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Introduction. 

The following note is not really a research or progress report as even 

a casual glance at the material will clearly indicate. It might proper­

ly be termed 'an observation' since about the only thing which is 

accomplished is to make a few definitions, observe a few items and 

raise some questions. From the observations which have been made, 

however, it seems that the notions of 'valuation-manifold' and 

'algebraically defined valuation-manifold' could perhaps be termed 

'useful' in that they include a large class of mathematical objects 

under one heading and that the objects in this class seem to have 

enough in common to eventually allow for a homogeneous treatment both 

along topological and algebraic lines. Just how much of the material 

included is already known in one form or another I must confess I don't 

know since the various techniques on which one apparently can draw if 

desired are not all or not at all, whichever the case may be, common 

to my native territory of investigation. If thus offer no bibliography 

since as of yet the only bibliography I have is what I've read and 

that one can find on most anybody's shelf. 
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Valuation spaces. 

Suppose G is an arbitrary ordered abelian group and suppose Xis an 

arbitrary topological space, we define a valuation Von X as a mapping: 

V: x • G such that V is an open map, i.e., if U is an open set in X, 

then V(U) is an open set in G, where G is assumed to have the valuation 

topology. 

We refine the ordinary topology on X by taking as open sets the sets 

-1 * * V (U ), where U is open in G. Then the requirement that V be open 

implies that the new topolagy is at least as fine as the original 

topology. We shall refer to this topology on X as the V-topology. 

If X possesses a valuation V: X ~ G such that V(X) is a homeomorphic 

image of X with the V-topology, then we shall call X a 'valuation space'. 

Thus e.g. if X = E2 with the ordinary metric topology and if G is the 

ordered abelian group of all plane vectors (x,y), where (x1 ,Y1 ) ~ (x2 ,y2 ) 

if and only if y1 ~ y2 or y1 

mapping becomes a valuation 
2 

I(E) = G is a homeomorphic 

= y~ and x 1 ~ 

I: E - G such 
2 

image of E. 

x 2 , then the identity 

that under the I-topology 

We shall call a valuation V such that X becomes a 'valuation space' in 

the V-topology a regular valuation on X. 

If Vis a regular valuation V: X • G, then the rank of the smallest 

isolated subgroup r of G such that V(X)C r will be called the rank of 

X with respect to the regular valuation V, denoted by rankV(X). 

If X possesses a regular valuation V such that rank (X) < co then we' 11 
V ' 

say X has finite rank and we define the rank of X as the minimum of the 

inte~rs rankV(X), where V ranges over all regular valuations on X such 

that ra~(X) < 00. 

It is clear that rank(X) is a topological invariant, i.e., if spaces X 

and Y are homeomorphic and if Xis a valuation space with rank(X) = n, 

then Y is a valuation space and rank(Y) = n. 
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Notice that rank and dimension are not alwaysthe same. Thus if in E' we 

consider the integers Z, then Z has dimension O in E', however, any 

regular valuation V: Z ._ G always has the property that ra~(Z) ~ 1 

and thus since I: Z-+- Z is a rank 1 valuation it follows that rank(Z)= 1. 

Proposition 1: 

If X and Y are valuation spaces, then Xx Y is a valuation space. 

Furthermore if X and Y have finite rank then Xx Y has finite rank and 

rank (X x Y) ~ rank (X) + rank (Y) . 

Proof: 

Suppose v1 : x- G1 , v2 : X_.. G2 are regular valuations on X and Y 

respectively. Then construct G = G1 ~ G2 an ordered abelian group with 

<f1•"l1) + C/2•~2) = <f1+i'2:tl1+1l2) and Cf1•"l1) ~ ( 2' 2) if and only if 

~l t, -wi 2 or ~l = 'Yt 2 and ll ~ / 2 . Then V: X >< y-,. G defined by 

V(x,y) = (V1 (x),V2 (y)) is a regular valuation and furthermore if G1 and 

G2 are chosen such that rank (G1) = rank(X), rank(G2) = rank(Y), then 

rank(X x Y) .$ ran¾(X )If. Y) = rank(G) = rank(G1 ) + rank(G2 ) = 

= rank(X) + rank(Y). 

