
Comparing Combinatory Reduction Systems
and

Higher-order Rewrite Systems

Vincent van Oostrom1 and Femke van Raamsdonk2

1 Department of Mathematics and Computer Science, Vrije Universiteit, De
Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands, email:

oostrom@theory.ntt.jp ***
2 CWI, P.O. Box 94079, 1009 GB Amsterdam, The Netherlands, email: femke@cwi.nl

Abstract. In this paper two formats of higher-order rewriting are com­
pared: Combinatory Reduction Systems introduced by Klop and Higher­
order Rewrite Systems defined by Nipkow. Although it always has been
obvious that both formats are closely related to each other, up to now
the exact relationship between them has not been clear. This was an
unsatisfying situation since it meant that proofs for much related frame­
works were given twice. We present two translations, one from Combina­
tory Reduction Systems into Higher-Order Rewrite Systems and one vice
versa, based on a detailed comparison of both formats. Since the trans­
lations are very 'neat' in the sense that the rewrite relation is preserved
and (almost) reflected, we can conclude that as far as rewrite theory is
concerned, Combinatory Reduction Systems and Higher-Order Rewrite
Systems are equivalent, the only difference being that Combinatory Re­
duction Systems employ a more 'lazy' evaluation strategy. Moreover, due
to this result it is the case that some syntactic properties derived for the
one class also hold for the other.

The research of the second author is supported by NWO/SION project
612-316-606.

1 Introduction

This paper is concerned with a comparison of two formats of higher-order rewrit­
ing: Combinatory Reduction Systems (CRSs) as introduced by Klop (Klo80] and
Higher-order Rewrite Systems (HRSs) as introduced by Nipkow (Nipa].

Inspired by Aczel [Acz78], Klop defined CRSs in [Klo80] as first-order term
rewriting systems possibly with bound variables, so as to include both first-order
rewrite systems such as Curry's Combinatory Logic and rewrite systems with
bound variables such as Church's .A-calculus. The point was that a large amount
of syntactic rewrite theory could be developed for this framework.

*** Current address: NTT Basic Research Laboratories 3-1, Morinosato Wakamiya,
Atsugi-Shi, Kanagawa Pref., 243-01, Japan

277

In [Nipa], Nipkow introduces HRSs as a generalisation of first-order rewrite
systems to terms with higher-order functions and bound variables. Further­
more, HRSs were designed to have the same logical basis as systems like Is­
abelle [Pau90] and >.Prolog [NM88]. That is, a typed >.-calculus is used as a
meta-language.

These different objectives have led to surprisingly large differences in the
presentation of these systems. For CRSs the meta-language, i.e. the language in
which the notions of term, substitution and rewrite step are expressed, is left im­
plicit in the presentation. For HRSs the meta-language is Church's >.--calculus
of simply typed >.-terms with f3 as rewrite rule. In the case of CRSs, the intro­
duction of a special purpose meta-language makes the definition quite involved.
However, a closer inspection shows that in fact the meta-language of CRSs is (a
polyadic version of) >.-calculus with developments (or let-expressions), denoted
by ,6.. See [Klo80, Sec. 1.3.5] or [Bar84, §11.1.3] for details.

Once we have made the meta-language of CRSs explicit, we can compare
both formats by comparing their respective meta-languages. Comparing is done
by giving encodings of one system into the other and vice versa. The encoding
of CRSs into HRSs is straightforward because ,6.-calculus can be encoded into
>.-+-calculus. The encoding of HRSs into CRSs is somewhat more involved; >.-+ -
calculus cannot be encoded directly into ,6.-calculus. For example, the latter does
enjoy the disjointness property (rewriting preserves disjointness, cf. [Klo80, pg.
38]), while the former doesn't. In general, in >.--calculus rewrite sequences can
be longer than in ,6.-calculus. Our solution is to add an explicit /3-rule (and a
symbol for application) to the encoding of an HRS. A rewrite step in the HRS
is then simulated by a rewrite step in the CRS possibly followed by an explicit
/3-reduction to normal form. More precisely, let C be a CRS and 1i be a HRS.
We write -+c and -+1f. for their rewrite relations. Translating is denoted by (-},
and reduction to normal form with respect to the explicit /3-rule is written as
-+~. Then we have

(-+c} = -+(c)
I

{-+1t} = -+('H):..
f3

if the relations are restricted to the set of translated terms.
The naturality of an an encoding can be measured by the properties it pre­

serves and reflects. Our encoding of CRSs into HRSs both preserves and reflects
the main property of rewrite systems, i.e. whether one term rewrites (in one step)
to another. This allows for a confluence proof for orthogonal CRSs via a proof of
confluence for orthogonal HRSs. As noted above the translation the other way
around is not that nice. The HRS is simulated by a more refined CRS; 'giant'
HRS-steps are simulated by many 'small' CRS-steps. This is analogous to the
way in which >.-calculus is simulated by the >.u-calculus defined in [ACCL90].
Of course, not every step in the refined system is reflected in the original HRS,
but still we can say something: every rewrite sequence between encodings of
HRS-terms is reflected in the original HRS. Again, this allows for a confluence

278

proof for orthogonal HRSs via a proof of confluence for orthogonal CRSs. For
the moment being, we have only considered use of our translation for confluence
results.

Our comparison only considers CRSs versus HRSs. There are some more
alternatives for higher-order rewriting, such as Khasidashvili's Expression Re­
duction Systems [Kha90] and Takahashi's Conditional Lambda Calculi [Tak].
We claim that ihe main differences between these and CRSs (or HRSs) are of a
syntactic nature.

The pa.per is organised as follows. In section 2 we will discuss in detail the
difference between CRSs and HRSs by first considering only terms, and next also
the rewrite relation on terms. In section 3 we define a translation from CRSs
into HRSs and, using this translation, we give a confluence proof for orthogonal
CRSs. The translation from HRSs into CRSs is presented in section 4, again the
translation is used to give a confluence proof, now for orthogonal HRSs. Section 5
concludes the paper with some discussion on higher-order rewriting. The reader
is assumed to be familiar with term rewriting and (simply typed) .A-calculus.
For the induction proofs we refer the reader to CWI Report CS-R9361 or VU
Report ffi-333 [OR93], both with the same title as this pa.per.

NOTATION. We adhere mostly to the notations introduced by Klop for CRSs,
and Nipkow for HRSs. Since their introduction both formats have been subject
to some change and we will use their most recent presentations, viz. [KOR93] for
CRSs and [Nipb] for HRSs. The most notable change is the use of the functional
format for CRSs instead of the applicative one of [Klo80]. The reason for choosing
the functional format is that it is closer to the usual notation for term rewriting
systems. Moreover, in applicative CRSs the object-language application symbol
is left implicit in the notation, while for HRSs the meta-language application
symbol is left implicit, which would possibly give rise to confusion in comparing
these formats.

2 Comparing the Syntax

We first restrict attention to term formation, since already on that level some
important differences between CRSs and HRSs a.re manifest. Next, we consider
rule formation and finally the generation of the rewrite relation.

2.1 Term Formation

CRS Terms. A CRS C is a pair (A, 'R.), where A is its alpha.bet and 'R. its set of
rewrite or reduction rules. (Because of the termination connotation of the word
'reduction' we will use it only in the case of normalising rewrites.) In a CRS a
distinction is made between metaterms and terms. The left- and right-hand side
of a rule a.re meta.terms, but the rewrite relation is a relation on terms.

The alphabet A of a CRS (A, 'R.) consists of

279

• symbols for variables x y z .. . ,
• a symbol [-]-for the abstraction operator,
• symbols for operators with a fixed arity F G H ... ,
• symbols for metavariables with a fixed arity Z Z0 Z1

The set MT erms of metaterms is the least set such that
(1) x E MTerms for every variable x,
(2) [x)t E MTerms for a variable x and t E MTerms,
(3) F(t1, ... , tn) E MTerms if t1, ... , tn E MTerms and Fis an n-ary operator,
(4) Z(t1, ... , tn) E MTerms if ti, ... , tn E MTerms and Z is an n-ary metavari-

able.

