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Quasi-multiplications and inertial

automorphisms (I)"

J. Neggers

The purpose of this note is to introduce a definition of "inertial
automorphism" on an arbitrary commutative ring with unity which
reduces to the old definition in the case R is a complete discrete
valuation ring. We generalize the notion of a value non-decreasing
mapping on a valuation ring to the concept of "quasi-multiplication

on a ring". We observe that rings R are embeddable in the ring of
"quasi-multiplications" on R. Using this notion we develop some
induced homomorphism theorems (theorems 2 & 3)., We define inertial
automorphisms as automorphisms which are also quasi-multiplications.
We generalize the notion of "valuation-ring" to M-ring, where M is

a chain of ideals with valuation-like properties. The strong 3rd
condition in the definition was needed to give the result of theorem L.
Finally we begin a study of certain classes of subrings defined by the
M=structure and the automorphism structure which have proven important

in the case of valuation rings.




Rings of quasi-multiplications

Suppose R is a commutative ring with identity, then a ring RQ
containing R is a ring of quasi-multiplications on R if any ideal
of R is an ideal of RQ as well.

If R is a commutative ring with identity and RQ a ring of quasi=-
multiplications on R, then ye RQ and x€R, implies y(x)c (x), i.e.,
yx = ux, u€R. If we let £°: R » R Be definedby f (x) = u, then it
follows that yx = xf (x), i.e., we can regard y as a multiplication

of x "by a function on R", hence the name quasi-multiplication.

Notice that if we define a function f: R > R to be a quasi-multi-
. 3%
plication if there is a function f : R + R such that f(x) = xf*(x),

then ygR. implies "multiplication by y" is a quasi-multiplication.

In the siguation wvhere R is a valuation=-ring with valuation V.then
a function f: R+ R is a quasi-multiplication if and only if f is
value non-decreasing, i.e., V(f(x)) > V(x) for all x. In this sense
we can view quasi-multiplications as natural generalizations of
value non-decreasing functions on a valuation ring to arbitrary

commutative rings with identity.

Lemma 1: Suppose R is an arbitrary commutative ring with identity,

then the collection R of all quasi-multiplications

(q]

is a ring under the regular definitions of operator

addition and multiplication. R[Q] has identity I, I(x) =

Proof: Suppose f, géR[Q], xeR,then

(£ + g)(x) = £(x) + g(x) = xf (x) + xg (x) = x(£ +g")(x)
and f + g&€R al°

Furthermore, (fg)(x) = f(g(x)) = g(x)f*(g(x)) = xg*(x)f*(g(x))
and fgeR[Q].

Lemma 2: If on R[Q] we define (f*g)(x) = f(x)g(x), then R[Q] becomes

a commutative ring.




Proof': .
(£ = g)(x) = £(x)g(x) = xf*(x)g(x) = xf(x)g*(x) and f %= geR[Q] .

Since R is commutative it follows that f * g =.g * f,

We'll denote the ring in lemma 1 by R,
by R -

and the ring in lemma 2

Q>

<<Q>>°

Lemma 3: If yeR, let My: R > R be defined by My'(x) = y(x),
, defined by ¢(y)

Then the mapping ¢: R > R, M& is an

isomorphism.- ¢
Proof:
That ¢(y, +y,) = ¢(y,) + ¢(y,) is obvious.
Next, observe that

¢(y,y,) = M =M M
T2 Y, Yy

¢(y,)¢(y2)°

0 for all x., Since R has an

Also ¢(y) = 0 implies yx

identity we obtain that y1 =y = 0 and ¢ is an isomorphism,

Theorem 1: Suppose R. is a ring of quasi-multiplications on R, then

Q :
R. can be "embedded" in R,

Q Q>°

Proof':
Let yeRQ,
we get a mapping ¢: R

then letting fy: R + R be defined by yx = fy(x)
Q ” B

That ¢ is a homomorphism is clear.

