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THE EXIT PROBLEM FOR A STOCHASTIC DYNAMICAL SYSTEM IN A DOMAIN WITH ALMOST 

EVERYWHERE CHARACTERISTIC BOUNDARIES 
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For a dynamical system with a stable equilibrium point the influence of 

small random perturbations is analyzed with singular perturbation tech

niques. The WKB ansatz to the asymptotic solution of the exit problem for 

domains with characteristic boundaries, containing a critical point, is not 

valid, because of the turning-point behavior of the Fokker-Planck equation 

near such a point. In this paper this difficulty is resolved by changing 

the domain for the characteristic exit problem slightly. Explicit computa

tions are carried out for a problem originating from theoretical population 

biology: the 3-dimensional hypercycle. 
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l. INTRODUCTION 

In this paper we analyse the influence of small random perturbations 

acting upon a system having a stable equilibrium Z. With probability l such 

a system will leave the domain of attraction Q of Zin finite time. The 

expected time of first exit is a measure of the stochastic stability of the 

equilibrium state. Applying the method of Matkowsky and Schuss [7] to a class 

of systems originating from population dynamics we meet serious difficulties. 

These are due to the turning point behavior of the stationary Fokker-Planck 

equation near critical points at the boundary an. 
In the present paper we resolve this difficulty by slightly modifying 

the domain n. The asymptotic solution of the modified problem gives a good 

approximation to the expected exit time for the full domain of attraction, 

because it yields more information about paths of exit near critical points 

at an. The result agrees very well with a special case simulated numerically. 

In our asymptotic analysis we deal with dynamical systems that model 

biological populations. Exit at a boundary means extinction of one spec~es. 

The question of which species will most likely disappear is answered as well. 

Although in our study the diffusion matrix may depend upon the densities 

of the interacting species, we do not yet include the more realistic type 

of diffusion matrices with coefficient that are proportional to the square 

root of the density of a species (intrinsic stochasticity), see Nisbet and 

Gurney [9]. In that case the WKB-ansatz for the stationary Fokker-Planck 

equation does not hold at the boundary, as the deterministic flow in normal 

direction as well as the diffusion coefficient vanish. 

In section 2 we give the stochastic differential equation and its cor

responding Fokker-Planck equation; they form the starting point of our anal

ysis. Furthermore, we formulate two singularly perturbed Dirichlet problems 

from which the expected exit time and the most probable exit boundary can be 

derived. In section 3 the stationary Fokker-Planck equation is solved with 

the WKB-method. The equations for th~ first order approximation can be re

formulated as a Hamiltonian system, which is solved by the ray method. In 

section 4 the asymptotic solutions to the Dirichlet problems of section 2 

are given, The material, we present in sections 2, 3 and 4, suilm.1arizes the 

work of Ludwig [6] and Schuss [ll] as far as relevant for our investigations. 
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More about the theory of stochastic processes can also be found in Van Kampen 

[4], Wentzell and Freidlin [II] and Gardiner [3]. 

In sect1ons 5 and 6 we carry out all computations for a special case: 

a 3-dimensional dynamical system. This generalized Volterra-Lotka system, 

a so-called hypercycle, plays an important role in the theory on the early 

stage of evolution formulated by Eigen and Schuster [2]. In section 6 the 

asymptotic results are compared with values obtained from simulations. 

2. FORMULATION OF THE EQUATIONS 

(2. I) 

We consider the dynamical system 

dx. 
1. 

dt = b/x), b.(x) = x. c.(x), 
1. 1. 1. 

1. = 1,2, ..• ,n 

for a domain Q = {xix. > O}, containing a unique asymptotically stable 
1. 

stationary point x. For any starting value x
0 

E Q, the solution approaches 

the point x as t + 00 • 

Introduction of small random perturbations transforms the system into 

a stochastic differential equation of the type 

n 
(2.2) dX. = b.(X)dt + c: I crik(X)dWk, 0 < c: << I ' 1. 1. k=I 

(2.2b) X. (O) = xiO' i = I, ... ,n. 
1. 

where Wk denote n independent Brownian motion processes. The dynamics of 

this system is described by the probability density function p£(t,x,x
0

) 

satisfying the Fokker-Planck equation 

n n 
(2.3) I I 

i=I j=I 

where 

n 
(2.4) cJ. •• = 

1.J l crik crk. • 
k=l J 

2 a a •• p 
1.J c: 

ax.ax. 
1. J 

n 

I 
i=I 

ab .p 
i c: 

ax. 
1. 

