(g)”" <m,, and



®I1.

HeBx - =[], < I lx - yll, + 1o - wll, + Iy - xll,

1
<§€+ |ngY"YI|2'

By the result of (a) there is a neighbourhood W of e such that

||Dgy - y||2 < %e for every g € W,

hence

]]pgx - x||2 <e for every ge V, nW.

1
This proves that the mapping g+ 08(x) is continuous in e.

2.3. COROLLARY. The mapping p: (g,x)—> p%(x) of G x I,(G) into L,(G)

is continuous, so (G,L,(G),p) is an effective t.t.g. If G is regarded

as a group of linear autohomeomorphisms of L2(G), identifying g with
pg(geG),thenthe original topology of G colncides with the point-open

topology on L2(G).
Proof.

Everything except the continuity of p follows immediately from the
fact that R: g p® is a topological isomorphism of G into GL(LZ(G)).
To prove the continuity of p, let x € L2(G), g € Gand € > 0 be given.
£
There is a (compact) neighbourhood U of g such that
1

ik
T - 5% o]

© > M: = sup
heU

The continuity of p in the point (g,x) of G x LQ(G) follows from the

continuity of the mapping hw> ph(x) in g € G and from the inequality

+ 1 1o™x) - 08(x)]]

2 2

162 = o8], < 1o y-x)] |
Myl ]+ [1e%(x) - o8]
2

< Ile 5

< M.

ly=x[ 1, + 11e"(x) - oB(x)[ 1,

for all h € U.



2.4, For applications in §3, we need the following generalizations of

2.2 and 2.3.

Let A be a non-empty set, Kk = |Ai = the cardinality of A, and let for
g

all o € A, H = L,(G) and p% = 08 (g € G5 cf. 2.1).
Take H(k,G): = & H, and o(k,G) : = @ pi (g € G); for short we will
o€ A

write H = H(k,G) and o® = o(x,G)8. NOEZ that o® is defined for every
g € G and that it is a bounded linear operator on H with

|08 | i_f(g)—1, because }|p§|] _<__f(g)_1 for every g € G and every

a € A. Moreover, it is easy to see that the mapping S: g+ 0% is a
homomorphism of G into GL(H). Now the following generalization of

2.2 holds:

2.5. THEOREM. The mapping S: G +~ G L(H) is a topological isomorphism
from G into G L(H).

Proof.
In 2.4 we remarked already that S is a homomorvhism of groups. To
prove that S is one-to-one and relatively open, we proceed as follows.

Take any o, € A (fixed) and a & € H, =L (G) (to be specified later),

0 0 2
1 o= = z =
and consider x(£&): (XuZaeA € H, where X, 0 for a # a, and xao £.
Then for every g € G we have by definition of the norm in H:
g - g 23 _ 1.8
[1o®%x(g) - x(e)|| = (] [llegx, - x [15)% = |]o% - €l],.

o€l

Now, if U is a neighbourhood of e in G, then there exist a finite sub-

set B of Ha = L,.(G) and a real number £ > 0 such that

(
%0 2 |
{g | geG& ||pg€ - £||2 < e for all £ € B} ¢ U, because R: g+ p
from G into G L(LE(G)) is relatively open. Hence, if BO:={x(€)|£ € B},

g

then BO is a finite subset of H, and

(5) {g | geG& ||o®x-x|| <e for all x ¢ By} < U.

g

This means that S: g+ o° is relatively open in e, hence relatively

open on G, The fact that S is one-to-one can be proved similar to the



proof of 2.2 by using (5).
To prove continuity of S, recall that there is a compact neighbourhood

V1 of e in G such that

sup |[08|| < sup  Foy = my <
geV1 geV1 &
Fix any x € H, x = (Xa)ueA' For every € > O there is a finite subset
A€ < A such that
2
R IR u—
aeA\A 2(m,+1)
€ 1
. 2 _ 2
since z ||xal| = ||x|| < », S0 for every g € V1 we have
~a€A
. 2 g1 ()2 2 12
Lo ek, = x 117 < T GleBIDT [x 117 < 57
aeA\A€ oo * ozeA\AE o 2

Using strong continuity of the mapping g+ pg from G into GL(Ha) for
every o in the finite set Ae’ we see, that there is a neighbourhood V

of e such that

l|pi;a - xa|12 < for all o € As’ g eV,

2]a_|

where |A€| denotes the cardinality of AE. Consequently, for every

g € V1 n V we have

o8 - x|1Z = T |loSx, - x 112+ T |leBx, - x[|% < €
ael o ¢ aeA\A o e @ ]
€ €
that is: ||ogx - x|| < e for all g e V1 n V. This proves strong

continuity of S in e € G, hence strong continuity of S on G.

