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In this paper we prove some generalisations of congruences of Atkin and Swin
nerton-Dyer type. This is done in the form of congruences for numbers P n(A/j'] ), 
where P,,(I) are the orthogonal polynomials of Legendre. The proofs are based on 
complex multiplication of elliptic functions. t· 1991 Academic Press, Inc. 

1. INTRODUCTION 

This paper deals with so-called "supercongruences" for Legendre polyno
mials. We first explain what we mean by a supercongruence. Let p be an 
odd prime and consider the elliptic curve 

<ff :y 2 =x(x2 +Ax+B), 

where A, BE ZP (the ring of p-adic integers). If we choose t = x/y as a local 
parameter, a short calculation (given in the beginning of the proof of 
Theorem 1 below) shows that the holomorphic form on the curve cC' takes 
the form 

- dx = (1 -2At + L1t4 ) - 112 dt = I Pk ( ~) · (.jA)k · t 2k dt, (1) 
2y k=O yA 

where P 11(t) is a Legendre polynomial and L1=A 2 -4B. When the curve C 
has ordinary reduction over IF P (the field with p elements), the theory of 
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formal groups (cf. [19, pp. 441-446] predicts a congruence of the 
Atkin-Swinnerton-Dyer type 

C1;2(mp'- I - (p + 1 - Np). C1;2(mpf-I _I)+ p. C1/2(mp'-2- l) = 0 mod p', (2) 

for any positive integer r and positive odd integer m, where we denote 

c,,=fe·P,,(fl). 
and where NP denotes the number of projective points on I! over IF P· As 
usual P 11 (t) = 0 if n is not a positive integer. We consider this congruence 
and all other congruences in this paper as a congruence in "11..P (the ring 
of p-adic integers). Assuming for the moment that the limit of 
{ c112cmp' _ 11/c 112,,,,P,-1 _ 11 } ~ 1 by ii, we deduce from (2) that ii is the root of 

for which liilP = 1 (here is I ·IP the usual valuation on "11..P). In this way one 
can write congruence (2) in the form 

P ( A )-J-mp' 1-(p-l)/2 p (A) d r 
l/2(mp'-l) fl = ·1!· l/2(mp'-l-J) fl mo p' (3) 

(see [12, 13]). 
The main point of this paper is that if the curve I! has complex multi

plication congruence (3) can be changed into a congruence mod p 2'. The 
existence of the limit can be deduced from Atkin and Swinnerton-Dyer, but 
it follows also from the supercongruence (5) which we prove. We call such 
congruences supercongruences (cf. [12, 13]). Many of such supercongruen
ces have been proved during the last years. We mention [12, 5-7, 10, 11, 
17], etc. 

If K is an algebraic extension of 0, we denote by I· IP the valuation on 
K which extends the usual valuation on O. We denote by OP the field of 
p-adic numbers. We have the following theorem. 

THEOREM 1. Let p be an odd prime. Let d be a square-free positive 
integer such that ( - d/p) = 1 (here (-/ ·) is the Legendre symbol). Let K be 

an algebraic numberfield such that J(=d} EK and Kc Or Consider the 
elliptic curve 

@":Y2 =X(X2 +AX+B) with A,BEK and IAIP=IA 2 -4BIP=1. 

(4) 

Let L1 = A 2 - 4B. Let w and w' be a basis of periods of if and suppose that 
r = w'/w E Q(.j=d) (which implies that the curve has complex multiplica-
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tion ), r has positive imaginary part, and A = 3.'?1'( ~w ), fa= &( ~w' + ~w) -
&(!w'), where &>(z) is the Weierstrass :?J>-function. Let n, ii E Q(j°=d) such 
that nii=p, lnlP=l/p and liilP=I. Suppose that n=u 1 +v 1 r and nr= 
u2 +v2r with u 1, v1 , u2 , v2 integers and v1 even. Then we have 

P1;2(mp'-11(fl)=e"'P' 1 ·ii·P 1.2(mp'-1 11 (fl)modn2', (5) 

where m and r are positive integers, with m odd and 

8 = i ~ U2l'2 + 1'2 + p - 2 ( 6) 

Here i=~. 

The conditions A= 3&(~w) and v1 even look arbitrary; however, these 
conditions are necessary to obtain a 2-torsion point in (0, 0), which will be 
fixed by the Frobenius endomorphism [n]. 

The proof of the theorem is based on complex multiplication of Jacobian 
elliptic functions. 

By comparing congruences (3) and (5) we derive another expression 
for e. If we put m = r = I in these congruences then we get 

N -1 e = __ P ___ · L1 - ti4 lp- ll mod p. 
n 

Note that e depends on the choice of fa. 
We first give two special cases of the theorem. In both examples the 

period lattice is of the form {ma+ nia : m, n E Z, i = J(=T), a E IR} but the 
choice of w and w' is difTerent. 

