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DECOMPOSABLE FORM EQUATIONS 

J.-H. Evertse and K. Gyory1 

Let F(:f..) = F(xi, ... , Xm) be a form (homogeneous polynomial) in 
m :2:: 2 variables with coefficients in Z. Suppose that F is decomposable 
(that is that F factorizes into linear factors over the field Q of algebraic 
numbers). Form= 2 every form is decomposable, but form> 2 this is 
not always the case. Let b E 1 \ { 0} and consider the decomposable form 
equation 

F(;z;_) = F(x1, ... ,xm) = b (1) 

in ;z;_ = (xi, ... , Xm) E Rm where R is a subring of Q finitely generated 
over Z. Equations of this type are of basic importance in the theory of 
Diophantine equations and have many applications to algebraic number 
theory. Important classes of such equations are Thue equation.,, when 
m = 2, norm form equation8, di.,criminant form equation" and index 

form equations. In the last twenty years much progress has been made in 
the study of decomposable form equations. By means of the Thue-Siegel
Roth-Schmidt method general finiteness criteria have been established 
which guarantee, under the most general conditions possible for F and 
R, the finiteness of the numbers of solutions for every b. These criteria do 
not provide, however, any procedure to solve the equations in question 
or decide the solvability and hence are ineffective. Effective finiteness 
theorems have been obtained for a restricted class of decomposable form 
equations, including Thue equations, discriminant form equations, index 
form equations and a class of norm form equations. By using Baker's 
method concerning linear forms in logarithms of algebraic numbers, ex
plicit upper bounds have been derived for the absolute values (heights) 
of the solutions. These bounds make it possible, at least in principle, to 
determine all solutions. Finally, for the restricted class of decomposable 
form equations mentioned above, explicit upper bounds have been given 
for the numbers of solutions which are independent of the coefficients of 
the decomposable forms involved. The most important theorems have 
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been generalized to the case that the ground ring ( cf. § 1) is an arbitrary 
finitely generated integral domain over Z, and analogous results have 
been established over function fields. It turns out that the theory of 
decomposable form equations is in fact equivalent to the theory of unit 
equations (see [15], and [16] in this volume) and this close connection has 
proved very useful for decomposable form equations. The most general 
ineffective and effective finiteness results concerning decomposable form 
equations have been obtained via unit equations. 

In §1, we shall give a historical survey on the advances in the study 
of decomposable form equations and their applications. We shall state 
results only over finitely generated subrings of Q and indicate exten
sions to the case of more general ground rings finitely generated over Z. 
Results over function fields will be discussed in Mason's paper in this 
volume. For the methods which have been used, related results, further 
applications and references we refer to [62], [10], [7], [4], [56], [28], [33), 
[67], [44], [58], [16]. 

In §2, two new results, Theorems 1' and 2', will be presented. The
orem 1' is an effective finiteness result for a wide class of decompos
able form equations over finitely generated subrings of algebraic number 
fields. Theorem 2' provides, for the same class of equations, an explicit 
upper bound for the numbers of solutions which is independent of the 
coefficients of the decomposable forms involved. Theorems I' and 2' are 
extensions of the previous results to a slightly larger class of equations. 
The proofs of Theorems 1' and 21 are given in §3. 

§1. Historical Survey 

In this section, we first give a brief survey of results obtained for 
decomposable form equations in two unknowns (Thue equations), and 
then discuss to what extent these results have been generalized to norm 
form equations, discriminant form and index form equations and in gen
eral to decomposable form equations in more than two unknowns. In the 
sequel, Ci, C2, ... will denote effectively computable positive numbers 
which depend only on appropriate parameters of the equations under 
consideration. Unless otherwise stated, explicit expressions for these 
numbers have been given in the papers to which we shall refer. 
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Thue equations 

Consider the equation 
F(x1,x2)=b 

177 

(2) 

in x1,x2 E Z where FE Z[Xi,X2] is a binary form and b E Z\{O}. If 
n = deg(F) :::; 2, (2) may have infinitely many solutions and all these 
can be described. In 1909 Thue [70] proved the following. 

