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A survey of one-step splitting methods for semi-discrete first order 

hyperbolic partial differential equations*) 

by 

H.B de Vries 

ABSTRACT 

In this report splitting methods are discussed for first order hyperbolic 

partial differential equations via the method of lines, and in particular the 

time integration will be discussed. A class of one-step integration formulas 

is defined, which is shown to contain several well-known splitting methods. 

For a number of methods stability results are given. 

KEY WORDS & PHRASES: Numericol ana.lysis; ordina.ry differential equations; 

partial differential equations; method of lines; split

ting methods 

*) This report will be submitted for publication elsewhere. 





1 . INTRODUCTION 

It is the purpose of this report to discuss splitting methods for first 

order multi-dimensional hyperbolic partial differential equations (PDE's) 

via the method of lines (cf. [16]), and in particular the time-integration. 

Well-known splitting'methods are the alternating direction implicit methods 

(ADI) [9,10], the loeally -one- dimensional methods (LOD) [10,18] and the 

hopscotch methods [8,12], which are usually formulated and analysed as di

rect grid methods. 

Let 

( 1 • 1 ) 
dly 
--=f(ty) 
dt ' ' 

f: JR X JR~ 
N 

• ]R 

denote a semi-discrete first order hyperbolic PDE, where we assume that f 

can be linearly split into k terms, k > 1 i.e., 

( I. 2) 
k 

f(t,y) = I 
i=l 

f.(t,y), 
l 

X JR N N f.: JR -+JR. 
l 

The functions f. are called splitting functions [16] and depend on the orig-
1 

inal PDE and the type of semi-discretization. 

In mathematical physics (cf. [20]) hyperbolic initial-boundary value 

problems occur frequently, for instance, in oceanography, meteorology, seis

mology, aerodynamics and fluid dynamics. The general treatment of (nonlin

ear) hyperbolic equations is complicated by the great variety of physical 

phenomena that are important in different situations. This means that it is 

usually necessary to construct special methods which are suitable for the 

particular problem concerned. Even with smooth problems one must be careful 

of non-linear instabilities [22]. Limitations of the methods relate to the 

dispersion and dissipation present in the numerical approximation [23]. The 

implicit methods are mostly nondissipative (cf. [22, p.1091) and hence of 

dubious value for nonlinear hyperbolic systems in which discontinuities 

occur. In fluid dyna~ics the system can change significantly in a time ~t 

(shocks), so that there is no motivation for using long time intervals. 

Implicit methods usually have larger ranges of stability than explicit 

methods. 

It is not always clear what boundary conditions must be imposed to 
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ensure a well-posed problem, which is more severe in multi-dimensional prob

lems than in one-dimensional problems [2,19,20,22]. Implicit methods need 

often more boundary data than is necessary for the problem to be well-posed. 

For one- and multi-dimensional hyperbolic equations a discussion of stable 

approximations for the boundary conditions can be found in [2,14,20]. 

In section 2 of this report, we define a general class of one-step in

tegration formulas for the systems (1. 1)-(1.2), which we shall call split

ting formulas. We distinguish between splitting functions and splitting 

formulas, and a combination of both will be called a splitting method [16]. 

Several examples of known linear splitting methods, considered in this way, 

are discussed in the sections 3 and 4. 

In section 5 the stability properties of the one-step splitting methods, 

discussed in the sections 3 and 4, are investigated by making use of matrix 

theory. The results are presented in a uniform way and are based on a basic 

theorem. 

