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A NOTE ON TOPOLOGICAL LINEARIZATION OF LOCALLY COMPACT 

TRANSFORMATION GROUPS IN HILBERT SPACE 

J. DE VRIES 

§1. Introduction 

The purpose of this note is to improve the results of [2] by using the 

results of [5] and to give some information about the structure of the 

universal linear transformation groups in [1] and [2]. 

Let G be a locally compact group. A weight function on G is a real­

valued function f on G with the following properties: 

(i) f(e) = 1, where e denotes the neutral element of G; 

f(g) > 0 for every g €_ G. 

(ii) sup ff~:~)<® for every g0 € G. 
g€G 

(iii) f € L2(G), where L2(G) is the Hilbert space of real-valued 

square-summable functions on G with respect to the (right) Haar 

measure in G. 

A group G admitting a weight function is called a W-group (c.f. [1]). 

A weight function f satisfying 

will be called a proper weight function. 

A topological transformation group (abbreviated t.t.g.) is a triple 

(G,X,TI) with Ga topological group, X a topological space and 

TI: G x X • X a continuous function satisfying TI(e,x) = x and 

TI(g1,TI(g2 ,x)) = TI(g1g2 ,x) for all g 1, g2 € G and x € X. 

Define Tig: X • X and TIX: G • X by Tig(x) = TIX(g) = TI(g,x) (g € G, X € X). 

Then it is clear, that {Tigjg € G} is a group of autohomeomorphisms of X, 

and that TI is a continuous function of G into X. The t.t.g. (G,X,TI) is 
X 

called effective if g ~ h implies Tig ~ Tih (g,h € G). Throughout this note 
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we will use the following notation: if His a Hilbert space, then L(H) 

will denote the space of all bounded linear operators in H, and GL(H) 

will denote the group of all bounded invertible linear operators in H. 

We always assume that GL(H) is provided with the strong operator topo­

logy, that i:s, the point-open topology on H. 

The concept of a W-group was introduced by P,C. Baayen and J. de Groot 

in [1]. They proved the following theorem (in a slightly different 

formulation): 

THE:JREM A. Let ( G,X';ir )be .§. topological transformation group. If X is 

metrizable and if, moreover, G is.§. W-group, then there exist.§. topo­

logical embed.ding -r of X into.§. Hilbert space K, and an isomorphism 

L: G • GL(K), such that for every g E G 

L(g) 0 -r = -r O ng. 

In a subsequent note [2 J, P. C. Baayen proved, that the isomorphism L is 

always an open map and moreover, that it is continuous (hence topologi­
f(g) . 

cal) if G ha:s a continuous weight function f such that sup f( h) is a lo-
gEG g 

cally bounded function of hon G (which is the case if r is continuous and 

has property (ii) 0 ). We shall prove,that the continuity off may be dropped 

from the conditions if 1/f is locally bounded.The proof depends on the fact, 

that the space of continuous functions on G with compact support is dense in 

L2 (G), and the proofs in [2] may easily be adapted to obtain the desired 

result. We shall give a slightly different proof, replacing the "Hilbert 

integral" of [1] by a Hilbert sum of copies of L2(G) and using a suitable 

representation of G in GL(L2 (G)). 

As to the condition that 1/f must be locally bounded we note the following 

facts. In [6] A.B. Paalman-de Miranda proved, that the class of W-groups 

is exactly the class of a-compact, locally compact groups, and that every 

W-group admits a proper weight function. In fact the author proved more. 

If G is a a-compact, locally compact group, then there is a sequence 

v1 .::. v2 c 

bourhood of e 

.::. Vk.::. ... of compact subsets of G, such that v1 is a neigh-
oo 

and G = U Vk. Then a function f, satisfying ( i), (ii) 0 and 
k=1 
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(iii) can be constructed in such a way that 

1\::=sup{fig) I g € Vk} <~for all k = 1, 2, •••• 

. ul f t· 1 . In partic . ar: the unc ion gH- f(g) is locally bounded on G. Indeed, 

if g0 € G, then g0V1 is a neighbourhood of g0 , and for every g € v1 the 

inequality 

Summarizing: 

THEOREM 13. Let G be~ a-compact, locally compact group. Then there is 

~ real-valued function f on _G satisfying ( i) , (ii) 0 and (iii), such 

that 1/f is locally bounded. In particular, 1/f is bounded 2!!, every 

compact subset of G. 

