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1. Introduction. In [Ta it was shown that if E is a metfic'topological

vector space (MIVS) which is homeomorphic (2) to its own countable in-
finite product Eé,_and M is any E-manifold (i.e. M is a paracompact mani-
fold modeled on E), then M = M x E. Accordingly we define a subset K of
M to have E-deficiency (or to be E-deficient) provided that K is closed

and there exists a homeomorphism h: M = M x E such that h(K)CM x {0}.
Such sets have proved to be important to the point-set topology of
infinite dimensional manifolds because of results of the following two

Types.
(1) Negligibility theorem. If 22 is separable infinite-dimensional

Hilbert space, M is an le-manifold, and KCM is a countable union of 22-
deficient sets, then it was shown in [i]'that M = M\ K. More general
results have been established in [8].

(2) Homeomorphism extension theorems. If M is as in (1), K, and K, are

2
22-deficient sets in M, and h: K1 - K2 is a homeomorphism which is ho-

motopic to idK, (the identity on K1), then h can be extended to a mani-
fold homeomorpﬂism Bﬂ. For K1 a.nd.K2 additionally assumed to be ANR's,
a similar result has been established for more general linear spaces
than 22 [Tﬂ.

In applications it is not easy to recognize that some sets have
E-deficiency, thus it becomes desirable to have a coordinate-free topo-
 logical characterization of E-deficiency in E-manifolds M. Such a
characterization was obtained in [3] for M = 22 and in [j] it was gen-
eralized to M any %°-manifold. It states (using a notion introduced by’
‘nderson in [3]) that KCM (where M is an 22-manifold) is ¢°-definient
i2f X has Property Z (or is a Z-set), where a set F in a space X has
Property Z iff F is closed and for each non-null, homotopically trivial
open set U in X, U\ F is non-null and homotopically trivial. Among
other things this enables us to recognize collared, closed sub-mani-

folds ' of M (i.e. bounderies of M) as being'22—deficient and any



closed subset of M which is a countable union of lz-deficient sets 1is
itself ze—deficient. .
The main result of this paper is the following, which generalizes

this characterization of E-deficiency to Fréchet manifolds.

Theorem 1. Let E = Ewlhg_g Fréchet space, M~§E_§£_E—manifold, and let

KcM. Then K has E-deficiency iff K has Property Z.

We remark that there are no known examples of infinite-dimensional
Fréchet spaces E which do not satisfy the condition E z g,
Concerning techniques it should be remarked that the proof of the
corresponding result for M = 22 [3] used the topology of the Hilbert
cube I and the fact that 22 can be compactified by I (since 22 is
homeomorphic to the countable pfoduct of lines [ﬁ]). The proof we give
for Theorem 1 also uses the fact that 22 can be compactified by 1.

Using Theorem 1 above and Theorem 1 of [8] we easily obtain the

following result.

Corollary. Let M be as in Theorem 1 and let KCM be a countable union

of Z-sets. Then K is strongly negligible in M, i.e. there exists a

homeomorphism h: M > M \K which may be chosen arbitrarily close to
id,. ‘
(The notion of "arbitrarily close" will be made precise in the next
section). We remark that by using different techniques David W.
Henderson has recently shown (unpublished) that single Z-sets are
strongly negligible in E-manifolds, where E =25 is a locally convex
(LC) MTVS.

In Theorem 2 we estaﬁlish a homeomorphism extension theorem which
generalizes the extension theorem of [6] (which was proved for 22
manifolds). In Theorem 2' below we give & simplified version of Theorem

2. The more general statement appears in Section 5.

Theorem 2'. Let E 2 E” EE_QILCMTVS and let M be an E-manifold. If K, and

K, are E-deficient subsets of M and h: K, > K2 is a homeomorphism which

- is homotopic to idK » then'h can be extended to a manifold homebmorphism.
1



2, Preliminaries. In this paper all spaces will be assumed to be metric

and all homeomorphisms will be assumed to be onto.

Let X and Y be spaces and let Wwbe an open cover of Y. Then func-
tions f,g: X - Y are said to be U-close provided that for each xeX
there exists a UeWsuch that f(x), g(x)eU. A function F: X x I + Y (where
I=[0,1]) is said to be limited by Wprovided that for each xeX
there exists a U¢Wsuch that F({x} x I)cU.

If X is a space and FcX is closed, then by Lemma 3 of [5] there ex-
ists an open cover Wof X \F such that if h: X \'F > X \ F is any ho-
meomorphism which is W-close to idX\F’ then h can be extended to a ho-
meomorphism B: X - X which satisfies h | F = id‘F' Such a cover of
X \F will be called normal (with respect to F).

