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*) Hopf bifurcation for Volterra convolution equations 

by 

0. Diekmann & S.A. van Gils 

ABSTRACT 

In this paper we discuss Hopf bifurcation for nonlinear Volterra integral equa

tions of convolution type. Starting point is a semiflow associated with the equa

tion and acting on a space of compactly supported forcing functions. 
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I . INTRODUCTION 

Mathematical models from population dynamics and epidemiology often lead to 

(systems of) integral equations of the type 

I 

x(t) = f B(T)g(x(t-T))dT. 

0 

See, for instance, [I,2,4,5,8,10]. 

In general, one first looks for constant solutions. In the hyperbolic case the 

stability character of such a constant solution can be deduced from the linearized 

equation and therefore from the position of the roots of a characteristic equation 

in-the complex plane. Frequently, g and/or B depend on parameters (describing the 

biological population or external conditions) and roots of the characteristic equa

tion cross the imaginary axis when such parameters are varied [2,4, JO]. When a pair 

of conjugated roots crosses the imaginary axis, one expects to find the bifurcation 

of periodic solutions [2,3,5,6,7]. 

In the following we shall giye a standard dynamical description of this so 

called Hopf bifurcation starting from a somewhat unusual semigroup construction. It 

will appear that, by choosing a space of forcing functions as the state space, cer

tain technical difficulties are avoided (which could arise because we deal with in

tegral equations and not with integro-differential equation3). We use a variation

of-constants formula to construct a center manifold. On this finite dimensional 

manifold the flow is governed by an o.d.e. and so we are at familiar grounds. The 

intimate relation between the direction of bifurcation and stability has motivated 

us to derive a formula for the direction in terms of computable quantities. Complete 

proofs will be published elsewhere [3]. 

2. PRELIMINARIES 

In the following let n be an open subset of lR and le.t B 

of n x lR+ into lRnxn such that: 

supp(B) is contained inn x [O,I], 

( ) L2(lR nxn) foreachµES1,Bµ,• E +;lR , 

B(µ,T) be a mapping 



2 

HB(iii) the mappingµ 1+ Jg B(µ,,)d,, cr E [0,1] is 
nxn 

k 
a C -smooth (k:?:1) mapping of n in-

to NBV([0, I]; lR ) • 

Furthermore, let g E Ck(Qx]Rn ;lRn) be such that 

H (i) g(µ,x) 
g 

= x + r(µ,x), 

H (ii) r(µ,0) = 
g 

0, r (µ,O) = 0 and jr (µ,x) I ~ M < 00 • 
X X 

The condition on g guarantees that x = 0 is a solution of 

(2. I) 

I 

x(t) = f B(µ,,)g(µ,x(t-,))d,. 

0 

In the linear case, i.e. g(µ,x) = x, the mapping t 1+ eAt is a solution if and only 

if A is a zero of det 6(µ,A), where 6 is the characteristic function 

(2.2) 6(µ,A) 

I 

I - f e-A, B(µ,,)d,. 

0 

We assume that det 6(µ0 ,±iw) = 0 for some µ0 En and w > 0. In terms of the charac

teristic function we express in HB(iv) a criterion for simple eigenvalues, in HB(v) 

a non-resonance condition and in HB(vi) a transversality condition (see section 5). 

HB(iv) There exist a column n-vector p # 0 and a row n-vector q # 0 such that 

(a.) Mµ ,iw)v 0 implies V = cp for some C E (J;, 
0 

(8) w6(µ ,iw) 0 implies w cq for some C E a:, 
(y) 

a o . 
q ii 6(µ 0 ,iw)p = I. 

HB(v) det 6(µ ,O) # 0 and det 6(µ ,±fu) I O for l 2, 3, .•• . 
a o . 0 

HB(vi) q a 6(µ ,iw)p / 0. µ 0 

3. DEFINITION OF THE SEMIGROUP 

Following Miller [9] we define below the action of a semigroup on forcing func

tions by means of translations of the solution. Since the kernel B has bounded sup

port we can choose as our state space 

X = {f E C(lR+ ;lRn) I f(t) 

II fli = 
X 

sup 
[0, I J 

If Ct) I 

0, t:?: I}, 

which is, in some sense, as small as possible. This is an important point which re

flects that we want to study an autonomous problem. We define, for s:?: O, S(s)f by 

the relation 

t 

xs(t) = J B(µ,,)g(µ,xs(t-,))d, + S(s)f(t). 