Consequently, theorem A holds for every a-compact, locally compact 

group G, and without further restrictions L: G • G L(K) may be assumed 

to be a topological isomorphism. 

§2. A representation theorem 

2.1. Let G be a a-compact, locally compact topological group. 

Everything in this section (and hence §3) can be done if one admits 

complex-valued functions, but we assume all functions to be real-valued. 

In particular L2(G) is the real Hilbert space, consisting of all real­

valuedfunctionsthat are square-summable with respect to the right Haar 

measure in G. 

Let f be a real-valued function on G that satisfies the conditions (i), 

(ii) 0 and (iii) of § 1, such that 1 /f is bounded on compact subsets of 

G. For every g € G, let a mapping pg: L2(G) • L2(G) be defined by 
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g f(h) 
(p x)(h) = f(hg) x(hg). if h E G and x E L2 (G). 

Note that pg(x) E L2 (G) for every x E L2 (G) and g E G. Indeed, pgx is 

a measurable function, and 

I g 12 f(h') 2 
(p x)(h) ,:_ sup (f(h' ) ) 

, h'EG ~ 
lx(hg)j 2 ,:_ 1 

2 lx(hg)j 2 • 
f(g) 

Since the function hi--+ f(g)-2 jx(hg)j 2 

the right Haar measure, the function 

well, and hence pgx E L2(G). 

is integrable with respect to 

h...-r I (pgx)(h) I 2 is integrable as 

It is easy to see, that for all g E G, pg: L2(G) • L2(G) is linear, and 

from the inequality above it follows that I IP gx I I 2 ,:_ f( g )-1 11 x I I 2 • 

Consequently, pg E L(L2(G)) and I jpgj I,:_ f(g)- 1• A simple computation 

shows, that for all g, h E G we have pgh = pg O ph and that pe is the 

identity operator in L2(G). Hence pg E G L(L2(G)) for all g, and the 

mapping R: g • pg is a homomorphism· of the group G into the group 

2.2. THEOREM. The mapping R: gt-• pg is_!:. faithfull representation of 

Gas_!:. group of bounded invertible linear operators .2!!. the Hilbert 

space L2(G). Moreover, R is_!:. topological embedding of G into GL(L2(G)). 

Proof. 

Part of the theorem is proved in the preceding discussion. We only have 

to show that Risa topological embedding. 
0 

1 • First we show, that Risa relatively open injection. To prove 

openness, since Risa homomorphism of groups, it is sufficient to . 

verify the following statement: for every neighbourhood U of e in G 

there are a finite set. Ac L2(G) and a real number E > 0 such that 

{ g I g E G & I I P gx - x I I 2 < E for all x E A} c U. 

The proof is easy: let V be a compact, symmetric neighbourhood of e 

such that v2 c U. Now there is a continuous function x0 with support 

contained in V such that JV lx0(h)i 2dh = 1. For every g E G, g ~ U we 
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! 2 -1 ~ have g ~ V, hence Vg n V =~,and consequently 

Taking.A= {x0} and e = 1 we have the desired result. 

To prove that Risa one-to,one mapping it is sufficient to prove t~at 

g = e if I IPgX - xi 12 = 0 for all x e: L2 (G). Assuming g ~ e, there is 

a neighbourh~od U of e such that g f U; then, using the function x0 
indicated above, we obtain: 

contradicting the fact that 11 p gx - x 11 2 = 0 for all x e: L2 ( G:) • 

So Risa isomorphism. 
0 

2 • To prove that R: G ~ G L(L2(G)) is strongly continuous it is 

sufficient to prove, that for every x e: L2 ( G) the mapping gi-+ pg(x) 

from G into L2(G) is _continuous in e e: G. The proof is in two steps: 

(a) Suppose first that xis continuous and has a compact support, that 

is: there is a compact set C in G such that x(g) = 0 whenever g f C. 