Example: 

Suppose X = Y = Z, then rank(X.). = rank(Y) = 1 and rank(X XY) -' 2. 

Let V: Z l< Z • Z be defined by 
n n m - nJ!l V(n,m) = 2 3m for n,m ~ 0, V(-n,m) = 5 3 , V(n,-m) = 2 7 and 

V(-n,-m) = 5ni° , then V is a reg.ular valuation and rank(Z >C. Z) ~ 1 < 2. 

If Xis a 'valuation space' of finite rank, then for any regular 

valuation V: x--G such that rankv(X) = rank(X) = rank G We may have 
* * subgroups G of G such that rank(G) = rank(G) and regular valuations 

* * V:X-+G. 
* We' 11 say that G is a character-group for X if G c G and V: X - G, 

* * * V : X - G implies there is a mapping 6': G-+ G such that tr is an order 

preserving linear homeomorphism. 
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Example: 

The'valuation spaces' Zand Z l( Z have a character-group Z since any 

non-zero ordered abelian subgroup of Z is an image of Z under an 

order preserving linear homeomorphism. 

Question I: 

Are character-groups 'unique', i.e., if G1 and G2 are character­

groups for X then is there an order preserving linear homeomorphism 

lf':Gl-+G2? 

Question II: 

Suppose V: X -+G is a regular valuation such that rankv(X) = rank(X) = 

rank(G) and suppose th.at [V(X)J is the group generated by V(X), 

is [V(X)J a character-group for X? 

Question Ila: 

Does every 'valuation space' of finite rank have character-groups? 

Remark: 

If G is a character-group for X and if V: X--+ G is a regular-valuation, 

then [V(X)] and G have the property that there is an order-preserving 

linear homeomorphism between [V(X)] and G. 

Also in this case it is true that (V(X)) is a character-group since 

any subgroup of (V(X)] is also a subgroup of G. 

Suppose that Xis a 'valuation space' and that X~ x1 x 

wher~f each Xi is a 'valuation space', then 

n r rank(Xi) - rank(W) ~ O • 
i=l 

... XX 
r 

Suppose that mis the supremum of the values which can so occur, then 

we define mas the co-rank of X. 

We define the dimension of X by the relation: 
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dim(X) = rank(X) + co-rank(X) 

if both the rank and the co-rank of X are finite. 

Example: 

1. Suppose H = { (x,y) 6 E2 I x = ~ nan integer > o}. 
Then rank(H) = 1. Also H ~Rex Wand rank(X) = rank(Y) = 1. Thus 

co-rank(H) ) 1. 

Since this is essentially the only direct-product decomposition of 

H which occurs we have 

dim(H) = rank(H) + co-rank(H) = 1 + 1 = 2. 

2-. Suppose we consider E2 itself, E2 is a valuation space with 
2 

rank(E) = 2. 
2 

Al so E ~ Re x. Re and 

2 
rank(E) = 2 = rank(Re) + rank(Re) 

Hence 

Here we have made use of the fact that Re is indecomposable in the 

sense that Re is not the direct product of any other pair of 

spaces, i.e., Re~ X x Y :i+ X {¥, Re, Y = {a}, 

hence rank(Re) = rank(X) + rank(Y) = 1 + 0 = 1. 

We remark in addition that co-rank is a topological invariant and 

thus dimension is a topological invariant as well. 

Now say that a topological space Xis a valuation-manifold if each 

point x Xis contained in an open neighbourhood U(x) such that U(x) 

is a 'valuation space'. 

Example: 

1. Any n-manifold is a valuation manifold, as a matter of fact a ball 

neighbourhood or a half-ball neighbourhood is a rank n, co-rank O , 
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dimension n 'valuation space'. 