2. LINEAR SPLITTING FORMULAS 

Consider them-stage, one-step integration formula (cf. [16]) 

(()) 
Yn+l = yn, 

( 2. 1) y (j) 
J k 

A.l.f. (t +a.l.T ,yet;), = yn + T I I j l(l)m, 
n+l n l=O i=l J 1 i n J in n+ 

Yn+l 
(rn) 

Yn+l' 

where y denotes the numerical approximation at t = t and T = t 1 - t . n n n n+ n 
Each formula, belonging to (2.1), is called a linear splitting formula. The 

parameters A. 0 • and a. 0 • serve to make this scheme a consistent and stable 
J-t-i J,{__i 

approximation to (1.1). In particular, however, they should be used to ex-

ploit the splitting property (1.2) in order to obtain an attractive compu

tational process. 
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REMARK 2.1. Observe that (2.1) is closely related to Runge-Kutta methods and 

if A ... = O, the resulting scheme is explicit. Examples of explicit splitting 
J J l. 

methods for hyperbolic PDE's can be found in [6,25]. Such methods are related 

to explicit Runge-Kutta methods for ordinary differential equations (ODE's). 

The Strang splitting schemes [25,26] for multi-dimensional hyperbolic equa

tions are based on the idea of representing multi-dimensional difference op

erators as a product of one-dimensional operators, especially the one-dimen

sional Lax-Wendroff operator is chosen (cf. [22, p.302]). The Lax-Wendroff 

schemes can not be obtained via the method of lines approach because they 

involve manipulation of terms in both the time and space discretizati.ons. 

The orde.r conditions of (2. I) can be derived through a formal Taylor 

expansion and conditions up to order 3 are listed in table 2.1. 

For convergence of a p-th order consistent scheme (2.1) we refer to 

[16], where some references are given concerning convergence results for one

step formulas defined by general increment functions. 

Table 2.1. Consistency conditions for (2.1). 

m 
p=l I Amti = 1 ' l. = I(l)k, 

l=O 
m l 

p=2 I I "mt.Al . = i,j = I(l)k, 
l=I r=O l. rJ 2' 

m 
I "mti a.mti. = 2' l. = 1 (1 )k, 

l=O 
l 

p=3 I "l . = cl, j = l(l)k,l = 1 ( 1 )m, 
r=O rJ 

m 2 I "mti (Cl) = 3' i = l(l)k, 
l=l 

m l r 
I I I Amt.Al .>. = 6' i ,j 'g = 1 (1 )k, 

l=l r=l s=O 1. rJ rsg 

m 2 I "mti (a.mti) = 3' l. = l(l)k, 
l=O 

m l 
I I Amt.a. e_-Al . = 3' i,j = 1 (1 )k, 

l=l r=O 1. m 1. rJ 

m l 
I I \nl'a.l ·"l . = 6' i,j = 1 (1 )k. 

l=l r=O l. rJ rJ 
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3. TWO-TERM SPLITTING METHODS 

In this section we give a survey of important linear splitting methods 

for two-dimensional hyperbolic equations, which are generally formulated and 

analysed as so-called direct grid methods. 

Let us consider two-dimensional hyperbolic equations of the form 

(3. I a) ut = Au +Bu, 
X y 

(3. lb) ut = A(x,y)u + B(x,y)u, 
X . y 

(3. le) ut = A(u)u + B(u)u + C(x,y)u, 
X y 

(3. Id) u = A(x,y,t)u + B(x,y,t)u, 
t X y 

(3. I e) a a u = ax GI (u) + ay G2(u). t 

In general, the unknown u may be either a scalar or vector function of x,y,t 

and A and B may be scalars or matrices. The solution of (3.la)-(3.le) is 

required in an arbitrary region Q x (O,T] with suitable boundary conditions 

on oQ x (O,T], were Q is normally a bounded and path-connected region in the 

two-dimensional (x,y)-space with sides parallel to the coordinate axes, oQ 

is the boundary of Q, and (O,T] is the time interval O < t ~ T. For first 

order hyperbolic problems Q may as well be an open region. We assume that 

the initial condition at t = 0 is u(x,y,O) = u0 (x,y). The equations (3.la)

(3.ld) represent a hyperbolic system, if for all real a,B with a 2 + s2 = I, 

there exists a non-singular transformation matrix P such that P(aA+BB)P-I = D 

where Dis a diagonal matrix with real elements. If the matrices A and Bin 

(3.Ja)-(3.ld) are symmetric this is sufficient to guarantee that the equa

tions are systems of hyperbolic type, but it is not a necessary condition. 