2.6. COROLLARY. The mapping o(k,G): (g,x)— o®(x) from G x H(kx,G) into

H(x,G) is continuous, and (G,H(k,G),0(k,G)) is an effective topological

transformation group. If G is regarded as a group of linear autohomeo-

morphisms of H(x,G), identifying g with o(x,G)®, then the original topo-

logy of G coincides with the point-open topology on H(k,G).
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Proof.
The proof is similar to the proof of 2.3, since h+> ||ch|] is locally

bounded.

§3. Consequences

3.1. The results of section 2 can be used to strengthen previous results
on linearization in [1] and [2]; in fact, all theorems of [2], section 5,
hold for o-compact, locally compact groups G, that is, for all groups,
admitting a weight function. At this point we stress the fact that the
existence of a continuous weight function is not needed at all. Clearly
this assertion will be a consequence of the observation, that the trans-
formation group (G,H(«x,G),0(k,G)), defined in 2.6, is universal in the
following sence: let (G,X,m) be a transformation group, such that X is

a metrizable space of weight < k; then there exists a topological em-
bedding v : X - H(x,G) such that for every g ¢ G the following diagram

commutes:

H(k,G) > H(k,G)

X > X

Here o®(x) = [o(k,G)] (g,x), and ¢® is a bounded linear operator on
H(x,G); this is why one may say, that the action of G on X is linear-
ized in H {(c.f. [1]). Moreover, because of the fact that the mapping
S: g 0® of G into GL(H(x,G)) is a topological embedding, one may
speak of a topological linearization (c.f. [2]).

Before outlining a proof of our observation we have to make a remark
about the condition in [1] and [2] that G is a continuous homomorphic
image of a W-group F (that is: a locally compact, o-compact group F;

c.f. [5]). That condition is in fact equivalent to the condition that
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the action on X comes from a o-compact, locally compact group. For if
(¢,X,m) is a t.t.g., h: F > G a continuous homomorphism of a topological
group F onto G, then h and 7 induce an action T of F in X such that the
homeomorphism groups {;¢ | ¢ € F} and (n® | g € G} of (F,X,7) and
(G,X,m) are exactly the same; one has only to take %(¢,x) = m(h(¢),x)
for all ¢ € F and x € X. So without loss of generality we consider a

t.t.g. (G,X,m) where G itself is a o-compact, locally compact group.

3.2. Let G be a o-compact, locally compact group, and let f: G > R be

a weight function as considered in 2.1. Finally, let (G,LE(G),p) be the
transformation group, defined in 2.3.

If (G,X,m) is any t.t.g. such that X is a Hausdorff topological space,
and if ¢:X - R is a bounded continuous function, say |¢(x)| < 1 for all

x € X, then we define a mapping ¢: X~ L,(G) by

o
(6(x))(g):= £(g) . (som )(g) = £(g) . ¢(m(g,x)).

That ¢(x) « L2(G) whenever x € X follows from the facts that

¢ om G~ R is bounded and continuous, that f e L.(G), and that ¢(x)

2
is the pointwise product of both functions.

3.3. THEORE!. The mapping ¢: X L2(G) is continuous, and

pg o E = ¢ o & for every g € G.

Moreover,.a is one-to-one if and only if ¢ has the property that

{¢ o m® | g € G} separates the points of X.