Suppose ¢(y) = 0, then yx = 0 for all xeR. Thus

Ker ¢ = Annihilator of R in RQ° It is clear that RQ/Ker ¢ is

a ving of quasi-multiplications on R (R contains 1, hence

My¢ Ker ¢ for y # 0!) and on RQ/Ker ¢ the mapping constructed

above is an isomorphism. -

From now on we will always assume that a ring RQ of quasi-multi-
plications on R has annihilator (0) so that theorem 1 will hold

universally, i.e., any ring R, of quasi-multipliéations will be

Q

regarded as a subring of R, via the natural isomorphism constructed

Q>




in Theorem 1. Notice that since I = m, any ring RQ
plications will also be a ring with identity. Notice that R

of quasi-multi-
<Q>
~according to the definitions really is.a ring of quas1—mult1p11catlons
on R, Notice further that R<Q>

structure as a left R-module coincides with its structure as a right

is a two-sided R-module, i.e., its

_R;ﬁodule9 This follows from the fact that R is a commutative ring.
Thus define (rf)(k) = rf(x) = f(x)r = (fr)(x). Notice that

as a ring operation (fr)(x) = (fm Y(x) = f(rx) # f(x)r in general!

To avoid confusion we shall always use R as a left R-module,

<Q>
- Theorem 2: If Rys R2 are commutative rings with identity and
, . . s .
'E R1 > R2 1s a homomorphism, then v : R1<Q> > R2<Q> define
defined by . »

(v*(f))(v(y)) = v(f(y)).is a homomorphism into.

Proof:

Ker v is an ideal of R, thus for any element fgR it is

1 1<Q>

true that f(Ker v)CKer v, Thus if yeKer v, then .
(VIEN(v(y)) = (V(£))(0) = v(£(y)) =

Furthermore, (Vv (£, +f ))(v(y)) = v((f1 + f )(y))

= v(f (y) + f (y)) = v(f (¥)) + v(£,(y)) = (v (£,0)(v(y)) +
+ (v (f ))(v(y)) _
Slmllarly, (v (£ ))(v(y)) = v((f1f2)(y)) = (£, (£,(y))) =
(v (f1))(v(f (y))) = v (f ) (v (£,)(v(y))) =

v (f )v (f Y(v(y)) Hence the theorem follows.

.”Theorem.3: If v: R, > R, has the property that‘Ker v c‘foer v(x),

then v is onto.
Indeed, let T: R2 > R2 be a quasi-multiplication.
Define f: R, » R, as follows, Let f(Ker v) = 0 and if
x?ﬁKer v, select f(x)«;v_1(?lv(x)))arbitrarily.

We claim that f: R1 > R1 is a quasi-multiplication.




Indeed since f is a quasi-multiplication we have

FT(v(x)) = v(x) T (v(x)). Thus if yev'1(?(x)), we get
wiy) = v(x) T(v(x)) = v(x)v(z) = v(xz). '

Thus y& (x) + Ker v = (x) since Ker v ¢ (x).

Hence f(x) = xf (x) for x¢Ker v, f(x) = x0 for xeKer v.
Thus is f indeed a quasi-multiplication. By construction
wve get (v(£))(v(¥)) = v(£(y)) = T(v(y)), i.e.,

3% = *
v (f) = f and v 1is onto.
. . . *
Corollagx; If R1 is a valuatlon‘rlng then v 1$‘ontoo

We are now ready to define the concept of inertiél isomorphism on

an arbitrary commutative ring with identity. Suppose R is such a ring,
then an inertial isomorphism 0: R + R is an isomorphism which is a
quasi-multiplicétion on R.

Notice that if R is a complete valuation ring, then an isomorphism

is an inertial isomorphism if and only if it is value preserving,
i.e., value non-decreasing, i.e., & quasi-multiplication on R.