EXAMPLE I. Let <ff: Y2 =X(X2 -4). We can choose periods wand w' 
such that :?i'( !w) = 0, 9( 1w + ~w' )- .o/'(~w') = -4 and w'/uJ = r = - ! +!i. 
(If tf; = T 2(±J/4 Jn, then w = (I+ i). tft, w' = rw = - t/t and ,qi'>( !w') = 2 and 
&>(!w+1w')= -2 (cf. [!, p.658]).) Letp=l mod4 be a prime. Thenp 
can be written as p = a2 + b2 , with a, b E Z. Let a= 1 mod 4. Let i be a 
p-adic integer such that i 2 = - I. Fix the sign of bi such that a= hi mod p. 
Let n =a - hi. Then we have n =(a - b) - 2hr and nr = h +(a+ h) r. Hence 
e = i"2( 1 - u21 + P - 2 = 1. Since P 211 (0) = ( -4) 11 • ( ~;') we derive the congruence 

2mp - =(-4)1/4mp' '1p-11.(a+bi)· 2 p - modp2'. ( !( r I) (1(m' 1 1) 
~(mp'-1 i(mpr- 1 -l) 

This congruence has been proved in several other ways. (Cf. [12].) 

EXAMPLE 2. Let 6 : Y 2 = X(X 2 + 3X + 2). We can choose periods uJ 

and w' for this curve such that .J,il( !w) = 1 and w' /w = r = i. (If !/! has the 
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same meaning as in Example 1 then w = j2 · t/I, w' = WJ = i j2 · t/I, and 
&'( tw') = -1 and &( tw + ~w') = 0.) Let p, a, b, and n as defined in Exam
ple 1. We derive that n =a - br, nr = h + ar, and e = i h = ( -1 )1141 1'- 11• We 
denote 

= 11 (n)(n +k) c., I k k . 
k~O 

The numbers c,, have been used for proving that log 2 is irrational with 
measure of irrationality 4.622 ... (see [2]). Carlitz [9] proved for the 
numbers c,, the congruence 

C1;2ir-1i=(-l) 1141 P - 11 -2amodp. 

Since c,, = P11(3 ), we have the supercongruence 

-( J)l/4(p-l) ( +b") d ?r Ct/2(mp'- l) = - . a I . C1/2(mp1 - 1 - l I ffiO p· · 

Another proof of this supercongruence in the case m = r = I has been given 
by van Hamme in [ 18]. In Section 4 we give some more exam pies of the 
Theorem, and we prove that there are only eight examples of super
congruences where A and Bare rational and where congruence (5) can be 
replaced by a congruence in 7i_ (congruence ( 48) ). 

2. SOME PRELIMINARIES 

2.1. The Theta Functions 

We need some properties of classical theta functions. Let r be a complex 
number with a positive imaginary part. We write 

Hence lql < 1. We define 

.9(z)= I "
l 2 .• q . e ""'-, for any z E IC. (7) 

nEZ 

,9(z) is an entire function ( cf. [27, p. 463] or [24, p. 4] ). It is easy to verify 
that 

.9(z+l)=.9(z), 

.9(z + r) = q-- 1e - 2"i=,9(z ), 

.9(-z) = .9(z); 

(8.1) 

(8.2) 

(8.3) 
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cf. [24, pp. 1, 2, 17]. We define 

() 00 (:::) = 9(z), 

901(:::) = 9(::: + 1l, 

,9 10(:::) = M(z) · ,9(::: + 1rJ, 

,9 11 (:::)= -iM(z)·.9(z+1+~r), 

(9J{Jrz)) 

( ,9 4 (nz)) 

(,9 2(nz)) 

(9 1(nz)), 

(9.1 ) 

(9.2) 

(9.3) 

(9.4) 

where M(z) = q 114eni=; cf. [27, p. 464]. We have used Weber's notation for 
the theta functions. The notation of Whittaker and Watson has been added 
between brackets. The notation used by Mumford corresponds to the nota
tion of Whittaker and Watson, but Mumford denotes ,9 11 (z) with a minus
sign. The zeros of ,900 (z), ,9 01 (:::), ,9 10 (:::), and ,9 11 (z) are given in [24, p. 12]. 

900(:::)=0 if and only if :::=(m+1)+(n+tlr, for m, nEZ, ( 10. l) 

.901(2)=0 if and only if 2=m+(n+~)r, for m, nEZ, ( 10.2) 

,910(:::)=0 if and only if z = (m + ~) + m, for m, 11 E Z, ( 10.3) 

.911(2)=0 if and only if :::=m+nr, for m, nEZ. ( 10.4) 

We abbreviate the values 900(0), 901 (0), and ,9 10(0) to .900 , 901 , and ,9 10 , 
respectively. There is an important relation between these numbers, namely 
Jacobi's identity 

( 11 ) 

cf. [27, p.469]. 

2.2. The Function S(z). 

We use thetafunctions to introduce a function which plays a central role 
in this paper and which is related to the Jacobian elliptic functions sn(::: ), 
en(:::), and dn(:::). For the precise relation we refer to [12] or [27]. We 
define S(z) by 

,9 10(2/w) .. 911 (2/w) 
S(z) = . 

(f00 (z/cv) .. 901 (z/w) 
( 13) 

The properties of S(:::) which we use in this paper are formulated in the 
following lemmas. 