Let k = 2 in (1.2), i.e., 

(3. 2) 

and consider the 2-stage formula [16] 
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(3.3) f 2(t +yT ,y )], 
n n n 

!f2 (t +yT ,y) + !f2 (t +(1-y)T ,y +I)], n n n n n n 

where the parameters o and 8 must satisfy (2o-l)A+8-o = 0 for a given A. The 

second order consistent formula (3.3) generates several well-known splitting 

methods. 

Replacing the region Q by a rectangular grid with grid lines parallel to 

the coordinate axes and semi-discretizing the equations (3.1) using standard 

central finite differences a system of ODE's (I.I) is obtained. For scalar 

equations (3.1) the right-hand side function of (I.I) f(t,y) satisfies the 

5-point coupling. 

3.1. Two alternating direction implicit methods 

Let us define the differential operator splitting for the equations 

(3. la)-(3. le) 

(3.4) 

where the functions f 1 and f 2 are obtained after semi-discretizing in (3.1) 

the term with the x-derivative and the term with they-derivative, respec

tively. 

By substituting these functions into (3.3) with A=8=½ we obtain the 

ADI method of Peaceman and Rachford [19,20]: 

(3. 5) 

I where O ~ y s 1. Usually the parameter y is equal to O or 2. 
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Choosing A= 1 and a= o 
Douglas and Rachford [ 3, 19 J: 

(3.6) 

1 - Bin (3.3) we obtain the ADI method of 

+ f 2 (t +yT ,y )], 
n n n 

1 1 I 
where O ~ B, y ~ 1. Well-known choices for (8,y) are (2,2) and (2,0). 

For scalar equations (3. 1) and system of equations (3.1) the Jacobian 

matrices of f 1(t,y) and f 2 (t,y) are tr>·idiagonal matr>ices and tr>idiagonal 

block matr>ices [9,19], respectively. This makes the methods computationally 

attractive. For the equations (3. la), (3. lb) and (3. Id) the ADI methods (3.5) 

and (3.6) require at each time step the solution of systems of linear alge

braic equations [9,10,19]. In [5,13] applications of the ADI methods are giv

en for the shallow water equations, i.e. equations of the form (3.lc). In 

this case systems of non-linear equations have to be solved. For the equa

tion (3. le) applications of both ADI methods are mentioned in [I]. Mostly 

the non-linear equations are solved by using a Newton iteration process 

[13,16]. 

3.2. The hopscotch methods 

In [8] hopscotch algorithms are considered for the numerical solution 

of a general n-dimensional parabolic equation. It is also possible to apply 

the hopscotch technique to (nonlinear) hyperbolic first order systems [12]. 

For a definition of the odd-even and line hopscotch splitting function we 

refer to [15,16]. 

The odd-even hopscotch method can be obtained by substituting the odd-
I 

even hopscotch splitting function into (3.3) and putting A = 2. The odd-even 

hopscotch method is suitable for 5-point coupled systems (I.I). Then only 

scalar> implicit equations have to be solved. 

By substituting the line hopscotch splitting function into (3.3) and 

putting A=½ the line hopscotch method is easily recognized. This method 

is suitable for 5-p0int coupled and 9-point coupled systems (l.l) [16]. 



In the line hopscotch method only systems of (non-) linear equations 

with a tridiagonal Jacobian matrix have to be solved. To the explicit 

Strang type splittings[6,25,26], possessing a 9-point c~pling, the line 

hopscotch method can be applied. 

7 

The hopscotch methods are suitable when the coupling between the com

ponents of f(t,y) is even fully nonlinear. However, in this case these 

methods seem to be of limited value because of the occurrence of nonlinear 

instabilities. In the solution of problems with shocks the hopscotch 

methods have been used in combination with Lax-Wendroff schemes [11]. 

