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Quasi-multiplications and inertial 

automorphisms (I) · 

J. Neggers 

The purpose of this note is to introduce a definition of "inertial 

automorphism" on an arbitrary-commutative ring with unity which 

reduces to the old definition in the case Risa complete discrete 

valuation. ring. We generalize the notion of a value non-decreasing 

mapping o,n a valuation ring to the concept of "quasi-multiplication 

on a ring". We observe that rings Rare embeddable in the ring of 

"quasi-multiplications" on R. Using this notion we develop some 

induced homomorphism theorems (theorems 2 & 3). We define inertial 

automorphisms as automorphisms which are also quasi-multiplicationso 

We generalize the notion of "valuation-ring" to M-ring, where Mis 

a chain of ideals with valuation-like properties. The strong 3rd 

condition in the definition was needed to give the result of theorem 4. 
Finally we begin a study of certain classes of subrings defined by the 

M-structu:r-e and the automorphism structure which have proven important 

in the case of valuation rings. 



Rings of quasi-multiplications 

Suppose Risa commutative ring with identity, then a ring RQ 

containing Risa ring of quasi-multiplications on R if any ideal 

of R is an ideal of RQ as well. 

If R is eL commutative ring with identity and RQ a ring of quasi­

multiplications on R9 then y~RQ and xER, implies y(x)c.(x) 9 i.e. 9 

* ~· *( ) . yx = ux, uER. If we let f : R -+ R c.e deiinedby f x = u, then it 

follows that. yx = xf*(x), i.e., we can regard y as a multiplication 

of x "by a function on R", hence the name quasi-multiplication. 

Notice that if we define a function f: R-+ R to be a quasi-multi­

plication. if there is a function f*: R -+ R such that f(x) = xr"\x), 

then YE RQ implies "multiplication by y" is a quasi-multiplication. 

In the situation where Risa valuation-ring with valuation V then 

a function f: R-+ Risa quasi-multiplication if and only if f is 

value non-decreasing, i.e., V(f(x)) > V(x) for all x. In this sense 

we can view quasi-multiplications as natural generalizations of 

value non-decreasing functions on a valuation ring to arbitrary 

commutative rings with identity. 

Lemma 1: :Suppose R is an arbitrary commutative ring with identity, 

then the collection R [Q] of all quasi-multiplications 

is a ring under the regular definitions of operator 

:addition and multiplication. R [QJ has identity I, I(x) = x. 

Proof: Su:ppose f 9 gE:R[QJ, X€.R 1then* * * * 
(f + g)(x) = f(x) + g(x) = xf (x) + xg (x) = x(f + g )(x) 

and f + geR[Q]. * * * 
Furthermore, (fg){x) = f(g(x)) = g(x)f (g(x)) = xg (x)f (g(x)) 

and fgE: R [QJ. 

Lemma 2: If on R[Q} we define (f*g){x) = f(x)g(x), then R[Q] becomes 

a commutative ring. 
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Proof: 
* * .. 

(f * g)(x) = f(x)g(x) = xf (x)g(x) = xf'(x)g (x) and f * g GR [Q]. 
Since R is commutative it follows that f * g = g * f. 

We'll denote the ring in lemma 1 by R<Q> and the ring in lemma 2 

by R<<Q>>" 

Lemma 3: If' y eR, let My: R-+ R be defined by My(x) = y(x) • 

Proof: 

Then the mapping 4>: R-+ R<Q> defined by 4>(y) = My is an 

isomorphism.· 

That 4>(y1 + y2) = 4>(y1) + 4>(y2) is obvious. 

Next, observe that 

4>(y y) = M = M M = 4>(y1)4>(y2). 
1 2 Y1Y2 Y1 Y2 

Also 4>(y) = 0 implies yx = 0 for all x. Since R has an 

identity we obtain that ;y1 = y = 0 and 4> is an isomorphism. 

Theorem 1: Suppose RQ is a ring of quasi-multiplications on R, then 

RQ can be "embedded" in R<Q>• 

Proof': 

Let YE::RQ' then letting f'y: R -+ R be defined by yx 

we get a mapping 4>: RQ-+ R<Q>" 
That 4> is a homomorphism is clear. 

Suppose 4>(y) = 0 9 then yx = 0 for all xe-R. Thus 

= f (x) y 

Ker 4> = Annihilator of R in RQ. It is clear that RQ/Ker 4> is 

_a -ring ·of quasi-multiplications on R (R contains 1, hence 

~1,Ker 4> for y # 0!) and on RQ/Ker 4> the mapping constructed 

above is an isomorphism. 