LEMMA 2.1. 
S( - ::: ) = - S( z ), 

S(::+ twl= -S(:::), 

S(z + ~w') = 1/S(z), 

S(O)=S(~wl=O, 

( 14.1 ) 

( 14.2) 

( 14.3) 

( 14.4) 
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S(z) has poles for z = ~w' and z = ~w + !w', (14.5) 

S(z) = S(ct.) if and only if z =a+ m(J) + nw' 

or z = !w - et.+ mw + nw', where w' = wr, and m, n e "lL. 

( 14.6) 

Proof These properties follow immediately from the properties of the 
theta functions, cf. [24, p. 23 ]. I 

COROLLARY 2.2. S(z) is an elliptic function with periods w, (J) 1 or order 2. 

Proof This follows from Lemma 2.1. I 

LEMMA 2.3. 

where 

[&''(z)] 2 =4. (&'(z)- &'(!w)) ·(&'(z)-&'(~w')) 

· (&'(z)-&'(!(w + (JJ 1
))) 

&'(z) - &>(!w) 
S(z) = c · &''(z) , 

c2 = 4(.0"0(w + w'))-&'(~w')). 

(15.1) 

( 15.2) 

( 15.3) 

Proof See (15.l) in [27, pp.443-444]. For the proof of (15.2) and 
(15.3) let A be the lattice spanned by wand w'. S(z) is an elliptic function 
with periods w and w'. Hence S(z) e q&(z), &''(z)). S(z) is an odd func
tion and S(z)&''(z) is an even function. S(z) has poles for z = !w' mod A 
and z = !w + !w' mod A, and zeros for z e A and z = !w mod A. Hence 
S(z)&''(z) has zeros of multiplicity 2 for z = ~w mod A and poles for z e A 
of order 2. Hence S(z)&''(z)=c(&(z)-&(~w)) for some ceC. Using 
( 14.3) we find 

&(z+lw')-&(lw) &'(z) 
C· 2 2 - (16) 

&''(z+!w') - c·(&'(z)-.?J(!w))' 

We use the formulas for the addition of a half period (cf. [27, p. 444]) 

&'(z lw')-&>(l ) = (&'(~w')-.?J(~w)) · (&'(z)-&'(~w + !w')) 
+ 2 2W (.?J(z)-&(!w')) ' 

and 

(&(lw') _ &'( lw )) . (.?J( l(JJ')- &(lw + lw')). &''(z) 
&''(z + lw') = _ 2 2 2 2 2 • 

2 (&'(z)-.9'{1w'))2 



SUPERCONGRUENCES FOR LEGENDRE POLYNOMIALS 271 

TABLE I 

S(i(uw + vw')) v\u 0 2 3 

-i -I 

-i -I 

Hence we get 

2 &'(z) · &'(z + !w') 
c = 

(&(z) - &(!w)) · (&(z + !w')- &(!w)) 

= 4(21'(!w + !w') - &{!w')). I 

The following lemma is very useful for the calculation of the number e in 
formula (5). 

LEMMA 2.4. We have for any integers u, v with v odd 

S(~(uw' + vw'))/S(~w') = i-uv+t·- 1• 

Proof Using properties of the theta function we obtain 

Using the relations of ( 14) we find the values of Table I. Equation (17) 
follows immediately. I 

3. SUPERCONGRUENCES 

3. 1. The Main Theorem 

We deduce Theorem 1 from Theorem 3.1 below. The conditions ( 18) and 
( 19) of this theorem may seem a little artificial but it becomes clear during 
the proof of Theorem I that they fit our needs exactly. 
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THEOREM 3.1. Let p be an odd prime. Let K be a numberfield with a 
finite valuation l ·lr such that [p[,. < l. Let R = {aE K: [alv ~ 1} and let n EK 
be such that \re[,.= \p\,,. Suppose that the formal powerseries 

x • 
z = L ),II t" 

ll= 1 n 

has an inverse t = t(z) which satisfies 

with ). 11 E R, 

1 +re· a(l/t) 
t(nz) = 1)tP. 1 -re. d(t) ' 

( 18) 

(19) 

where '1 ER and a(t) and d(t) E R(t), both of degree ~ p- 1 and 
a(O) = d(O) = 0. Then we have 

1 = mp' - I . !!_ . • d 2r 
/'•mp' - '1 Amp'-1 mo 7t for all positive integers m, r. (20) 

n 

Proof We derive from (18) 

and 

x n;) 
nz = L __'.!!. · t'' ( z) 

n= l n 

x ) ... m 

nz= L -·t"'(nz). 
m=l m 

(21) 

(22) 

The idea of the proof is to compare the coefficients of t"'P' in (21) and (22). 
Equation (20) is a consequence of the equality of these coefficients. We 
need some preparations. We define ak,n as the coefficient of 111 in the power 
series of tk(nz), i.e., 

~ 

tk(nz) = L ak_,,t"(z). (23) 
n=k 

We calculate these coefficients ak,n in the case that n = mp' and we show 
that the coefficients ak.mp' satisfy the inequality [ak.mp'[,.~ [kmp'+ 1[,,, except 
for amp'-1.mp' which is congruent to 11"'P'- 1 mod rc 2'. This will prove the 
theorem. We use three technical but straightforward lemmas. 