Let X be a space and let {f:.L}oi":1 be & collection of homeomorphisms
of X onto itself. Then for each x¢X we let f(x) = Z‘Lim fio...of1(x), if

this limit exists. If f(x) exists, for all xeX, thén we write f = LH;.; f.,

171
and call it the infinite left product of {fi}:=1' We now state a

convergence criterion for infinite left products. This is essentially

a reformulation of West's version [18] of Theorem 4.2 of [4].

Convergence Procedure. Let X be a (topologically) complete space and let

Wbe an open cover of X. Then to each homeomorphism f: X + X and each

integer i > O we can assign an open cover u,i(f) of X such that if

{f’i}‘:;:1 is any collection of homeomorphisms of X onto itself for which

. . . o
£ isW (fiee..0f ) ~ close to idy, for all i > 0, then f = Ln,_, f,

gives a homeomorphism of X onto itself which is W-close to id.x.

There is one other notion of deficiency which will bé useful in the
sequel. Let X be a space which is homeomorphic to X x 2.2 and let KcX.
Then K has lz—deficiency provided that K is closed and there exists a
homeomorphism h: X =+ X x 22 which satisfies h(K)cX x {0}.

We will represent the Hilbert cube I" as II;"=
the closed interval [-1,7]. The set H:=

I., where each I. is
1 71 1

: Iz, vhere I: = (-1,1), will be

denoted by s. In [2] it is shown that s x I” = s and we have already re-

marked that s = 22.



3. The equivalance of E- and 22—deficiency. The main result of this sec-

tion is Theorem 3.1, where we show that in certain spaces E-deficiency
and 22—deficiency are equivalent concepts. A similar proposition was
established in [9] , where E was additionally assumed to be a Banach
space. We remark that the proof we give of Theorem 3.1 below follows in
broad outline the proof of the corresponding result of [9], with appro-
priate modifications being made to overcome the lack of a norm. We will
first need a technical result concerning open cones. (By the open cone
over a space X (denoted by C(X)) we mean the space {vIU(X x (0,1)),
vhich is topologized by choosing as & basis the usual topology on X x
(0,1) together with all sets of the form {vI(X x.(O,t)), for all t¢
(0,1). We call v the verteﬁ‘of the cone). We omit the proof of the

lemms,, since it is similar to Theorem 5.3 of [rﬂ.

Lemma 3.1. Let E = EY Dbe a MIVS. Then there exists a homeomorphism h:

E x [0,1) x E > C(E) x E which satisfies the following properties.
(1) h(E x {t} x E) = E x {t} x E, for all te(0,1), '
(2) n(E x {0} x E)

{v} x E, where v is the vertex of C(E).

Theorem 3.1. Let E = E” be a MIVS, M be an E-manifold, and let K(M. -

Then K has E-deficiency iff K has Re-deficiency.

Proof. Assume K has E-deficiency and let f: M > M x E x E be a homeo-
morphism such that £(K)CM x E x {0}. By the Bartle-Graves-Michael
Theorem [15] we nave E = (~1,1) x G, for some G. Thus

EZEYT (-1,1)Y x ¥ 2 (=1,1)¥ x (~1,1)* x ¢¥ ¥ (=1,1)* x E.
Since (~1,1)% = s % 2° ve have ES E x 22, Let g: E + E x 22 be & ho-
meomorphism which satisfies g(0) = (0,0) and let T:M+MxEXEx 2
be defined by ?(x)qﬁ (i@ x g) of (x), where id x g: M X E x E > M x E x

2

E x 22 is defined by (id x g)(x,y,z) = (x,y,g(z)). Then ? is a homeo-
morphism and %(K)CM x E x E x {0}, This implies that K has 22—deficiency.
On the other hand assume that K has ﬁz—deficiency. Thus we have a
homeomorphism £: M -+ M x 22 such that f(K)M x {0}. It is easy to mo-
dify f to get a homeomorphism T:M+MxE x [b,1) x E which satisfies:



¥ (K)CM x E x {0} x E. (Use the fact that 2° 2 22 x [0,1) [13]). Let h:

E x [0,1) x E > C(E) x E be the homeomorphism described in Lemma 3.1.
Then idy x h: M x E x [0,1) x E> M x C(E) x E is a homeomorphism and
(ldM x h)of (K)M x {v} x E where v is the vertex of C(E).

In the proof of Lemma 2 of []é] there is a proof that E x &
C(E x 8,), wvhere 5, = {xet® | 11x]| = 1}. Since s, Z ¢° [13] we have
E = C(E). Thus we can modify (idM x h)ef to get a homeomorphism g:

M + M x E which satisfies g(K)cM x {0}. [ ]

L.Deforming a manifold to an 22_ gericient subset. The main result of

2

n

this section is Theorem 4.2, which shows how to deform certain manifolds
onto subsets which have 22~deficiency. The following lemma is needed for

its proof.