We write (2.3) with initial values pc:(O,x,xO) = o(x-xO) as 



(2.5) 
ap 

e: 
Tt = M p • e: e: 
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Our analysis applies to the case that a .. (x) is bounded away from zero inn. 
l.J 

ln order to concentrate on the essentials of the method we take constant 

coefficients: a .. = o .•• In the concluding remarks we discuss extenstions, 
l.J l.J 

which might be meaningful in applications to stochastic population dynamics. 

From probability theory it is known that for any starting value X(O) = x
0

, 

the system reaches the boundary an in finite time. The two central questions 

for this exit problem are the following: which of the boundaries x. = 0 is 
]. 

most probably reached first and, secondly, what is the expected time of first 

exit? In terms of coexistence of species, the first question can be rephrased 

as: which species will most likely become extinct? The expected exit time 

is a measure of stochastic persistence of the ecosystem. 

Let L. be the formal adjoint of the operator M and let u satisfy the e: e: £ 
elliptic equation with boundary values 

(2.6a) 

(2.6b) 

Lu = 0 inn, e: e: 

u = f on an. e: 

Then the first question can be answered by choosing an appropriate function 

f, because 

(2. 7) J qe:(~,x)f(~)dS = ue:(x), 

an 

where q (~,x) is the probability density of leaving n at x E an, given 
£ 

X(O) = x. For this starting value the expected exit time T (x) satisfies 
£ 

the Dynkin equation 

(2.8a) 

(2.8b) 

LT = - I inn, 
£ £ 

T = O on an. 
e: 
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3. THE STATIONARY SOLUTION OF THE FOKKER-PLANCK EQUATION 

For the solution of the Dirichlet problems (2.6) and (2.8) we follow 

a method that requires an asymptotic solution of 

(3. I) M 'l' = 0 
£ £ 

with '¥ (x) = I. 
£ 

In the WKB-ansatz to this problem, it is assumed that this solution takes 

the form 

(3.2) 
2 -Q(x•£)/£ 

'l' (x·£) = w(x;£)e ' · £ , 

Substitution in (3.1) yields after equating the leading order terms 

(3.3) 
aqo I a •• -,,-

•• 1] ox. 
1J 1 

the so-called eikonal equation. The next order terms give a transport equa

tion for the function w(x;£)~ 

(3. 4a) 

(3.4b) 

clQO clw0 I (a .. ) -"-+b.) -+ 0 I a .. 
ij 1] oXj 1 dXi ij 1] 

I 
i 

ab. 
1 

)w = O, ax. 0 
1 

cla .. aqo 
2_2:1. __ + 

clx. ax. 
1 J 

The left-hand side of the eikonal equation can be interpreted as a Hamil

tonian H(x,p) with pi= cJQ0 /axi. The associated system of bicharacteristics 

reads in our case with a .. - 6 .. : 
1J 1J 

dx. 
(3. Sa) 1 b., <ls = p. + 

1 1 

dp. ab. 
(3.5b) 1 I J 

<ls- - p. clx. 
J 

J 
1 

with parameters defined along the characteristics. The projection of the 

bicharacteristics on the s-space are called rays. 

The function Q0(x) satisfies the equation 
,, 
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(3. 6) 

Starting on a small sphere around x we obtain a bundle of rays. A point in 

Q within this bundle is uniquely determined by the values= e and the 
l 

angular variables e
2

, ••• ,en denoting a point on the sphere. It can be shown 

(see [6]), that the Jacobian J of the transformation x + e satisfies 

(3. 7) 

(3.8) 

d 2 
ds (log w0 J) = - divb(x) , 

J = jq .. I, 
l.J 

clx. 
l. 

qij = ae:-. 
J 

Thus, the values of Q0 and w0 can be evaluated by integrating the system 

(3.5) - (3.7) together with the equations for q ..• Starting values for Q0 l.J 

and w
0 

on the small sphere around x follow from substitution of local ex-

pansions for Q0 and w
0 

into the eikonal and transport equation. 

