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ABSTRACT. An iterative stochastic approximation to the maximum likelihood estimate is 
developed for the Strauss point process. We modify existing theorems to show that the 
approximation is consistent and asymptotically normal. It performs well in numerical tests. 
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1. Introduction 

Parameter estimation for two-dimensional point pattern data is difficult, because most of the 
available stochastic models have intractable likelihoods (see Ripley, 1977; 1988 & Diggle, 
1983). An exception is the class of Gibbs or Markov point processes (Ripley & Kelly, 1977; 
Baddeley & Meller, 1989; Ripley, 1989), where the likelihood f(x; 8) typically forms an 
exponential family and is given explicitly up to a normalising constant cx(O). However, the 
latter is not known analytically, so parameter estimates must be based on approximations 
(Ogata & Tanemura, 1984; Penttinen, 1984; Diggle & Gratton, 1984; Ripley, 1988). 

In this paper we present a simple recursive approximation to the MLE ff, based on the 
Robbins-Monro stochastic approximation method. Estimates 8k are updated by comparing 
the observed value of a sufficient statistic S = s(X) with a random value simulated from the 
distribution specified by 8k: 

A 
8k + 1 = 8k + k (s(x) - s(Xk)) 

where x is the data and Xk is one simulated observation from f( · ; 8k)· Existing theorems 
(Hall & Heyde, 1980) can be modified to show Ok is consistent and asymptotically normal (as 
an approximation to ff). 

We use a very simple point process model, the Strauss process, to illustrate and test the 
method. Many other techniques are available for this case (see section 2) but we believe our 
method could be applied to complex models where the others cannot. The aim of the present 
paper is just to demonstrate that the Robbins-Monro method works in this simple case, and 
to assess its performance. 

The next section gives some background details about the point process setting and 
previous work in the area. Section 3 studies the maximum likelihood estimator for the 
Strauss model, with a numerical example. Section 4 recalls existing theorems for the 
Robbins- Monro stochastic approximation method. Section 5 adapts them to our setting and 
gives a numerical example. Section 6 ends with some discussion. 

2. Background 

Assume we have observed a pattern of points x = {x1, ••• , Xn} in a planar window W. In 
principle n is random. A pairwise interaction process is a stochastic model for x with density 

f(x; 0) = a(8) TI b(x;; 0) TI c(x1, xi; 8) (I) 
i<J 
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where 9 is the parameter vector, b and c are nonnegative functions, and a is the normalising 
constant. Formally/(·; 9) is the Radon-Nikodym density of the distribution of x with 
respect to the distribution of a Poisson point process 7t of intensity 1 (say) in W. 
Alternatively, for each fixed n, equation ( 1) gives the joint probability density of then points 
xI> ... , xn up to a constant factor e-wwn/n!, where w = area(W). 

A simple example is the Strauss process with parameter (} = (p, y), in which b( · ; ') = p 
and 

where the "interaction distance" r > 0 is assumed to be fixed and known. This model has 
density 

f(x; p, y) = a(/3, y)pn<x>ys<x>, p > 0, 0 ~ y ~ 1, (2) 

(taking o0 = 1) where n(x) = n is the number of points in x, s(x) is the number of distinct 
pairs x;, xi with llx; - xiii< r, and again a(/3, y) is the normalising constant. 

The parameter y represents interaction between points, with y = 1 corresponding to a 
Poisson process (no interaction) and y = 0 giving a so-called "hard core" process in which 
no pair of points can come closer than distance r. Parameter P in (2) varies the point 
intensity, e.g. if y = 1 then the process is a Poisson process with intensity p. For further 
information see Kelly & Ripley (1976), Ripley (1981, 1988), Diggle (1983) and Baddeley & 
M0ller ( 1989). 

A numerical approximation to the MLE for some pairwise interaction models was 
developed by Ogata & Tanemura ( 1984), who approximated Z(8) = a(e)- 1 analytically using 
virial expansions. However, the approximation is accurate only for sparse patterns. 

The pseudo-likelihood estimator (Besag, 1977) could also be regarded as an analytic 
approximation to the MLE, and would generally be a good approximation (Ripley, 1988). 