The inertial automorphisms serve as a group of units in R<Q>’ a
subgroup of the group of units of R<Q>'
We shall denote the group of inertial isomorphisms on R by GI°
In the next section we will discuss a type of ring in which we

have the following situation:

(1) A chain of ideals {En}w

g n=1 with mi+1c m .
(2) jew mi = (O)o

We'll call this ring an M-ring if in addition the following condition

is satisfied

(3) For every x # 0 3 an N(x) < = such that %(X)C(x‘)-



Notice that if R is a valuation ring with value group Z, i.e.,
a discrete valu~tion ring and if V(rm) = 1, then letting En = (m)? =

= (1), M'=‘{'{§n}:=1, we get that R is an M-ring.

Suppose now that R is an M-ring M = {Hn}zﬂ’ then the

M=pseudo=-ramification groups Gn are defined as follows:

6 = {oec | olx) - xem } .

Again notice that if R is a complete discrete valuation ring,

then if M = {n"xn N

groups Gn are just the ordinary pseudo=-ramification group.

(nn), v(nm) = 1} , the M=pseudo-ramification

M-rings and completions

Suppose R is a commutative ring with identity which is an M-ring

with respect to a collection of ideals M = {;ﬂ-n}:=1o

Definition 1: A sequence of functions {fu}:=1 is a null-sequence
if given N > 03 u(N) 3 u > u(N) =: £ R —)EN"

Notice that any null-sequence is "eventually" a quasi-multiplication
i.e., given x there is a u such that fu(x)e(x)°

Indeed, suppose we take N(x) as in condition (3) and pick n > u(N(x)),
then f : R > (x) and fu(x)é(x).

Next we say:

(-]
u=1
if there is a function f such that

5=, - 21

is a limiting sequence

Definition 2: A sequence of functions {fu}

(-}

is a null=-sequence.




© co

and {fz = fu - "} are

Proposition 1: If {f& =f -1} p=1

U u=1
‘null-sequences, then f' = f",

Proof:
. - fl oy - " -
Pick u > u(N), then f,-f': R>mg and £ - f": R +va
(actually u(N) = max(u1(N), U2(N)))o I
Hence f' = f": R » Eﬁ. Since this is independent of u,
Vo fM, mn o= -
we get T f.R+Imen (0) and f' = ",

Thus limiting sequences have unique limits indicated with limufu°

Definition 3: A sequence of functions {fu}:=1

there is a u(N) such that Mok,

is Cauchy if given N

> p(N) implies
f «f :R-+>m.
L T N

Proposition 2: If a sequence is limiting, then it is Cauchy.,

Proof':
If {fu}:=1 is limiting, suppose limufu = f and
- f > m.. > - f =
uo> u(N):gfu f: R > myo Then M, ,H, :(N)_-%fu £,

= (fu1 - f) + (f - fu2): R > Eﬁ and {fu}

=1 1s Cauchy,.

The converse is true only under special assumptions on R,

Definition 4: A sequence {xu}:=1 of elements is limiting in case
©0
f i f . =
the sequence of functions { " fu(x) xu}u=1

is limiting.

Definition 5: An M=ring is complete if every Cauchy sequence of

=1

constant functions {fu : fu(x) = xu} is

limiting.

Proposition 3: If R is a complete M=ring, then a Cauchy sequence

is necessarily limiting.
If R is not complete, then not every Cauchy sequence

is limiting.




Proof':

Suppose R is a complete M-ring, then {fu}°° a Cauchy=

, u=1
sequence implies {fu(x)}:_:1 a Cauchy-sequence of elements,

hence necessarily limiting. Let f(x) = limufu(x)°
Then {fu - f}u=1

If R is not complete, then suppose {xu}:=1

sequence which is not limiting. Then {fu : fu(X) = xu}:_1

is a Cauchy-sequence of functions which is not limiting.

(-4

is a null-sequence and hence limufu = f,

is a Cauchy=-

We note that if R is an M=ring and R, is a ring of quasi-multi=-

Q

plications on R, then R, is an M-ring for the same family of

ideals M = {En};=1

Q

of R regarded as ideals of R

QO

Theorem 4: If R is a complete M=ring then R, is also a complete

Q>
M-ring.
Proof: |
Suppose {fu}:=1 is a Cauchy=-sequence of quasi-multiplications.
Since R is a complete M-ring {fu}:=1 is limiting, let
= limufu°

Let N(x) be such that EN(x)c(x), then u > u(N(x))
gv(i - fu)(x)eEN(x)Cix)o Thus f(x) = fu(x) + xpu(x) =
= xfu(x) + xpu(x) = x(fu(x) + pu(x)) and f is a quasi=-

multiplication. Thus it follows that R, is a complete

Q>

M-ring.