Carrying out this program of numerical integration for a system with 

n = 3, we met the following difficulties, see [5]: 1 

- It is quite laborious to generate the starting values; for n > 3 

other methods such as automatic formula manupulation have to be utilized. 

- A regular grid of starting values on the sphere yields rays that intersect 

the boundary clQ very sparce near singular points of deterministic sytem 

that are located on clQ. However, as Q0 takes its minimal value at such a 

singular point (and values close to this minimum in a neighborhood of it), 

it is almost impossible to produce accurate values for w0 and Q0 at points 

of clQ, which are of fundamental importance for the asymptotic solution of 

the Dirichlet problems (2.6) and (2.8). 

- The shooting method slightly improved the result at the cost of a con-

siderable amount of computing time. 

These difficulties in evaluating numerically values for w0 and Q0 at 

the boundary near a singular point on clQ are due to the fact that the asymp

totic solution (3.2) is not valid at a turning point of the system (3.1). 

Thus, our method for constructing a solution for the full domain Q cannot 

be correct. It is quite well possible that it produces a good asymptotic 

approximation for£ small, although the limit£+ 0 cannot be taken. An , 

example of a reasonably good approximation for a similar problem is given 
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in BOBROVSKY and SCHUSS [I]. MATKOWSKY, SCHUSS and TIER [8] solve the problem 

by introducing an additional boundary layer solution for 1 at an. In this 
. . E 

paper we handle the fundamental difficulty of the turning point behavior 

modifying the domain Q slightly. 

4. ASYMPTOTIC SOLUTION OF THE DIRICHLET PROBLEMS 

For solving asymptotically the Dirichlet problems (1.6) and (2.8) we 

need the divergence theorem stating that any two functions~ and f defined 

on ~2 satisfy the equation 

( 4. I) 

where v denotes the outward normal on an, the conormal derivative is defined 

by 

(4.2) -!- = I a .. v. ~ on . . 1] 1 ox. 
1] J 

For the case b.v ~ 0 the singular perturbation method brings about three 

types of locally valid asymptotic approximations for u and T: 
E E 

- An outer solution, valid away from the boundaries, with 

(4.3) u ~ C , 
E U 

- An ordinary boundary layer solution valied in an E
2-neighborhood of the 

boundary, where b.v < O, then 

(4.4a) 

(4.4b) 

u ~ 
e: 

2 -x /e: 
n ·c + , 

u 

where (xt,xn) denotes a local coordinate system with the (n-1)-dimensional 



vector x tangential and x perpendicular to the boundary. 
t n 

- A paraboliG boundary layer solution valid in an£'- neighborhood of the 

boundary, where b.v = O, then 

(4.4a) 

s(x) 

(4 .4b) T ~c _!_j"I" J 
£ T £ n 

0 

(4 .4c) s (x) = 2 
{ 

la 
nn 

2 2 
-s /2£ d e s 

0 
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The subscript n to a and b denotes that the component in the direction x 
n 

is taken. Substitution of the asymptotic solution'¥ of section 3 and~= u 

in (4.1) yields an expression for the unknown constants Cu and CT. It is 

noted that for CT the volume integral vanishes asymptotically. Working out 

the right hand side one obtains 

2£ I '¥ le a fds + f '¥ b.v f dS 
Irr £ n nn e: 

an an
0 

(4. 5) C f'::1 ' u 

2£ r r '¥ le a ds + '¥ b. v dS 
;; J £ n nn J' £ 

an an0 
where c = b (x ,xt)/x. n n n n 
For the nonhomogeneous Dirichlet problem the computations are slightly more 

complicated, see [II]. It results in 

(4. 6) C ~ {-~ f '¥ ✓ c a dS T v1r £ n nn 
an 

p 

5. AN EXAMPLE: THE HYPERCYCLE 

- ! 2 r '¥ b. v dS 
J £ 

an
0 

}

-1 I '¥ dV e: 