Monte Carlo techniques have also been suggested. Numerical estimates of Z(ll) can easily 
be formed for all ll by extensive simulations of the reference process only (or the process with 
some fixed parameter value 80 ). This would be computationally very expensive, and in 
practice cannot be performed "before" the data analysis because of its dependence on other 
parameters such as the geometry of the sampling window and the number of observed points. 

Penttinen (1984) suggested solving the ML equation a 1ogf(x; ll)/all = 0 by Newton
Raphson iteration, after estimating the mean and mean derivative of the efficient score by 
simulation. When an approximate 9 is obtained, further simulations using this parameter 
value are used to refine e itself and to estimate its variance. 

Diggle & Gratton (1984) advocated Monte Carlo parameter estimation by matching some 
chosen characteristic of the pattern, such as its reduced second-moment cumulative function 
K(t), against the K function of the model, as evaluated through simulation. An iterative 
optimization technique is used to find a value of 8 minimising (typically) the sum of squared 
deviations between the K functions of data and (simulated) model. The choice of K is 
appropriate because K(r) ~ (w/n 2)E[s(X)] ignoring edge effects. 

3. MLE for the conditional Strauss model 

In this paper we consider the very simple Strauss model (2) and further simplify it by 
conditioning on the observed number of points n(x) = n. We condition on n for simplicity in 
the analysis of the Robbins-Monro method, and because it is easy to generate simulations 
with fixed n by the discrete-time Markov chain method of Ripley ( 1979, 1987). The 
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conditional model has density 

y-«xJ 
f,,(x; y) = ZnM' 0 < 1' ~ 1 (3) 

with respect to the binomial process (n i.i.d. uniform random points in W). The case 1' = 0 
is examined separately below. Here Zn(1') is the normalising constant, and s(x) the number 
of pairs of distinct points closer than r units. The density ( 3) can be extended to 1' > l which 
would correspond to a positive "clustering" of points. However, the unconditional model (2) 
is not integrable for 1' > 1, so (3) could not be described as the "conditional" model with 
respect to (2). It will sometimes be convenient to allow 1' > 1. 

Clearly S = s(X) is sufficient for y, and has distribution 

k 

P. {S = k} =Pnkl' k 0 1 ~ Zn(y)' = ' ' ... (4) 

where Pnk = p<nJ{s(X) = k} is the distribution of s(X) for a binomial process of n points. This 
is an exponential family of discrete distributions, the only complication being that the 
reference distribution {pnk, k = 0, 1, ... } is not known analytically. A Poisson approximation 
to {Pnk} is accurate when the data are sparse, i.e. when mrr 2/w is small, see Ripley (1988). 
However, this approximation is poor in cases of real interest. 

The normalising constant in (3), (4) is 

m 

- " k - L.. Pnkl' (5) 
k-0 

where E<"'[ ·] is expectation with respect to the binomial process, and m = n(n - 1)/2. 
In principle, we could compute the likelihood by estimating {pnk } from extensive simula

tions of a binomial process, and calculating (4) for all values of y. Equivalently, we could 
estimate ( 5) directly as the empirical probability generating function of s(X). However, Pn0 
is typically close to zero, so if 1' is small then both numerator and denominator of ( 4) are 
quite small and the simulation variance will be quite high. For small y it would be better to 
estimate pnk(I') =PY {S = k} using 

(fo)k Pnk(l'o) 

Pnk(I') = / 
f (.!.) P nho) 

l=O 1'o 

(6) 

for a reference value 1'o that is close to y. Similar problems were noted by Penttinen ( 1984). 
A further complication is that when 1' = 0 the conditional model in the form (3), ( 4) may 

be undefined. This occurs when Pno = 0, i.e. when it is impossible (ignoring configurations of 
measure zero) to place n points { X;} in the window W with jjx; - x, II > r for all i =f. j, or 
equivalently, to place n discs of radius r/2 with centres in Wand without overlap. If W is 
convex, a sufficient condition for this to occur is nnr2/4 >area( W) + r length(B W) + nr2• 

Let K be the minimum achievable value of s(X): 

K = min{k: Pnk > O}. (7) 

Then the limit as 1' -+ 0 of the Strauss conditional density ( 3) is 

f,( ·O )={l/Pnx ifs(x)=K 
n X, + 0 l e se 

(8) 
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We henceforth use this distribution in place of ( 4) when y = 0. The corresponding limit 
distribution of s(X) is degenerate, P{s(X) = K} = 1. 