Theorem A (Thue [70]). If F E Z[X1, X2] is an irreducible binary form 
of degree n ~ 3 then (2) has only finitely many solutions in x1, x 2 E Z. 

After Thue, equations of this type are named Thue equations. It is 
easy to see that in Thue's theorem the "irreducibility" condition can be 
replaced by the weaker assumption that F is not a constant multiple of a 
linear form or of an irreducible quadratic form with positive discriminant. 

Thue deduced his finiteness result from his approximation theorem. 
Theorem A was later improved and generalized by several authors. Siegel 
[60] gave a general finiteness criterion for polynomial Diophantine equa
tions in two unknowns. In 1933, Mahler [46] extended Thue's theorem 
to the equation 

F( X1, X2) = bp~1 ••• p:• in X1, X2, z1 ••. , Zs E Z 

with (x1,x2) = 1 

where p1, ... ,p8 (s ~ 0) are distinct primes. 

(3) 

Theorem B (Mahler [46]). Let FE Z[Xi, X2] be a binary form having 
at least three pairwise linearly independent linear factors in its factor
ization over Q. Then equation (3) has only finitely many solutions. 

Equations of the type (3) are called Thue-Mahler equations. An 
equivalent formulation of Mahler's theorem is that equation (2) has only 
finitely many solutions x1 , x2 in the ring Z (1.., ... , P1 ] • Since every 

Pi • 
subring of Q which is finitely generated over Z can be written in this 
form (with finitely many appropriate primes), Mahler's result implies 
that (2) has finitely many solutions in every finitely generated subring 
of Q. We note that these results of Mahler do not remain valid in general 
if F has at most two pairwise linearly independent linear factors over Q. 

Siegel [59], [60], Parry [48] extended the above-mentioned results of 
Thue and Mahler, respectively, to the so-called relative case when the 
ground ring (that is, the ring containing b, the coefficients of F and the 
values assumed by the unknowns) is the ring of integers of an arbitrary 
algebraic number field. Finally, Lang [44] gave a further generalization 
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to the case of arbitrary finitely generated ground rings over Z. By a 
recent result of Faltings [17] (see also [18]), even the number of "rational" 
solutions is :finite, provided the degree n 2:: 4. All these results are, 
however, ineffective, that is, their proofs do not provide an algorithm for 
deciding the solvability or determining the solutions. 

The first general effective result on the Thue equations was proved 
by Baker [1] in 1968. By using his fundamental effective inequalities con
cerning linear forms in the logarithms of algebraic numbers, he showed 
the following. 

Theorem C (Baker [1]). If FE Z[Xi, X2] is an irreducible binary form 
of degree n 2:: 3 then all solutions xi, x2 E Z of (2) satisfy 

where v = 128n(n + 1) and H denotes the maximum absolute value of 
the coefficients of F. 

This made it possible, at least in principle, to solve Thue's equations. 
Baker's estimate was later improved by Feldman [19], Sprindzuk [65], 
Stark [68], Baker [3] and others. The best known upper bound, due to 
Gyory and Papp [37] is of the form 

where C1 and C2 are effectively computable positive absolute constants, 
RK is the regulator of the field K generated by a root of F(X, 1) = 0 
and R'K = max(RK, 3). The above bounds led to effective improvements 
of Liouville's approximation theorem ( cf. [1 ], [19], [37]). 

By proving and using a p-adic analogue of Baker's inequality con
cerning linear forms in logarithms, Coates [8], [9] made effective Mahler's 
theorem for irreducible binary forms F. Coates' estimate for the solu
tions was improved and generalized by Sprindzuk [63], [64], [66] and 
Shorey, van der Poorten, Tijdeman and Schinzel [57]. In (57] the au
thors gave an effective ,version of Mahler's theorem in full generality. 
The results of Baker, Coates and Shorey, van der Poorten, Tijdeman 
and Schinzel were later extended to the relative case by Baker [2], Kotov 
[39] and Gyory (24], [26], respectively. Further extensions to the case of 
arbitrary finitely generated ground rings over Z were recently obtained 
by Gyory [31], [33]. 