The set Terms of terms consists of all metaterms without meta variables. In a
term or metaterm of the form [x]t, we call t the scope of [x]. A variable x occurs
free in a term or metaterm if it is not in the scope of an occurrence of [x). A
variable x occurs bound otherwise. A term is called closed if all variables occur
bound. Only variables (and no metavariables) can be bound by the abstraction
operator. We wili sometimes write [x1 ... xn]t for [x1] ... [xn]t.

Let D be a fresh symbol. A context is a term with one or more occurrences of
D. A context with exactly one occurrence of Dis written as C[], and one with
n occurrences of D as C[, ... ,]. If C[, ... ,] is a context with n occurrences of D
a.nd t1, ... , t .. are terms, then C[t1 , ... , tn] denotes the result of replacing from
left to right the occurrences of D by ti, ... , tn.

Example 1. The alphabet of >.-calculus in CRS format contains two symbols for
operators: a unary operator >. for >.-abstraction and a binary operator @ for
application. Examples of some >.-terms written in CRS notation:

>.([x]x) for >.x.x,
@(x,y) for xy,
>.([xj@(y, x)) for >.x.yx, and
@(>.([x]x),y) for (>.x.x)y.

Because of the very liberal term formation in the CRS framework, many terms
can be formed from the alphabet consisting of>. and @ that do not correspond to
a.ny >.-term. These kind of terms are called 'junk'. In general, it is often necessary
to consider a CRS with a restricted set of terms, that has to be closed under
rewriting. If one wants to stress the point that only a subset of the set of terms
is considered, one speaks about sub-CRSs.

HRS Terms. A HRS 1i is a pair (A, 'R) whith A an alphabet and 'R a set
of rules. Term formation is specified using >.-+-calculus, Church's simply typed
>.-calculus. (Simple) types are formed from base types and the function type
constructor -· Types are denoted by u, r,

The alphabet A of a HRS 1i =(A, 'R) consists of
• symbols for typed variables x y z ..• ,

280

• a distinguished symbol >. for abstraction,
• symbols for typed operators F G H

Typed terms are formed from abstraction and application, which is written by
juxtaposition, according to the following rules:

(var)--­
:z: :7'

(const)--­
F: T

[x : u]

t : 7'
(abstr) ---­

>.:z:.t : O' -+ 7'

(I') t : O' -+ .,.. t' : O'
app I t' t : 7'

Although environments are not made explicit, we take it for granted that vari­
ables and constants cannot have more than one type. So every typable term has
a unique type. Like in >.-calculus, a variable x occurs bound in a term if it occurs
in the scope of a .Ax, and it occurs free otherwise.

Let D be a fresh symbol of some base type. A context is a term with one
or more occurrences of D. Like in the CRS case, a context with exactly one
occurrence of 0 is written as C[], and one with n occurrences of 0 as C[, ... ,).
If C[, ... ,] is a context C[, ... ,) with n occurrences of 0 and ti, ... , tn are terms
of appropriate base type, then C[t1, ... , tnJ denotes the result of replacing from
left to right the occurrences of 0 by ti, ... , tn.

Only terms (and contexts) in long 77-normal form will be considered.

Definition 1. The long 77-normal form of a >.--term s is obtained as follows.
Replace repeatedly subterms t of s by >.x.tx provided x doesn't occur free in t, t
is not of the form .Ay.to and t doesn't occur in a subterm of the form tu. This has
the effect that all subterms are provided with the right number of arguments.

Example 2. In the representation of untyped >.-calculus as a HRS, we have only
one base type 0. The alphabet contains two symbols for operators, namely app:
0 -+ (0 -+ 0) for application and abs : (0 -+ 0) -+ 0 for >.-abstraction. Some
examples of >.-terms in this notation are:

abs (>.:i:.x) for >.x.x,
app :z:y for xy,
abs (>.x.appyx) for >.x.yx,
app (abs (>.x.x))y for (>.x.x)y.

Like in the CRS case, the HRS-representation of .A-calculus contains junk. For
instance, the term >.x.x doesn't correspond to any >.-term. Note that all >.­
terms and the variables occurring in them have type 0 in this notation. This
example illustrates that a notion of sub-HRS, analogous to the notion of sub­
CRS, is called for. Furthermore, the example shows that properties, such as
strong normalisation, of the meta-language (>.--calculus) have no bearing on
properties of the object language (>.-calculus).

281

Comparing Term Formation. We discuss the two most important differences
between both formats.

In CRSs metaterm formation is given by a direct inductive definition. Function
symbols and metavariables come equipped with an arity and metaterms are
formed by supplying these symbols with the right number of arguments. Terms
are metaterms not containing metavariables.

In HRSs a direct inductive definition of terms is circumvented by making use
of A_, -calculus term formation. Function symbols come as constants equipped
with a type and are combined using the formation rules of,__, -calculus. Attention
is then restricted to terms in long 17-normal form. Most of the time, except at
intermediate stages of a computation, attention is further restricted to terms in
long /377-normal form.

Note that the typing does not mean that only typed systems can be written as
HRSs; the typing takes place on metalevel. If an untyped system is represented as
a HRS, then only one base type 0 is used and all terms of the HRS corresponding
to a term in the untyped system we are considering, are of type 0. The base type
0 can be thought of as the set of all well-formed terms. The statement t: 0 can
be read as 't is a well-formed term'.

Typing in this way, such that well-formed terms are of base type, actually
establishes two things. For discussing them, first the arity and the order of a
type are defined.

Definition 2. The arity Ar(a) of a type a is inductively defined as follows:

Ar(a) = 0 (if a is a base type)

Ar(a ~ r) = 1 + Ar(r)

The order Ord (a) of a type a is defined as follows:

Ord(a) = 0 (if a is a base type)

Ord(a~ r) = max(l + Ord(a), Ord(r))

The arity (order) of a term is defined to be the arity (order) of its type.

First, in a term every operator has exactly as many arguments as prescribed by
the arity of its type. This is because terms must be in long 77-normal form. For
instance, an operator F : 0 ~ (0 ~ 0) can form a term only if it is provided with
two arguments t1 and t 2 of type 0. So the type of an operator, like the arity of an
operator in CRSs, determines how many arguments it should have. Second, in a
term all the arguments have the right order, indicating how active they are, or,
whether they can be applied to other terms. For example an operator G: (0-->
0) --> 0 should have one argument of order l. The order of an operator cannot
be directly expressed in the CRS framework. The arity of an CRS operator only
prescribes how many arguments this operator should get, but nothing is specified
about the orders these arguments should have.

282

The second difference is that in CRSs a distinction is made between metavari­
ables and variables and metaterms and terms. Metavariables occur only in meta­
terms, which in turn occur only as the left- or right-hand side of rewrite rules.
The objects which are rewritten are terms. This distinction is made in order to
stress the point that a rewrite rule acts as a scheme, so its left- and right-hand
side are not ordinary terms. Taking this point of view, x in F(x)-as-a-term is
a variable, and x in F(x)-as-a-left-or-right-hand-side is a metavariable. In CRS
notation, the former is written as F(x) and the latter as F(Z). In HRSs no
distinction is made between metavariables and variables, and no distinction is
made between ordinary terms on the one hand and left- and right-hand sides
of rules on the other hand; they both can be rewritten. The metavariables in
CRS-rules correspond to free variables in HRS-rules.

2.2 Rule Formation

In this section we will compare the rule formation of CRSs with the one of HRSs.
We show that rewrite rules in both formats satisfy equivalent requirements.

CRS Rules. In a CRS, a rewrite rule l -7 r must satisfy the following:
(1) l and r are metaterms,
(2) the head-symbol of l is an operator symbol,
(3) all metavariables in r occur in l as well, l and r are closed,
(4) a metavariable Zin l occurs only in the form Z(xi, ... ,xn) with xi, ... ,xn

distinct bound variables.
We call the last condition the pattern-condition.

Example 3. The /)-rule of >.-calculus, (>.x.M)N -7 M[x := NJ is written in CRS
format as

@(>.([x]Z(x)), Z')-+ Z(Z')

The head-symbol of the left-hand side is @, and the metavariables Z and Z'
occur in both sides.

HRS Rules. A rewrite rule l -+ r in a HRS must meet the following require­
ments:
(1) l and r are both long ,877-normal forms of the same base type,
(2) l is not 77-equivalent to a free variable,
(3) all free variables in r occur free in l as well,
(4) a free variable z in l occurs only in the form zt1 ••. tn with t 1 , ... , tn TJ­

equivalent to n distinct bound variables.
Like for CRSs, the last condition is called the pattern-condition.