3.3 A first order method of Douglas and Rachford 

Consider the 2-stage formula 

(1) ( l) + f 2 (t +a2T ,y )], Yn+l = yn + Tn[fl (tn+alTn,Yn+I) n n n 

(3. 7) 

Yn+l = ( l ) 
+ Tn[f2(tn+(l-a2)Tn,Yn+l) - f 2 (t +a2T ,y )], Yn+l n n n 

where O ~ a. ~ 1, i = 1,2. For every a. this method is first order consis-
i i 

tent. Usually the parameters a 1 and a 2 are equal to l and O, respectively. 

This splitting formula in combination with the differential operator split

ting (3.4) was introduced by Douglas and Rachford [3]. In [10] this scheme 

was suggested for equation (3.lb). 

REMARK 3.1. For fully non-linear hyperbolic equations we can formally 

define the non-linear Peaceman-Rachford method, the non-linear Douglas

Rachford method [16] and the method of successive corrections [15] based 

on the trapezoidal rule and backward Euler. However these methods are of 

dubious value for such equations. 

4. MULTI-TERM SPLITTING METHODS 

Consider the k-dimensional hyperbolic equations 
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k 
( 4. I a) ut = }: A.(x1, •.. ,~)u, 

i=I, ]. x. 
]. 

k 
(4. lb) ut = 1 A.(x1, •.. ,x ,t)u , 

i=I l. k xi 
k 

(4. I c) u = 1 A. (u)u , 
t i=I ]. x. 

]. 

k a G. (u) 
(4. Id) 1 ]. 

ut = 
ax. i=I ]. 

with appropriate initial and boundary conditions, i.e. the equations (4.la)

(4. Id) constitute a properly posed problem in some sense. In general, the 

unknown u may be either a scalar or vector function of x 1, ••. ,~,t and Ai 

may be a scalar or matrix for i = 1, •.• ,k. Assume that standard central 

finite differences are applied to obtain the semi-discrete system (1.1)

(1.2) where the functions f. are obained after semi-discretizing in (4.1) 
]. 

the term with the x.-derivative, i.e. we use the differential operator 
]. 

splitting (see section 3.1 and [15,16]). For scalar equations (4.1) the 

right-hand side function of (I.I) f(t,y) satisfies a (2k+1)-coupling. 

4.1. A method of Gourlay and Mitchell 

Let k = 3, and consider the three stage formula 

(I) I (I) 
Yn+I = y + z T [f 1(t +aT ,y) + f2(tn+8Tn,Yn+I)], n n n n n 

(4. 2) 
(2) (I) 

+ I Tn[f3(tn+ yTn,y~!~) 
(2) 

Yn+I = Yn+I + f~(t +(]-y)T ,y +])], 
.:S n n n 

Yn+I = (2) 
+ I Tn[f2 (tn+(l-8)Tn,y!~~) + f I ( t + (I -a )T , y I ) 7 , Yn+l n n n+ 

where O ~a~ I, 0 ~ B ~ 1 and O ~ y ~I.This splitting method is second 

order consistent and has been suggested by Gourlay and Mitchell [10] for 

equation (4.la). 

4.2 The locally one-dimensional method of Yanenko 

Consider the k-stage formula 
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(O) 
Yn+I = Yn• 

(4. 3) 
(j) (j-1) + T [(I-8)f.(t +(I-f3)T ,y(j~I)) 

(") 
+ ef.(t +f3T ,Y J 1)J, 

Yn+I Yn+I n J n n n+ J n n n+ 

J = l(l)k, 

Yn+I = 
(k) 

Yn+I' 

where f3 and 8 are still free parameters. For every e and f3 the method is 

first order consistent. This locally -one- dimensional method emanates from 

Yanenko [27]. Choosing 8 = f3 = I we obtain an LOD method which is frequently 

used in practice. In [10] this splitting method is suggested for hyperbolic 

equations of the form (4.lb) in two - and three dimensions. Marchuk [18] 

describes the LOD method(4.3) also for hyperbolic equations (4. la)-(4. lc). 

