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Abstract

Planar images of powder particles or sand grains can be interpreted as “figures”, i. e. equivalence
classes of directly congruent compact sets. The paper introduces a concept of set-valued means and
real-valued variances for samples of such figures. In obtaining these results, the images are registered
to have similar locations and orientations. The method is applied to find a mean figure of a sample
of polygonal particles.
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1. INTRODUCTION

Particle characterization is an important problem of particle technology and sedimentol-
ogy. It includes the statistical analysis of samples of planar objects such as projections
of powder particles or sand grains, which can be considered as planar compact sets. The
traditional way to deal with such data is to use motion-invariant shape and size charac-
teristics, which typically are based on area, perimeter and diameter etc., see for example
[14] and [21]. These values are analyzed by the usual methods of multivariate statistics.

This paper suggests an approach from the area of set theory and produces a com-
pact set as the mean of a sample of particles. The problem is difficult since orientation



and location of the particles are arbitrary; directly congruent particles are considered as
identical. Consequently, the existing theories of mean values of random compact sets
are not directly applicable. Our approach is inspired by studies of shapes and landmark
configurations, see [4], [8], [17], [25] and [26]. Landmarks are characteristic points of pla-
nar objects, such as the tips of the nose and the chin, if human profiles are studied. It
is important that all objects in a sample have the same number of landmarks and that
landmarks of the same order have the same meaning. However, for the study of particles
such landmarks are not natural. Perhaps they could be points of extremal curvature or
other interesting points on the boundary, but for a useful application of the landmark
method the number of landmarks per object has to be constant, and this may lead to
difficulties or unnatural restrictions.

For the practically important problem of determining an empirical mean of n figures
the following general idea seems to be natural:

Give the figures particular locations and orientations such that they are in a
certain sense “close together”; then consider the new sample as a sample of
sets and, finally, determine a set-theoretic mean.

This idea appears in [10]. L. Galway dealt with so-called radial averages of star-shaped
sets and carried out a statistical analysis of sand grains in the following manner:

“The first problem is to locate the origin within the kernel of each grain ....
Each grain has been smoothed to have a non-null and full-dimensional kernel,
so the problem reduces to locating the origin within the kernel. The choice
was made to centre each grain at the centroid (= centre of gravity) of the
kernel ...”

“Orientation is more difficult ... random orientation would change the
expected set by introducing a new source of randomness in addition to the
distribution of shapes. However, the only clues to orientation are the grain
profiles themselves. A two stage procedure was followed: after centring all
grains, the samples were broken into subsamples of about fifty. Each sub-
sample was rotated to an angle where the rotated profile had the smallest
Hausdorff distance to the first grain in the subsample. Each subsample was
radially averaged, the radial averages were aligned (by rotating each to have
the minimum Hausdorff distance to the radial average of the first subsample)
and then the subsample averages were radially averaged to produce a sample
radial average. This sample average was then used to realign the whole sample
once more and then a final sample radial average was computed.”

This paper tries to justify this approach. The particles are considered as equivalence
classes of elements of a Hilbert space equipped with a group of transformations. Ele-
mentary methods of Hilbert space theory lead to a characterization of a suitably defined
mean which is the basis of the statistical procedure. A numerical example with polygonal
particles demonstrates its application.



2. RANDOM COMPACT SETS AND THEIR MEANS

This section presents the concepts of mean and variance which we shall use for the shifted
and rotated samples. Furthermore, we give three examples of particular practical interest.
Let K’ be the system of all non-empty compact sets in R*. A random compact set X is
a random element with values in K’ endowed with the Borel o-algebra corresponding to
the Hausdorff metric h given by

WKy, Ky) = inf{r >0: K, C Kj, Ky C K[},

where K™ = K @& b(o,r) denotes the closed r-neighbourhood of K, where & is the
Minkowski addition and b(o,r) is the ball of radius r centred at the origin 0. For more
details see [19] and [21].

The space K' of compact sets is not linear. This makes it difficult to define directly
a mean of a random set. All existing definitions of means of random compact sets use
random functions which characterize the sets. There a random compact set X corresponds
to a random function &x(t), t € M, where M is R? or a subset of a lower-dimensional
Euclidean space, and its mean in a certain space H of functions can be determined. For
defining the mean we use the Fréchet approach ([9], [21, p. 112]). In this approach a mean
of a random element 7 of a metric space H with metric p is an element a of H with

E((p(n, a))Q) — min!

In general, » may have several means. The wvariance of n is the minimum value of
E((p(n,+))?).