Example4. The /)-rewrite rule in HRS notation is

app(abs(>.x.yx))z-+ yz

with x, z : 0 and y : 0 -+ 0.

283

Comparing Rule Formation. Remembering that metavariables in rewrite
rules of CRSs correspond to free variables in rewrite rules, it is not difficult
to see that the requirements (1)-(4) of CRS rules correspond to the same ones
of HRS rules.

The first condition specifies that rules are built from metaterms for the CRS
case. The second one states that left-hand sides must have some structure and the
third one that rewriting cannot introduce arbitrary terms. These conditions are
familiar from first-order rewriting. The last condition is the pattern-condition.
By that condition only names (simple objects), not values (compound objects)
can occur as arguments of free variables. Both in the case of CRSs and of HRSs
it establishes decidability of unification of patterns, and computability of the
rewrite relation, a result of [Mil). Intuitively this is the case since an instance of
a pattern has the same 'global structure' as the pattern itself.

2.3 Rewrite Step Generation

Once we know what requirements the rewrite rules should satisfy, we have to
define for both formats how rewrite rules are instantiated in order to obtain an
actual rewrite step. In both cases, we have to plug in some term in the 'holes' of
the rule. In CRSs, the holes in the rule are the metavariables, and in HRSs the
free variables. The ways in which metavariables and free variables are assigned
a value, are related, but nevertheless essentially different.

For defining substitution for CRSs, a polyadic version of ~-calculus is used.
The substitution is performed by replacing a metavariable by a (special form
of a) >.-term, and by reducing, in the term obtained by this replacement, all
residuals of ,8-redexes that are present in the initial term, i.e. by performing a
development (or expanding let-constructs). The well-known result in >.-calculus
that all developments are finite, guarantees that the substitution is well-defined.

For defining substitution for HRSs, like for defining term and rule formation,
>.-+-calculus is used as a metalanguage. The substitution is performed by replac­
ing a free variable by a term of the same type, and reducing the result of the
replacement to ,8-normal form. In this case, substitution is well-defined since in
>.-+-calculus all ,8-rewrite sequences eventually terminate.

CRS Rewrite Steps. In order to define assignments for CRSs we first intro­
duce a new concept: the so-called substitutes (cf. [Kah92)). An n-ary substitute
is an expression of the form ~(x1 , ••• , Xn).s, where sis a term,~ a 'metalambda'
and (x1, ••. , xn) a tuple of n distinct variables, which are considered to be bound
by~ and may be renamed in the usual way. A substitute ~(x1, ... , xn).s can be
applied to an n-tuple of terms (t1, ... , tn), yielding s with xi, ... , Xn simultane-
ously replaced by t1, ... , tn respectively:

(~(x1, ... , Xn).s)(t1, ... , tn) = s[x1 := t1 ... Xn := tn]

An assignment <T is a mapping from n-ary metava.riables to n-ary substitutes:

u(Z) = ~(x1, ... ,xn).s (Zan n-ary metavariable)

284

It is extended to a mapping from metaterms to terms in the following way:

x"' = x
([x]t)"' = [x]t"'

(F(ti, ... , tn))" = F(ti, ... , t~)
(Z(t1, tn))"' = CT(Z)(tf, •.. , t~)

Note that the result of applying CT(Z) to (ti, ... , t~) in the last clause is indeed
a term.

A variable in an instance of a metavariable should be bound only if it is bound
in the occurrence of the metavariable. Unintended bindings occur for instance
in (F[x]Z)" if cr(Z) = x, and in (Z(Z'))" if CT(Z) = ~(x).[y]x and o-(Z') = y.
These problems can be avoided by renaming bound variables. In the following
we will assume that this is done whenever necessary.

NOTATION. In this paper we stick to the definition of [KOR93] of substitution
as a one-stage process. If we would use ~-calculus as a meta-language, we would
obtain substitution as a two-stage process: first replacing the metava.riables by
the terms assigned to them, and then explicitly developing the .B-redexes. This
would yield a presentation closer to the one of HRSs. -

Rewrite rules generate a rewrite relation -+ on terms in the following way. If
l -+ r is a rewrite rule and er an assignment, then C[l"] -+ C[r"] is a rewrite or
reduction step, where C[] is some context. A contraction is defined as l" -+ r".
The reflexive-transitive closure of-+ is called rewriting and is denoted as """*· If
s """* t then we say that s rewrites to t. If we want to make explicit that a rewrite
rule R is applied in a rewrite step we write -+R instead of-+.

HRS Rewrite Steps. In a HRS, an assignment is a finite mapping from vari­
ables to terms in long ,87]-normal form of the same type. Using the variable
convention of >.-calculus, an assignment o- is extended to a mapping from terms
to terms, in the following way:

F" = F (for a constant F)

x" = cr(x) (for a variable x)

(>.x.t)" = >.x.t"
(tt')" = t" t'"

We assume bound variables to be renamed whenever necessary. A rewrite relation
-+ on terms in long .811 normal form is generated in the following way. If l -+ r is a
rewrite rule and <T an assignment, then C[l" lp] -+ C[ru lp] is a rewrite step. Here
lp denotes ,8-reduction to normal form. Such a normal form indeed exists since
simply typed >.-calculus is considered. A contraction is defined as l" lp -+ r" lp·
The terminology of rewriting is the standard one like in the CRS case.

285

Comparing Rewrite Step Generation. In both formats it is the case that
the first step in performing a substitution is to replace a 'hole' in the rewrite
rule by a kind of '>.-term'. Then we compute the result of this replacement. And
here the difference lies: since in the case of CRSs we perform only a development
of the >.-terms, there is no reduction of created redexes. On the other hand, to
compute the result for HRSs full fledged .>,-+-calculus is used, that is, redexes
that are created during rewriting are also contracted.

To get an idea of what kind of difference in the rewrite relations we have,
due to these distinct evaluation mechanisms, consider the following example.
The HRS rule F(>.y.z(>.x.yx))-+ z(>.x.x) with assignment CT: z .._.... >.u.uK. We
have the rewrite step:

F(>.y.yK) = F(>.y.(>.x.yx)KH!3
= F(>.y.(>.u.uK)(>.x.yx))L,a
= (F(>.y.z(>.x.yx)))°' l,a
-+ (z(>.x.x))" 1!3
= (>.u.uK)>.x.xliJ
= (>.x.x)Kl,a
=K

Observe how the complete development of the >.-redexes of the assignment cre­
ates a new redex which is also contracted (in the last line). This redex is 'cre­
ated downwards', so for this process to end, we cannot rely on termination of
developments or even superdevelopments (cf. [Raa93]), but really need strong
normalisation of simply typed >.-calculus. On the other hand, the corresponding
CRS rule F([y]Z(y)) -t Z([x]x) and assignment o-: Z .._.... ~(u).@(u, K), act more
lazily:

F([y]@(y, K)) = (F([y]Z(y)))°'
-t (Z([x]x))"
= @([x]x, K)

The substitution is evaluated by a complete development of the l-redex. We
have to add an explicit ,B-reduction step, namely

@([x]x, K) -+ K

in order to simulate the HRS rewrite step completely.
An other way of looking at it is to view [-]- really as an abbreviation of

A(l---), for some fresh symbol A. Now, although it seems that ,B-redexes can be
created in the substitution process above due to the presence of};.'s in terms, this
is not the case because they are always 'blocked' by the A. In the example, we
end up with the term @(A(~x.x), K). A 'rule' like @(A(Z), Z') -t ZZ' is needed
to 'unblock' the metalanguage redex (lx.x)K. This is the only thing used in the
translation of CRSs into HRSs.

286

The same 'blocking' idea. of this translation ca.n also be used to show that
developments of terms in A·calculus must terminate: put fresh variables 'in front
of' abstractions and applications not taking part in a ,8-redex. This gives a trivial
typa.ble A--term which exactly simulates developments. Creating new redexes
is prevented by the presence of the fresh variables.

3 Translating a CRS into a HRS

In this section we will show that a CRS can be translated into a HRS such that
there is a one-to-one correspondence between rewritings in the CRS and in its
translation. We use (-} as notation for the translation. The mapping (-) is chosen
to be injective.