L 3 2 • h ,r,7·· . f mp' kp·'' I • EMMA . . akp'.mp' is t e coeJ.11C1ent ~ t m 

(24) 
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Proof We have 

kp'( ~·)- kp' kp''1 (1 +na(I/t))kr>' t 1L-lJ ·l · 
I - nc/( I) 

·(I (-~p')·(-n);·di(t)). 
1=0 J 

Note that ( -1 )i · ( ?') = (k"" +/ 1 ). The lemma follows immediately. I 

LEMMA 3.3. We haue amp' I.mp' == r(""' I mod n2'. 

Proof We apply Lemma 3.2 with k = m and s = r - 1. Then we need 
the coefficient of t 0 in expression (24 ). We define h;; =as the constant term 
in a'(l/t)·d'(I). We conclude that h00 = 1, h0,=0 forj>O and h,11 =0 for 
i> 0. Hence 1 

( 
mp' ' (mp" I) . (mp' 1 + i - 1) ) a,,,p, 1.,,,,,,.=11"1"' 1_ i+ .I I i ·n'· . . ·ni·h,;. 

1 I ;~I J 

Since ( 111"'. 
1 ) contains at least r - i factors p and ( kp' 1

/ 1 1 ) contains at 
least r - j factors , the terms in the sums over i and j vanish mod n 2'. I 

LEMMA 3.4. rr kp' #- mp'. I then we have 

lakp'.mp'I, :'( lkp' ·mp' ·pi,. 
(Jn other words 

- 0 mod ,,,.,. + '+ 1 ) akp\mpf = '"' . 

Proof Define L1 = mp' 1 - kp'. Then L1 #- 0. We distinguish two cases: 

(i) L1>0, 

(ii) L1<0. 

Case(i) We know that deg,(a(l/r))~O and deg,(d(t))~p-1. This 
implies that deg,(a'(l/t)·di(t))~j(p-1). Hence the terms in (24) con
tribute only to akp'.mp' if j( p - 1) ~Lip. This implies that j ~ L1 + 1. It follows 
that kp' + j- 1 ~ mp' ·· 1 > kp' and j! . ( kp' ·1/ 1 ) contains the factors mp' · 1 

and kp'. Hence ord"(kp' +/ 1 ) ~ r + s- 1 - ordP(j!) > r + s- 1 - H Now 
we have ordn(akp'.mp') ~ ordn coef. of r 1r> in 

( ;7kr>' I I (k~')·(kp'+j-l)·n'+1.a'(l/1)·d'(t)) 
1~0 1=0 J 

. ( (kp'+i-1)) . 1 . ~ .. mm j+ordn : >.mm r+s-1+-2 1~r+s. 
; ? .1+ I } I;;, ,H I 

The proof of case (ii) is similar. I 
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Continuation of the proof of Theorem 3.1. The coefficients of t"'P' in 
Eqs. (21) and (22) must be equal. Hence we have 

n mp' l 
mpr. }"mp' =.I -) .. Aj. ai.mp'· 

1~ l 

We split the sum on the right side in several subsums depending on the 
number of factors p inj, 

"-
Amp'= L 

s=O 

[mp' -_1·] ,. 
'I\'' mp 
L., Akp". knp". akp\mp'' 
k~l 

where L:' denotes the sum over all integers coprime to p. Note that 
lmp,./kTw"i",;:;; [p[~-s- 1 . By Lemma 3.4 akp'.mp' contains r+s+ I factors n if 
kps ,p mp' - 1• Hence we find using Lemma 3.3 

· _, mp' _ '''P'- 1 - , ' ' ' a n n , 1 mod n-'. Ill "mp' = "mp' - 1 • mnp' l • mp' 1,mp' =" . . "mp' 11 

3.2. Application to the Legendre Polynomials 

In this section we show how Theorem 3.1 can be used to find congruen
ces involving Legendre polynomials. Let ,ff be an elliptic curve with com
plex multiplication r. Suppose r is a root of 

Rx2 + Sx - T = 0, for integers R, S, T with gcd( R, S, T) = 1. 

We define discr(r)=D=4RT-S2• Then the endomorphism ring of <ff 
denoted by End($) is the order generated by I and ~(D + ~) (cf. [23, 
pp. 90-93 ]). Let a E End(<!). Then ar = x +yr for some integers x and y. If 
a E End(iff) then S(az) is a rational function of S(z) (since S(z) is an elliptic 
function). In Lemma 3.6 below this rational function is given explicitely in 
the particular case that a= n. 