We consider here only the case where H is a Hilbert space. Then the Fréchet approach
yields the usual mean. If, in particular, H is the Hilbert space L?(M), then this mean
is equal to the expectation E(éx(t)), t € M, which is again a function. If this non-
random function corresponds to a deterministic set, then this set is naturally called the
expectation of X. If this is not the case, then it is possible either to construct some sets
from E(£x (1)) (e. g. sets given by contour lines) or to use this function itself as a mean.

Let us consider three examples.

Example. (AUMANN EXPECTATION)
Let X be convex and let £x be the support function of X defined as

Ex(t) = sx(t) =sup{{t,u) v € X}, tes?!,

where (t,u) is the scalar product in R? and S is the unit sphere. Then E(sx(-)) is again
a support function, namely that of a deterministic conver set EX, which is called the
Aumann expectation of X, see e. g. [21]. Note that it is possible to define this expectation
also in terms of selections or through the integral of a multivalued function, see [1], [22]
and [21].

The corresponding variance is

/Sd_l E(E(sx(t)) — sx(t))*dt.



It is possible to interpret the Aumann mean as a Bochner integral in the Banach space
of continuous functions on §¢71. The Fréchet approach for the space L2(S%7!) yields the
same result.

Example. (VOROB’EV EXPECTATION)

Let {x(z) = 1x(z) be the indicator function of X. Then E(éx(z)) = px(z) = P(z € X)
is the coverage function. In general, px(x) is not an indicator function. Nevertheless, it
seems to be natural to use the function px(z) as a “mean” of X. A set-theoretic mean is
defined in [23] by

L, = {z € R : px(z) > p}
for p which is determined by the inequality
v(L,) <E(v(X))<wv(L,), forall ¢g>p

for the Lebesgue measure v. The set L;/, has properties of a median, see [21] and [23].

This approach considers indicator functions as elements of L2(R%). Tt implies that
singletons as well as sets of almost surely vanishing Lebesgue measure are considered
as uninteresting, since the corresponding indicator random field 1yx(x) vanishes almost
surely. The corresponding variance is

/Rd E(px(z) — 1x(z))*dz .

Example. (RADIUS-VECTOR MEAN)

Let X be shrinkable with respect to the origin o, i. e. let [0,1)X C X" where X< is
the closed hull of X and X' its interior. (A shrinkable set is also star-shaped.) Let rx
be the radius-vector function defined by

rx(t) =sup{z:zt € X,z >0}, testt.

The means E(rx(¢)) define a function which can be considered as the radius-vector func-
tion of a deterministic shrinkable set, which is called the radius-vector mean of X, see
[21].

In the planar case radius-vector functions are very popular in the engineering litera-
ture. There for shape description Fourier methods are applied, see e. g. [2].

Note that for these examples proper Euclidean motions (rotations for the last example)
correspond to isometric transformations in the corresponding L? spaces.

3. MEANS IN ORBIT SPACES

Let H be a Hilbert space with norm || - ||. Furthermore, let G be a group acting on H
from the left. For each z € H its orbit is the set

Gz = {9z : g € G}.



By z ~ y iff y € Gz an equivalence relation on H is defined. The corresponding factor
space H/G is said to be the orbit space, see [5]. We assume that all g € G are isometric,
i.e |lgr—gy|l = ||z —yl| for all z, y € H and all g € G.

For each x and y in H define

— inf - .
pa(z,y) nf llg1z — g2y

91,92

Clearly, it is
= inf ||gz —y| .
pe(z,y) = inf llgz -y

This function induces a metric on the orbit space H/G, which is also denoted by pg. In
the following the factor space H/G is equipped with the Borel o-algebra corresponding
to this metric.

Statistical problems such as those discussed in the introduction can be formulated in
the orbit space. If H is a space of functions describing compact sets and G is a group
corresponding to proper Euclidean motions in R?, then the space H/(G is the right space
for statistics of particles. However, the orbit space is usually curved, which makes it
difficult to apply routine statistical procedures to samples composed of its elements. The
same problem appears in the statistical theory of shapes, see e. g. [6], [7] and [17].

Now we introduce some necessary notions related to samples in the orbit space.

A finite set of points ¢ = {x1,...,z,} C H is said to be a configuration. For each
configuration define its inertia as

(@)= > -l

1<i<j<n

Definition 1. The configuration x is said to be in optimal position (with respect to G)
if and only if

I(x) = inf Z(gx),

gla---agneG

where gz = {121, ..., gnZn}-

A configuration @ corresponds to a finite subset & of the orbit space H/G. This set
congsists of the equivalence classes generated by the elements of .
Now let us consider means of configurations.