Definition 3. The HRS alpha.bet (A) associated with a. CRS alphabet A con­
sists of
• the symbol A: (0--+ 0) --+ 0 (meant to 'collapse' a functional type),
• a variable (x) = x : 0, for each variable x in A,
• a constant (F} = F: 0--+ ... --+ 0--+ 0 (Ar(F) times an--+), for each operator

Fin A,
• a variable (Z) = z : 0 --+ ... --+ 0 --+ 0 (Ar(Z) times an --+), for each

metavariable Z in A,
and the ordinary symbols in a HRS alphabet.

Note that only one base type, namely 0, is used. The translation between
CRS meta.terms and contexts is defined by extending the translation of symbols
as follows.

Definition4. (1) ([x]t) = A(Ax.(t})
Abstractions are translated as projected A-abstractions.

(2) (F) = F for F 0-ary, and (F(ti, .. .,tn)} = F(t1} ... (tn} for F n-ary with
n~l

(Z) = z for Z 0-ary, and (Z(t1, ... , tn)} = z(t1} ... (t,.} for Z n-ary with
n~l

Functional terms are translated by currying.
(3) (0) = 0: 0

Holes are of base type.
The translation of a context (C[]) is denoted by (C)[]. The translation of CRS
rule R = l--+ r is defined as (R) = (l} --+ {r}.

For a CRS C, the HRS (C} is obtained by translating the alphabet and the set
of rules of C. We often restrict attention to the sub-HRS of {C} where only terms
that are translations of terms in C are considered. We first give the translation
of the ma.in ingredient needed in a rewrite step: assignment.

Definition 5. The translation (u} of an assignment u is defined as follows: if
o-(Z) = ,i(x1,. . ., Xn).s, then (u)(z) = AX1 ... Xn.(s).

287

We now show that these translations are correct in the sense that a CRS
concept yields the corresponding HRS concept.

Proposition6. Lets' be the translation (s) of a CRS metaterm s. Then
a s' : 0, moreover there is a bijective correspondence between subterms of s and

subterms of type 0 of s',
b s' is in long /3ry-normal form,
c ifs satisfies the pattern-condition, then s' satisfies the pattern-condition,
d (Fvar(s)) = Fvar(s'), where Fvar denotes the set of free variables and of

metavariables in a CRS (or HRS) metaterm.

PROOF. The four properties are proved simultaneously, by structural induction.
D

The bijective correspondence in a can be made more precise using the notion
of position.

Proposition 7. The translations of CRS rules, contexts, and assignments yield
the corresponding concepts in the associated HRS.

Next we state some propositions expressing the interaction between forming
contexts and applying assignments on the one hand and translating on the other
hand.

Proposition 8.
a (C[t]) = (C)[{t)]
b (C[t1 1 ••• ,tn]) = (C)[(t1), ... ,(tn)]
c (s [x1 := ti ... Xn := tn]) = (s) [x1 := (ti} ... Xn :== (tn)]
d (ta) = {t) (a) 113·

PROOF.

a The proof proceeds by induction on the structure of C[].
b By repeatedly applying a.
c Choose a context C[, ... ,] such that s = C[xip···iXi;] and precisely the

occurrences of the variables x1 , ... ,xn are being displayed. Then

(s[x1 := ti ... Xn := tn]) = (C[ti11 ••• , ti;])
= (C) [(t;.), ... , (ti;} J (by b)

= (s)[x1 := (t1) ... Xn := {tn)] (use Proposition 6 a)

d The statement is proved by induction on the structure of the metaterm t.
Note that all ..\'s in (t) that are introduced by translating the abstraction
operator do not yield a /3-redex since they are 'blocked' by their big brother
A.

D
Now we show that rewrite steps are naturally preserved by the translation.

Theorem 9. Ifs -+ R t in a CRS C with R = l -+ r a rewrite rule, then we have
(s) -+(R) {t) in the corresponding HRS 1-l.

288

PROOF. Lets -+(R) tin C, where s = C[l"] and t = C[r"], for some context C[]
and some assignment u. Then,

(s} = (C[l"]}
= (C}[(l"}] (by Proposition 8 a)

= (C}[(l)(u) !,e] (by Proposition 8 d)

-+ (C}[(r}(u) !,e]

= (C}[(r"}] (by Proposition 8 d)

= (C[r"]} (by Proposition 8 a)

= (t)

0

This proves that for every rewrite step in a CRS C a rewrite step in the
associated HRS 1i can be performed. Now we will show that a rewrite step in
the translation of a term must originate from a rewrite step in C itself. For this,
we will use that both contexts and assignments in 1i can be translated back into
the corresponding concepts in C, under the proper restrictions.

Proposition 10.
a IfC'[t'] = (s), then there existC[] andt such that (C[]} = C'[] and (t) = t'.
b If (l}"1 !13 = (s) and l satisfies the conditions for a left-hand side of a CRS

rule, then there exists a u such that (u} = u'.

PROOF.
a From Proposition 6 a we have C'[] : 0 and by the definition of a HRS context

t' : 0. Then the bijective correspondence of Proposition 6 a provides us with
suitable C[] and t.

b By Proposition 6 d, we know that a free variable z in (l) stems from a
metavariable Zin l. By the pattern-condition, each free variable occurs only
in subterms of the form zx1 ... Xn in (l}, which have type 0 by Proposi­
tion 6 a, where n is the arity of Z. Note that all the Xi have type 0, so this
subterm is 7]-expanded. If u'(z) = >.y1 •• ·Ym·t', then m = n, because u'(z)
is by definition in long ,877-normal form. Hence, (zx1 ... Xn)" 1 !.e = t'[y1 :=

x1 ... Yn := Xn]!,e = t'[Y1 := X1 ... Yn := Xn], because renaming doesn't cre­
ate redexes. It is easy to show that t'[Y1 := x1 ... Yn := xn] must in fact be a
subterm (of type O!) of (s} and therefore a translation of some term i. Now
we can define u(Z) = ~MY1, ... , Yn).i[x1 := y1 ... Xn := Yn], which meets the
requirements. Note that by the pattern-condition all the Xi are distinct.

0

Theorem 11. Let C be a CRS and 1i its associated HRS. If (s} -+(R) t' in 1i
by rewrite rule (R) = (l) -+ (r), then s -+R t for some CRS term t such that
(t) = t'.

289

PROOF. Let (s) -+(R) t' in 'H. with (R) =(I)--.. (r). Then (s) = C1 [(l)°" 1 l,e] and

t' = C'[(r)""1 l,e] for some context C'(] and some assignment a'. Then

(s} = C' [(l}°"' l,e]

= (C}[(l}""1 l,e] (by Proposition 10 a)

= (C)[(l) ("") l,e] (by Proposition 10 b)

= (C)[(lcr)] (by Proposition 8 d)

= (C(lcr]) (by Proposition 8 a)

By injectivity we haves= C(l""]. If we take t = C[r"], then s--.. t and

(t) = (C(r""])
= (C)((r"")] (by Proposition 8 a)

= (C)[{r)(u) l,e] (by Proposition 8 d)
u'

= (C)((r) l,eJ
= t'

D

The naturality of a translation is can be measured by the properties which
it preserves and reflects. Theorems 9 and 11 state that the main property of
CRSs and HRSs, i.e. whether one term rewrites (in one step) to another, is
both preserved and reflected. Combining this with the fact that orthogonality
is preserved, we obtain a confluence proof for orthogonal CRSs via confluence
of their associated HRS. A system is orthogonal if it is left-linear and non­
ambiguous. For a precise definition of orthogonality we refer the reader to [Klo80)
and [Nipb).

Corollary 12. Orthogonal CRSs are confluent.

PROOF. Let s -c ti and s -c t2 be rewrites in an orthogonal CRS C. By
Theorem 9, we can lift these to rewrites (s) -'H. (t1) and (s) -"*'H. (t2) in the
HRS 1i associated to C. Because 'H. is easily seen to be orthogonal, we conclude
from (Nipb, Cor. 4.9] that it is confl~ent, hence there exist rewrites (t1) -rt r'
and (t2) -rt r', for some r'. These sequences can be projected again to form
ti -*C r and t2 -*C r by Theorem 11, also showing that (r) = r'. The proof is
expressed by the following diagram.