From now on we will alwEcys assume that a ring RQ of quasi-multi­

plications on R has annihilator (0) so that theorem 1 will hold 

universally, i.e., any ring RQ of quasi-multiplications will be 

regarded as a subring of' R<Q> via the natural isomorphism constructed 
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in Theorem 1. Notice that since I= m1 any ring RQ of quasi-multi­

plications will also be a ring with identityo Notice that R<Q> 

.according to the definitions really is,a ring of qu~si-multiplieations 
•· ' . 

on Ro Notice further that R<Q> il3 a two-sided R-module, · ioe., · its 

structure as a left R-module coincides with its structure as a right . 

R-moduleo This follows from the fact that Risa commutative ring. 

Thus define (rf){x) = r:f'(x) = f(x)r = (fr)(x). Notice that 

as a ring operation (fr)(x) = .. _(fmr)(x) = f(rx) ff f(x)r in general! 

To avoid confusion we shall always use R<Q> as a left R-module. 

··.:Theorem 2: If R1, R2 are ·commutative rings with identity and 

v: R1 ~ R2 is a homomorphism, then v*: R1<Q> + R2<Q> define 

defined by 

Proof: 

* (v (f))(v(y)) = v(f(y)) is a homomorphism into. 

Ker v is an ideal of R1 thus for any element f ~ R1 <Q> it is 

true that f(Ker v) C,Ker v, Thus if y E;Ker v, then 
* * . (v (f))(v(y)) •= (v (f))(O) = v(f(y)) = o. 

* . 
Furthermore 9 (v (r1 + r2)){v(y)) = v((f1 + f 2)(y)) = 

= v(f,(y) + f2(y)) = v(r,(y)) + v(f2(y)) = (v*(f,))(v(y)) + 
* + (v (f2 ))(v(y)). 

* Similarly, (v (f1f2))(v(y)) = v((f1f 2)(y)) = v(f,(r2(y))) = 
* * * = (v (f1))(v(f2(y))) = v (r1)(v (r2)(v(y))) = 

* * = v (r1)v (r2)(v(y)) • Hence the theorem follows. 

Theorem .3: If v: R1 + R2 has the property that Ker v c_ x0.r v(x), 
*. r~ 

· Proof: 

then v 1s onto. 

Indeed, let f: R2 + R2 be a quasi-multiplication. 

Define f: R1 + R1 as follows. Let f(Ker v) = 0 and if 

x¢,Ker v, select f(x)'"'-v-\r(v(x))}arbitrarily. 

We claim that f: R1 + R1 is a quasi-multiplication. 
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Indeed since f is a quasi-multiplication we have 

f(v(x)) = v(x) f(v(x)). Thus if' ye,v-1(t(x)), we get 

V ( y) = V ( X) r ( V ( X) ) = V ( X) V ( Z) = V ( XZ ) o 

Thus Ye (x) + Ker v = (x} since Ker v c.(x). 

Hence f'(x) = xr*(x) f'or xf Ker v9 f'(x) = x•O f'or x~Ker v. 

Thus is f' indeed a quasi-multiplication. By con~truction 

we get {v*(r))(v(y)}·= v(f'(y)) = f(v(y)), i.e., 
* - *. v (f') = f' and v is onto. 

Corollary: If' R1 is a valuation-ring then v* is onto. 

We are now ready to define the concept of' inertial isomorphism on 

an arbitrary· commutative ring with identity. Suppose R is such a ring, 

then an inertial. isomorphism a: R + R is an_isomorphism which is a 

quasi-multiplication on R. 

Notice that if' Risa complete valuation ring, then an isomorphism 

is an inertial isomorphism if' and only if' it is value preserving, 

i.e., value non-decreasing, i.e., a quasi-multiplication on R. 

The inertial automorphisms serve as a group of' units in R<Q>' a 

subgroup of' the group of' units of R<Q>' 

We shall denote the group of' inertial isomorphisms on R by GI. 

In the next section we will discuss a type of' ring in which we 

have the following situation: 

( 1) A chain of' ideals 1iii }~ with iii ciii 1 n n=1 i+1 i' 
(2) 0 iii. = (0) 0 

l=W l 

We'll call this ring an M-ring if' in addition the following condition 

is satisfied 

(3} For every X ;. 0 3 an N(x) < co such that ~H~)c (x) I 
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Notice that if R is a valuation ring with value group Z, i.e. 9 

A. discrete valu,..t.ion ring and if V(1r) = 1, then letting iii = (1r)n = 
n 

= ( 1Tn), M =- {mn} :=1, we get that R is an M-ring. 