THEOREM 1. Let p be an odd prime. Let d be a square-free positive 
integer such that ( -d/p) = 1. Let K be an algebraic numberfield such that 

~EK and Kc QP. Consider the elliptic curve 

<ff: Y2 = X(X 2 +AX+ B) with A, BEK and IA["= IA 2 -4B[P= l. 
(4) 

Let LI =A 2 - 4B. Let w and w' be a basis of periods of g which satisfies 

r = w'/w E Q(,/=d) and 

A= 3.o/'nwi 

Im(r)>O, (25) 

(26) 
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and 

(27) 

Let n, n dl(j=d) such that nn = p, In IP= 1/p and In IP= 1. Suppose that 

with u 1 and v 1 integers and v 1 even (28.l) 

and 

m; = U2 + V2't" with u2 , v2 integers. (28.2) 

Then we have the following congruence between the values of the Legendre 
polynomial 

P ( A )- mp' - I - ( A ) d 2r ( 
1;2(mp'-1> JLi =B ·n·P 1121 ,,,P'-1-n JLi mo n, 5) 

where m and r are positive integers, with m odd and 

e= i-u2v2+•'2+p-2. (6) 

Proof We construct local parameters t and z which satisfy Eqs. (18) 
and ( 19 ). <ff can be parametrised by the meromorphic functions 

x=&'(z)-&'(~w) and y= -~,qJl'(z), (30) 

for z EC. Consider t = x/y. Using (15) we can express tin terms of z: 

t= -2 _t?l'(z)-.?J>(~w)= -~·S(z). 
&''(z) c 

(31) 

Note that t(z) = z +higher order terms in z. We derive from (31) that 

which implies that 

x 2 + (A -? ) · x + B = 0 (32.1) 

and 

X= -~A+-1 ·(1+j(1-2At2 +Llt4 )), 
2 2t2 



276 COSTER AND VAN HAMME 

where 

(32.2) 

Differentiation of ( 32.1 ) gives 

dx dt dt 

-2x = t((A + 2x) · t 2 - l) = t. Jo - 2At2 + Llt4 ) • 

Hence 

Then z can be expressed as a function of t by 

Z= I _1_,pk (~) ·(fl)k. t2k+I. 
k=02k+l fl 

(33) 

We use Lemma 3.6. First we need some formulas. We derive the relation 
between the zeros of 21'' (z) and the coefficient B of ( 25) from ( 15.1 ), ( 25 ), 
and (30) 

Combination of this formula and (26) gives 

LI = (&'( !w') - &>(!{ w + w')) )2. (34.2) 

Hence we have, using ( 15.3 ), 

c2 = 4 fl, for the proper choice of fl, (35.1) 

and 

( 35.2) 

LEMMA 3.6. Let d, p, tff, n, it, L1, A, B, w, w', x, y satisfy the conditions 
of Theorem I. Let R = { rx. EK: ordrr(ix) ~ 0 }. Then we have 

( ) A 1 t(z)+A 3 t 3(z)+ ... +A" 2 t" 2(z)+t"(z) 
t nz = '1 · -----::-----~----,----

I +D 2 t 2(z)+ ... +D" 1 t" 1(z) ' 
(36) 

where 17, A 1, A 3 , ... , A" 2 , D2 , D4 , ... , D,, 1 ER, A 1, A 3 , ... , A,, 2· 

D 2 , D4 , ... , Dp-- 1 =0 mod n, and 

Y/=f.·JL112tp Ii (37.J) 
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and 
(; = i -· U2l':! + l'2 + p -- 2 • (37.2) 

This lemma is proved after the proof of the theorem. We now apply 
Theorem 3.1. The role of formulas ( 18) and ( 19) is played by formulas ( 33) 
and (36). Congruence (20) now becomes 

J L1 l/2(mp' - l J • p (~) = .,mp' - I . ii . J LJ 1!2(mp' - I - 1 J 
t/2(mp' - 1 J fl - 0 1 

( A ) 2, 
.pl/2(mp'-l- t) fl mod n: . 

Dividing by J L1 1121"'P' - 11 and using (37.1) gives congruence (29.1 ). I 
Proof of Lemma 3.6. The proof of this lemma is due to Weber (cf. [26, 

pp. 584-594] ). Since this proof is scattered over several pages and uses 
properties of Jacobian elliptic functions, we give here a more compact 
proof. Let A be the lattice defined by w and w'. Consider 

(S(z)- S(a)) 
F(z)=S(z)· TI (1-S(a)·S(z))' 

~e.r:.Y 

where d ={a EC: na = 0 mod A, a'$. 0 mod A, a= r;w + r;'w' with 
-!<r;, a'<!}. Note that 1.l<ll'I =p-1. We show that if n satisfies (28) all 
zeros and poles of S(nz) and F(z) coincide. Note that 

{: I F( z) = 0} = { z I nz = 0 mod A or n( !w - z) = 0 mod A } . 

Since v is even implies that !nw = !w mod A, we have 

{zl F(z) =0} = {zl nz=O mod A or nz= !w mod A} 

= { z I S( 1CZ) = 0}. 