290

(t1) 'H (r)

YI h
(s)

1i
(t2)

I 9 11
c

ti r

y /c
s c t2

D

4 Translating a HRS into a CRS plus explicit (3

In this section we define a translation from HRSs into CRSs. This translation
is not as straightforward as the one the other way round, due to the fact that
the metalanguage of HRSs, >.-, has more 'rewrite power' than the (hidden)
metalanguage of CRSs, ~- In order to be able to simulate every rewrite of a HRS
in its associated CRS, a ,8-reduction rule and a binary symbol @ for application
have to be added to the translation. It is given as

@([x]Z(x), Z') --+f3 Z(Z')

We will denote ,8-reduction to normal form as -+~. To simplify the notation a
bit we sometimes use @n to abbreviate n applications, for instance @2(A, B, C)
stands for @(@(A, B), C). Formally, @n for n ~ 1 is defined as

@1(t,t1) =@(t,t1)

@n+l (t, ti, ... , t,.., tn+i) = @(@n(t, ti, ... , tn), tn+i)

Again, the translation is denoted as (-) and is chosen to be injective. We do
not obtain a 1 - I-correspondence between rewrite steps in a HRS and rewrite
steps in its encoding, but the translation does satisfy a weaker property. Let 1i
be a HRS and let C be its encoding, having as rewrite rules the translated rules
of 1i and the ,8-rule. We have that ifs -+rf. tin a HRS 1i, then (s) -+cf3 (t),
where -+cf3 is defined to be a rewrite in C consisting of one step via a translated
'H-rule followed by a ,8-reduction to ,8-normal form. Moreover, we obtain that a
rewrite in the encoding of 'H starting with the encoding of some term of 'H can
be extended to a rewrite corresponding to a rewrite in the original HRS.

First to an alphabet A of a HRS a CRS alphabet (A) is associated.

Definition 13. The CRS alphabet (A) associated with a HRS alphabet A con­
sists of

291

• a symbol @ for application,
• for every symbol F E A for an operator of type r, a symbol F for an opera.tor

with arity n = Ar(r),
• the ordinary symbols of a CRS alpha.bet, i.e. symbols for variables x y z ... ,

symbols for metavariables with a fixed arity Z Zo Z1 . . . and a symbol for
abstraction, [-l-·

Definition 14. The translation of terms in long ,871-normal form is defined in­
ductively as follows:

(' } {[x1] ... [xn]X ifn=O
e AXl···Xm.Xt1 ... tn = [l []@((t} (t})'f >l X1 •.. Xn n x, 1 , ... , n 1 n _

(' F } { [x1] ... [xn]F if n = 0
• AX1 ... Xm. ti ... tn = [x1] ... [xn]F((t1}, ... ,(tn})ifn~l
It is extended to contexts by defining (0) =D. We write (C}[] for the translation
of C[].

Free variables in terms of HRSs correspond to free variables in terms of CRSs.
Free variables in rules of HRSs correspond to meta.variables in rules of CRSs.
Therefore a separate definition of the translation of a rule has to be given, in
which free variables are translated in another way than in the translation of a
term.

Definition 15. The translation (l -+ r} of a HRS rule l -+ r is defined as
{l) -+ (r}, where (l) and (r} are defined inductively as follows.
a The left-hand side l of a HRS rewrite rule is of the form l = Ft1 ... tk. Here

ti, ... , tk are long ,871-normal forms in which inputs of free variables are 71-
equivalent to distinct bound variables. The translation (l} of l is defined by
induction on the structure of such a long ,871-normal form.

(A } _ { [x1 ... Xm]x if n = 0
• X1 ... Xm.Xt1 ... tn - [x1 ... Xm]@n(x, (t1), ... ' (tn}) if n ~ 1

(, } { [x1 ... Xm]Z if n = 0
e AXl .•. Xm 0 Zt1 · · · tn = []Z(t l t l) 'f > l X1 ..• Xm 1 TI' ••• , n '1 1 n _

if z is a variable which is free in l (note that ti, ... , tn are 71-equivalent to
distinct bound variables by the pattern-condition),

(} { [x1 ... xm]F ifn=O
• AX1 ... Xm.Ft1 ... tn = [x1 ... Xm]F((t1 }, ... '(tn}) if n ~ 1

b The right-hand side r of a HRS rewrite rule is of the form r = st1 ... tk with
s a symbol standing for a free variable or an. operator and ti, ... , tk in long
,871-normal form. The translation (r} of r is by induction on the structure of
a long ,871-normal form.

(A) { [x1 ... Xm]x if n = 0
• X1 ... Xm.Xt1 ... tn = [x1 ... Xm]@n(x, (t1}, ... ' (tn}) if n ~ 1

(} { [x1 ... Xm]Z if n = 0
• AX1 ... Xm.Zt1 ... tn = [x1 ... Xm]Z((t1}, ... ' (tn)) if n ~ 1

(F } { [x1 .. . xm]F if n = 0
• AX1 ... Xm· ti .. '.tn = [x1 ... xm]F((t1}, ... ,(tn))ifn~l

292

As in the translation from CRSs to HRSs, we show that rewrite steps in a
HRS can be simulated by essentially the same step in the associated CRS. To
that end, the translation is extended to assignments.

Definition 16. An assignment of a HRS assigns to a variable a term in long f3TJ­
normal form of the same type. So an assignment assigns to a variable y of type
r a term of the form .X:z:1 .•• Xn.t with n = Ar(r) and t not a A-abstraction. The
translation (u} of an assignment u is defined as follows: if u(y) = .X:z:1 .•• Xn.t,

then {o'}(Y) = ;:\(x1, ... , Xn), (t}.

First we show that the translation produces correct terms and tha.t the trans­
lation of a rewrite rule is well-defined.

Proposition 17.
a If t is a HRS term in long (317-normal form, then (t} is well-defined as a CRS

term.
b The translation (l ~ r) of a HRS rewrite rule l ~ r satisfies the definition

of a CRS rewrite rule.

Then we show that decomposing a term by a context, commutes with the
translation.

Proposition 18. (C[t)) = (C)[(t}].

PROOF. The proof proceeds by induction on the definition of C[]. D

Finally we show that decomposing a term into a (meta)term and an assign­
ment almost commutes with the translation. For a decomposition into a left-hand
side, which is a pattern, the commutation is perfect, but for right-hand sides we
need additional ,B-steps. This is proved in the following two propositions.

Proposition 19.
a Let s be a term in long (317-normal form, and u1 , ..• , Un terms that are

11-equivalent to distinct variables. Then (s)[z1 := ud., ... Zn := unL11] =
{s[z1 := u1 ... Zn := u ..]Lp).

b {l)(O') = W L,a} for l a term in long (317-normal form satisfying the pattern
condition.

PROOF.

a The proof proceeds by induction on the structure of s.
b The statement is proved by induction on the structure of a long ,811-normal

form, in which arguments of free variables are 77-equivalent to distinct bound
variables.

D
Combining the last two propositions, we observe that the 'matching power' (or
complexity of matching, depending on one's point of view) of HRSs is equally
present in CRSs, making a natural encoding of the forIQ.er into the latter possi­
ble. This is due to the pattern-condition of HRSs. For HRSs not satisfying the

293

pattern-condition (cf. [Wol93]) this is no longer the case, and an encoding doesn't
seem to be straightforward anymore, even if we would lift some of the restrictions
on left-hand sides of CRS-rules. The next proposition shows that although CRSs

and HRSs have the same matching power, HRSs have more 'rewrite power', i.e.
they can do more in one step.

Proposition 20.
a Lets and u1, ... , Un be terms in long {3'fj-normal form. Then we have (s} [z1 :=

(u1} ... Zn := (un}J -t1
(s[z1 := u1 ... Zn := unJl,a)·

b (r)(a) -1 (r.,. l,e)·

PROOF.

a The proof proceeds by induction on the maximal length of the ,8-reduction
of s[z1 := u1 ... z1 := un] to normal form.

b The proof proceeds by induction on the structure of r.
D

Now we can collect the results of this section to show that every rewrite step
in a HRS 1{ can be simulated in its corresponding CRS C.

Theorem21. Ifs -tn t by rewrite rule R = [-t r in 1{, then we have (s} -t(R)

-1 (t), or (s) -tc,13 (t), in the corresponding CRS C.