REMARK 4.1. In [16] several other multi-term splitting methods are discussed 

for parabolic equations. As far as we know, these multi-term splitting meth

ods have not been discussed in the literature for hyperbolic equations. 

5. STABILITY PROPERTIES 

In the method of lines approach stability properties can be investi

gated by making use of matrix theory. If this is not possible then we inves

tigate the stability of a scalar recurrence relation instead of the amplifi

cation matrix of the scheme. In this way unconditional stability properties 

can be shown for several splitting formulas. Partly these results will be 

based on a theorem which is quite similar to a theorem due to Kellog [17]. 

5.1 The test-model and a basic theorem 

The first order variational equation of (2.1) is of the form 

(5. l) 

where J. denotes the 
i 

of the matrix-valued 

can also be obtained 

Jacobian 3f./3y at (t,y) = (t ,Y) and the definition 
i n n 

stability function R is given in [16]. This function R 

by applying (2.1) to the linear equation 
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(5.2) dy - = dt - Jy, J 

k 

I 
i= I 

J .• 
1. 

If the matrices J. commute with each other and have a complete set of eigen-1. 
vectors, which implies that J. share the same eigensystem, the expression 1. 
(5.1) can be reduced to the scalar recurrence relation 

(5. I)' y I = R(z , ••• , z )y 
n+ I k n' 

where z. represents an eigenvalue of T J .. The analysis of this rational 1. n 1. 
function R is simpler than the analysis of the amplification matrix 

R(TnJ I'.•. ,TnJk) • 

For the derivation of stability criteria one must make assumptions on 

the matrices J and J .. These are: 

(5. 3) I. 

2. 

1. 

The matrices J. are skew-synunetric. 
1. 

The matrices J. commute. 1. 

To interpret these restrictions, consider the k-dimensional equation 

k 
(5.4) I 

i=I 
u + f(x 1, ••• ,x t) 

x. k' 1. 

on the unit cube with time-dependent Dirichlet boundary conditions. If we 

impose a uniform grid and semi-discretize using standard finite differences, 

we obtain a linear system 

(5. 5) dy = Jy + b(t). 
dt 

If we further assume the differential operator splitting,· i.e. the matrices 

Ji are associated to the operators a ~xi, then the properties (5.3) hold. 

The mathematical theory of finite difference approximations to hyper

bolic initial-boundary value problems is far from complete. Usually a finite 

difference scheme is applied in the interior of the grid and then a special 

difference scheme is used 1.n a neighbourhood of the boundary. Even if the 
interior scheme is stable for hyperbolic problems, the bourulary treatment 

may introduce instabilities that make the composite difference method use

less. In [2] various interior and boundary scheme combinations are 
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discussed. For model problems away from the boundaries a Fourier transfor

mation of the space variables is carried out in the method of von Neumann 

[9,19,22]. Here, we consider the linear equation (5.2), whose matrices sat

isfy the conditions (5.3), as a test-model for stability. This means that 

only for the interior of the computational grid stability results are de

rived, i.e. the boundary conditions are neglected. 

Note that the conditions (5.3) imply that J. for i = J, ••• ,k share the 
1 

same eigensystem. A skew-symmetric matrix J. is a normal matrix, i.e. 
T T T 1 

J.J. = -J.J. = J.(-J.) = J.J. where J. denotes the transposed of J .. Neces-
1 1 1 1 1 1 1 1 1 1 

sary and sufficient for a matrix to have a complete orthogonal set of eigen-

vectors is that it be normal (cf. [22, p.70]). Thus, the matrices J. com-
1 

mute and have a complete set of eigenvectors, i.e. the matrices J. share the 
1 

same eigensystem (cf. [15]). 

For the derivation of the stability criteria for factorized stability 

functions R we use the following theorem, which is closely related to the 

theorem of Kellog [17] (see also th. 5.1, [16]). 

THEOREM 5.1. If Sis a skew-symmetric real (nxn)-matrix and pis a positive 

scalar, then 

a) 

b) 

c) 

pl+ Sis non-singular, 
II (pI+S)-1112::;; p-1, 

II (pI-S) (pI+S)- 111 2 = I. 