Proof.
It is a simple computation to show that pgo$-= $ o 18 for all g € G, so
we leave it to the reader. To show continuity, note that for any

x, ¥y € X we have

13(x) - 3115 = JG £(8)% [6(n(g,x)) - o(n(e.y)) | ae.
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Now the proof can be finished by the proof of theorem A of §1, as it is
given in [1], page 370, but for completeness sake we reproduce here
that proof. Let € > 0 be given. Since G is o-compact, there is a compact

subset C of G such that

2 e?
J f(g)° ag < 5
G\C

From the continuity of ¢ e m : G x X >~ R and the compactness of C it
follows by standard arguments, that for x fixed in X, there is a neigh-

bourhood U of x such that

| (¢om)(g,x) = (9om)(g,y)]| < —Ef  forallgeC,ye U
2Nl

Consequently, for all y € U we have

— —_ f
1800 - 8115 < | £(&)% | (4om) (gs)=(0om) (g | Pageh j £(g)°ag

G\C

hence ¢ is continuous.

Now assume {¢ © n® ] g € G} separates the points of X, that is: if

x, y € X, x 2y, then there is a gy © G such that
(gom )(gy) = (¢°Wy)(g0).

Since ¢ © me and ¢ ©° “y are continuous, there is a neighbourhood U of
&y in G such that (¢°ﬂx)(g) # (¢°ﬂy)(g) for all g € U. Consequently,
(o(x))(g) = (¢(y))(g) for all g € U, where U has positive Haar measure.

2(G).
Conversely, it is easy to see that {¢ o n | & € G} separates the points

This means, that ¢(x) and ¢(y) are different as elements of L

of X if 5 is one-to-one.

3.4. Remark. The property of the t.t.g. (G,L2(G):p) described in 3.3 may be
expressed by saying that (G,L2(G),p) is guasi-universal for all t.t.g.
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(G,Xx,m): if (G,X,m) is any t.t.g., then there exists a continuous mapping
$: X > L2(G) such that for every g ¢ G the following diagram commutes:

g

Ly(¢) 2 > L,(C)

¢ )

One might ask for conditions that $ be a topological embedding.

The following two conditions are obviously necessary:

(a) X is metrizable and the weight of X is less than or equal to the
weight of L2(G) which equals, as is well known, the Hilbert dimension
of L2(G), that is, the cardinality of an orthogonal base of LZ(G)‘

(b) The set of invariant points in X, that is, the set {x ¢ X | Vg € G:

g

m°x = x}, is homeomorphic to a subset of R.

As to condition (b), this follows trivially from the fact that the only
invariant points of the t.t.g. (G,L2(G),p), where G is a o-compact,
locally compact group, are the points Af in L2(G). Here X € R and f is
the weight function, used in the definition of p. Thus the set of in-
varignt pointg (G,L2(G),p) is bomeomo;ppic to R. We only know about one
special case in which the conditions (a) and (b) are sufficient: the
case that G = R and X is compact (we disregard the trivial, though not:
unimportant, case that X is a subset of R and G an arbitrary o-compact,

locally compact group).

3.5. THEOREM. Let (R,X,m) be a t.t.g. If X is a compact, metrizable

space, and if the action of R on X by m is such that the set of in-

variant points in X is homeomorphic t

a subset of R, then there is a

topological embedding ¢: X ~ L2(R) such that

¥ o3 =% 0" forallt eR.



1k

Remark. A weight function f on R that satisfies all conditions of 2.1

is given by f(t) = exp(-|t|). C.f. [1], p. 367. Hence pt: LE(R) > L2CR)
may be defined by
& exp(-|s]|)
(p°x)(s) = ———— x(s+t) if x € LQ(R) and s, t € B.
exp(-|s+t])

Proof of the theorem:

In [L4], S. Kakutani has proved that the assumptions of our theorem
imply the existance of a continuous function ¢: X = R such that

{¢ o nt | t € R} separates the points of X. Consequently, the corres-
ponding mapping b: X > LQ(R) is continuous and one-to-one, by theorem

3.3, hence a topological embedding, since X is compact.

If X is metrizable and weight (X) > weight (L2(G)) then X cannot be
embedded into L2(G). Instead, we have theorem A of §1, which is, in

fact, the following variant of theorem 3.3:

3.6. THEOREM. Let (G,X,m) be a topological transformation group, with

G a o-compact, locally compact group and X a metrizable space of weight

k. Then there is a topological embedding T of X into the Hilbert space
H(k,G) such that

1 0onm8 =080 1 for every g € G.

Here o = o(k,G). (c.f. 2.6.).

Proof.