0 

Here x (t) = x(s+t), t:?: 0. Note that S(s)f is indeed an element of X and that there 
s 

is an obvious way to return from the forcing data into ]Rn, the solution space: 



x(s) a (S (s) f), where a 1s the bounded linear operator of X into JRn defined by 

a(f) f(O). 

THEOREM 3.1. The mappings 1-+ S(s)f defines a strongly continuous semigroup of con

tinuous (nonlinear) operators on X. 

3 

In the linear case (g(µ,x) = x) the above semigroup consists of bounded linear 

operators and will be denoted by {T(s)}. 

THEOREM 3.2. The infinitesimal generator A of {T(s)} is characterized by 

2 
V(A) = {f E X I f' E L & f' (·) + B(µ, •)a,(f) E X}, 

( Af) ( t) = f ' ( t) + B ( µ , t) a: ( f) . 

The closed operator A has compact resolvent and 

a(A) p (A) 
CT 

O}. 

The last identity is a consequence of the fact that elements of X have bounded sup

port. On account of HB(iv) a (finite'.) number of eigenvalues of A are on the imag

inary axis atµ= µ0 . We decompose the state space X into X m X0 m X+; the cor

responding projection operators are P ,P and P . Both X and X are finite dimen-
- 0 + 0 + 

sional spaces. On these subspaces T(s) can be extended to a (differentiable) group. 

X (X) consists of those elements that decay under T(s) at µ0 exponentially with ex-
+ -

ponent y - E (y +E) ass+ - 00 (s • oo). Here 
+ -

y = inf{A E a(A) IRe(A) > O}, y = sup{A E a(A) JRe(A) < O} and E 1s some small posi
+ 

tive number; y+ # 0, y_ # 0. X0 consists of thos~ elements of X that are exponential-

ly bounded under T(s) at µ0 for s E :R with exponent E. 

4. THE VARIATION-OF-CONSTANTS FORMULA 

For fixedµ, T(s)f is the Fr€chet derivative. of S(s)f at f 

from the variation-of-constants formula 

( 4. I) 

s 

S(s)f = T(s)f + f T(s-T)B(µ,•)r(µ,a:(S(T)f))dT. 

0 

0. This follows 

Here we use that T(s) extends to L2-functions and that the integration with respect 

to T produces a continuous function again. Let us denote S(s)f by F(s) and Tatµ 
0 

by T Formal differentiation of (3.1) yields 
0 

dF(s) 
<ls- A F ( s) + B ( µ , •) r (µ,a: (F ( s) ) ) . 

]J 
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Using Theorem 3.2 we infer that 

d:(s) = A F(s)+(B(µ,•)-B(µ ,•))g(µ,a(F(s)))+B(µ ,•)r(µ,a(F(s))). 
s µ 0 o o 

Integrating again we find 

(4 .2) F (s) 

s 

= T (s-cr)F(cr) + JT (s-T){(B(µ,•)-B(µ ,•))g(µ,a(F(T))) + 
0 0 0 

a 
B(µ ,•)r(µ,a(F(T)))}dT. 

0 

This motivates 

n THEOREM 4.1. Let a E :JR and F(a) EX be given. Let x: [cr, 00 ) + :JR denote the unique 

solution of 

(4 .3) X a 
B(µ, •) * g(µ,x ) + F(cr). 

a 

Define F: [cr, 00 ) + X by 

x = B(µ, •) * g(µ,x ) + F(s). 
s s 

Then F satisfies (4.2). Conversely if F: [cr, 00 ) +Xis a continuous function which 

satisfies (4.2) then x(s) = a(F(s)) satisfies (4.3). 

5. THE CENTER MANIFOLD 

We are interested in small solutions of equatio~ (2.1) and therefore it is ap

propriate to study solutions of the modified equation 

I 

(5. I) x(t) f 
0 
I 

f 
0 

B(µ ,T)x(t-T)dT + 
0 

{ (B ( µ , T-)-B (µ, T)) g ( µ, X ( t-T) )-+:B (µ , T); (µ, x( t-T)) }d T, 
0 0 

where g and rare obtained from g and r by truncation outside a suitably small ball. 
~ 

Equally well we may look for solutions of (4.2) which is (4.2) with g and r replaced 

by the truncated functions. 