Several authors derived upper bounds for the numbers of solutions 
of the Thue and Thue-Mahler equations; for references see e.g. [11], [12]. 
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In 1983, Evertse [11], [12] was the first to obtain (without any additional 
restriction concerning F or b) bounds for the numbers of solutions of (2) 
and (3) which are independent of the coefficients F. Let w(b) denote the 
number of distinct prime factors of b. 

Theorem D (Evertse [12]). Under the assumption of Theorem B, equa
tion (3) ha8 at most 

solutions. 

Evertse [12] proved his theorem in a more general form, in the rel
ative case, by using a modification of a method of Thue and Siegel. 
For further generalizations to equations over arbitrary finitely generated 
domains over Z see Evertse and Gyory [14]. 

It follows from Theorem D that (2) has at most 2 x 7n3 ( 2s+2w(b)+3) 

solutions x1, x2 in the ring Z [i1 , ••• , i.]. By restricting themselves to 
solutions x1, X2 in Z with (xi,x2) = 1, Bombieri and Schmidt [6] have 
recently improved this upper bound to C3 x nw(b)+l, where C3 is an 
absolute constant (which was not explicitly computed but smaller than 
215 for n sufficiently large). For further recent related results we refer 
to the paper of Schmidt in this volume. 

Norm form equations 

Let K be an algebraic number field of degree n 2 2 with Q
isomorphisms 0-1, ••• , O"n in C. Put a(i) = O"i(a) for any a: EK. Let 
c:t1 = 1, a2, ••• a:m, m 2 2, be linearly independent elements of Kover 
Q, (i.e. m :5 n) and suppose, for simplicity, that K = Q( a1, ... , am). 
Put 

for i = l, ... ,n. (4) 

Then 
n 

N(X) = N(a1X1 + ... + O:mXm) =IT L(i)(X) 
i=l 

is a decomposable form with coefficients in Q which is called a norm 
form. In what follows, let1 b E Q*. An equation of the type 

N(~) = b (5) 

1 K* will denote the set of non-zero elements of a field K. In general, 
for any integral domain R, R+ and R* will denote the additive group and 
the unit group (that is, the multiplicative group of invertible elements 
of R). 
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in x E zm is called norm form equation (over Z). If in particular m = 2 
and n ~ 3, then (5) is just a Thue equation. 

Form= n, (5) is a generalization of the Pell-equation and then (5) 
can be completely solved ( cf. [7]). Form < n, the problem is much more 
difficult. Let V denote the Q-vector space generated by a1, ... , am. By 
means of his powerful subspace theorem Schmidt (53] proved in 1971 the 
following general finiteness criterion. 

Theorem E (Schmidt [53]). The following two statements are equiva
lent: 

(i) V has no subspace of the form µK' where µ E K* and K' is a sub field 
of K different from Q and the imaginary quadratic fields; 

(ii) (5) has finitely many solutions !f. in zm for all b E Q*. 
For m = 2, Schmidt's theorem reduces to Thue's theorem. Later 

Schmidt [54] proved a more general theorem by showing that all solutions 
of an arbitrary norm form equation over l belong to finitely many so
called families of solutions. In 1977, Schlickewei [51] generalized certain 
weaker versions of the results of Mahler and Schmidt. His results imply 
that if V has no subspace of the form µK' with µ E K* and a subfield 
K' of K such that K' '/:- Q then (5) has only finitely many solutions in 
every finitely generated subring of Q. A further generalization has been 
recently obtained by Laurent [45] to the case when the ground ring is an 
arbitrary finitely generated integral domain over Z. 