Suppose now that R is an M-ring M = {mn}:;1 , then the 

M-pseudo-ramification groups Gn are defined as follows: 

Again notice that 

then if M = {iii = n 

G = {oGGI I o(x) - xeiii} • n n 

if Risa complete discrete valuation ring, 

(1rn), V('IT) = 1} 9 the M-pseudo-ra.mification 

groups G are just the ordinary pseudo-ramification group. 
lrl 

M=rings and completions 

Suppose His a commutative ring with identity which is an M-ring 

with respect to a collection of ideals M = {mn}:=,• 

Definitio!!.J_: A sequence of functions {fµ}:=, is a null-sequence 

if given N > 0 .3 µ(N) 3 µ .::_ µ(N) ~: f µ: R -+ ~• 

Notice that any null-sequence is "eventually" a quasi-multiplication 

i.e., given x there is a µ such that f (x)e: (x). µ 

Indeed, s:uppose we take N(x) as in condition ( 3) and pick µ > µ(N(x)), 

then fµ: R-+ (x) and fµ(x)~(x). 

,Next we say: 

Definition 2: A sequence of functions {fµ}:=, is a limiting sequence 

if there is a function f such that 

{fi = fµ - f}:=, is a null-sequence. 
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Proposition 1': If {f' = f - f' }00 and {f" = f - f" }00 are µ µ µ=1 µ µ · µ=1 

Proof: 

· null-sequences 9 then f' = f" o 

Pickµ!_ µ(N), then fµ - f': R-+ ~ and fJJ - f": R-+ mN 

(actually µ(N) = max(JJ 1(N), JJ2(N)))o 

Hence f' - f": R-+ ~• Since this is independent ofµ, 

we get f' - f": R -+ (\ ii = ( 0) and f' = f". 
n6.w n 

Thus limiting sequences have unique limits indicated with lim f. 
JJ JJ 

Definition 3: A sequence of functions {f }00
_ 1 is Cauchy if given N . JJ JJ-

there is a µ(N) such that JJ 19 JJ2 > µ(N) implies 

f - f R-+ m. .• 
'1.11 '1.12 J.ll 

Proposition 2: If a sequence is limiting, then it is Cauchy. 

Proof: 

If {fµ}:=l is limiting, suppose limJJfJJ = f and 

JJ > JJ(N) ~f - f: R -+ ~• Then JJ 1 ,JJ2 > µ(N)~f - f 
JJ - 00 JJ 1 µ2 

= (f f) + (f - f ): R ➔ m.. and {f} _1 is Cauchy. 
JJ1 µ2 J.ll JJ JJ-

The conv,erse is true only under special assumptions on R. 

Definition 4: A sequence {xJJ}:=l of elements is limiting in case 

the sequence of functions {f : f (x) = x }00 
1 JJ JJ JJ µ= 

is limiting. 

Definiticm 5: An M-ring is complete if every Cauchy sequence of 

constant functions {f : f (x) = x }00 

1 is 
JJ JJ JJ JJ= 

limiting. 

Propositj:.£E...l: If Risa complete M-ring 9 then a Cauchy sequence 

is necessarily limiting. 

= 

If R is not complete, then not every Cauchy sequence 

is limiting. 
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Suppose Risa complete M-ring, then {fJ.J}:=, a Cauchy­

sequence implies {fJ.J(x)}:=, a Cauchy-sequence of elements, 

hence necessarily limiting. Let f(x) = lim f (x). 
® J.J J.J 

Then {f - f} 1 is a null-sequence and hence lim f = fo 
J.J J.J= ® J.J J.J 

If R is not complete, then suppose {x)J.J= 1 is a Cauchy-

sequence which is not limitingo Then {f : f (x) = x }® 1 J.J J.J J.J J.J= 
i1:1 a Cauchy-sequence of functions which is not limiting. 

We note t,hat if R is an M-ring and RQ is a ring of quasi-multi­

plications on R9 then RQ is an M-ring for the same family of 

ideals M = {m }® of R regarded as ideals of RQo 
n n=1 

Theorem 4: If Risa complete M-ring then R<Q> is also a complete 

M-ring. 

Proof: 

Suppose {fJ.J}:=l is a Cauchy-sequence of quasi-multiplications. 

Since Risa complete M-ring {fJ.J}:=l is limiting 9 let 

f = limJ.JfJ.J. 