Now consider maximum likelihood estimation of JI. Since 1' is confined to [O, I] the 
maximum is attained either at y = 0, y = 1 or at a zero of the derivative off For the latter 
we have the usual ML estimating equations 

s(x) - E1 [s(X)] = 0 (9) 

where x is the observed point pattern, and the expectation is with respect to ( 4). Equivalently 

M(y) = s(x) 

where 

d log Zn(y) 
M(y) = E1[s(X)J = y <ft 

From (II) and (5) 

m 

, L: kp""yk 
M(y) = yZn(y) =-k=--'o __ 

ZnM ~ k 
L, Pl1k'Y 

k=O 

so that M(O +) = K. Also M is infinitely differentiable with 

Z Z' + yZ Z" - y(Z') 2 
M'(y) = n n n 2 n n 

z. 
and in particular M'(O +) = Pn, K+ 1/PnK· 

Clearly s(X) is a minimum variance bound estimator of M(y), and for y > 0 

Var1[s(X)] = yM'(y) 

(10) 

(11) 

(12) 

(13) 

(14) 

where the subscript y again means variance with respect to the distribution ( 4). This variance 
is nonzero for y > 0, so 

M'(y) > 0, 0<y~1; ( 15) 

so M(y) is an increasing continuous function, and (I 0) has a unique solution for 
K~s(x) ~M(l). Note that M(I) =E<•>(s(X)) <m =n(n -1)/2 and there is no solution to 
(10) for s(x) > M(l). 

Thus 

if s(x) =K 

if K < s(x) < M( I) 

if s(x) ~ M( 1) 

( 16) 

and y is otherwise undefined. This is.the MLE for the parameter space [O, l]; if we allow 
y > 1 then y is the solution of ( 10) for all s(x) > K. 

To visualize the degree of difficulty in solving ( 10), Fig. 1 shows estimates of M(y), M'(y) 

and Var7[s(x)] obtained by extensive simulation. The window W was the unit square. We 
simulated 104 realizations of Strauss processes with n = 25 points, r = 0.15 and y0 = 0.001, 
0.1, 0.25, 0.5 and l. The distribution {p.k('l')} of s(X) at intermediate values of y was 
obtained by extrapolation using ( 6). The value of K was found to be 0. The mean and 
variance of this distribution were then computed, giving M(y) and Var1[s(x)], and M'(y) was 
obtained from ( 14). 
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(c) 
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Fig. J. Plots of (a) M(y); (b) M'(y); (c) Vary[s(x)] against y, obtained through equation (6) by 
simulating from Strauss processes with y0 =0.00I, 0.1, 0.25, 0.5, 1 in a unit square with n =25 and 
r = 0.15. Dotted line in each graph shows the Poisson approximation. 

We expect M(y) to be approximately linear in 1' whenever the Poisson approximation holds 
good, since if {p.k} were Poisson(J.) we would have z.(y) = exp(J.(y - I)) and 
M(y) = y(d log z. /dy) = J.y. Under the sparse approximation J. = n(n - l)nr 2/(2 area( W)) 
and this approximation is plotted in Fig. 1. 

4. Robbins-Monro procedure 

The stochastic approximation procedure introduced by Robbins and Monro ( 1951) can be 
used to estimate the solution 8* of an equation 

F(IJ*) = </J 

when there is very little information about the function F but where it is possible for any 
given 8 to generate a random variable T8 with expectation E(T8 ) = F(8). The original 
application was to find the 50% survival probability point of a dose-response curve. For a 
recent survey see Dupac (1984). 

The R-M procedure generates a sequence of estimates Ok, k = l, 2, ... by 

(17) 
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where {ak} is a decreasing sequence of positive numbers such that 

and T0., k = l, 2, . . . are independent random variables generated according to some 
parametric family of distributions {Po: e EI} such that E(Tok) = F(Ok)-

Following is a simplified list of regularity conditions on F condensed from Hall & Heyde 
(1980) and Nevel'son & Has'minskii (1976): 

(Ml) Fis a Borel-measurable function; F(O*) = <P and 

(0 - O*)(F(O) -</J) > 0 VO ;6 8*, () E /. 