Let e > q; let v1 be a compact neighbourhood of e and define 

m1 := sup{f(g)-1· I g e: v1}. For every g e: G we have 

Since xis continuous and x has a compact support, xis uniformly 

continuous with respect to the left uniform structure of G. Moreover, 

xis zero outside a set of finite Haar measure, so there is a neigh­

bourhood w1 of e such that 



Consequently, 

(2) 

I I x(hg) - x(h) I 2dh 
G 

6 

2 
< _e:_ 

2 2m1 

for every g € w1• 

1 I I 12 1 2 x(hg) - x(h) dh <? for every g € v1 n w1 • 
f(g)2 G 

1 . 
Since cv1 is compact, 1/f is bounded on cv1, say f(k)- :5.. M for every 

k € cv1 • Now 

I 
f ( h) - 1 12 

< 1 ~ f ( h) - f ( hg) 12 :::..· M2 I f ( h) - f ( hg) 12 
f(hg) - f(hg)2 

for all h € C and g € v1, hence 

(3) 

Here I lxl 10 = sup{lx(h)I lh € C}. As f € L2(G), it follows from [3], 

theorem (20.4), that there is a neighbourhood w2 of e, such that 

(4) JG lf(h) - f(hg)l 2dh < 2 e:2 
2 for every g € w2 . 

2M I lxl 10 

Combining ( 1 ) through ( 4) , we get 

This proves that the mapping g...+ pg(x) = (R(g)) (x) from G into L2 (G) 

is continuous in e. 

(b) In the general case, take x € L2(G). Let e: > O. Then there is a 

continuous function y with compact support, such that 

llx-yll2 < 2(1:m) · 
1 

For every g € v1 we have IIPgll :5.. f(g)- 1 :5..m1, and 



7 

By the result of (a) there is a neighbourhood W of e such that 

I IP~ - YI 1 2 < -½E: for every g E W, 

hence 

This proves that the mapping gi-+- pg(x) is continuous in e. 

2.3. COROLLARY. The mapping p: (g,x)1-+ pg(x) of G x L2 (G) into L2 (G) 

is continuous,~ (G,L2(G),p) is an effective t.t.g. If G is regarded 

as~ group of linear autohomeomorphisms of L2 (G), identifying g with 

pg(gEG),thenthe originaltopology of G coincides with the point-open 

topology Q£ L2(G). 

Proof. 

Everything except the continuity of p follows immediately from the 

fact that R: gt-+ pg is a topological isomorphism of G into GL(L2(G)). 

To prove the.continuity of P, let x E L2(G), g E G and E: > 0 be given. 

There is a (compact) neighbourhood U of g such that 

00 > M: = sup f(h) .::_ sup 11 Ph 11 • 

hEU hEU 

The continuity of pin the point (g,x) of G x L2 (G) follows from the 

continuity of the mapping hr+ ph(x) in g E G and from the inequality 

for all h E U. 
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2.4. For applications in §3, we need the following generalizations of 

2.2 and 2,3. 

set, K = IAI = the cardinality of A, and let for 

and pg= pg (g € G; cf. 2.1). 
a 

Let A be a non-empty 

all a€ A, Ha= L2 (G) 

Take H(K,G): = $ Ha and a ( K , G) : = $ pg (g € G)· for short we will a ' a€A a€A 
write H = H(K,G) and ag = a(K,G)g. Note that ag is defined for every 

g € G and that it is a bounded linear operator on H with 

I jag I I ~ f(g)- 1 , because I IP~I I 2- f(g)- 1 for every g € G and every 

a€ A. Moreover, it is easy to see that the mapping S: gi-+ ag is a 

homomorphism of G into GL(H). Now the following generalization of 

2.2 holds: 

2,5, THEOREM. The mapping S: G-+ G L(H) ~~topological isomorphism 

from G into G L(H). 