PROOF. a) It can be easily verified that a skew-symmetric matrix S(ST = -S, 
T where S denotes the transposed of S) has purely imaginary eigenvalues. This 

means that all the eigenvalues z of pl+ S lie on the line Re z = p, p > O. 

b) 

then 

Let p + L\ (s=l, ... ,n,:\ t:lR) denote the eigenvalues of pl + S, 
s 1 SI 

I p+H I ;,: P ~ ---- ::;; -. 
s I p+v.. I p 

s 
Thus, the absolute value of each eigenvalue of (pI+S)-I is less than or 

equal to.!.. Further, (pI+S)-I is a normal matrix. The spectralnorm of a nor
P 

mal matrix is equal to its spectral radius. 
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Thus 

where 

c) 

i.e. 

Thus 

-1 
M 

II (pI+S)- 1 II 2 :,; max 
1:<;s:<;n 

1 ----= 
jp+i>- I 

s 

I A I s . min 
I>- j. If>- = 0 then II (pl+S)- 1 11 2 :,; -p1• s s . 

Let M 

min 

-1 
(pI-S) (pl+S) then 

tlM = [(pI-S)(pI+S)-l]T[pI-S][pl+S]-l = 

= (pI-S)-l(pI+S)(pI-S)(pI+S)-l = 

= (pI-S)-I(pI-S)(pl+S)(pI+S)-I = I, 

T 
= M and M 1s an orthogonal natrix. 

-1 II M 112 = II (pI-S) (pI+S) 112 = 1 • • 

5.2 Stability Theorems 

I ' ) 2 

For the splitting formulas in the sections 3 and 4 stability theorems 

are listed, which deal with unconditional stability. The results are stated 

for the splitting formulas. Therefore, it is necessary to consider the type 

of splitting and the underlying class of PDE's before interpreting a result 

for a splitting method (see section 5.1). 

THEOREM 5.2. 

1. The stability function of the formula (3. 3) reac~s 

(5.6) 

where Z.=,J.,i=l,2. 
i n i 

2. Let condit-fons (5. 3) be satisfied and let k 2, then 
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n 
3. Let Tn = T, T constant. If Ji, i = 1,2, is skew-symmetric, R (TJ 1,TJ2) 

is uniformly bound,ed inn for aU T > 0. 

PROOF. The derivation of the stability function (5.6) is straightforward. 

Part 2. is easily proved by making use of the commutativity and by observing 

that the amplification matrix R(TnJl,TnJ2) is orthogonal (i.e.,RT(TnJl,TnJ2) 

R(T J 1 ,T J 2) = I). To prove the last result we write R(TJ 1 ,TJ2 ) as 
n n 1 -I~ 1 

R(TJ 1,TJ2) = (I- l TJ2) R(TJ 1,TJ2)(I- l TJ2), 

with 

From part c) of theorem 5.1 it follows that 

The uniform boundedness of Rn(TJ 1 ,TJ2) is now obtained from the relation 

and by part b) of theorem 5.1. D 

From theorem 5.2 it follows that the ADI methods of Peaceman-Rachford 

and Douglas-Rachford, discussed in section 3.1, are unconditionally weakly 

stable for the equation (5.2) with k = 2 and property (5.3). Although the 

hopscotch methods, discussed in section 3.2, are based on the same splitting 

formula as the method of Peaceman-Rachford, the results of theorem 5.2 can 

not be interpreted in a direct manner for hopscotch splittings (cf. [16]). 

THEOREM 5.3. 

J. The stability function of the splitting formula for the alternating di

rection - locally one-dimensional method (4.2) is 
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(5. 7) R(Zl,z2,Z3) = (I- !_z )-1(r+ !_z )(I- !_z )-I 
2 I 2 2 2 3 

where z. = T J. for i = 1,2,3. 
i n i 

2. Assume that conditions (5.3) with k = 3 hold, then 

PROOF. Part I. and 2. can be proved in a similar way as in theorem 5.2. D 

From theorem 5.2 it follows that the method of Gourlay and Mitchell 

(4.2) is unconditionally weakly stable for the equation (5.2) with k = 3 and 

property (5.3). 