The Inertial Subring of a Ring

Let R be a commutative ring with identity, then let

Ry = {x | o(x) = x for all oéGI}. Then we obtain R

of R. The inertial subring of R.

g @s @ subring

If m is an ideal of R, then we can construct:

—



v, : B> 3/m » let Ry o = RO/ECR/mg

Proposition 4: If R is an M=-ring and R is complete then RO is

complate.
Proof:
Let {xu}:=1 be a Cauchy-sequence in Rye Let x = limuxu, xe R
(-] -
Then we have {cx(xu)}u=1 = {xu}u=1 for all 0&Gy.
Hence x = limuo(xu).

But, 0(x = xu) = 0(x) = U(XU)GEN if uw > u(N).
Thus o(x) = x = 0(x) = °<xu) + c(xu) - Xué.-n'_lN if w > u(W),

Since thus o(x) - x& = (0) we have 0(x) = x, i.e.,

m
new n

x&R_ and R, is complete.

0 0
If R is an M=ring say x&R has index of inertia relative to M equal
— " :
to N if o(x) -~ x e my for all OGGI but there is a 0 such that
o(x) = x ¢ Mg Denote this index by AM(x),,

Lemma 4: R, = {x | AM(x) ==},

Proof:
If xR _, then o(x) = x e m_ for all N and A (x) = = ,
0 N N = M
If AM(x) = @  then 0(x) = el m = (0) and X&Ry.
Note that the index-of=-inertia on RO is independent of the system

M which makes R an M=-ring.

Proposition 5: Suppose R is an intergral domain and x is integral

over RO’ if 0 E€G, then o(x)/x is a root of unity

in R, If x has degree n over R then o(x)/x is an

09
rﬁz}- root of unity in R.

Proof':

. . * °
Let K be the qoutient field of R and K an algebraic closure

n Ne1 -
of K. Suppose x  + a,x + 000 + & = 0, an # 0, aiéRO,



n

We have 1T (x - wi) = 0, where v, i =1, coey n are the
i=1

roots.

. . o *
If oe GI extend o to o on K , then

n 36
T (o(x) =0 .(wi)) =0,
i=1 -

Since x = X o X , X & unit in R.

o]
% %
. o (Wi) n o (w.)
We get: x = I (x = = )=0or T (x = l.)=o0.
i=1 o} i=1 Xg
>
n n B (w.)
Since a_ # 0, a = I w.= I o (w.) = X I et =
i=1 9 i=1 J i=1 *o
n 2 n n
= i «/ o = i = 0
X i wJ(l) X, 8y we obtain X 1
o . .
Thus Xy = (x) is an nE-}l root of unity.
Corollary 1: If x has degree n over RO’ then xnéRoo
Proof':
Suppose x has degree n, then (—E-J(E-Jsl)n =1,
o(x)?® _ o(x™) . n n
Hence, = === 1, i.eo, o(x") = x  for all 0&Gyo
x be
n
Thus x € R_.

0

Corollary 2: If R is a characteristic O integral domain and D : R > R
a derivation, then D(RO\ =0 =§D(RO) = 0 where R, is the

integral closure of R0 in R,

Proof:

Ne=

x &R . implies x"eR. for some n., Thus D(x") = nx 1D(x) =0

0 ne 0
and nx # 0 implies D(x) = 0.

is an ideal, then we define

VRE= {xeR l xneE }u

Suppose m cRo
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is a radical ideal

(iv) If m is prime, then V-ﬁ m is prime
0
Suppose x¢VRO m , then x eRO = X g‘-m o

Suppose xye& \/E m , then (xy)% m = Gy) % = (x*) (y*Me .
0

t

Ify e'Ro’ then (x snt snt snt

Jem, x>, ¥ €Rys X m.