Proof. 

In 2. 4 we remarked already that S is a homomorphism. of groups. To 

prove that Sis one-to-one and relatively open, we proceed as follows. 

Take any a0 € A (fixed) and a,€ Ha0 = L2(G) (to be specified later), 

and consider x(,):= (x) A€ H, where x = 0 for a~ a0 and x = ,. 
a.a€ a ao 

Then for every g € G we have by definition of the norm in H: 

Now, if U is a neighbourhood of e in G, then there exist a finite sub-

set B of H = 
ao 

L2(G) and a real number£> 0 such that 

{g I g € G & I !Pg' - ,11 2 <£for all,€ B} .=. U, because R: gi-+ pg 

from G into G L(L2(G)) is relatively open. Hence, if BO:={x(,)I, € B}, 

then BO is a finite subset of H, and 

(5) {g I g € G & I lagx - xi I < £ for all x € BO} .=. U. 

This means that S: gi-+ ag is relatively open in e, hence relatively 

open on G. The fact that Sis one-to-one can be proved similar to the 
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proof of 2.2 by using (5). 
To prove continuity of S, recall that there is a compact neighbourhood 

v 1 of e in G such that 

1 
f(g) = ID < oo 

1 

Fix any x EH, x 

A c A such that 
e: -

= (x) A' For every e: > 0 there is a finite subset ct ctE 

since I 
a.EA 

I 
ctEA\A 

e: 

I lxal 12 = 

I 
aEA\A 

e: 

I lxl 12 

9 

2 
e: 

2 2(m1+1) 

< 00 • So for 

I I pgx - x I I 2 < 

every g E v1 we 

I (1+IIPg11? a a a aEA\A E 

have 

I Ix I 12 < 
1 2 
2E • a 

Using strong continuity of the mapping gi-+ pg from G into GL(H ) for 
a a 

every a in the finite set A, we see, that there is a neighbourhood V 
E 

of e such that 

2 2 
- x I I < e: for all.a EA, g EV, 

a 21A I E 
E 

where IA I denotes the cardinality of A. Consequently, for every 
e; E 

g E v1 n V we have 

I 
ctEA 

e: 

11 P gx - x I 12 + a a. a. I 
ctEA\A 

e: 

I I P gx - x I 12 < a a a 

that is: I lagx - xi I < e: for all g E v1 n V. This proves strong 

continuity of Sine E G, hence strong continuity of Son G. 

2 
E ' 

2.6. COROLLARY. The mapping a(K,G): (g,x)- ag(x) from G x H(K,G) into 

H(K,G) is continuous, and (G,H(K",G),a(K,G)) is an effective topological 

transformation group. If G is regarded as_§!:. group of linear autohomeo­

morphisms of H(K,G), identifying g with a(K,G)g, then the original topo­

~ of G coincides with the point-open topology on H(K,G). 
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Proof. 

The proof is similar to the proof of 2.3, since hi-+ I lcrhl I is locally 

bounded. 

§3. Consequences 

3.1. The results of section 2 can be used to strengthen previous results 

on linearization in [1] and [2]; in fact, all theorems of [2], section 5, 
hold for cr-compact, locally compact groups G, that is, for all groups, 

admitting a weight function. At this point we stress the fact that the 

existence of a continuous weight function is not needed at all. Clearly 

this assertion will be a consequence of the observation, that the trans­

formation group (G,H(K,G),cr(K,G)), defined in 2.6, is universal in the 

following sence: let (G,X,n) be a transformation group, such that Xis 

a metrizable space of weight~ K; then there exists a topological em­

bedding T : X • H(K,G) such that for every g c G the following diagram 

commutes: 

H(K,G) H(~,G) 

r 
X X 

Here crg(x) = [cr(K,G)] (g,x), and crg is a bounded linear operator on 

H(K,G); this is why one may say, that the action of G on Xis linear­

ized in H (c.f. [1]). Moreover, because of the fact that the mapping 

S: g1-+ crg of G into GL(H(K,G)) is a topological embedding, one may 

speak of a topological linearization (c.f. [2]). 