The endomorphism [n] permutes the torsion points on #. Since !nw = 
!w mod A we have either !nw' = !w' mod A or !nw' = 1(w + w') mod A. 
Hence we have 

{zl F(z) = oo} ={:I S(z) = oo or S(z) = 1/S(a)} 

={:I S(z + !w') =0 or S(z+ !w')= S(ix)} 

={:I n(z + ~<u') = 0 mod A or n(z + !w') = !w mod A} 

= {zl nz = !w' mod A or nz= !(w +w') mod A} 

= { z I S( 1CZ) = 00 } . 
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Since F(:::) and S( nz) are both elliptic functions of the same order, we 
conclude that 

S(z)- S(ct) 
S(nz) = t: · S(z) · 0 l _ S(o:). S(z) 

" 
for some c; E IC. (38) 

We calculate c; by putting z = !w' in (38) and using Lema 2.4. Since the 
elements of,# appears in pairs a and -a and since S( -a)= -S(a.) we 
have 

S(!w')-S(a.) _ i-S(r:x.) -iP. 1 I] 1 - S(a) · S(!w') - I] 1 - iS(a.) -

Hence we find 

S(inw') ·r-l ·-.n+•·+p--2 t:= .z =1 .. 
S(iw') ' 

where m: = x +yr. By combining ( 31.2) and ( 38) we find 

!ct(z) + S(a.) 
t( nz) = e · t( z) · f1 1 1 S( ) ( ) 

by (35.1 ). We define 

>E.W + 2c a ·tz 

=e(~c)p-1 ·t(z)·fl t(z)+2S(r:x.)/c. 
2 , l+!cS(o:)·t(z) 

- J ,<1/2(p-1) YJ-e· LJ 

A(t)=t(z)· fl (t(z)+2S(a)/c) 

and 

(39) 

(40) 

D(t)= f1 (1+~cS(r:x.)·t(z))=I+D 2 t 2(z)+ ···+DP 1 tP- 1(z). (41.2) 
=< E s,Y 

We now show that the coefficients A lk .. 1 and D 2k are elements of K. By 
estimating the values of these coefficients we show that they belong to R 
and vanish mod n, fork= 1 · · · !(p- 1 ). From formula (33) we derive that 
t(z) can be written as a power series of z with coefficients in K. Hence t(nz) 
can be written as a power series of nz with coefficients in K. z can be 
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written as a power series of t with coefficients in K. Therefore t( nz) can be 
written as a power series of t with coefficients in K( n) = K. Hence A ( t) and 
D(t) are polynomials in K[t]. For the proof that the coefficients A 2k- 1 and 
D2k vanish mod n, we consider the power series of z( t) in ( 33) mod n and 
mod tP. We derive 

z(t)=c 1t+c 3 t 3 + ··· +cp_ 2 1P· 2 modn,tP, (42.1) 

where c2i_ 1 ER, for 1 ~j ~ (p- l )/2. Similarly we express t(z) in a power 
series in z mod n and mod zP. We obtain 

t(z)=:c'1z+c3z3 + ··· +c~_ 2zP- 2 modn,zP, (42.2) 

where c21+ 1 ER. Hence for t(nz) we have 

t(nz)::c;'z+c~z 3 + ··· +c; 2 zP- 2 modn,zP, (42.3) 

where c21 _ 1 = c~; __ 1 • n21 - 1, which implies that c2; _ 1 = 0 mod n. Formulas 
(35.1), (40), and (41) imply that 

(tjA)P.A(l/tfl)=D(t), (43) 

for j = l .. · ~(p - l ), (44) 

and 

A(t) = 1J • t(nz) · D(t). (45) 

We define a function v and v1"l (which operates on power series and 
polynomials, respectively, and whose image is the largest valuation of the 
coefficients of the polynomial), as follows. Let v,,( G( T)) = min; ord"( g;) and 
v~"l(G(T)) = min;,.;;n ord,,(g;) for G(T) = L; g;T; E K[T]. Then (43) implies 
that vt,:- 1'(t(nz(t)))= 1. Since we have from (44) that v,,(A(t))=v"(D(t)). 
It follows from (45) that v"(A(t)-tP)~ l +v"(A{t)). This inequality holds 
for v"(A(t)- tP) = 1. I 

4. EXAMPLES 

4.1. Examples with Rational )-Invariant 

In this section we treat all posible cases of elliptic curves of the form 

<ff: y 2 = x(x2 +Ax+ B) with A, Be 1, (46) 

up to transformations on x and y of the form x = ll( 2 • x' and y = ll( 3 · y'. 
These curves have complex multiplication. They are listed in Table II 
together with the related supercongruences. They are determined by the 



TABLE II 

Curve r Weierstrass form L1 

lff1a i y 2 =x(x2 +3x+2) 1 

<flh 
l · 
2_1 y 2 = x(x 2 + 6x + 1) 32 

6,, -~+ ~i y 2 = x(x2 - 4) 16 

if2 ! ... /HJ y 2 =x(x2 +4x+2) 8 

6,,, -~+~y'(-3) y 2 = x(x 2 + 6x- 3) 48 

6,h ~+~./(-3) .r' = x(x 2 - 3x + 3) -3 

61,, (-I+ ....;T=7J18 y 2 =x(x2 +42x-7) 1792 

67h ~+~yl-7) y 2 =x(x2 -21x+ 112) -7 

Alfa End(6) 

3 .Z[i] 

3 .}2;4 .Z[2i] 

0 Z[i] 

.j2 .Z[./'=2] 

!fi .Z[y'~] 
·/(-3) zo+~PJ 
3 ,fl/8 Z[j=7] 

3 v:0 ZU+!vl'=°7] 

Primes 

p= l mod 4 

p= l mod 4 

p= l mod 4 

p= l, 3 mod 8 

p= l mod 6 

p= I mod 6 

p= I. 2.4mod 7 

p = l, 2. 4 mod 7 

tJ 
00 
0 

!") 
0 
'f; .., 
m 
;>:! 