The above-mentioned finiteness results concerning norm form equa
tions are all ineffective. In 1978, Gyory and Papp [35] succeeded in 
obtaining, as an immediate consequence of a more general result ( cf. 
[35], Theorem 3), the following effective finiteness theorem for norm 
form equations. They used Baker's method concerning linear forms in 
logarithms of algebraic numbers. 

Theorem F (Gyory and Papp [35]). Suppose that in (5) (i') ai+l has 
degree ~ 3 over Q( a 1 , ••• , ai) for j = 1, ... , m - 1. Then all solutions 
;f.= (x1,--.,Xm) E zm of (5) satisfy max(lx11,. . .,lxml) :$ C4, where 
C4 is an effectively computable number. 

For m = 2, Theorem F (with the explicit C4 ) reduces to Baker's 
Theorem B with another bound. In (i'), the lower bound 3 for the degrees 
cannot be diminished in general. Condition (i') is, however, stronger 
than (i) in Theorem E, that is Theorem F did not make Schmidt's result 
effective. By a recent conjecture of Mignotte, Schmidt's theorem cannot 
be made effective in full generality. 
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Later another effective result on norm form equations was obtained 
independently by Kotov [41), [42] and Gyory [29] which is not implied, 
even in ineffective form, by Schmidt's theorem. 

Theorem G (Gyory [29], Kotov2 [42]). Suppose that in (5) am is of 
degree ~ 3 over Q( a1, ... , ll'm-1 ). Then all solutions ~ = (x1 , .•• , Xm) E 
zm of (5) with Xm =I= 0 satisfy max(lx1I, ... ' lxml) s; Cs, where Cs is an 
effectively computable number. 

The restriction Xm -/: 0 and the condition concerning the degree of 
am cannot be dropped in general. We remark that Theorem F can be 
deduced from Theorem G. 

Theorems F and G were established in [35], [29], [41] in the rela
tive case. For generalizations to the case of finitely generated ground 
rings in number fields see Gyory [27], [30) and Kotov [40], [41], and in 
arbitrary finitely generated extensions of Q see Gyory [31], [33]. Under 
the assumptions of Theorems F and G, respectively, upper bounds for 
the numbers of solutions, independent of a 1 , ... , am, were derived by 
Evertse and Gyory [14]. 

Discriminant form and index form equations 

We shall use the same notation as before. In particular, L(X) = 
o:1X1 + ... + o:rnXm and L(l)(X), ... , L(n)(X) are defined by ( 4). Here 
we do not assume, however, that m ~ 2 and 0:1=1. Then 

D(X) = D(a1X1 + ... + O:mXm) = II (L(i)(X)- L(j)(X)) 2 

l~i<j~m 

is a decomposable form of degree n( n - 1) with coefficients in Q which is 
called discriminant form ( cf. Kronecker [43], Hensel [38]). The equations 
of the type 

D(~) = b (6) 

in x E zm named discriminant form equations (over Z), play an impor-
- ' tant role in algebraic number theory. After several special results, in 1976 

the following general and effective finiteness criterion was established by 
Gyory [21]. 

Theorem H (Gyory [21]). The following two statements are equivalent: 

2 Kotov [42] made the stronger hypothesis that O:m is of degree ~ 5 

over Q( 0:1 ••• , am-1 ). 
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(i) 1, ai, ... , O:m are linearly independent over Q; 

(ii) (6) ha8 only finitely many 8olution8 in !f. E zm for every b E Q*. 

Further, if (i) hold8, then all 8olution8 .if_ = (x1 ... , Xm) E zm of (6) 
"ati8fy max(lx1 I, ... , Jxml) :::; c6, where c6 effectively computable. 

In fact, in [21] a more general result was proved which asserts that 
all solutions of (6) belong to finitely many so-called families of solutions 
and all these can be effectively found. 