2. The pinched torus 

U(a) X = 

a 

If we give X a line topology in the neighbourhood of the pinching 

point, then such a U(a) as indicated above is a rank 1 'valuation 

space', using the ordinary topology 'away from a', we observe that 

around·,·,every point other than a we haye dim 2 neighbourhoods, whi'le 

'around a' we only have dim 1 and di.m O neighbourhoods which are 

also valuation spaces. 

3. The star 

X = *-
Again if we give X a line topology, then in the neighbourhood of a 

we obtain both dim 1 and•dim O neighbourhoods. 

However if we consider x-...'a, then we have X\. a a 'valuation space' 

of dimension 2, hence every point other than a has a dimension 2 

neighbourhood. 

4. The solid pinched torus 

X = 

Here every point different from a has dimension 3 neighbourhoods, 

while a possesses only dim 1 and dim O neighbourhoods. 
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5. The solid squeezed torus 

X = 

Here every point not in A has dimension 3 neighbourhoods while 

every point in A has dim 2 and dim 1 neighbourhoods. 

We note that examples 2-5 are examples of valuation manifolds which 

are not manifolds. 

If X is a valuation manifold a¢ x 6 X, define: 

(1) dim(x) = sup dim(U(x)), U(x) a 'valuation space'. 

(ii) dim(X) = sup dim(x), Xe X. 

(iii) pinching degree at X = dim(X) - dim(x) = p{x). 

(iv) pinching degree of X = sup p(x), x e X = p(X). 

Thus the pinched torus, the star, the solid squeezed torus have 

pinching degree 1, while the solid pinched torus has pinching degree 2. 

We may also define: 

(v) rank(x) = sup rank(U(x)), U{x) a 'valuation space'. 

(vi) rank(X) = sup rank(x), x 6 X. 

(vii) co-rank(x) = sup co-rank(U(x)), U(x) a 'valuation space'. 

(viii) co-rank(X) = sup co-rank(x), X ~ X. 

We have the relations: rank(x) dim(x), rank(X) dim(X) 

and dim{X) = sup dim(x) =· sup (sup dim U(x)) 

= sup (sup (rank U(x) + co-rank U(x))) 

~ sup (sup rank U(x) + sup co-rank U(x)) 

s sup (rank(x) + co-rank(x)) 

~ sup (rank(x)) + sup (co-rank(x)) 

~ rank(X) + co-rank(X). 
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Now suppose that quest ion I Ia can be answered in t.he positive. Let X 

be an arbitrary valuation manifold, dim(X) = n <CD, and let x E. X. 

If we consider the collection of all 'valuation neighbourhoods' of x 

such that they have rank equal to the rank at x, then we obtain a 

family F of characteristic groups, one associated with each 
X 

neighbourhood U(x). Every group in F has rank equal to rank(x), if 
X 

neighbourhoods u1 {x) and u2(x) are homeomorphic these character-groups 

can be chosen identical. Say that xis regularly embedded in X if 

ordering the neighbourhoods U(x) by set-inclusion the family F has a 
X 

direct limit. Let G be this direct limit. Then define the character­
x 

istic-group at x as G, the characteristic-sheaf of X as the collect­
x 

ion { x; Gx\ x regularly embedded in X. 

Example: 

1. Let X be the pinched torus, and suppose x e X , a, then F consists 
X 

of essentially but one group, viz., Rex Re considered as an 

ordered abelian group. Hence xis regularly embedded and 

G = Re X Re. If we consider a itself, then we only have line 
X 

neighbourhoods which are also 'valuation spaces' hence F- consists a . 
essentially of Re and again a is regularly embedded with G = Re. 

a 

2. In the star we get G = Re (x, a has rank 1 !) and G = Re. 
X a 

Thus in particular we have a valuation manifold with a pinch, hence 

not a manifold, with characteristic sheaf constant. 

In the spaces discussed above the different quality of the pinches in 

each case seem to be reflected in the fact that the pinched torus has 

co-rank O while the star has co-rank 1. 