Let N(x) be such that ~(x) C (x), then J.J ~ µ(N(x)) 

~ ( f - f )( X) G iiiN ( ) C ( X) • Thus f ( X) = f ( X) + XP ( X) = 
* J.J X * J.J J.J 

= xf (x) + xp (x) = x(f (x) + P (x)) and f is a quasi-
µ J.J J.J J.J 

multiplication. Thus it follows that R<Q> is a complete 

M-ring. 

The Inertial Subring of a Ring 

Let R be a commutative ring with identity, then let 

R0 = {x I o(x) = x for all o€GI}. Then we obtain R0 as a subring 

of R. The inertial subring of R. 

If mis an ideal of R, then we can construct: 
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v R -+ R/m , let R0 - = R0 /m C R/m. m ;m 

Proposition 4: If R is an M-ring and R is complete then R0 is 

complete. 

Proof: 

Let {x }°" _1 be a Cauchy-sequence in R0 • Let x = lim x , xG R. 
JJ JJ- 00 00 JJ JJ 

Then we have { o( xlJ)} 1,1= 1 = {x) JJ= 1 for all o E GI. 

Hence x = lim o(x ) • 
JJ IJ 

But, o(x - x) = o(x) - o(x )em... if IJ > JJ(N)o 
IJ IJ N 

Thus o(x) - x = o(x) - o(x ) + o(x ) - x 4i:..nL. if IJ > JJ(N). 
IJ JJ IJ .N 

Since thus o(x) - x E. () iii = (0) we have o(x) = x, Le.• 
n~w n 

x ,R0 and R0 is complete. 

If R is an M-ring say x bR has index of inertia relative to M equal 

to N if 01(x) - x E: ~ for all o "-Gr but there is a o* such that 

o(x) - x¢- ~+1• Denote this index by 6M(x). 

Lemma 4: R0 = {x I 6M(x) = 00 }. 

Proof: 

If xeR0 , then o(x) = x ~ mN for all N and 6M(x) = 00 • 

If 6M(x) = 00 , then o(x) - Xf:i.a mn = (0) and xe:-R0 • 

Note that the index-of-inertia on R0 is independent of the system 

M which makes Ran M-ring. 

Proposition 5: Suppose R is an intergral domain and xis integral 

over R0 , if oE:GI then o(x)/x is a root of unity 

in R. If x has degree n over R0 , then o(x) /xis an 

,.,!h root f 't · R .. . o uni y in • 

Proof: 

* Let K be the qoutient field of Rand K an algebraic closure 
n n-1 of K. Suppose x + a1 x + • • • + a = O, a ¥ O, a ~ R0 • 

n n i 
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n 
We have JI (x-w.) = o, where w.' i = 1 ' 0 0 0 9 n are the 

l. l. i=1 
roots. 

extend· * * If a€. GI a to a on K 9 then 

n 
* JI ( a(x) - a(w.)) = 0 • 

i=1 
1 

S:i.nce x = X • XO' 9 XO' a unit in R. 

* n a (w.) n 
We get: 

n JI (x l. ) 0 or JI (x -XO' = 
i=1 XO' i=1 

n n 
* n 

Since a 'F o, a = JI w. = JI a (w.) = XO' n n i=1 J i=1 J 

n 
JI wj(i) = x/ an• we obtain x/ = 1o 

i=1 

a(x) . th . 
Thus x = - is an n-- root of unity. 

O' X 

n Corollary 1: If x has degree n over R0 , then x ~ R0 • 

Proof: 

Suppose x has degree n, then ( a(x))n = 1. 
X 

* a (w.) 
l. ) = 

XO' 

* n a (w.) 
J JI 

i=1 XO' 

a(x)n a(xn) n 
Hence, --- = --~ = 1, i.e., a(x) = n n 

n 
x for all a EGI. 

X X 

n 
Thus x e R0 • 

o. 

= 

Corollary _g_: If Risa characteristic O integral domain and D: R ~ R 

a derivation, then D(R0 ) = 0 =}D(R0 ) = 0 where R0 is the 

integral closure of R0 in R. 

Proof: 

xeR0 implies xneR0 for some n. Thus D(xn) = nxn- 1D(x) = O 

n-1 ~ ( ) and nx r O implies D x = O. 

Suppose m cR0 is an ideal• then we define 

~ = {xe:R I Xnc:m }. 
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(i) ¼i=\/v 
(ii) ~ is an ideal in R0 

0 . 