THEOREM 5. I. Fix n in the interval (O,min{-y ,Y }) • There exist a neighbourhood n 
- + 0 

ofµ 
0 

(i) 

in n and a continuous function C of r1 0 x X0 into X such that 
* * ,..__ C(µ,$) = F (µ,$)(0) where F (µ,$)(s) is the unique solution of (4.2) such that 

* (a) PF (µ,$)(0) = $, 

(B) s~p e-nlsl ttF*(µ,$)(s)ttX < 00 , 

SER 
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(ii) a(F*(µ,cf>)), which is the corresponding solution of (5.1) is ck-smooth with re

* spect to (µ,cf>). We will denote this solution by x (µ,cf>). 

(iii) 

(iv) 

F*(µ,cf>)(s) = C(P (F*(µ,cf>)(s))), the invariance property, 
0 

ImC is tangent to X at zero forµ=µ, i.e. ~: (µ ,O)~ = ~-o O 0~ 0 

REMARK. HB(iii) includes situations where the delay is the parameter. This hypothesis 

is too weak to guarantee the differentiability of the solution F* in the state space, 

but fortunately the solution in :m.n ,x*, is differentiable. 

6. HOPF BIFURCATION 

All small periodic solutions (that exist for all time~) lie on the center mani

fold. The flow on this finite dimensional manifold is governed by an o.d.e. Define 

* y(s) =PF (µ,cf>)(s), then locally near zero we find 
0 

(6. I) dy = Ay(s) + P {(B(µ,•)-B(µ ,•))g(µ,a.C(µ,y(s))) + 
ds o o 

B ( µ , • )r ( µ, a.C ( µ, y ( s)) ) } . 
0 

It is known [3] that HB(iv)-(vi) represent a criterion for simple eigenvalues, satis

fying a non-resonance and a transversality condition respectively. 

h h . I • * * *< ) . h TIIEOREM 6.1. Assume k ~ 2. Tent ere ex~st C funct~ons µ (E),cf> (E),p E (w~t 

values in n,x and :m. respectively and defined for E sufficiently small) such that 
* o * -I * * * * * * µ (0) =µ -::indp (0) = 2nw and such thatx (µ (E),cf> (E)) =a.C(µ (E),PF (µ (E), 

0 - 0 

4>*(E))(•)) is a p*(E)-periodic sol~tion of the equation (2.1) withµ= µ*(E). More-

over, if xis any small periodic solution of this equation withµ close toµ and 
0 

period close to 2nw-l thenµ= µ*(E), the period is ~*~E) and modulo translation 
* * * * * . x = x (µ (E),cf> (E)); µ and p are even funct~ons of E and 

x*(µ*(E),4>*(-E))(t) = x*(µ*(E),cf>*(E))(t+!p*(E)). 

If we assume some more smoothness, i.e. k ~ 3, we are able to derive a Taylor 

expansion up to and including order two. Generically the expression below will not 

vanish and so determines the direction of bifurcation. 

TIIEOREM 6 • 2 • Assume k ~ 3, then 

* Re cl 2 2 
µ (E) = --------- E + 0 (E ) , 

Re q ~ ti(µ ,iw)p 
oµ 0 

where 
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a3r 2 -
c I = fq -3 ( µ '0) ( p 'p) + 

ax O 

a2r I q - (µ ,0) (p, (ti(µ ,0)- -I) 
ax2 0 0 

2 a r --2 (µ ,0)(p,p)) + 
ax O 

a2r - -I !q - - (µ ,0) (p, (LI(µ , 2iw) -I) 
ax2 0 0 

a2r 2 
-2 (µ ,0)p ) . 
ax O 

Finally we state that the Principle of Exchange of Stability holds also in this case. 

THEOREM 6. 3. Assume k ;?: 3 and assume in addition that at µ = µ 0 

(i) X+ = {0}, 

(ii) -q _aa ti(µ , iw) p > o, 
µ 0 

(iii) ±iw are the only eigenvalues on the imaginary axis, 

(iv) Re c 1 :/= 0. 

Then the bifurcating periodic solution is asymptotically orbitally stable with asymp

totic phase if and only ifµ*(£) > 0 for small£> 0. 
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