Definition 2. The element a € H is a mean of the configuration « if

T(@,) = jnf T(@.y).

Here Z(x, a) is the inertia of the configuration & U {a} = {1, ..., z,,a}.



This definition (in different terms) is taken from [24] and it is a particular case of the
Fréchet expectation. If we use the fact that

I(:c,y) = I(:B) + Z HI[Z, - y”2 )
i=1
then it is clear that y = a minimizes

énxi I = I(zy) — ()

fory € H.
The following theorem can be proved quite easily using the properties of the norm in
a Hilbert space.

Theorem 1. The mean of the configuration x is unique and is given by

Definition 3. The point b € H is said to be a relative mean of @ (with respect to G)
(notation: b € Tg) if

inf 7(gx,b) —Z(gx) = inf inf T(gz,y)—Z(gx). (3.1)

g1,-,9n€G yEH g1,....9n €G

An equivalent version of (3.1) is

gla"'agneG .

1=

ZPG(fUiab)2 = inf ZHQifUi—b”?
=1 1

n n
_ . . o 2 — ) 2
= o a2 om il = af 2 poleow)

It is clear that T4 consists of all representatives of all equivalence classes belonging to
meang(&), where meang (&) is the set of all Fréchet means of the sample & in H/G with
respect to the metric pg. Therefore, the relative mean corresponds to the mean in the
orbit space H/G. The latter is of interest when analyzing samples in the orbit space.

Remark
(1) If b is a relative mean of @, then also gb is a relative mean for any g € G. Thus, a
relative mean can be considered to be an element of the orbit space.



(2) For any g, (9z), = Tg, where (gz), denotes the relative mean of ga.

The following result is the basis of our method for obtaining means in orbit spaces.

Theorem 2. The configuration x is in optimal position if and only if
1. T € xg;

2. for every i, the point x; and T are in optimal position.

The proof of Theorem 2 is given in the Appendix.

H. Karcher [15] introduced a mean in metric spaces through local infima as in Defini-
tion 2. Following this idea, it is possible to define local variants of all notions introduced
above.

4. CHARACTERIZING CONFIGURATIONS IN OPTIMAL POSITION

Theorem 2 is a basis for determining means and variances of particles. It shows that it is
necessary to bring the members of a sample of compact sets into optimal position. This
is a large optimization problem. In the planar case 3(n — 1) real numbers have to be
determined: the 2(n — 1) components of the shift vectors and n — 1 angles.

Suppose that the orbit Gz is compact for each z. Then, for any x and y € H, there
exists an element g, € G such that

.z —y|| = inf |lgz — y|| .
lg@ =yl = inf llgz -yl

Set g.z = ¢(y, ). This notation is used in the following algorithm which may be used to
transform a configuration « = {x1,...,z,} to its optimal position. It is in the spirit of
Gower’s generalized procrustes algorithm [12].

Algorithm 1.

1. Set y = «.
2. Compute 7.

3. Transform the configuration y to another configuration y' by replacing y; with
y7l/ = QS(y)y’L)’ 7: = 17"'7n'

4. If y' is close to y, then stop. Otherwise set y = y' and go to 2.



Each step of this algorithm reduces the inertia of the configuration. Indeed,

I(y) n(Z(y,y) —Z(y)) > n(Z(y',y) —Z(y'))
> n(Z(y,y) - Z(y')) = Z(y').

The group structure can be exploited to simplify the search for the optimal position.
For this simplification, suppose that each element g € G acts on H as the transformation

gr=x+1 (4.1)

with a corresponding element [ = I(g) of a linear subspace £ of H. The map g — [(g)
defines an isomorphism between G and £, where £ is equipped with the addition opera-
tion. The projection of z € H on L is denoted by pr,z.

Theorem 3. If the group G is defined by (4.1), then the configuration @ = {z1,...,x,}
1s in optimal position if and only if

PrpXy = PrpXo = -+ = PIply . (4.2)

Proof. According to the Lemma in the Appendix,

1

= > lzitli—z =4l =
n" 1 <ici<n

2

171,

=1

1 & 1
$i+li—— r; — — l;

Each summand in the right-hand side is minimal if

1& 1&
Pre .171'——227]' = — l’__ZlJ s 7,=1,,’I’L
nj:l n]':l

This system is solved by
li=b—prpz;, i=1,...,n

for any b € L. Notice that [; =0, 1 <17 < n, if and only if @ is in optimal position. Thus,
b = pr,x;, for each 4, which is equivalent to (4.2). O

Sometimes it is possible to decompose G in such a way that, for each ¢ € G and
r € H,

gr=gr+1, gel, l=Ig) eL, (4.3)



for a subgroup G of G and a linear subspace £ of H. For example, the group of all Eu-
clidean motions in H = R? admits such a representation, where G is the group of rotations
and £ = H. Let £* be the orthogonal complement to L.