We consider the dynamical system (2.1) for n = 3 with 

(5. I) 
3 

ci(x) = kixi-l - l k.x.x._ 1 , i = I,2,3, k = (I,3,5), 
j=l J J J 

£ 

where the subscripts are taken modulos 3. This generalized Volterra-Lotka 

system has a cyclic structure with each component being "prey" for one other 

component. Eigen and Schuster [2] propose this so-called hypercycle as a 
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canditate for the fundamental process of self-organization as it took place 

in the early stage of evolution. This system has one stable equilibrium 

Z = (zI,z2 ,z3) for xi >O with 

(5 0 2) 
3 

I I 
j=I 

I 
£· 

J 

At the boundary there are unstable equilibrium points X. = (x.I,x. 2,x. 3) with 
]. ]. ]. ]. 

xij = oij. Globally, a solution with starting value x0 = (x0 I,x02 ,x03 ), 

x
0

i > 0 spirals inwards on its way to the equilibrium Z, which is at the in

variant surface Ex.= I. 
]. 

As in nature many processes are intrinsically stochastic rather than 

pure deterministic, it is meaningful to consider the influence of small 

stochastic perturbations. Although the diffusion matrix a .. of (2.2) may 
l.J 

depend upon X, we work out the simplest case with cr .. = o ..• For the domain 
l.J l.J 

n = {xjx. >O} the numerator of (4.6) is evaluated asymptotically: 
i 

2 
3/2 

I 
(2n ) ~ (Z) 

3 
'¥ dv RI £ £ ~ 28 2 

I /2 
~ . £ , 

£ H(Z) 
n 

(5.3) 

where H(Z) denotes the Hessian of Q0 (x) at x = Z. In the denominator only 

the first integral has to be taken. The largest contribution comes from 

points at the boundary where q
0 

takes the smallest values. They form an 

£-neighborhood of the line L connecting XI= (I,O,O) with z2 = (zI,O,z
3
). 

At the boundary the minimal value K of Q0 (x) is found at XI. Along L, Q0 
remains almost at this value until the point z2 is reached. Since on L w0 
is zero at XI and at its maximum near z2 , the maximum of'¥ will be on L 

between z2 and XI and will shift towards XI as £-+0. However, since the slope 

of q
0 

is extremely small, the maximum is still far away from XI for£ values 

of about I0-5
• As mentioned in section 3, it is not to be expected that the 

approximation of'¥£ holds near XI. Let us ignore this fact and carry out 

the integration 

(5.4) 

or 
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(5.5) K = .0038 (±2%), 

where 1 

(5.6) 1(£) = 
6£ f 

5 /23 

Notice that 1(£) tends to zero for £-+0, as Q
0 

is minimal in x
1

, where w
0 -5 

vanishes. Because of the small change in Q
0

, 1
0

(£) is close to 1 for£ Ri 2 , 

see table l. Writing 

(5. 7) 

we obtain.values for DT(£) as given in table l. Comparing this result with 

Monte Carlo simulations, as carried out in the next section, we observe an 

excellent agreement for the exponential term. The multiplying constant DT 

differs by a factor 3. 

£ 1(£) DT(d xl 

2 -4 0.78 14. 1 • 30 

2 
-5 

1.06 10. 3 .38 

2 -6 0.96 I I • 5 .46 

Table l. Values for expected exit times, see (5.7). 

The last column gives the x
1
-coordinate of 

the point on the boundary where 1 has its 
£ 

maximum on L • 

Because of the restriction in the validity of the asymptotic solution 

1£ at x
1

, we now consider the exit problem for a domain n(o)c n. This domain 

is supposed to have the following properties: 

(a) n< 0 ) + n as o + o, 

(b) b.v ~O on an(o), 

(c) the x. axes (i=l ,2,3) ,where 1 has turning point behavior, 
1 £ 

are excluded. 
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Note that in a domain Q(o) with b.v >O somewhere on 3Q(o) the Dirichlet 