Of particular importance is the special case when m = n - 1 and 
{ao = 1, o:i, ••• ,O:n-d is a Z-basis of OK, the ring of integers of K. 
Then Theorem H implies that up to the obvious translation by elements 
of Z, the equation 

D( a) = b in a E 0 K 

has only finitely many solutions and all these can be effectively deter
mined. This finiteness assertion was earlier proved by Birch and Merri
man [5] in a non-effective form and, independently, by Gyory [20] in an 
effective form. 

If a E OK and if a= xo+x1 a1 + ... +xn-IO'n-1 is the representation 
of a with xo, ... ,xn-1 E Z then it is easy to verify that 

where Dx denotes the discriminant of Kand l(Xi, ... ,Xn-l) is a de
composable form of degree n(n - 1)/2 with coefficients in Z. Further, 
the index of a in 0 K, defined by 

see for example [28]. For that reason, I(X1, ... , Xn-l) is called the index 
form of the integral basis { ao, ... , t'.l'.n-d in question, and the equations 
of the type 

(8) 

are called index form equation8. For cubic number fields, index form 
equations were earlier extensively studied by Nagell [47], Delone and 
Faddeev [10] and others. For further references, see [28]. In view of (7), 
(8) can be reduced to a discriminant form equation. As a consequence 
of his Theorem H, Gyory obtained, in 1976, the following result. 

Theorem I ( Gyory [21 ]). All 8olution8 !f. = ( X1, ... , Xn-1) E zn-l of (8) 
8ati8fy max(lx1 !, ... , !xn-1 I) ::=; C1, where C1 i8 effectively computable. 
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Of particular interest is the special case b = ±1 when (8) is equiva
lent to the equation 

I(a) = 1 (a E OK)~ OK= Z[a] 

~ {l, a, ... , an-I} is an integral basis. 
(9) 

The existence of such a power integral basis considerably facilitates the 
calculation in OK and the study of arithmetical properties of OK. It 
is known that, for example, quadratic and cyclotomic fields have such 
integral bases, but this is not the case in general. If a is a solution of 
(9), then so is a+ a for all a E Z. It follows from Theorem I that, up 
to translation by elements of Z, (9) has only finitely many solutions and 
all these can be effectively determined; cf. Gyory [21]. 

For further applications of Theorems H and I see Gyory (28]. The
orems H, I and their consequences mentioned above were later extended 
by Gyory [22], [23], Trelina [71], (72] and Gyory and Papp (36] to the 
relative and p-adic case, and recently by Gyory (31], (33], [34] to the case 
of arbitrary finitely generated ground domains. 

We derived in [14] explicit upper bounds for the numbers of solutions 
of (6) and (8) which are independent of the coefficients of the forms 
involved. As a consequence we showed that up to the translation by 
elements of Z, the number of solutions of (9) is at most 2(4 x 73Y)n-2 

where g denotes the degree of the normal closure of K/Q (hence n ::; 
g ::; n!). 

Decomposable form equations of general type 

We return now to the general decomposable form equation (1). Un
der various restrictive conditions made for F, Schmidt [53], [55], [56] 
and Schlickewei [50], [52] obtained ineffective finiteness results for cer
tain other special types of decomposable form equations. A system of 
linear forms with coefficients in Q is called symmetric ( cf. [53]) if every 
form in the system occurs as often among the forms as its complex con
jugate. In (1) the system of linear factors of F over Q can be chosen 
to be symmetric. The following theorem can be deduced from a more 
general result of Schmidt (cf. [53], Satz 1). 