(M2) For some positive constants K 1 and K2 , and for all e 

(M3) SUPoei Var[T0] < oo. 

(M4) Fis differentiable at 8* and F'(O*) > 0. 

(M5) For some ti > 0 

sup El T0 - F(O)l2 + ~ < oo. 
Oel 

(M6) Var[T0 ] is a continuous function of 0, at least at e = O*. 

It can be shown (see Hall & Heyde, 1980, p. 239) that under (Ml)-(M3), 

Ok--.()* (a.s.) 

In the special case 

ak = A/k, 

under conditions (Ml)-(M6) we have 

k 112(0 - 8*) -.N 0 a ( A1 2 ) 

k '2Aµ - I 

in distribution, assuming the constant A satisfies 

I 
A>-

2µ 

where 

µ = F'(O *), a 2 = Var[T0.]. 

( 18) 

( 19) 

(20) 

(21) 

(22) 

It is apparent from (20) that A0 P, = 1/µ is the value of A that minimizes the asymptotic 
variance of the normed R-M sequence k 112(8k - 8*); the minimal asymptotic variance being 
a2/µ2. 

In the case where e is known to lie in a bounded open interval I = (r 1, r2), the algorithm 
is modified to a clipped version 

(23) 
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where 

One can see from Nevel'son & Has'minskil (1976, pp. 161-169) that the same limit results 

( 18) and (20) hold with (M2) replaced by 

(M2') F(8) is bounded for (J e I. 

5. The method 

Returning to the conditional Strauss process model (3), our objective is to solve for y in 

M(Y) = s(x), 

where x is the observed data and M(y) = Eys(X). This is an ideal application of the 

Robbins-Monro method since for any given y we are able to generate a random variable Tr 

with expectation M(y) by simulating a Strauss process Xr with parameter y and setting 

TY= s(Xr). The simulation is performed by running a birth-and-death process (Ripley, 

1977, 1979; Baddeley & M01Ier, 1989) long enough to approach equilibrium. 

Proposition 
Suppose x is an observed realization of a conditional Strauss process ( 3). Let y0 E ( 0, 1] be 

arbitrary. Recursively form a sequence of estimates of y by 

where xy is a random point pattern simulated from f,,(.; y). 

Then Yk ->y (a.s.). De.fining µ = M'(y) and a 2 = Var9[s(X)), if A > 1/(2µ) then Yk is 

asymptotically normally distributed with mean j and variance A 2u 2/(2Aµ - 1). 

Proof We apply the results of section 4 with 0, 8*, F(8), <P and T8 replaced by y, j, M(y), 

s(x) and s(Xr) respectively. Condition (Ml) clearly holds since M(y) is a monotone 

increasing function by (15). Conditiops (M2'), (M3) and (M5) are all implied by the 

boundedness of T8 = s(x) :s;; m. Next (M4) is implied by the fact that M'(y) > 0 for all 

y E [O, l] acccording to ( 15). Condition (M6) follows from the continuity of 

yM'(y) = Var1 [s(X)]. Hence (Ml)-(M6) hold, and we may apply the clipped version of the 

R-M procedure. 0 
As a numerical example, Fig. 2( a) shows a simulated realization of a Strauss process having 

25 points in a unit square with r = 0.15 and y = 0.1. In this case s(x) = 4 and this is indicated 

in the figure by lines joining the pairs of points which are neighbours. An accurate value of 

the MLE is j = 0.099, obtained from the exhaustive simulations described in section 3. 

Figures 2(b) and 2(c) show typical runs of the algorithm with A = I and A = A0 P1 = 
l/M'(f) = 0.04 respectively. As expected, variability is much reduced when A0 P, is used. The 

theoretical asymptotic standard errors of Yk were 0.23/Jk and 0.06/Jk respectively. Sample 

fluctuations of the Yk sequence die down much more rapidly in the optimal case, at roughly 

the rate suggested by the ratio of asymptotic variances µ 2/(2µ - I) = 0.2Y/0.062 = 14.7. 