Theorem 4. If G in (4.3) consists of linear operators, GL C L and GLY C LY, then «
is in optimal position if and only if (4.2) is valid and the configuration

o
x’ ={x; —prpzy,..., T, — PrpT,}

is in optimal position with respect to G.

Proof. Necessity. If  is in optimal position, then #° is in optimal position with respect
to GG, since the group of transformations

T = §T — gpr,pT, §€C~¥

is a subgroup of G. Furthermore, the group of translations = — x+1, [ € L is a subgroup
of G, whence (4.2) is valid.

Sufficiency. Since x° = z; — pr z; € L+, the conditions of Theorem 4 yield,
1 1 ~ 0 ~ 0
T@) = o Y g - )

2
n 1<i<j<n

1TL
+ﬁ;

2

n

. 1 .
GipreT; + 1 — - > (Giprez; + 1)
j=1

If 2° is in optimal position with respect to G and prez; = b, 1 < ¢ < n, then the inertia
of ge° = {124, ..., ,2°} (the first summand) is minimal for g; =, 1 <i < n.
The second summand is minimal if and only if

li=b—§ipr£$i, i=1,...,n

for any b € L, whence [; = 0. Therefore, « is in optimal position. O

Theorem 5. If the group G admits the decomposition (4.8), conditions of Theorem /
are valid, and G is a compact topological group, then, for each x, there emist elements
91, ---,9n € G such that the configuration gx is in optimal position.

Proof. Theorem 4 gives optimal translations of the elements of &. Therefore, consider the
“centred” configuration ° defined in that theorem. Then notice that the infimum

inf _Z(gx°)

gl’---agneé

is taken over a compact set and the function Z(gz°) is continuous with respect to
g:{glaagn}CG O



Let us now consider four particular applications of our theory.

First, Gower’s and Ziezold’s theory of mean landmark configurations ([11], [24], [26])
has to be mentioned. It was the starting point for our general theory. There pg is a
special case of the procrustes metric (without scale transformations). Gower and Ziezold
studied k-tuples in the complex plane and showed that a configuration of such k-tuples
is in optimal position when all centres of gravity coincide. Thus it suffices to determine
the optimum rotations. Goodall [11] adapted this method for shape analysis of landmark
configurations.

Our second example is the case of conver compact sets, which are described by support

functions. Each n-tuple Ky,..., K, of convex compact sets corresponds uniquely to the
configuration @ = {sg,,...,8k,} in the family of support functions on the unit sphere
SE

The group of proper motions of sets corresponds to the group G acting on L?(s%7?) as
follows
gsk(t) = gsx(t) + (I,t), tes™ lert, (4.4)

where gsk (t) is the support function of the set K obtained as a rotation of K. Thus, the
group G admits the decomposition (4.3) with the space £ of linear functions (¢, u), ¢t €
s for all u € RY.

For the following the Steiner point (see [18, p. 203]) is important. It is defined by

S(K)=é [ tsx(nyr

d—1

for a convex set K. Note that s(K) € K and s({u}) = u.

Theorem 6. The configuration {sk,,--.,Sk,} of support functions considered as ele-
ments of L*(S%1) is in optimal position with respect to the group G acting as in (4.4)
if and only if the configuration {st, ..., Sgo} 15 in optimal position with respect to the

group G, where K¢ =K, —s(K;),i=1,...,n.

Proof. The support functions of all convex sets form a convex subset of L2(s%"!). Note
that the Theorems 2 and 4 are valid also if H is a convex subset of a Hilbert space. To
apply Theorem 4, let us find the projection of sk (-) onto the space £ defined above. Since
this projection belongs to L, it is of the form (¢, u) for some u € R?.

Furthermore,
/ (¢, u){t, v)dt = / s()(t,v)dt,
Sd—l Sd—l

for all v € R?. The latter equation is equivalent to

g / (t,u)tdt,v> - é / sK(t)tdt,v> ,

d—1 d—1



whence u = s({u}) = s(K). Now the statement follows directly from Theorem 4. O

Thus, in studies of optimal positions of convex sets, their Steiner points play the same
role as the centres of gravity (centroids) for configurations of points.