THEOREM 5.4. 

1. The stability function of the splitting foPT11Ula for the locally one

dimensional method (4.3) is 

(5. 8) 

where 

2. Let e 

1 

R(Z 1, •.. ,Zk) =.TT 
1.=k 

-1 (I-8Z.) (I+(1-8)Z.), 
l. l. 

z. = T J. for i = 1, ..• ,k. 
l. n l. 

=½-Assume the matrices J. to be skew-symmetric, then 
l. 

3. Let e =I.Assume the matrices J. to be skew-symmetric, then 
l. 

4. Let e = I. Assume the skew-symmetric (NxN) - matrices J. (with N even) 
l. 

are non-singular, then 
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PROOF. Part 1. follows again from a trivial calculation. Part 2. is an imme

diate consequence of part c) of theorem 5.1. Part 3. follows from part b) of 

theorem 5.1. In part 4. the skew-synnnetric (NxN)-matrices Jl are non-singu

lar, i.e. 

l = l(l)k, J = l(l)N, ]RN 
X. E , 

J 
Alj E JR\{0}. 

It should be noted that the determinant of a skew-synnnetric (NxN)-matrix of 

odd order (i.e. N is odd) is zero, i.e. the matrix is singular. The ampli

fication matrix R(TnJ 1 , ..• ,TnJk) given by (5.8) with 0 = l is a normal ma

trix. The spectral norm of a normal matrix is equal to its spectral radius. 

Thus 

for Alj ~ 0. 0 
We see that the locally one-dimensional method is stable under less 

restrictive conditions than (5.3) (i.e., no commutativity is required). 

THEOREM S.S. 

I. The stability function of the splitting formula for the first order meth

od of Douglas and Rachford (3.7) ~s 

(5.9) 

where Z. = T J. for i = 1,2. 
i n J. 

2. Let the matrices J. in (S. 2) satisfy condition (5. 3) and let k 
J I 

2, then 

the rational stability function (cf. (5.1)) is 

2 
1-TnAlA2 

(5. l O) R = 
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i T A· n J 
represents an eigenvalue of T J., j = I ,2, 11.. e: R . Further, 

n J J 
1 and if J. for j = 

J 
1,2 is non-singular, then IR! < I. 

PROOF. The derivation of the stability function (5.9) and the rational sta

bility function (5.10) is straightforward. Further, 

2 4 2 2 
l-2TnAIA2+TnAIA.2 

2 2 2 4 2 2 
l+Tn(11.l+11.2)+TnAIA.2 

then using the property 

IR I ::; 1 for 11. 1 , 11. 2 E R . 

then !RI < I. D 

6. COHCLUDING REMARKS 

> 0, 

Each splitting method consists of two components, viz. the splitting 

function which largely depends on the class of problems under consideration 

and the splitting formula which can be selected on the ground of accuracy 

and stability considerations. The most important part of this report is the 

presentation and formulation of the existing splitting methods. The second 

order splitting methods in the sections 3 and 4 lead to non-dissipative 

schemes. 

The boundary conditions are not taken into consideration in the sta

bility analysis. Discretizing the boundary conditions in hyperbolic prob

lems is a very difficult part of the semi-discretization process. 

Usually in hyperbolic PDE's the boundary conditions are time-dependent. 

It is well known that splitting methods will usually lose accuracy when the 

boundary conditions are time-dependent (cf. [4]). This phenomenon was in

vestigated in [4,24] for a class of splitting methods for parabolic PDE's. 

Following the approach of Sommeijer et al. [24] the boundary-value cor

rection could also be derived for splitting methods for a class of hyper

bolic initial·-boundary value problems. 

The implicit splitting methods discussed in the preceding sections are 

of dubious value for (fully) nonlinear hyperbolic systems in which discon

tinuities occur. 
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