PROOF. The term s is of the form C[l.,. l,13], and we have s = C[l.,. l,e] -t R

C[r.,. l,e] = t. We have

(s) = (C[l"' l,e])

= (C)[(l.,. l,a)] (by Proposition 18)

= (C)[(l)(.,.)] (by Proposition 19 b)

-t(R) (C)[(r)("')]

-1 (C)[(r.,. l,a)] (by Proposition 20 b)

= (C[r.,. l,a]) (by Proposition 18)

= (t)

D

The next thing to be done is to connect somehow a rewrite step in the
translation of a HRS with a rewrite step in the original HRS itself. Since the
translation of a HRS 1i acts as a refinement of 1{, we cannot hope for a result

as neat as in the previous section. But still something can be said. First we will
show that if we have the rewrite (s) -tc,a t' in the translation of a HRS, then we

can project it to a rewrite steps -t1t t, such that (t) = t'.
The first observation we need is that there is a 1-1 correspondence between

functional subterms in (s) , i.e. subterms with a function symbol (also taking
the @n for n 2 1 into account) or a variable as head, and subterms of type 0 in
s. Further, we need two propositions.

294

Proposition 22. Suppose C'[t1] = (s} with t' a functional term. Then a context
C[] and a term t exist such that (C) [J = C'[J and (t) = t'.

PROOF. Via the correspondence we obtain an appropriate subterm of s, i.e. a
context C[] and a term t such that s = C[t] and (t} = t'. Using Proposition 18
we have that (C)[] = C'[]. 0

Proposition 23. Let l be the left-hand side of a HRS rewrite rule. If (l) u' = (s},
then there is an assignment u with (u) = u'.

PROOF. Metavariables z. occur in (l) in the form Z(x1 , ..• xn)· Suppose u' is de­
fined as a'(Zi) = A(u1, ... , un).t', hence (Z(x1, ... Xn)r' = t'[u1 := X1 ... un :=

(u' xn]· We know that t' # [x]t", because otherwise we cannot have l) = (s) due
to the typing. Hence, t'[...] is a functional term, i.e. of one of the forms F(.. .)
or @n(.. .) with n 2:: 1 and so in s there is a corresponding subterm t of type
0, such that (t) = t'[u1 := x1 ... Un := Xn]· Define <7 as uz = AX1 ... Xn.t. Then
(a)= u'. D

Theorem 24. If (s) --+(R) --+~ t' in the CRS C by rewrite rule (R) = (l --+ r),
then s --+Rt in 11., for some t such that (t) = t'.

(f'I I I PROOF. We have (s} = C'[(Z)] --+c to= C'[(r}u] --+,B t', for some context C'[],
assignment a'. Now we have

(s) = C'[(l)u']

= (C}[(l)u'] (by Proposition 22)

= {C)[(Z}(u)] (by Proposition 23)

= (C}[WL,a}] (by Proposition 19 b)
= (C[zu 1,a]) (by Proposition 18)

By injectivity of(_), we haves= C(zu 1.al· Take t = C[ru 1,a], then s --+Rt and

(t) = (C[ru l,a])
= (C}[(ru l,a)] (by Proposition 18)

+-~ (C) [(r} (u)] (by Proposition 20 b)
I

= (C} [(r) u]

= to

By confluence of f3 and injectivity of(-), we have (t) = t'. O
If we want to prove the Church-Rosser property for orthogonal HRSs via

the same property for CRSs, Theorem 24 is not quite enough. The /3-rule, by
construction, indeed is orthogonal to the other rules and coinitial rewrites can
be lifted, but only C/3-steps can be projected, not arbitrary C-rewrites. We now

295

show that every rewrite in an arbitrary CRS C starting with a term which is the
translation of some HRS-term, can be completed, by performing a ,8-reduction
to ,8-normal form, to a rewrite which can be simulated by a 'standard' rewrite
consisting of C,8-steps.

The proof follows the strategy employed for proving E F wcR+ in (Klo80,
pp. 144-148). However, some difficulties arise. First, because of the possible non­
left-linearity of the rules. Second, because simply typed >.-calculus doesn't satisfy
the disjointness property in contrast to underlined >.-calculus.

The main property to be proved is that ,8-reductions to normal form do
not interfere with rewrite steps. To do this we first need to define some tracing
mechanisms.

Definition 25.
a Let R = l -+ r be a rewrite rule. Its conditional version Re = le -+ r

is obtained by repeatedly replacing occurrences of a metavariable Z which
occurs at least twice in l by a fresh metavariable Z' and adding the condition
Z = Z' to the rule. Its linearisation is R1 obtained from Re by omitting the
conditions. ·

b Let r be a metaterm, and Z = Z1 , ... , Zn be a list of metavariables con­
taining the ones in r, then the freezing Tf of Z in r is defined by Tf =
@n([z)r', [x1)Z1(x1), ... [xn)Zn(Xn)), where z = zi, ... , Zn is a list of fresh
variables, and r' is obtained by replacing in r all occurrences of Z(t) by
@(z, t). For a rule R = l--+ r, the freezing Rt = l-+ r1 is defined by freezing
the metavariables of l in r. We define R1p to be the CRS with rules R1 and
.B

c Let R = l -+ r be a rewrite rule. Its underlining R is obtained from Ref
by underlining the head-symbol of le. (So R is first made conditional, then
frozen and finally its head-symbol is underlined.)

d An (R-)underlining of a term s is a term containing some underlined sym­
bols, which are the head-symbols of R-redexes, and which is equal to s after
removing the underlining.

e A rewrites -c t is an (R-)development if there is some underlining§. of s,
such that §., l!+P t. and the underlined rewrite 'projects' onto the original
one. Note that, due to non-left-linearity, the terms in the underlined rewrite
need not be underlinings of terms.

NOTATION. This underlining of (head symbols of) redexes might be be considered
confusing, because underlinings were also used in ~-calculus. Yet, we think it is
the right notation because the underlinings express the same idea of marking
both times.

Example 5. Let R be a rule defined by R = v([x]Z(x), [x]Z(x))-+ Z(v([x]Z(x))).
Then we have

R1 = v((xJZ(x), [x]Z'(x)) -+ Z(v[x]Z(x))
Rt= v([x]Z(x), [x]Z(x))-+ @([z]@(z,v[xj@(z,x)), [x]Z(x))
B = !l([x]Z(x), (x]Z'(x))-+ @((z,z']@(z,v[x]@(z,x)), [x]Z(x), [x]Z'(x)) if Z = Z'

296

The idea of freezing is the one of [Lan93), postponing both duplication of
the metavariables and substitution into the metavariables. It is more extensive
than the one in [Klo80), where only substitution is postponed. Both postponed
actions can be performed by ,8-reduction:

Proposition 26.
a s -+cp t is a development.
b Let~ be equal to s after removal of underlinings. If A -+ lJ,fj t., then s -+cp t.

Here -+!J,fj=-+!1-+~.

PROOF.

a Idea. Underline the redex to obtain an underlining of s. Rewrite it with the
underlined rule and then to /3-nf.

b Idea. In the /3-reduction to normal form, we can do the postponed duplication
and substitution steps first and then the others. This rewrite can be projected
to a C,8-step.

D
It is not difficult to see that explicit /3-reductions in translated terms can be

made to correspond to /3-reductions in >.-+-calculus. (Define a suitable forgetful
map, forgetting explicit @'sand replacing[-] by>., giving typable terms). Hence
,8 is terminating. In the following we only consider rewrites that start with the
translation of some term in the HRS.

Proposition27. Every rewrite in R + f3 terminates.

PROOF. Sketch. Let R = l -+ z:. Let A' be obtained from A by replacing all R
redexes r by @([x)x,r.,.). This can be done unambiguously because R doesn't
have overlap with itself. The idea is that we have replaced left-hand sides by their
right-hand sides in advance, but have put an extra identity in, to keep in mind
that we have to do soto simulate a step. (This replacement works only because
the rule is (left- and right-)linear). Now we have that every rewrite starting
from A can be simulated by a rewrite of the same length starting from l. More
precisely, each ,8-step is simulated by a ,8-step and an R-step C[l") -+E. C[r."]
is simulated by the corresponding /3-step C1[@([x)x,z:"1

)) -+p C'[r.,.']. Since /3-
rewriting terminates, the R + ,B-rewrite must be finite. D

Corollary 28. Every development is finite.