Before outlining a proof of our observation we have to make a remark 

about the condition in [1] and [2] that G is a continuous homomorphic 

image of a W-group F (that is: a locally compact, cr-compact group F; 

c.f. [5]). That condition is in fact equivalent to the condition that 
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the action on X comes from a cr-compact, locally compact group. For if 

(G,X,TI) is a t.t.g., h: F • Ga continuous homomorphism of a topological 

group F onto G, then hand TI induce an action w of Fin X such that the 

homeomorphism groups (;<I> I <I> e: F} and { Tig I g e: G} of (F',X,ir) and 

(G,X,TI) are exactly the same; one has only to take ~(<j>,x) = TI(h(<j>),x) 

for all <I> e: F and x e: X. So without loss of generality we consider a 

t.t.g. (G,X,TI) where G itself is a cr-compact, locally compact group. 

3.2. Let G be a cr-compact, locally compact group, and let f: G + ffi be 

a weight function as considered in 2.1. Finally, let (G,L2(G),p) be the 

transformation group, defined in 2.3. 

If (G,X,TI) is any t.t.g. such that Xis a Hausdorff topological space, 

and if <j>:X + ffi is a bounded continuous function, say l<t>(x)I .::_ 1 for all 

x e: X, then we define a mapping i: X • L2(G) by 

(i(x))(g):= f(g) • (<j> 0 TIX)(g) = f(g) • <j>(TI(g,x)). 

That i(x) e: L2(G) whenever x e: X follows from the facts that 

<I> 0 TIX: G • ~is bounded and continuous, that f e: L2(G), and that i(x) 

is the pointwise product of both functions. 

3.3. THEOREM. The mapping <j>: X • L2(G) is continuous, and 

pg o ~ = ~ o Tig for every g e: G. 

Moreover, <I> is one-to-one if and only if <I> has the property that 

{<j> 0 Tig g e: G} separates the points of X. 

Proof. 

It is a simple computation to show that pgoi = i O Tig for all g e: G, so 

we leave it to the reader. To show continuity, note that for any 

x, ye: X we have 

- - 2 
I l<t>(xl - <t>(y) I 12 J 2 ' 2 

= G f(g) l<t>(TI(g,x)) - <j>(TI(g,y))I dg. 
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Now the proof can be finished by the proof of theorem A of §1, as it is 

given in [1], page 370, but for completeness sake we reproduce here 

that proof. Let E > 0 be given. Since G is a-compact, there is a compact 

subset C of G such that 

I f(g)2 dg < ;2 • 
G\C 

From the continuity of cf> 0 1r : G x X + IR and the compactness of Cit 

follows by standard arguments, that for x fixed in X, there is a neigh­

bourhood U of x such that 

l(cf> 0 1r)(g,x) - {cj> 0 1r)(g,y)I < E for all g EC, y EU. 
21 lfl 12 

Consequently, for ally EU we have 

- - 2 r 21 2 f 2 I lcf>{x) - cj>{y)I 12 ~ J f(g) • {cj> 0 1r){g,x)-(cj> 0 1T){g,y)I dg+4 f{g) dg 
C G\C 

hence cf> is continuous. 

Now assume {cf> 0 1rg I g E G} separates the points of X, that is: if 

x, y EX, x ~ y, then there is a g0 E G such that 

Since cf> 0 1rx and cf> 0 1ry are continuous, there is a neighbourhood U of 

g0 in G such that {cj> 0 1r )(g) ~ {cj> 0 1T )(g) for all g EU. Consequently, 
- - X y 

(cj>(x)){g) ~ {cj>{y))(g) for all g EU, where Uhas positive Haar measure. 