The third example is the case of sets which are shrinkable with respect to a given
reference point. (In many engineering applications the centre of gravity is chosen without
long discussion as that reference point, and the particles have a shape such that they are
shrinkable with respect to it.) In this case the optimum location is given a priori, and
it is natural to assume that the sets are centred at the origin. Then it is only necessary
to find the optimum rotations around o. Rotations clearly correspond to shifts of the
radius-vector functions.

The fourth example is the case of general compact sets, which are described by their
indicator functions. Here we can offer only a heuristic solution, which is given in section
5. A problem is here that there is not a unique characteristic point playing a role simi-
lar to that of the centre of gravity in Ziezold’s case or of the Steiner point in the case of
support functions. The following example shows that the centre of gravity is not this point.

Ezample. Let K; be the square with vertex points P, = (2,1), P, = (2,—1), P = (0,1)
and P, = (0, —1). Furthermore let K5 be the triangle with vertices P;, P, and the origin.
We consider the corresponding indicator functions as elements of L?(R?). The squared
norm of their difference is the Lebesgue measure of the symmetric difference between the
corresponding sets. The minimum of the Lebesgue measure of the symmetric difference of
compact sets congruent to K; and K is obtained at the sets K7 and K, with the vertices
given above. But these two sets do not have the same centre of gravity. If K is shifted
in horizontal direction so that the centre of gravity of the shifted set coincides with that
of K1, then the Lebesgue measure of the symmetric difference of the sets increases. Note
that the same value of the Lebesgue measure of the symmetric difference is also obtained
for three other pairs of sets congruent to K; and K.

5. AN EXAMPLE

Figure 1 shows a sample Kj, ..., Kigo of planar (nearly polygonal) particles. These com-
pact sets are profiles resulting from a planar section of a three-dimensional ceramic struc-
ture which can be considered a random packing of long and thin polyhedra, see [13]. In
the original microscopic image these sets had random locations and orientations, which
are without interest for the problem considered here. Therefore, they are considered as
representatives of compact figures. Their forms are almost convex, so non-convex sets
were replaced by their convex hulls.

We describe the profiles by their indicator functions and use the following heuristic
algorithm, which is similar to the Gower algorithm, see [12] and [26].
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Figure 1: A sample of 100 compact sets.

Algorithm 3.
1. Determine the centroids (centres of gravity) ¢; of the K; and put K¢ = K; — ¢,
1=1,...,n.
2. Choose as a starting function f©(-) = 1x.(-). Put K = Ke,i=1,...,n.

3. Rotate Ki(j_l) to obtain sets Kfj) such that

, 2
/R2 (1&(1‘)(53) - f(]_l)($)> dz
becomes a minimum; i =1,2,...,n.
4. Set fU(-) =1 ; Lo (o)

Stop the calculations, if fU) is “close enough” to fU~Y in the L?(R?) norm. Then
write 6, K¢ = KZ-(]). Otherwise repeat step 3.

The resulting sets _Ki(j) are obtained by rotations from the sets K?, i = 1,2,...,n.
Therefore we write K = §;K?.



Figure 2: Two starting figures for which Algorithm 3 was applied.

a)

b)

The final function f¥) in the algorithm is taken as an approximation of the relative
mean of the family of indicator functions. For confirming the result, the algorithm can
be started again with a different starting function f©.

The procedure was used for two different starting functions, namely the indicator
functions corresponding to the two figures shown in Figure 2.

The resulting means of indicator functions of rotated samples are shown in Figure 3
as level sets. Since the difference between these two functions is small, one may conclude
that we are close to the theoretical result. The level sets of the coverage function clearly
reflect the sizes of the profiles, even the size variability. Furthermore, various shape
properties are visible: few of the profiles are very elongated, the smaller profiles tend
to be more circular, and the majority of them are moderately elongated figures. These
figures show important aspects of the mean behaviour of the profiles. Figure 3 also shows
the corresponding Vorob’ev mean. For this example the set-theoretic median practically
coincides with the Vorob’ev mean. It has an approximate elliptical shape.

We also analysed the same data by the support function approach. We found that
the Steiner points of the sets K are close to the centres of gravity. Therefore we used
the sets 0; K¢ as above i. e. we did not re-determine the optimal rotations corresponding
to the support function approach. An approximation of the mean is then the Minkowski
average

K=n""(6K & & 6,K°) . (5.1)

Figure 4 shows the Minkowski average of rotated sets 6; K? corresponding to Figure
3a. Note that the average on Figure 4 does not have the elliptical shape inherent to the
contour lines of the mean indicator function. In contrast, it looks like the parallel set of
a rectangle (rectangle @ disk).