Question III: 

Is there a valuation-manifold X with p{X) >6" such that co-rank(X) = O 

and X has a constant characteristic sheaf? 
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Question IV: 

If we have a connected rank 1 valuation-manifold X with co-rank 1 then 

(a) 

(b) 

is G = Re for all x e X? 
X 

is X locally 'at worst' a star? 

If we consider the pinched torus X, then O(X) = 0, however, we might 

consider the point a as a sort of quasi-boundary in that if we delete 

a, then X becomes a manifold and a(X) = a. 

In the same way the solid squeezed torus becomes a 3-mamifold if we 

delete the pinching set A, with boundary the 'outside of the squeezed 

torus'. Although the pinched torus and the boundary of the solid 

squeezed torus are not homeomorphic they do have the following in 

common: 

1. Fundamental Group. In both spaces it is true that anly loop around 

the torus itself can be homotopically contracted to a point on the 

pinch a, the squeeze A respectively. Hence both have fundamental 

groups Z. 

They differ in that in the pinched torus any two non-trivial loops 

have a common point, while in the squeezed torus this is no longer 

true. 

2. Dimension and Rank are in both cases 2, but the solid pinched torus 

has p(X) = 1, while the boundary of the squeezed torus has p(X) = 0. 

We define the quasi-boundary of X as the set of all points x EX such 

that p(x) > 0, denoted by J ~ (X). For the quasi-boundary operator ~ * we 

* * do not in general obtain d J = 0 but if p(X)<co then we do know that 
'll*(n) 
o = 0 for some integer n,$ p(X). 

We observe that since p(x) and P(X) are topological invariants the 
* degree of nilpotency of J is also an invariant. 
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Question V: 

If x and y are homeomorphic valuation-manifolds 

* * (a) 4 (X) and O (Y) homeomorphic? 
* '\* (b) J (X) and o (Y) valuation-manifolds? 

Question VI: 
* If x and y are homeomorphic valuation-manifolds are X \ cJ (X) and 

y\c)*cx> 
(a) homeomorphic? 

(b) valuation-manifolds? 

* we note that.} (X) is not always contained in o(X). Indeed if X is the 
* star then acx) =~and ~ (X) is the intersection point of the lines. 

* We note that in all examples given~ (X) is an open set in the local 

v-topology. 

Question VII : 
* (a) Is c) (X) always open in the local V-topology? 

(b) Are there valuation-manifolds X such that X contains pinch points 

x which are interior points ~n the original topology? 

(c) * Are there valuation-manifolds X such that~ (X) is open in the 

original topology? 

Question VII I : 

We noticed that the solid pinched torus is a valuation manifold with 

interior 3-cell. Is the boundary of a 3-cell always a valuation­

manifold? .. 

If X is an arbitrary topological space and V: X • G a valuation on X, 

th.eh we can form a chain of spaces 

{xa1.}oe.t G , where 1at. = { x E X I V(x) ), Q(} . 

In general if we consider '1 X 
0(.e G « then f"\ X =~.however, suppose 

OC. E G oC. 
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* *l we adjoin an ideal element X such that n X = { X JI then for any 
* * ~~G ~ 

map G"': X u 
* that cr(x) 

Example: 

{ x } ~ X u { x i such that o-(X ) c X we have immediately 
* oC. at 

= X • 

* * Suppose R is a valuation ring, R = R " { 0} becomes a topological space 

with a valuation and we have that in R* () R = { 0 }. 
Cl(. E: G ot 

Thus we have as immediate consequence that in a valuation ring any 

mapping which does not decrease the value has a fixed point, viz. , { 0 ~ 

On a topological space X with a valuation we can construct an 

equivalence relation by letting x rv y if and only if V(x) - V(y) e SCG, 

where Sis some subgroup of G. 

Then constructing the space X / S, we have that if G / S is an ordered 

abelian group, then the mapping 

V I S : X / S ~ G / S defined by 

V / S([x]) = V(x) + S is a valuation. 

Furthermore it is true that V / S is a 'regular valuation' for X/ S. 