problem (2.8) will have internal boundary layers. We choose a boundary with 

b.v ~Osuch that a good estimate is obtained for the region where the method 

for the full domain Q breaks down. The section of 3Q(o)with b.v<O is chosen 

near L somewhere between the point where~ has its largest value and the 
£ 

singular point x
1

. In fig. 1 we sketch the cross-section of Q(o)with the 

plane x
1 

= .5, where locally the boundary with b.v<O is formed by the plane 

x
3 

= .5. Construction of a domain Q(o)with the required properties is al

ways possible. The cross-sections with the planes Exi = c, 0 <c<00 should be 

taken as depicted in fig. 2. For the region Q(o)the second integral in the 

denominator of (4.6) has also to be evaluated to obtain Cio)_ One has to 

integrate in the plane x3 = .5 over an area of order 0(£) in the x 1-direction 

and of order 0(£
2

) in the x2-direction at the nearest point to L. For o 

sufficiently small the first integral in the denominator can be approximated 

by the one over 3Q we evaluated before. Consequently we have 

(5.8) 

where D(o)(£) = 3. I with an accuracy of about 25%. 
T 

Fig. I The cross-section of Q(o) 

with the plane x
1
= .5. 

Fig. 2 Cross-section of Q(o) 

with a plane Ex.= c, c > O. 
i 1 
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6. STOCHASTIC DIFFERENCE EQUATIONS 

Dynamical systems with small random perturbations can be simulated with 

the Monte Carlo method. To perform the simulation, the Wiener process W(t) 

has to be replaced by a pseudo random generator G(t). Euler's method can then 

be applied to the following stochastic difference equations: 

( 6. l) x.(t+h) = x.(t) + hb.(x) + Ev'b G.(t), i = l, ... ,n. 
1 1 1 1 

The time step h gives an error in x of order O(h). Define the new stochastic 

variable Ax.(t), i = l, ... ,n; 
1 

(6.2) Ax. ( t) 
1 

= x.(t+h) - x.(t). 
1 1 

This variable has first and second moments 

(6.3) EAx. (t) = hb.(x) + Ev'b EG.(t) = hb. (x) 
1 1 1 1 

(6.4) 2 2 2 Var Ax. = E hEG. (t) = Eh. 
1 1 

Consequently in unit time the expectation of Axi equals the local vector 

field b(x) while variance in unit time equals E2.For a stepsize h = .03, 

the hypercycle system of section 5 has been simulated in this way. The 

average exit times T. (Z) of 200 runs for different values of E are given 
sim 

in table II. This average exit time is compared with the asymptotic formula 

T (Z) for a domain Q and Q(o)_ It is noted that the expected exit time for 
E 

the modified domain Q(o)gives a better approximation to the exit problem 

of the full domain than the asymptotic approximation for the full domain Q. 

Fitting the data of the simulations with a curve of the form (5.7) we find 

DT = 3.2 and K = .0040, which agrees very well with (5.8). 
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Table II. 

(o) 
£ T (Z) T (Z) T . (Z) 

£ £ sim 

2 
-1 

3. 15 .29 

2 -2 3.29 .79 

2 
-3 

3.47 2.5 

2 
-4 

37.3 8.20 10 

2 
-5 

504. 152 186 

Values from asymptotic expressions and average 

values from simulations for the expected exit time. 

7. CONCLUDING REMARKS 

Asymptotic solution of the exit problem for a domain of attraction n 

with a stationary point of the unperturbed system at its boundary brings 

about the difficulty of finding an appropriate asymptotic solution for the 

stationary Fokker-Planck equation. In [8] this problem was handled by in

troduction of a boundary layer solution. We resolved the difficulty by 

modifying the domain n slightly. From the present result it is concluded 

that the boundary layer is necessary as the asymptotic solution for n 

without the layer yields asymptotic exit times that differ from the ones 

for the modified domain n(o)as o +0. The latter case agrees quite well with 

values obtained from simulations. 

In this paper we investigated dynamical systems originating from theo

retical population biology. In order to study the effect of intrinsic stoc

hastisity one has to include the possibility that the diffusion coefficients 

vanish at the boundary. This introduces a second limitation in the appli

cability of the WKB-ansatz for the stationary Fokker-Planck equation. 

Further investigations should be directed to the solution of this problem. 

Apart form the boundary layer approach in [8], one should also explore the 

possibility of taking a function, ,-that does not necessarily satisfy the 
£ 

Fokker-Planck equation. This function must be chosen such that it is pos-

sible to integrate numerically over the volume n in the divergence theorem. 
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