(iii) ' ~= ~ iii•, i,e,, v;; is a radical. ideal VR0Vio m' O o 

n V, I r--::-' n p - I ,-::::-' 
x '= _ Vi- m :::!; (x) em ::::!'JX'=Vi_ m 

R0 0 0 

(iv) If mis 

Suppose 

Suppose 

prime, then~ is prime 
0 

x¢\/; m •• then xne.R0 -==,, xn4;. 
0 

Ir--=' ( )s - ( )sn xyE. Vi m , then xy E. m ~ xy = 
0 

t ( snt)( snt) - snt snt If Y E.Ro• then X Y e.m, X 9 Y G.Ro, snt.J_ -
X Im. 

Thus ysnt&. m. and y,:;;. ~ t i.e. 9 V R m' 
0 0 

is prime. 

(v) If m is p-primary, then~ is prime. . 

U iii is P-primary, then ff= P and '1/:W = \j;J is 

I~ RO 0 
But vRVm= V R m •• 

RO 0 

prime. 

Propositi~: If o c:=.GI' then o/R0 is an inertial automorphism on R0 • 

Proof: 

Let xE<R0 , then o(x) = x • x0 with x0 an ~ root of unity. 

Since 1e=.R0 , we have x0 €,R0 and o/R0 is an inertial auto­

morph~sm on R0• 
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Pseudo-inertial subrings of' M-rings 

Now suppose R is·anM-ring, M = {iiin}:=l" 

We define rings 

Noti~e that Rn is indeed a ring. If' x,.r-. Rn' a eGI' then 
a(x + y) - (x + y) =· (o(x) - x) +-(a(y) - y)G;.m' n 
o(xy) - xy = a(x)o(y) - xy = a(x)o(y) - a(x)y + a(x)y - xy = 

= a(x)(a(y) - y) + (o(x) - x)yem • n 

Lemma 5: R 1iii ; R -:)R +l • n- n n n 
Proof': 

o £GI :=,o(mn)c,.mn and X'"-mn_...a(x) - xEmn• 

Rn ::,Rn+l obviously. 

Lemma 6: f1 R = R0·• nE:W n 
Proof': 

Lemma 12. 

Lemma 7: If' Risa c9mplete M-ring, then Rn is complete. 

Proof': 

Suppose that {xµ}== 1CRn is a Cauchy sequence. 

Let ati:GI. Thenµ 1 v > µ(N)~µ - x",e~, 
thus a(x - x ) = a(x ) .:. a(x )E ii._, since OE GI. 

µ V µ V N 

Hence {a(x )}~ 1 is Cauchy. We have a(x) = lim a(x ). µ µ= µ µ 
Select µ0 such that o(x) - o(x )e.iii for allµ>µ • 

µ n - 0 
Then a(x )E.m (x ER !)=]'a(x)cm and xE.R • µ n µ n n n 
Thus the result follows. 

We shall call the rings R pseudo-inertial subrings of' R. 
n n 

Suppose R is an M-ring, M = {iiin}:=,• Let Gn be the pseudo-inertial 

groups. 
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Let R[nJ = {x I o(x) = x Voe.on}. 

Then x,ye:R[nJ, o(x + y) = o(x) + o(y) = x + y, 

o(xy) = o{x)o(y) = xy. Thus is R[n] a ring. 

Lemma 8: R[n)CR[n+l]. 
Proof: 

Lemma 9: If Risa complete M•ring, then R(n] is complete. 

Proof.: 

$Upp6se that {x)·:=1CR[n] is a Cauchy-sequence. 

•If x = lim x and oeG , then o(x) = lim o(x ) = lim x = x 
u u n u u u u 

and x'=R[n]. Thus the lemma follows. 

Lemma 10: Suppose R is an integral domain and xis integral over R[mJ 9 

if o ~G , then o(x) /x is a root of unity in R. 

Proof: 

If x ha: degree n over R[m], then o(x) /x is an ~ root 

of unity in R. 

The proof is exactly the same as the proof of proposition 5. 

Corollary 
.. n 

1: If x has degree n over RCmJ, .then x &R[m]. 

Corollary 2: If Risa characteristic O integral domain and 

D : R: R a derivation, then D(R[m]) = 0 ::!) : D(R[m]) = O, 

where R[m] is the integral closure of R[m] in R. 

Corollary 3: Remark (i) - (vi) of the previous section hold for 

ideals in R [mJ • 

Corollary 4: If o &.Gm 9 then o I R [mJ is an inertial automorphism. 

We shall call the rings R [m] pseudo-inertial subrings of the 2nd kind. 
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