Proposition29. {J commutes with R + {3. That is

R+,8

,8 /3

R+,8

297

PROOF. By termination of R + /3 (Proposition 27) and Newman's Lemma (see
e.g. [Oos94a]) it suffices to consider only local divergences in proving commuta­
tivity. The case of a local divergence of ,8-steps is covered by confluence of ,B. The
other case follows by considering the relative positions of the /3- and R-redex. If
the /3-redex is inside the R-redex, we have the following diagram.

R

,8

,8

We may need some 'compensating' ,8-steps due to possible conditions on R
(which originate from non-left-linearity of R). If the ,B-redex is outside the R­
redex, we have the diagram:

,8 ,B

The ,B-step may duplicate and even nest R-redexes, but this does not cause much
trouble. A parallel inside-out reduction of R-redexes works. (This is just as easy
as for combinations of .>..-calculus and first-order rewrite systems, as R is linear.)

0

Proposition 30. Ifs -+c{J t and s -+h s', then s1 -c{J t.

PROOF. By Proposition 26 we can construct the reduction §.. -+B. -+~ t, for some
rule R and underlining §.. of s. We prove that if §. -+B.-l.!:.+/J t, such that t is in
,B-normal form, and §.. -+h §..', then §..' -+ BJ3 t. The proof is by induction on the
maximal length of a R + ,8 reduction sequence starting from §.. and expressed by
the following diagram.

R R+/3 t §.

r! 29 je
R ,B R R+,8

l t

~rl 30 j0
t

lJj3

By applying Proposition 26 again (in the reverse direction), we are done. D

298

Lemma31. Suppose s -c t, and s and t are in {3-normal form, then s -c13 t.

PROOF. The proof is expressed by the following diagram

R (3
s-

R (3 R (3! --------t

~ y 30 30

----------- t C(3 C(3

D

Remark. The results in the literature on modularity of confluence for combina­
tions of typed >.-calculi with various kinds of rewriting do not seem to apply
here. This is because the rewrite rules are not first-order. They can be frozen as
above into a 'first-order part' and a 'substitution part', but the former may con­
tain rules with {3-redexes on their right-hand sides, which is not allowed for the
systems studied in the literature. On the other hand, the method employed here
seems to be quite flexible, since it makes use only of completeness of (typed) (3.
For example, the confluence result of [BTG89] should be an easy consequence.

In [Oos94b] a technique which is related to the one in this section is used to prove
a Finite Developments Theorem for the large class of orthogonal Higher-Order
Rewriting Systems.

Corollary 32. Orthogonal HRSs are confluent.

PROOF. Suppose we have two coinitial rewrites, s -'H. t 1 and s -'H. t 2, we can
lift them by Theorem 21 to rewrites (s) -c{3 (t1) and (s) -c{3 (t2). Because C is
an orthogonal CRS we can find by [Klo80, Thm. II.3.11] (or [Raa93]), convergent
rewrites (t1) -c t' and (t2) -c t', for some t'. If we reduce t' to ,8-normal form
r', then Lemma 31 says that the resulting rewrites can be simulated by rewrites
(t1) -c13 r' and (t2) -c{3 r'. Finally, by Theorem 24 we can construct rewrites
t 1 -'H. r and t2 -1-l r, such that (r) = r'. D

The proof is expressed by the following diagram.

299

t'

,B!

c 31

(t1} C,B (r}

YI ~
(s)

C,B
(t2)

21 I 24
'H

ti r

y A
8 t2

'H

In fact, the reduction sequence t' -+~ (r), can be shown to be empty, giving
a somewhat stronger result.

5 Discussion

In the picture below we show the relationships between some classes of rewriting
systems occurring in the literature. We have classified them along two dimen­
sions. Horizontally, we distinguish between logical and combinatorial systems.
The logical systems are the ones for which the Curry-Howard Isomorphism still
makes sense, i.e. the left-hand sides of rules satisfy a constructor-destructor disci­
pline. If the left-hand sides consist of possibly complex combinations of symbols,
then we call the system combinatorial. Vertically, we distinguish between first­
order and higher-order in the usual way. One could add a third dimension: func­
tional versus communicational. Apart from the IINs which generalise to INs, it
is not clear to us which systems are obtained when lifting the functional systems
below to communicational ones.

300

HOTRS

l
Higher - Order HRS

l 1 ERS

IIN c:__.. 1s ~--.. cs -----.. cRV
/ ~de

>.(a)

I

- - -1- -

First - Order DIS~:------- .. TRS

Logical Combinatorial

We will not discuss these systems here, but give references to the literature
instead. For an overview of systems until 1980 see also [Klo80, pp. 132,133]. In
(as far as we know) historical order we have:

- TRS =Term Rewriting System. We don't know who introduced this name,
but they were known at the end of the seventies. Cf. also Rosen [Ros73].

- CS= Contraction Scheme. Introduced by Aczel [Acz78].
- >.(a)-reductions were introduced by Hindley [Hin78].
- CRS = Combinatory Reduction System. Introduced by Klop [Klo80].
- HOTRS =Higher-Order Term Rewriting System. Introduced by Wolfram

in his PhD thesis, see [Wol93).
- ERS =Expression Reduction System. Introduced by Khasidashvili [Kha90).
- (I)IN = (lntuitionistic) Interaction Net. Introduced by Lafont [Laf90).
- HRS =Higher-order Rewrite System. They were introduced by Nipkow [Nipa).
- (D)IS = (Discrete) Interaction System. Introduced by Asperti and Lan-

eve [AC92).
- clc = conditional >.-calculi. Introduced by Takahashi [Tak].

In general, if one system is encoded into another, it makes sense to check
which syntactic properties are preserved by the translation. We will briefly review
whether the (syntactic) properties (local) confluence and (weak) termination are
preserved by the two encodings that are presented in this paper.

First we will consider the translation from CRSs into HRSs, say a CRS C
is encoded into a HRS (C). Since term formation in HRSs is quite liberal we
will first restrict attention to the sub-HRS (C)tr with only the terms that are a

301

translation of a term in C. This is the HRS which we usually call 'the translation'
of C.

It is easily shown that if C is (locally) confluent, then its translation (C)tr
is (locally) confluent. This is a consequence of Theorem 3.11 and 3.8. It is also
easily shown that (C}tr is (weakly) terminating if C is (weakly) terminating. Note
that we have as a corollary of Theorem 3.11 that the translation of a normal
form is again a normal form.

If we, just out of curiousity, consider not the translation (C}tr of a CRS C
but the full HRS (C}, then the situation is completely different. This is due
to the fact that the rewrite relation for CRS is defined only on the set of terms
(not containing metavariables), whereas in a HRS there is no syntactic difference
between meta.variables and variables.

Confluence nor local confluence are preserved if a CRS C is encoded into a
HRS (C}. Consider the CRS C1:

F(F(Z)) -+ F(Z)

F([x]Z(x)) -+ F([x]Z(Z(x)))
F([x]Z(x)) -+ F(Z(A))

It is confluent. This is a consequence of the fact that we have only one operator
symbol F, for which we have the first rule. The corresponding HRS (C1)

F(Fz)-+ Fz
F(A>..x.zx)-+ F(A>..x.z(zx))

F(A>..x.zx)-+ F(zA)

is not confluent: the term F(>..x.zx) can be rewritten to F(zA) by applying the
last rule, and to F(z(zA)) by applying the second and then the third rule. Note
that F(>..x.zx) is not the translation of a term in C1 . Note that {C1) is not locally
confluent either.

The same holds for the properties weak termination and termination: they
are not preserved by the translation from CRSs into HRSs. Consider the CRS
C2:

F([x][y]Z(x, y))-+ Z([x][y]Z(y, x), [x]x)

It is terminating a.nd thus weakly terminating. This can be understood by re­
marking that the alphabet contains only one operator symbol, which is unary.
So an instance of Z (x, y) will contain exactly one variable, and never both x and
y. The corresponding HRS (C2}

F(A>..y.zxy) -+ z(A>..xA>..y.z(A>..xA>..y.zyx)(A>..x.x)

is not terminating: the term F(A>..x.A>..y.z(Fx)(Fy)) permits an infinite rewrite
sequence. Note moreover that it hasn't got a normal form, so it is not weakly ter­
minating either. If we would consider the properties for rewriting on metaterms,
then we conjecture that the properties are all preserved.