Thus y tém and yé\/ m s lo€o, -nT is prime.

(v) If m is p-primary, then \/ m is prime.
If m is p-prlmary, then V p and \/ V p is prime.

But \/}T RE{

Ro 0

(vi) If m is an ideal, then V— EnR =
RO 0

Proposition 6: If ceGI, then cv/-ﬁ'0 is an inertial automorphism on 'ﬁ'o o

t t
sn' ) (ysn

Proof:
Let xe-ﬁo, then o(x) = x . X, with x an pil root af unity.
Since 1é.RO, we have xoéﬁ'O and o/-ﬁo is an inertial auto=-

morphism on RO.

e s

T

s



1

Pseudo-inertial subrings of M-rings

Now suppose R is an M-ring, M = {Eﬁ}:=1°

We define rings
Rn'= {x | AM(x) i n},

Notice that Rn is indeed a ring. If x,y& Rn’ ceGI, then
o(x +y) - (x +y) = (o(x) = x) + (oly) - y)em_,
o(xy) = xy = o(x)a(y) = xy = o(x)o(y) - o(x)y + o(x)y = xy =
= o(x)(o(y) - ¥) + (o(x) - x)yem .
Lemma 5: Rn:)mnr; RnoRnH °
Proof':
0 &Gy ==>90(mn)c,mn and xé.mn=)o(x) - x&m .
Rn:)Rn+1 obviously.

Lemma 6: /] R =R..
e ———cc— new n 0
Proof:

Lemma 12,

Lemma 7: If R is a complete M-ring, then Rn is complete.
Proof':
Suppose that {xu}:=1c:Rn is a Cauchy sequence.
Let 0&Gy. Then u,v > u(lﬁ)%xu - X, €My,
thus cr(xu - xx) = c(xu) - c(xv)em.N, since 0&G..
Hence {c(xu)}.u___1 is Cauchy. We have o(x) = limuc(xu).
Select Mo
- , -
Then o(xu)e m (xueRn.):‘;-o(x)e m and xeRno
Thus the result follows,

such that o(x) = c(xu)eaﬁg for all u 2 uge

We shall call the rings Rn pseudo-inertial subrings of Rn.

Suppose R is an M-ring, M = {E;}:=1

groups.

. Let Gn be the pseudo-inertial
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Let R[n]- = {x | o(x) = x VOéGn}o
Then x,y& R[n s o(x +y) = o(x) + Q(y) =x+Yy,
o(xy) = o(x)o(y) = xy. Thus is R[n] a ring.

Lerma 8: R[n] CR [n_H]V.
Proof': ‘

G}.lﬂ 4 Cpe

Lemma 9: If R is a complete M=ring, then R[n] is complete.

Proof: : - ] .

- Suppose that {xu}u=1

- If x = 1lim x and 0eG_, then o(x) = 1lim o(x ) = 1lim x = x
JERY n u U H U

C'R[n] i1s a Cauchy-sequence.
and xeR[n-l° Thus the lemma follows.,

Lemma 10: Suppose R is a.noni.ntegral domain and x is integral over R[m]’
if 0EGC , then X)/x is a root of unity in R.
If x has degree n over R[m] s then U(x)/x is- an rr:t'-}l root
of unity in R,

The proof is exactly the same as the proof of proposition 5.

Corollary 1: If x has degree n over R[ml, then xnéR[m]e

Corollary 2: If R is a characteristic O integral domain and
D : R~ R a derivation, then D(R[m]) =0=>: D(El:m]) =0,
where ﬁ[m:] is the integral closure of R[m] in R,

Corollary 3: Remark (i) - (vi) of the previous section hold for
ideals in R[m]o

Corollary L: If os_Gm, then o | E[m] is an inertial automorphism,

We shall call the rings R[m] pseudo=-inertial subrings of the 2—139- kind.
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