;.. 
z 
0 
< 
;i.-
z 
;:r:: 
;.. 
~ 
~ 
tn 
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fact that the )-invariants j( r) and j(2r) are rational. Namely suppose that 
Chas lattice A= [w, w'] with w'/w=r. Note that A, BEZ implies that 
j( r) E IQ. The condition that 8 has complex multiplication implies that j(r) 
assume one of 13 well-known values; see [23, p. 133, Theorem 5 and 21, 
p. 233]. <ff has 2-torsion point (0, 0 ). This implies that <ff is isogenous to the 
elliptic curve 

cS'' : y 2 = x(x2 - 2Ax + L1 ), (47) 

where L1=A 2 -4B; cf. [21, pp.91-96]. iff has a lattice [w 1,w'1] with 
w; /m 1 = 2r. Hence j( 2r) is equal to one of the 13 values mentioned above. 
We derive that modulo the subgroup I'(2) of the modular group SL(2, 'll_) 
only eight values of r satisfy these conditions These values are listed in 
Table II. In the first column we denote by Cd~ an elliptic curve with 
r E O(j=d) and the letter ix is used for distinguishing the elliptic curves 
with the same d. 
In each of the cases in Table II congruence ( 4 ), which in our case is a con
gruence in O(j=d), gives a congruence '1L. in the following way. Let p be 
a prime which split in End( g ). The form of this prime is indicated in the 
table. According to Theorem 1 we have 

P ( A )- mp' - 1 _ p ( A ) d 2r l/21mp'-ll fl =B ·1C· 1/2(mp'·'-Il fl mo TC, 

where i; has been defined in ( 37.2 ). We denote by c,, the rational integers 

c,,=}jn-P,,(~). 
We choose TC in such a way that !nip= 1/p and !nip= 1. By considering the 
congruence modulo p 2' instead of modulo n 2', we obtain 

, _ n1p' - I - , d 2r 
l1;21mp'-- 11='7 ·TC·l112Jmp'-'--11IDO P • (48) 

where 11 is defined in (37.1). We now turn to the information given in 
Table III. We have written n =a+ b J::J and ii.= a - b J::J. We list 
conditions on these numbers a and b. Then we list c; and 11 and finally we 
give an integer expression for c,,. These formulas can be found by writing 
P,,(t) as a hypergeometric function P,,(t)= 2 F1(-n, n+ 1, 1, (1- t)/2) and 
using the transformation formulas for hypergeometric functions ( cf. [ 12, 
pp. 90-91]). We explain the column oft:. Xn is the multiplicative character 
of order 4 [22, p. 122], i.e., Xn(2) =/such that 2 1141 P · 11 = ik mod n. 

For <ff1h we have i 112h = Xrr(2); see [22, p. 64, Ex. 26, 27]. 

For c3a and c3h we have ih=i l/l(p 11 

For C1" and fo7h we have ih=i+ 1i 21 " 11 



tJ 
oc 
Iv 

TABLE Ill 

Conditions 
Curve A/yfd on a and b c 'I en 

61a 3 a=- l mod 4 (-1 )1/4(!'-" ( -1) L4(p - I I k~J;-(n ;k) 
61b 3 fi;4 a=- 1mod4 z.(2J 321•4\f'- I). )'..(2) 

ktO (;)-(2:) .4n-k 
,.., 
d 
V'.> 
-l 

{ 0 if n is odd "' 2p-I :>:J 6,, 0 a= I mod 4 I 
( -J )12n. ( 1 '.inJ >-z 

[1'2n] ( )( J •) 
0 

62 fi a'= l mod 4 i-b ih. gl,-4(p-- I 1 L ll 2n-~k n-k k < -2 ·(-1) 
k 11 >-

k=O z 
[L2n] ( )( Jk) ::r: 

6..1a ~vfJ a+b= l mod 4 (-i)le!p-1) (-4 Pl!2(p-I) k~O ;~ ~k ·6"·(-1/12)' >-
:s:: 
::::: 

[lln)( )(2k) "' s," "/(-3) a+b '= l mod 4 l ry1=3i•2•r-11 k~O ;~ k- .J''-'·(-1)" 

87u 3 (Jll/8 a+b= 1mod4 il.2~ p l J (16 "1'=7)1 2tp I) [1 2n] ( /1 )Ck) k~O 2k -k -42" 2k. (-7)' 

,g?h 3.j(-7) a+b= l mod 4 ( -1 )'lip " (-,_/-7)1 lip- I) 
[l.2n] ( )( 2k) k~O ;~ k. ·(-21)"- 2'-!12' 
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4.2 Examples with the j-Jnvariant in a Quadratic Field 

It can be shown that we have A/vfA=2J(.j5-2) for r,= 

( - 1 + J(=5} )/6 and A/./]= 2 J (-.JS - 2) for r 11 = !( - I + J(=5} ). 
These results imply interesting supercongruences. We define the curves 8~, 
and '85p by 