302

Now we will consider the translation from HRSs into CRSs, say 1-l is trans­
lated into {1-l}. Again we consider first the sub-CRS (1-l}tr of (1-l} where we only
consider the terms that are a translation of a term in 1-l. This is the CRS which
we usually call 'the translation'.

As a consequence of Lemma 4.21 and Theorem 4.10, we obtain that (1-l}tr
is confluent if 1-l is confluent. It is also easily shown that weak termination and
termination are preserved.

Again, the situation is completely different if we consider the full CRS (1-l}.
In this case, this is due to the fact that the untyped ,8-rule is always present in
the CRS which is associated to a HRS.

The HRS 1-f.1

Dxx--+ E

is confluent, but the associated CRS (1-f.1}

D(Z,Z)-+ E
@([x]Z(x), Z') --+ Z(Z')

is not confluent. This has been proven by Klop (see [Klo80]).
For an arbitrary HRS 1-f.2, its associated CRS (1-f.2} is terminating nor weakly

terminating. This is the case since (1-f.2} will contain for instance the term
@([x]@(x,x), [x]@(x,x)). So in particular the CRS associated to a HRS that
is terminating is not terminating, and the same holds for weak termination.

In this paper we have shown two extensions of first-order rewriting to higher­
order, CRSs and HRSs, to be almost equivalent. The difference lies in the meta­
language used; they employ different flavours of the >.-calculus to generate their
rewrite relations. For CRSs the underlined >.-calculus is used, while for HRSs
the simply typed >.-calculus is used.

The translations from one system to the other are relatively simple because
both are based on >.-calculus. The situation would be different for arbitrary meta­
languages. But in fact it is hard to imagine a meta-language essentially different
from >.-calculus. The basic steps of a rewrite (or redex-reaction) are: decomposing
an object into a context and a redex, decomposing a redex into a pattern and a
substitution, replacing the pattern with some other pattern, and then composing
everything in the reverse order. The >.-calculus can be viewed as a 'calculus of
(de)composing', so seems to be basic to any meta-language. If we look at other
higher order rewrite formalisms, such as the Expression Reduction Systems of
Khasidashvili [Kha90] and the Conditional Lambda Calculi of Takahashi [Tak],
this claim seems to be supported. The precise interrelation is left to future work.
We do note however that the similarities between these systems are obfuscated
by the surprisingly large syntactical differences.

The work in this paper seems to suggest that only two basic properties are
required for the flavour of >.-calculus one uses for the meta-language: confluence
and termination. One can view CRSs and HRSs then as special cases of such a
unifying theory of Higher Order Rewriting Systems (HORS). A large part of the
syntactic rewrite theory should carry over to higher-order rewriting with more

303

powerful meta-languages such as higher-order >.-calculi. Progress in this respect
has been made in [Oos94b] and [OR94].

6 Acknowledgements

We would like to thank Fer-Jan de Vries for comments on an earlier version of
this paper. We have benefitted from discussions with and between Jan Willem
Klop, Tobias Nipkow and Stefan Kahrs on this subject.

References

[AC92] A. Asperti and Laneve C. Interaction systems I: the theory of optimal re-
ductions. Technical Report 1748, INRIA-Rocquencourt, September 1992.

[ACCL90] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Levy. Explicit substitutions.
In Proceedings of the ACM Conference on Principles of Programming Lan­
guages, San Francisco, 1990.

[Acz78] Peter Aczel. A general Church-Rosser theorem. Technical report, University
of Manchester, July 1978.

[Bar84] H.P. Barendregt. The Lambda Calculus, its Syntax and Semantics, volume
103 of Studies in Logic and the Foundations of Mathematics. North-Holland
Publishing Company, revised edition, 1984. (Second printing 1985).

[BG93] M. Bezem and J.F. Groote, editors. Proceedings of the International Con­
ference on Typed Lambda Calculi and Applications, volume 664 of Lec­
ture Notes in Computer Science, Utrecht, The Netherlands, March 1993.
Springer-Verlag.

[BTG89] V. Breazu-Tannen and J. Gallier. Polymorphic rewriting conserves algebraic
strong normalization and confluence. In Proceedings of the 16th Interna­
tional Colloquium on Automata, Languages and Programming, volume 372
of Lecture Notes in Computer Science, pages 137-150, 1989.

[Hin78] R. Hindley. Reductions of residuals are finite. Transactions of the American
Mathematical Society, 240:345-361, June 1978.

[Kah92] S. Kahrs. Context rewriting. In M. Rusinowitch and J.L. Remy, editors,
Proceedings of the Third International Workshop on Conditional and Typed
Rewriting Systems, pages 21-35, 1992.

[Kha90] Z.0. Khasidashvili. Expression reduction systems. In Proceedings of I.
Vekua Institute of Applied Mathematics, volume 36, pages 200-220, Tbil­
isi, 1990.

[Klo80] J.W. Klop. Combinatory Reduction Systems. Mathematical Centre Tracts
Nr. 127. CWI, Amsterdam, 1980. PhD Thesis.

[KOR93] J. W. Klop, V. van Oostrom, and F. van Raamsdonk. Combinatory re­
duction systems, introduction and survey. Theoretical Computer Science,
121(1-2):279-308, December 1993.

[Laf90] Yves Lafont. Interaction nets. In Proceedings 17th ACM Symposium on
Principles of Programming Languages, pages 95-108, 1990.

[Lan93] C. Laneve. Optimality and Concurrency in Interaction Systems. PhD thesis,
dipartimento di informatica universita di pisa, March 1993.

[LIC91]

[Mil]

[Ni pa]
[Nipb]

[NM88]

[Oos94a]

[Oos94b]

[OR93]

[OR94]

[Pau90]

[Raa93]

[Ros73]

[Sie91]

[Tak]
[Wol93]

304

Amsterdam, The Netherlands. Proceedings of the sixth annual IEEE Sym­
posium on Logic in Computer Science, Los Alamitos, July 1991. IEEE Com­
puter Society Press.
D. Miller. A logic programming language with lambda-abstraction, function
variables, and simple unification. In [Sie91].
T. Nipkow. Higher-order critical pairs. In [LIC91].
T. Nipkow. Orthogonal Higher-Order Rewrite Systems are Confluent.
In [BG93].
G. Nadathur and D. Miller. An overview of ,\Prolog. In R.A. Kowalski and
K.A. Bowen, editors, Proc. 5th Int. Logic Programming Conference, pages
810-827. MIT Press, 1988.
V. van Oostrom. Confluence by decreasing diagrams. Theoretical Computer
Science, 1994.
V. van Oostrom. Confluence for Abstract and Higher-Order Rewriting. PhD
thesis, Vrije Universiteit, March 1994.
V. van Oostrom and F. van Raamsdonk. Comparing combinatory reduc­
tion systems and higher-order rewrite systems. Technical Report CS-R9361,
CWI, September 1993. also available as VU technical Report IR-333.
V. van Oostrom and F. van Raamsdonk. Weak orthogonality implies con­
fluence: the higher-order case. In Proceedings of the Symposium on Logical
Foundations of Computer Science 1994, 1994. to appear.
L.C. Paulson. Isabelle: The next 700 theorem provers. In P. Odifreddi,
editor, Logic and Computer Science, pages 361-385. Academic Press, 1990.
F. van Raamsdonk. Confluence and superdevelopments. In C. Kixchner, ed­
itor, Proceedings of the 5th International Conference on Rewrite Techniques
and Applications, 1993.
Barry K. Rosen. Tree-manipulating systems and Church-Rosser theorems.
Journal of the Association for Computing Machinery, 20(1):160-187, Jan-
uary 1973. t
J. Siekmann, editor. Extensions of Logic Programming, volume 475 of Lec­
ture Notes in Artificial Intelligence. Tiibingen, FRG, Springer-Verlag, De­
cember 1991.
M. Takahashi. ,\-calculi with conditional rules. In [BG93J.
D.A. Wolfram. The Clausal Theory of Types, volume 21 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 1993.