Lemma 4.1. Let X be a space and let K be & closed subset of X x I~ such

that K ¢ X x s. Then there exists a homeomorphism f: X X I > X x I
which satisfies f(K)cX x H =1 [-3,1].

Proof. For each integer i > 0 and each x¢X let

rglb (6, | (x,8)eK), if K0({x} x I7) # ¢
fi(x) =
1, if Kn({x} xI) =

where we adopt the convention that if teIw, then ti is the ith coordinate
of t. It follows routinely that each £ X~ (-1,1] is lower semi-
continuous. Thus by Dowker's theorem ([ﬁd] page 170) there is a con-
tinuous function g;: X = (=1,1) which satisfies -1 < g; (x) < £ (x), for

all xéX. Slmllarly there is a continudus function g X > (=1 1) which

satisfies -1 < gi(x) <_gi(x) <land T, om w(Kn({x} x I ))C(g (x),g (x))
for all x¢X, where Ti:Im - Ii_and Mo X x I > I are projections.
For each pair a,b,of real numbers satisfying =-1<a<b<1, there exists a

unique piecewise linear homeomorphism ha,b : [—1,1] > E—1,1:| which satis-
fies h (a) = -1, (b) =3, and h ab is linear an each of the inter-

va.ls[1a] [a‘lﬂ,andEbﬂ ®

Then define £: X x I » X x I by £(x,(t;)) = (x,(hg.(x) g1(x)('ci))).,.
17000



for all (x,(ti)) ¢ X x I . Clearly © fulfills our requirements. U

Theorem 4.1. Let E % E” be a MIVS, M be sn E-manifold, KCM be 2°-
deficient, and let WLbe an open cover of M. Then there exists a homotopy -
H: M X I > M such that Ho'= id, H |K = id, for &1l t¢I, H, : M > M is

an embedding such that H1(M) is 2"-deficient, and H is limited by U.

Proof. Since I % s = s we can use an argument lik.e that used in Lemma 6
of [’{-_] to prove that a closed set FCM has 22—deficiency iff there exists
& homeomorphism of M onto M X I taking F into M x {0}. Thus let f:M -
M x I be a homeomorphism such that £(K)CM x {0},

Using techniques like those used in Lemma 4.1 we can clearly construct
& homotopy G : M x I x L+ M x I such that Go = id, Gyt Mox T M xI
is a closed embedding such that G, (M I7)eM x s, G [M x {0} = ia,
for all t,and G is limited by £(W), the cover of M x I - induced by £ and
‘W, Then define H : M x I - M by Ht(x) = f"]oGtof(x). All we have to do
- is show that H1(M) has £2~def‘iciencyg

Note that foH1(M) is a closed subset of M x I which satisfies
faH1(M)CM x 5., Using Lemma 4.1 there exists a homeomorphism g: M x I -
M x I such thet gofol (MM x T,_. [-3,4]. From [2] it follows that there
exists a homeomorphism h: I° + I x I such that h(IIOi:_TE—%,%] )eI” x {0}. A
" Let h: M x I+ Mx I x I be defined by h(x,y) = (x,h(y)). Then
‘gogofaHT(M)CM x Ioo x{0}. By our comments sbove this proves that H,(M)
has 22—deficiency'. ]



5. A proof of Theorem 2. The main result of this section is Theorem 2,

where we generalize the homecmorphism extension theorem of [6]. The proof
we give follows in broad outline the proof given in [6], but there are

a few technicalities which have to be overcome in order to make the
proof work. We will need the following mapping replacement theorem which
resembles Theorem 3.1 of [6] n

Lemma 5.1, Let ES E° be a LCMIVS, M be an E-manifold, X be a space which

— —— S ———————————— — —

can be embedded as a closed subset of E, ACX be closed, and let f:X - M

be a continuous function such that f|A is a homeomorphism of A onto an

E-deficient subset of M. If \Lis any open cover of M, then there exists

an embedding g: X ~ M such that g(X) is E-deficient, gl|A = £|a, and g
is U-close to f.

Proof. Using Theorem 4.1 and the fact that E is an AR [16], & proof
can be given which is similar to Theorem 3.1 of [6]. [ ]

We will also need the following generalization of Theorem 2 of [7].

Lemme 5.2. Let E = E” be a MIVS, M be & connected E-manifold, and let .

KCM be en E-deficient set. Then M can be embedded as an open subset of

E so that K is taken onto. an E-deficient (and therefore closed) subset

of E.