This means, that $(x) and ${y) are different as elements of 12(G). 

Conversely, it is easy to see that {cf> 0 1rg I g E G} separates the points 

of X if$ is one-to-one. 

3.4. Remark. The property of the t.t.g. (G,L2(G):p) described.in 3,3 may be 

expressed by saying that (G,L2(G),p) is quasi-universal for all t.t.g. 
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(G,X,n): if (G,X,n) is any t.t.g., then there exists a continuous mapping 

¢: X • 12 (G) such that for every g E G the following diagram commutes: 

1Tg 
X----------------~X 

One might ask for conditions that¢ be a topological embedding. 

The following two conditions are obviously necessary: 

(a) Xis metrizable and the weight of Xis less than or equal to the 

weight of 12 (G) .which equals, as is well known, the Hilbert dimension 

of 12(G), that is, the cardinality of an orthogonal base of L2(G). 

(b) The set of invariant points in X, that is, the set {x E X I \/g E G: 

ngx = x}, is homeomorphic to a subset of~-

As to condition ( b) , this follows trivially from the fact that the only 

invariant points of the t.t.g. (G,L2(G),p), where G is a a-compact, 

locally compact group, are the points \fin L2(G). Here\ E IR and f is 

the weight function, used in the definition of p. Thus the set of in­

variant point~ (G,L2_(G) ,P) is ~o~eomo~p~ic to R. We only know about one 

special case in which the conditionfi (a) and (b) are sufficient: the 

case that G = lR and Xis compact (we disregard the trivial, though not" 

unimportant, case that X is a subset of iR and G an arbitrary a-compact, 

locally compact group) . 

3,5. THEOREM. Let (lR,X,n) be a t.t.g. If Xis~ compact, metrizable 

space, and if the action of IR on X ~ n is such that the set of in­

variant points in X is homeomorphic to ~ subset of B., then there is ~ 

topological embedding~: X • L2 (1R) such that 

for all t E IR. 
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Remark. A weight function f on B that satisfies all conditions gf 2.1 

is given by f(t) = exp(-lt~). C,f. [1], p. 367. Hence pt: L2 (1R) • L2 (JR) 

may be defined by 

t (p x)(s) = 

Proof of the theorem: 

exp(-lsl) 

exp(-1 s+t I) 
x(s+t) if x € L2(B) ands, t € B. 

In [4], S. Kakutani has proved that the assumptions of our theorem 

imply the existance of a .continuous function~: X • ~such that 

{~ 0 nt I ~€~}separates the points of X. Consequently, the corres­

ponding mapping i: X • L2(R) is continuous and one-to-one, by theorem 

3.3, hence a topological embedding, since Xis compact. 

If Xis metrizable and weight (X) .::_ weight (L2(G)) then X cannot be 

embedded into L2(G). Instead, we have theorem A of §1, which is, in 

fact, the following variant of theorem 3,3: 

3,6. THEOREM. Let (G,X,n) be~ topological transformation group. with 

G ~ a-compact, locally compact group and X ~ metrizable space of weight 

K, Then there is~ topological embedding T of X into the Hilbert space 

H( K ,G) such that 

T O ~g: ~g OT f G " v or every g € • 

Here a= cr(K,G). (c.f. 2.6.). 

Proof. 

Let A be a set with cardinality K. It is well known that X may be 

regarded as a subset of the unit ball of a Hilbert space H0 with Hilbert 

dimension K ( see [ 1 J for references). Let ( •• I .. ) denote the inner · 

product in H0 , let 1 ·1., I IO be the norm in H0 and let {ea a € A} be an 

orthogonal normed base of H0. Note, that for all x € X and a€ A we have 

I ( x I ea) I < 11 x 11 0 11 ea 11 0 .:_ 1 and that 

(6) llxll 0 = 



Now a function,: X + H(K,G) 

can be defined by 
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= i . Ho. where Ho. = L2 ( G) for all o. E A, 
a.EA 

,(x) = ( 1: ) , with ~o. E- L2 (G) such that "'o. CJ.EA 

~ (g) = f(g) • (ir(g,x)le ) for all g E G and o. EA. 
CJ. CJ. 