Thus if Xis any topological space with a valuation V such that 

rankv(X) ~ 1, then there is an equivalence relation N on X with the 

property that ran¾;r (X/r 1> = ra~(X) - 1, and V ;r' a regular 

valuation on x;rl making x;rl into a 'valuation-space'. 

Now on the 'valuation-spaces' we have notions of rank, co-rank and 

dimension, thus if Xis any topological space we get an associated 

family of 'valuation spaces' { X). h .. 6 /\ through the construction made 

above. This family;of 'valuation spaces' and all the associated 

paraphernalia discussed above is itself a 'topological invariant' of 

the space X. 
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Example: 

Suppose R* is a rank 2 valuation ring with Valuation V: R =R* \ {o} --=+ G 

such that V(xy) = V(x) + V(y), V(x+y) ~ V(x) + V(y). Then if 

R = {x I V(x) ti rl} I it follows immediately that Rl V {oi is a sub-
1 * * ring of R with a rank 1 valuation VI R1 . If we assume that R is a 

* * domain and extend to its quotient field K, then K is a purely 

transcendental extension of the field K1 , the quotient field of 
* * R1 U {o~. Picking a tr. basis of K over K1 , then assume K is the 

collection of all rational expressions p(xM) / q(x.), p(x.) E R1 [x.J, 

q(x.) E R1 [x • .J. 
Now letting p1 (x~) / q1 (x0 ) ,._, p2{x«) / q2(x~) if and only if 

pl(x°') / ql(xot.) - P2<x.> / q2(xo() 4 Kl. 

We have p1 (x~)q2(x~) - q1 (x~)p2 (x•) / q1(x«)q2 (x~) e K1 . 

Thus p1(x~)q2(x~) - q1 (x.)p2(x~) + kJq1 (x~)q2 (x~) = 0, for some k1 ~ K1 . 

In R1 [xo1,J we obtain: 

Thus p1 (x•) and p2(xo() have the property that if p1 (xoc) and p2 (x°'~ 

have the same monomial of minimal value (the V(x~) are rationally 

independent over f1) then they are equivalent and conversely. 

We have thus obtained a large class of algebraicaily defined valuation 

spaces. 

Question IX: 

Characterize the 'valuation spaces' which can be 'algebraically 

defined', where with algebraically defined we mean the following: 

~A valuation space Xis algebraically defined if there is a valuation 

* * ring R such that on R \ {O} there is a valuation V such that 
* R \ f O} / r1 is homeomorphic to X ' 

Notice that if we have an 'algebraically defined valuation-manifold X ' 

then at each point x e X we have neighbourhoods U(x) which are 
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'algebraically defined valuation spaces', i.e., with each point x G X 

we can associate families of local rings, viz., the ones obtained from 

the 'algebraically defined valuation spaces at x '. Thus in this case 

we can perhaps get sheaf structures of local rings on these manifolds, 

which serve as coefficient domains for the elements in the neighbour­

hood of x which are expressible as polynomials or power-series with 

coefficients from these local rings. 

Thus in an algebraically defined valuation-manifold we have a notion 

of 'configuration' at a point x EX, where the 'configuration at x ' 

is the collection of all polynomial or power-series expressions with 

coefficients in the local-rings obtainable at x. 

In particular suppose Xis a valuation-manifold with the property that 

we can obtain a constant sheaf of local rings over X, then we have 

immediately that every element x ~ X possesses a polynomial or power-

* series expansion with coefficients in a single local-ring. If R is 

this local ring and {Xm} is a suitable set of transcendental elements 

so that x can be expressed as a polynomial or power-series in the {X~} 

* then the analytic automorphisms on R [x~J will introduce a class \X} 

of valuation-manifolds homeomorphic to X and we obtain a duality: 

X 

study of ho~eomorphism 

group 

Question X: 

• 
Galois theory 

on R*[xot] 

Can a full dualism between the study of the homeomorphism group and a 

Galois theory be obtained under these circumstances? 

Typ: RMW 