Proof. The proof proceeds routinely as in Theorem 2 of [7] provided we
note that (1) M can be embedded as an open subset of E, and (2) there
exists a homotopy H: E x I + E such that H, = idE’ Ht is a homeomorphism

(onto), for 0<t<1, and H_.: E >~ E \ {0} is a homeomorphism. The first

i
assertion is just Theorem 4 of [12] and the second assertion follows

since a corresponding property is true for 51.2 [h] end also since E =

E x 22 (as was noted in Theorem 3.1). D

Theorem 2. Let E ¥ EY be & ICMIVS, M be an E-manifold, and let K.s K

2
21

P K> K, is a homeomorphism. If W is an

 be E-deficient subsets of M for which there exists a homotopy H: K
-+ M such that H, = 1d.K and H1

open cover of M such that H is limited by, then there exists an ambient




invertible isotopy G : M x I - M which satisfies G, = idM, G1|K1 =H,,
end G is limited by st3(W) (the 3¢ star of the cover W).

(An isotopy G : X x I ~ X is said to be an ambient invertible isotopy

provided that each level is an onto homeomorphism and G X xI~ X,
defined by G:Yx) = G;1(x), is continuous).

Proof. First note that a homeomorphism extension theorem for E (without
the limitation by covers) is easy to establish for E-deficient subsets
of E. One merely uses the technique of Klee [14], as used in [?]. Thus
in the case that K1(\K2 = ¢ we can use Lemma 5.1 and the techniques of
[6] to obtain our desired ambient invertible isotopy.

On the other hand assume that K1nK2 # ¢. It follows routinely that
K1 and K2 are Z-sets, and therefore KTUK2 is a Z-set. Using an unpub-
lished result of David W. Henderson there exists, for each open cover
W of M, a homotopy F : M X I - M such that F, = idM,

Cl(F1(M))ﬂ(K+JK2) = ¢(where C1l denotes closure), and F is limited by W'.
Thus by Lemma 5.1 and an appropriate choice of W', there exists an embed-
ding o K2 x I = M*éuch that F:-= idKz, F::(K2 x I) is an E-deficient |
set in M for which‘FT(Kg)ﬁ(K{JK2) =¢, aid F is limited by W.

Using the above remarks there exists an ambient invertible isotopy
G*: M xI-+Msuch that G, = id GTIKz =¥, and G is limited byU.
Note that K, and F(K,) are disjoint E-deficient subsets of M and FioH,
K, ~ F?¥K2) is a homeomorphism which is homotopic to idK » with a homo-
topy that is limited by St(W). We can once more use the dbove techniques
to find an ambient . invertible isotopy H :MxI+M such that Ht = idM,

> :

H?1K1 = F1oH1, and H® is limited by Sé%UJ. Then the obvious composition
¢ = (¢)"'H' fulfills our requirements. [ |



6. Proof of Theorem 1., The step from E-deficiency to Property Z is

straightfoward and resembles Theorem 9.1 of Eﬂ. For the other implication
let KcM have Property 2 and let h : M > M x Im'be a homeomorphism. Using
the representation for I” and s given in Section 2 let B(I) = I \ s.

It is shown in Eﬂ that there is a homeomorphism of I onto itself which

(o]
U c_, where each
n=1 "n

Cn is compact. Thus using the above comment and the techniques of Theorem ,’
4.1 it follows that each M X Cn is E-deficient in M x I .

sends B(I ) into s. We can obviously write B(I )

We will describe- a sequence {gi}:;1 of homeomorphisms of M x I” onto
(-2 -]
~ itself whose left product g = LHi=1gi gives a homeomorphism of M x I
onto itself which satisfies goh(K)XM x s. Then we can apply the tech-
niques of Theorem L.1 to conclude that goh(K) is E-deficient.
Since h(K) is a Z-set in M X I we can use the technique of the proof
of Theorem 2 to get a homeomorphism g, ¢ M x I°° -+ M x I°° such that
oh(K)n(M xC, ) = ¢. Now invoking the Convergence Procedure of Section
2 we need to produca a homeomorphism 8, ¢ M x I°° + M x I which is
\l-close to 1dM I , Tor any prechosen open cover Wof M x I’, and
g2°g1oh(K)ﬂ(M x (01\102)) = ¢. Once more using the fact that M x (c1u02)
is E~deficient and g1oh(K) is & Z-set, we can use the techniques of
Theorem 2 to obtain the desired &ye
Thus using an inductive procedure we can choose homeomorphisms g;
MxI +MxI sothat g, 50008, h(K)Q(M x V. _, n)) ¢ and g =
LHl 18: gives a homeomorphlsm of M x I onto itself. Since we are sable
to select each 8; arbitrarily close to 1deIw we can choose {g } 80
that goh(K)N(M x B(I )) = ¢, thus gah(K)CM x § and we are d.one. ['_']
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