Indeed, by the Lebesgue theorem and formula (6) we have 

= JG f(g) 2 I lir(g,x)I I~ dg 

hence(~ ) A E i H (note that~ EH = L2(G) by a similar argument a CJ.€ .; A a a o. 
Ci.€ 

as in the proof of 3.3). We have proved, that ,(x) E H(K,G) and that 

11,(x)ll 2 = I f(g) 2 llir(g,x)II~ dg. 
G 

Similarly, one shows that for any x, y EX 

11,(x) - ,(y) I 12 = JG f(g) 2 I lir(g,x) - ir(g,y) I I~ dg. 

Now the proof can be completed by the arguments given in [1], page 370. 

3,7, COROLLARY. Let K be~ cardinal and G ~ a-compact, locally compact 

group. Then the topological transformation group (G,H(K,G),cr(K,G)), 

defined in 2.6, is universal for all t.t.g, (G,X,ir) with X ~ metrizable 

space of weight.::_ K. That is: if (G,X,ir) is any t.t.g. with X metrizable 
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of weight .:_ K, then there is _!! topological embedding T : X -+ H( K, G) 

such that for all g € G the following diagram commutes: 

H(K,G) 

l· .g 
X--------------.,. X 

3.8. Remark. If A is a non-void set and >.. a cardinal, >.. ;:_ max( IAI ,~), 
and if for each a€ A, Ha is a Hilbert space of Hilbert dimension>.., 

then the Hilbert space H = $ Ha has dimension>.., and His topological 
a€A isomorphic as a Hilbert space with each of the 

one might expect that in 3.7 (G,H(K,G),o(K,G)) 

H. With this in mind 
a 

may be replaced by 

(G,L2(G),p) if K.:. dim(L2 (G)). However, this is not possible in general, 

for several reasons. In the first place, there cannot be a topological 

isomorphism~ from H(K,G) onto L2 (G) such that pgo~ = ~oo(K,G)g for all 

g € G if K = IAI > 1. Suppose there is such a~; then~ maps the 

set of invariant points of (G,H(K,G),o(K,G)) onto the set of invariant 

points of (G,L2 (G),p). Since the first set may be identified with 

$ R with R =~for all a€ A and the second set with~, this is 
a a 

~~tossible unless IAI = 1. 

Secondly, if the set of invariant points of (G,X,~) is not homeomorphic 

with a subset of R, X cannot be imbedded into L2 (G) in such a way that 

t.he action of G on X (by ~) becomes a restriction of the action of G 

on L2 (G) by p. 

However, if K .:.·dim(L2(G)), then there is actually a linear isometrical 

mapping~ of H(K,G) onto L2(G) if dim(L2(G)) ;:_.N"'0 • Since the transfor­

mation ti-+~ 0 t O ~-
1 is a topological isomorphism of the group 

'GL(H(K,G)) ont6 the group GL(L2(G)), it is easy to see that the follow­

ing theorem holds: 

3. 9. THEOREM. Let G be _!! a-compact, locally compact group such that the 

Hilbert dimension K of L2(G) is not finite. Then there is.!! mapping 
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p: G x L2(G) + L2(G) with the following properties: 

0 

1 . (G,L2(G),p) is~ effective t.t.g. 

2 °. _'.f'he mapping R: gt-• p-g is ~ topological isomorphism of the 

_s:roup G into the group G L ( L2 ( G) ) .-

0 

3 • 1f (G,X,1r) is any t.t.g. with X ~ metrizable space of weight 

~- K, then there is~ topological embedding~ of X into L2 (G) 

such that 

-g p o 1" = 1" o 7fg for every g e: G. 
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