Figure 3: The resulting means of indicator functions transformed to optimal positions.
The Vorob’ev mean is shown in black.

Figure 4: The Aumann expectation computed for the transformed sample.

6. DISCUSSION

This paper presents first steps towards methods of exploratory data analysis for samples
of particles or other irregular geometrical objects. It is shown how means, medians and
variances can be determined. The indicator function mean produced by algorithm 3 may
serve as a kind of empirical distribution function, since it shows important aspects of
particle shape and size variability.



There are close relations and similarities to the problem of determining means of
curves or functions [16] and [20]. However, instead of transformations which correspond
to Euclidean motions there operations are used which synchronize the curves, for example,
by dynamic time warping; see also [3].

An alternative approach to means of particles is using pseudo-landmarks and pro-
crustes methods. A fixed large number of landmarks can be placed around each particle’s
outline. Then generalized procrustes analysis is carried out but with an additional step:
permutation of the marks to best match each configuration to the current mean. Of
course, since the theoretical approaches differ, also different results must be expected for
the landmark and figure approach.

The problem of determining means suffers from possible non-uniqueness. The example
in section 4 shows that for two particles several optimal positions are possible. This may
lead to different means depending on the order in which the particles are included in the
calculations. To avoid this danger the authors suggest to start the iteration algorithms
with different starting figures. They hope that for real samples of particles, which are not
mathematically symmetric figures, the non-uniqueness problem will be not so important.
By the way, it cannot be avoided by using the landmark approach.

In this paper both size and shape are considered, size is not outperformed by scaling.
Similarly as in the landmark case scaling is possible also for particles, but this seems not
to make sense for the type of statistical analysis of particles the authors have in mind.
However, scaling may lead to more robust results.

APPENDIX: PROOF OF THEOREM 2

For the proof of Theorem 2 we use the following

Lemma. It is

Proof. The Steiner theorem for moments of inertia implies that, for each 4,
n n
2 =112 112
> M —zill* =" Nz —2l* + nllz; — z*.
j=1 j=1

Summation for 1 <7 < n yields

n n

n n
22 Mwi—zl? =0 llz =zl + 03 e — 7
1 =1

i=1 j=1 =

Thus, 2Z(x) = 2n(Z(x,T) — Z(x)), and the Lemma is proved. O



Proof of Theorem 2. The proof of Theorem 2 is inspired by [24] and [26] result for point
configurations in the complex finite-dimensional space.
Necessity. Let & be in optimal position. Then by the Lemma
n(Z(x,7) —Z(x)) =Z(x) = inf EGl’(gac) :
By the Lemma, the last term is equal to
ninf_ (Tlge,g7) ~ T(ge)

g1,---,9n

= ninf inf (Z(gx,y) —Z(gx)).

yEH g1,---,gn€G

I(x,T) —Z(x) = inf inf (Z(gz,y)—Z(gx))

Yy€EH g1,...,9n€G

< inf (Z(gx,Z) —Z(gx)).

gl,---ygnEG
Furthermore,
I(2,7)-I(@) > inf_(I(ge,7) - I(gx))
91,---,gn€G

since the left hand is obtained for unit group elements. Consequently,
I(x,7) - I(x) = inf_ (I(gz,7)—TI(gz)),

g15--59n

and
T ETq.
Assume now that there exists an element g € G and an index ¢ such that
lgz: — | < |z — =

Then, for &' = {z1,...,z;-1, 9, Tiy1,. .., Tn} and z, = gz; we get
n n
I(z' 2') = I(2') = Y |} —2'|> < Y |laf -7
j=1 j=1

n
= > llz; —z|* + ||z} —z|* — ||z — 7|
j=1

< I(x,T) — Z(x).

The Lemma yields Z(x') < Z(x), contrary to the assumption that @ is in optimal position.

Sufficiency. Suppose that the conditions of Theorem 2 are valid. The Lemma and the
condition T € ZTg yield

inf  Z(gxe) = n inf inf(Z(gx,y) —Z(gx))

g1,.-,9n€G g1,--,9n€G yEH
= n inf (Z(gx,T)—Z(gx)).
g1,-,9n€G

Since each z; and T are in optimal position, the last term is equal to n(Z(x,Z) — Z(x)).
Again by the Lemma, it is equal to Z(x). O
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