Similar results were obtained with other values of n, r and s(x). 
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Fig. 2. (a) Simulated realization of a Strauss process, 25 points in the unit square with r = 0.15 and 
y = 0.1. (b) Sequential plot of the R-M estimate of y for the simulated data in Fig. 2(a) with s(x) = 4 
and A =I. Dotted line shows the MLE of y = 0.099. (c) As in (b) with A = Aopt = 0.04. 

6. Conclusions and discussion 

The use of the optimal rate constant in the R-M method can dramatically improve 
performance. Note that the larger the value ofµ, the greater this improvement. 

The starting value 1'o is arbitrary, but should be set to an initial approximation such as that 
holding in the sparse case (i.e. derived from the Poisson approximation to {p"" }, Ripley 
1988) 

2s(x) area(W) 
1' -o- n(n - l)nr2 • 

This approximation should also be used to provide initial values of µ and cr 2 for choosing 
the value of A and estimating the asymptotic variance of 1'k· Thus A0 P1 would be estimated 
as 

2 area(W) 
n(n - l)nr2 • 

It is also possible to obtain consistent estimates ofµ and cr 2 during the R-M iteration step, 
using the simulated data; see Dupac ( 1984). This would allow us to adjust A dynamically to 
its optimal value, and to estimate the standard error of 1'k consistently. This would probably 
turn out to be cheaper than Penttinen's (1984) method, where one is required to simulate 
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from the Strauss process to get estimates of the mean and mean derivative of the efficient 
score for every update of the parameter. 

However, the number of iterations of the R-M procedure can be decided in advance. The 
variance of y itself is approximately 

y2 
Var(y) =---

Vary[s(x)] 

using the delta method (note that we are not in a position to apply usual asymptotic results 
for MLE's). Our results give for the optimal A 

y2 
Var opt(Yk) = k Varr[s(x)J' 

so that after k iterations (with the optimal parameter settings) the variance due to stochastic 
approximation is approximately a fraction l/(k + 1) of the total variance of estimation. 
Twenty iterations would often suffice. 

A remaining problem with the R-M procedure (and all simulation-based procedures) is 
that, for a stochastic model which can only be simulated and not treated analytically, it is not 
possible to identify the regions of the sample space that correspond to values of the 
maximum likelihood estimate lying on the boundary of the parameter space. In our case, the 
values Kand M(J) in (16) are not known analytically, and would have to be estimated by 
simulation. 

This is not a serious problem for the upper limit M( 1), since we may run simulations of 
the conditional model for y > I, and simply allow Yk to exceed 1, instead of clipping to [O, I]. 
A final value of Yk greater then I indicates y = I for the parameter space [O, I]. If Yk is much 
greater than 1, the practical interpretation might be that r is too large, or that the model ( 3) 
is wrong. 

However, if the lower limit K is positive, and the R-M process gives Yk = 0 for some k, 
then the standard birth-and-death process simulations (see Ripley 1977, 1979 and Baddeley 
& M011er, 1989) will go into an infinite loop because they use the rejection method in a 
situation where the success probability is zero. In case W is convex, a sufficient condition for 
K > 0 is that nnr2/4 > area(W) + r length(aW) + nr 2, but there are marginal values of r 
below this limit where K > 0 still. One response would be to set an upper limit to the number 
of rejections that would be allowed during the birth of a new point in the spatial 
birth-and-death process simulations. When this limit is exceeded, Yk may be put slightly 
above zero and one can then continue with the iterations. This would be in the style of (24) 
but we have not yet investigated it. An alternative would be to recast the entire estimation 
problem in terms of C =log y thereby avoiding simulations of the hard core process. 

Another unanswered question about the simulations is whether the Jong (theoretically 
infinite) time required for running a spatial birth-and-death process to equilibrium could be 
avoided by using shorter runs. This would introduce bias at each step, and dependence 
between steps if the birth/death simulations of XY• started with XY• .. , as the initial state. 

We have also ignored important questions (raised e.g. by Ripley, 1988) about the 
desirability of maximum likelihood estimators, the applicability of Markov point process 
models to real data, and the role of edge effects, since these do not bear on the technique 
itself. 
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