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Introduction 

Subject of this note is the relation between the arithmetico­

geometrical mean and the complete elliptic integral of the first 

kind. 

Let a and b be two positive numbers, let the series {a} and 
n 

{b} be defined by the recurrent relations: 
n 

( 1 ) and b 1 = II' a b ~ n+ n n 

with a0=a, b0=b; 

without loss generality it may be assumed that a~ b. 

As can be easily seen, both series converge to the same limit, 

denoted by M(a,b) and called the aritbmetico-geometrical mean of a 

and b. 

The cqmplete elliptic integral of the first kind is defined as: 

(2) 
TT/2 ( ) J ( 2 . 2 )-; K k = 1-k sin¢ d~. 

0 

In the first section we derive the relation 

(3) 

by aid of a possibly new method, This method is based on potential 

theory and is due to the late prof, B. van der Pol. It may be remark­

ed, that this relation is also a direct consequence of Landen's 

transformation, applied to the left-hand side of (3), 

By aid of (3) we can easily establish the relation between the 

arithmetico-geometrical mean and the complete elliptic integral of 

the first kind, viz. 

Tl 1 0 n/2 
-- = - K(V 1- E.::-))= f 
2M ( a, b) a a 2 O 

(4) ( 2 . 2 2 2 )-; a sin ~+b cos~ d~. 

An import ant consequence of this relation is, that the computat-

ion of the complete elliptic integral of the first kind can be very 

easily performed, since the convergence of the series {a } and {b } 
n n 



2 

is extremely good ( see [2] ) , 
In section 2 we derive by aid of formula (4) the limit expression 

( 5) 4 'TT 
lim M(1,E)ln i = ~. 
E➔O 

Although all results are well-known (see Gauss OJ, and 

Schlesinger [4]), the treatment may be new. 

1. The relation between~ arithroetico-geometrical ~ and the 

complete elliptic integral of the first kind. 

We consider an infinitely thin circular ring, with a uniform 

distribution of mass of unit density and lying in the plane z=O of a 

Cartesian coordinate system (x,y,z). When the radius of the ring 
2 2 2 equals R, the points of the ring lie at the circle x +y =R 

The potential in an arbitrary point P(x,y,z) is an axially symmetric 

function and is given by the formula 

( 1 , 1 ) 

2 2 1 
with r=(x +y )~. 

2'TT 
u(r,z)= f 

0 

In particular, for the potential at points of the plane z=O we obtain 

after some trivial substitutions 

( 1. 2) 
'TT 12 2 2 1 

u(r,0)=4 f {(R+r) -4rRsin ¢}-~d¢. 
0 

The potential in P(x,y,z) may be obtained in an alternative way 

by using the well-known formula: 

'TT 
J f(O,z+ircos¢)d¢ 
0 

valid for axially symmetric harmonic functions (see Whittaker and 

Watson [3] P• 399) • 



3 

Therefore we have also: 

( 1. 3) u(r,z)= 2 f {R2+(z+ircos~) 2}-~ d~ 
0 

Taking the special case z=O, r < R, we obtain 

( 1. 4) 
n/2 2 2 2 1 

u(r,O)= 4 J {R -r cos $}-~d$. 
0 

The results ( 1. 2) and ( 1. 4) are of course identical for r < R, so that 

an interesting identity is obbained. 

By performing the substitutions 

a=R, S=r 1 

a+ S ,--;. a 1= 2 and S1=t a. S, 

we may write this identity in the form: 

( 1. 5) 

Applying the substitutions 

a= R+r , b= R-r, 

a+b ~ a 1= 2 and b1= a.b, 

we obtain a modification of the relation (1.5), namely: 

( 1 • 6) 
n/2 2 2 2 2 1 J (a sin ~+b cos ~)-~d$ 

0 

TT/2 

I ( 2 . 2 2 2 )-~ = a1sin ~+b 1cos, d~. 
0 

From (1.6) it follows immediately 

( 1 • 7) 
TT 12 2 2 2 2 1 TT 12 2 2 2 1 f (a sin ~+b cos ~)-~d$=lim f (a sin $+b2cos $)-~d$. 

0 0 n n 
n-+-00 

It is easily seen that the left-hand side of (1.7) equals 
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1 r-;; 1T a K(V 1- ;.), whereas the right-hand side equals --- and hence 
a 2M(a,b) 

( 1 • 8) 
1 a, b2 n/2 1 ( ) f ( 2 . 2 2 2 ) -2 ---- = - K ,_ - = a Sln IP+b cos cp acp. 
a a2 0 

1T 

2M(a,b) 

2. The limit expression for M(1,e:) 

By aid of formula ( 1.8) we have for any e:, with O < e: < 1, 

1 2 1T 2 2 2 1 
--- = 2 1T f (sin ~+e: cos ~)-2d~ = 
M(1,e:) 0 

1 
= -

1T 

Substituting z=ei~, we obtain 

( 2. 1) 

where the integration should be performed in the positive sense along 

the contour c. C is the unit circle around the origin of the complex 

plane, which has cuts as shown in fig. 1, J""f'+"e' rr:s, 
where ~=V ~ and n=V ~. 

C 

fig 1 

- __ -_n_ _ _ _ o n ___ ---'~- __ _ 

L 
'¥ 2 fig 2 

We deform this contour into the 

contour L, which consists of the 

straight lines 1 1 and 12 , parallel 

to the imaginary axis and inter­

secting the real axis in the points 

z=-(~+n)/2 and z=(~+n)/2 resp. 

This contour is shown in fig. 2. 
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After this deformation we may write instead of (2.1): 

= {
+ioo+f ~ nli:2' 

M( 1 ,E) 

+ioo- ~1 
f 2 · 22 22 1 

\{(z -n )(z -s )}- 2dz = 

+ioo 
= I 

-ioo 

+ioo 
= I 

-ioo 

+ioo 
- I 

-ioo 

\..-ioo+ t;;+n 
2 

{( t;;+n)2 2}-~ z+ - -n 
2 

. t;;+n J 
-100- -2-

{( s+n)2 2}-~ z- - 2- -s dz= 

( t;;+3n)-~ z+-2 
( s-n)-~ z+-

2 
( 3s+n)-~ z+--2 

( s-n)-~ z- - dz 2 

( s+3n)-~ z---2 
( s-n)-~ z--2 

( 3s+n)-; z--2 
(z+ s-n)-~dz 

2 . 

Putting now: 

we obtain: 

s-n £ -= = 2 ✓,-:;z' 

t;;+3n -= 
2 

3t;;+n = 
2 

n/~ 
M( 1 ,£) 

2-£ 

~ 

2+£ 

~ 

+ioo 
= I 

-100 

Y, 

= a, 

= B, 

+ioo 
- [ ( 2 2)_12 _1( )-~ z -y (z-a) 2 z-S dz = 

-100 

For small values of£ we have a= B + 0(£) and so we may write 
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~ +oo 
,r v' 1-e: 2 f { ( i· Y shu+"' ) -1 ( . ) -1 } ( ) M(1,E) = _oo ~ - J.Y shu-a du+r e: , 

with r(e:) + 0 for E + Oo 

Completing the reduction we obtain finally, 

or 

(2.2) 
1T 4 

-2-H-(-,-,-E ..... ) = ln-;; + r 1(e:), where r 1(e:) + O fore:+ O. 

Hence we arrive at the desired result: 

(2.3) 4 1T 
lim M(1 ,e:) ln - = - • 

E 2 
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