Let A be a set with cardinality k. It is well known that X may be
regarded as a subset of the unit ball of a Hilbert space Ho with Hilbert
dimension « (see [1] for references). Let (..|..) denote the inner

let |

roduct in H ..||~ be the norm in H, and let {e a € A} be an
p 0 o

0? 0
orthogonal normed base of HO' Note, that for all x € X and a € A we have

xle )| < lxlly leylly < 1 and that

(6) [l = T Itxle)l?.

o€l
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Now a function t: X > H(x,G) = @ H, where H = L2(G) for all a € A,
0€A

can be defined by

t(x) = ()

oaen » With aa E'L2(G) such that

vy
—
o
~
]

flg) . (n(g,x)lea) for all g € G and o € A.

Indeed, by the Lebesgue theorem and formula (6) we have

I lle ll5 =1 J £(g)° [(r(g,x) e, )| e
0€EA 0€A ‘G
2 ' 2

- | 2021 lttexle,) %
G 0€A

= J £(g)° ||ﬂ(g,X)ll§ dg
G

:J £(g)°ag < =,
G

hence (Ea)aeA € & H (note that £, € H, = L2(G) by a similar argument

deA
as in the proof of 3.3). We have proved, that t(x) € H(kx,G) and that

dg.

16l 12 = | 20 lrtenl I

Similarly, one shows that for any x, y € X

[1(x) = t(y)]|? = JG ()% |[n(g,x) - n(e,y)|15 ae.

Now the proof can be completed by the arguments given in [1], page 370.

3.7. COROLLARY. Let k be a cardinal and G a o-compact, locally compact

group. Then the topological transformation group (G,H(x,G),0(x,G)),

defined in 2.6, is universal for all t.t.g. (G,X,m) with X a metrizable

space of weight < k. That is: if (G,X,m) is any t.t.g. with X metrizable
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of weight < k, then there is a topological embedding 7: X > H(k,G)

such that for all g € G the following diagram commutes:

g
o(k,G) S H(x,G)

(4

H(k,G)

>
\' 4
>

3.8. Remark. If A is a non-void set and A a cardinal, A i_max(|A|,kB),
and if for each o € A, H, is a Hilbert space of Hilbert dimension A,
then the Hilbert space H = & H, has dimension A, and H is topological
isomorphic as a Hilbert spaggAwith each of the Ha' With this in mind
one might expect that in 3.7 (G,H(x,G),0(x,G)) may be replaced by
(G,LE(G),p) if j_dim(Le(G)). However, this is not possible in general,
for several reasons. In the first place, there cannot be a topological
isomorphism ¢ from H(x,G) onto L2(G) such that p®e¢ = $oo(k,G)® for all
geG if « = |A] > 1. Suppose there is such a ¢; then ¢ maps the
set of invariant points of (G,H(x,G),0(x,G)) onto the set of invariant
points of (G,LZ(G),p). Since the first set may be identified with

® Ra with Ra = R for all o € A and the second set with R, this is
%ﬁ%ossible unless |A| = 1.

Secondly, if the set of invariant points of (G,X,m) is not homeomorphic

with a subset of R, X cannot be imbedded into L. (G) in such a way that

the action of G on X (by m) becomes a restrictiin of the action of G

on L2(G) by p.

However, if k i_dim(Lg(G)), then there is actually a linear isometrical

mapping ¢ of H(k,G) onto L,(G) if dim(LQ(G)) > . Since the transfor-

mation t— ¢ ° t ° ¢—1 is a topological isomorphism of the group
GL(H(k,G)) ontd the group GL(L2(G)), it is easy to see that the follow-

ing theorem holds:

3.9. THEOREM. Let G be a o-compact, locally compact group such that the

Hilbert dimension « of L,(G) is not finite. Then there is a mapping




7

p: G % L2(G) > LE(G) with the following properties:

o

1. (G,L2(G),5) is an effective t.t.g.

) . = =g
2 . The mapping R: g~ D

group G into the group G L(L2(G));

is a topological isomorphism of the

3%, If (G,X,m) is any t.t.g. with X a metrizable space of weight

< K, then there is a topological embedding T of X into L,(G)

such that

78 o i =710 18 for every g € G.
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