C5, : y 2 = x(x2 + 4x + 2 - .J5) 
and 

6'1511 : y 2 = x(x2 + 4x + 2 + .J5 ). 
Let p be a prime such that p=rr.ii. with rr.,ii.EZ[-...i=5J. Let 
rr. =a+ b j'=S. It can be verified easily that p = 1, 9 mod 20. Note that 

.j5EZP. Let A,,=P,,(2j(j5-2)) and B,,=P,,(2j(-.j5-2)). It is 
not hard to prove that .. r#(m, r) =A 1121 mp'. 1ifA 1121 mp' 1 _ 11 = C(m, r) + 
D(m, r) JS and !:?#(m, r) = B 1121 mp'- I)/B 1121 ,,.P,_1 _ 1 ) = C(m, r)- D(m, r) .JS, 
for rationals C(m, r) and D(m, r). By the theorem we have the congruences 

and 

A - mp' ~ I - A d 2r 
1/2{mp' - 1) = e, . 7r.. 1/2(mp'- I - I) ffi0 7r. • 

We calculate that B, = ih and e11 = ( -i)h. Hence we have 

(i) If b is even then D(m, r) = 0 mod p2r and C(m, r) = B, ·ii. mod n: 2r. 

(ii) If b is odd then C(m, r) = 0 mod p2r and D(m, r) .J5 = 
r-1 ' t:'flP ·ii mod rr.-r. 

Similar phenomena appear in the cases that r p = !( 1 + J{-13 ), 
10 +j( -37)), !O + 3i) !O +Si), ! J=6, ~ J=!O, ! j=18, ~ .j-=22, 
and ! yCSS. The related supercongruences can be deduced from 
Table IVa and IVb. 

4.3 Tables !Va and !Vb 

Tables IVa and IVb are due to Weber (see [26, pp. 113-114 and 
Table VI]). Nevertheless we give a review of his results because his nota
tion is different from ours. We give, without proof, the connection between 
the two notations in the following lemma: 



TABLE !Va 

d .r;4(y' ( -d)) r A/vfd 

2 64 ~-JH fi 
4 512 

I, 
21 3 -/214 

4 512 3 

6 (4+ 2 ,/2J4 Jt -6)/6 ,/12-fl 
6 (4+2-/2)4 y''(-6)/2 fa+./6 

10 (~(Jlo + j5))12 JT=l6;10 3(Jlo-2-/2J 

10 d(jJO + j5))12 J(-16);2 3(Jlo+2-j2) 

18 H2+fil8 .j("=T8); 18 2(5 - 2 fl). J(l0:76i 
18 4·(2+yi6)8 y'( -18)/2 2(5 +2 j6). J( 10y'6) 

22 64·(1+-/2) 12 j(-22)/22 3Jll·(7+5-fiJ 

22 64 · (1 + -j2J 12 j(-22)/2 3fa·t-7+5-fi) 

58 (5 +}29) 12/64 J(=58);ss 99(70 + 13 }29J · v12 
58 (5 +J29) 12/64 .j(-58)/2 99(-70+ 13 fol ·fi 

TABLE !Vb 

d /24(j(-d)) Ajfl 

64 ~~+ ~i 0 

3 256 -~+~j(-3) 1J3 
3 256 ~+ ~J{-3) j(-3) 

(1+JSJ6 ( -1 + v ( - 5) )/6 2J(j5-2) 

5 (1 +j5)6 ( 1 + JT=5j )/2 2J(- }5-2) 

7 4096 ( - 1 + J ( - 7) )/8 3 fi;s 
7 4096 (1 +j(=7))/2 3 J(-7} 
9 4·(1+j3} 8 ( -1+3i)/10 2 j(l4}3-24) 

9 4·(l+j3) 8 (1+3i)/2 2 J ( -- 14 J3 - 24) 

13 (3 + .jl3)6 (-l+j(-13))/14 6 j(5 J13-18J 

13 (3 +.jU)o ( 1 + JT=T3l )/2 6J(-5Jl3-18) 

15 16. (I+ j5J8 ( -1 + j"=lS)/16 (7+j5J.j3/16 

15 16·(1+j5J8 ( 1 + j"=l5 )/2 (16+7J5J·F 

25 (l +j5)24;2 1s (-1+5i)/26 12(9-4}5)·5 14 

25 (1 + j5)2412 1s (1+5i)/2 -12(9 +4 y'15). (-5) 14 

37 64·(6+,/37)6 ( - 1 + j(=37) )/38 42(,/37-6) J(fo- 6) 

37 64·(6+,/37)6 (1+.j(-37))/2 42(-,/37-6Jj(- fo-6) 

284 
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LEMMA 4.1. Let f(r) and f 1(r) be Weber-functions (cf [26, pp. 
113-114]). With the notation F=f24(r) and F1 =.fi4 (r), we have 

( i) 

(ii) 

(iii) 

(iv) 

_fa ( -~) = J ( 1 + 64/ F 1 ), 

_faGr)=J(l +Fi/64), 

~ (-1-) = j(l -64/F), fa 1-r 

_fa(~(r- t)) =)(l -F/64). 

Proof See [12, p. 96]. 
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