Theorem J (Schmidt [53]). Suppose that F(F£) f= 0 for all .Q -:/= :£ E zm. 
Then the following two statements are equivalent: 
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(i) For every subspace V of Qm of dimension d ~ l an!: _ _for every 
symmetric subsystem <.p of the linear factors of F over Q, the rank 
of <.p on V is greater than 

min{dt/n, d-1} 

where n = deg(F) and t is the number of the linear forms in c.p; 

(ii) For every b E Q*, equation (1) has only finitely many solutions in 
!f. E zm. 
Theorem J implies Theorem E. The condition F(:£.) i= 0 does not 

hold however for discriminant forms and index forms, hence the criterion 
above does not apply to decomposable form equations in full generality. 
This result of Schmidt was later extended by Schlickewei [52] to the case 
of finitely generated ground rings in Q. 

We shall now present a general finiteness criterion which guarantees 
the finiteness of the number of solutions of (1) for every b E Q* and 
every finitely generated subring R of Q. Let G be the splitting field of 
F (i.e. the smallest extension of Q over which F factorizes into linear 
forms), and let .Co be a maximal set of pairwise linearly independent 
linear factors of F with coefficients in G. For every subspace V of qm 
of dimension ;:::: 1, we denote by r(V, .C0 ) the minimum of all integers r 
for which there exist linear forms L;1 , ••• , L;. in £ 0 whose restrictions 
to V are linearly dependent but pairwise linearly independent. If this 
minimum exists then r(V, .Co) ;::: 3. Otherwise we put r(V, £ 0 ) = 2. Let 
.C :J Co be a finite set of linear forms in X1 , •.. , Xm with coefficients in 
G. A subspace V of Qm is called £-admissible if no form in ,C vanishes 
identically on V. 

Theorem K (Evertse and Gyory [15]). The following two statements 
are equivalent: 

(i) For every £-admissible subspace V of Qm of dimension ;::: 2, we 
have r(V, C0 ) ;:::: 3; 

(ii) For every b E Q* and every subring R of Q which is finitely gener
ated over l, the equation 

F(;r_) = b in ;r_ E Rm with L(;r_) i= 0 for all L E C \Co (l') 

has only finitely many solutions. 

Further, we showed in [15] that for every b E Q* and for every finitely 
generated subring R of Q, all solutions of (1 ') belong to finitely many£
admissible subspaces V of Qm with r(V, Co) = 2. Since every subspace 
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of qm of dimension 1 can contain only finitely many solutions of (l'), the 
implication (i) ===> (ii) in Theorem K is an immediate consequence of 
this latter finiteness assertion. In [15] we proved these results in a more 
general form, over finitely generated subrings of an arbitrary finitely 
generated extension of Q. 

In the special case C =Co equation (1') reduces to equation (1) and 
Theorem K provides a finiteness criterion for (1). Theorem K implies, 
in an ineffective form, the finiteness assertions of Theorems A, B, E, F, 
G, H and I (cf. [15]). The finiteness result quoted after Theorem K, 
and therefore the implication (i) ===> (ii) in Theorem K can be deduced 
from the following finiteness theorem on S-unit equations which was 
established independently by van der Poorten and Schlickewei [49] and 
Evertse [13]. 

Let K be an algebraic number field, r a finitely generated subgroup 

of K*, and m ~ 2 an integer. Then the equation 

U1 + U2 + ... +Um = 1 in Ui, ..• , Um E r 

ha.'3 only finitely many solutions such that LiEI Ui =F 0 for each non
empty subset I of {l, 2, ... , m }. 

In [15] (see also [16]) it has been pointed out that the implication 
(i) ===> (ii) of Theorem K is in fact equivalent to the above theorem 
on S-unit equations. Since this latter theorem has been deduced from 
the Schmidt-Schlickewei subspace theorem which is ineffective, Theorem 
K is also ineffective. Moreover,if Mignotte's conjecture is true, then it 
cannot be made effective in full generality. There does exist, however, 
an algorithm to decide whether condition (i) in Theorem K holds ( cf. 

[15]). 
For decomposable form equations of general type the first general 

effective finiteness result was obtained by Gyory and Papp [35] in 1978. 

Later, their result was improved and generalized by Gyory [29], [30] to 
Theorem L stated below. In the remainder of this section, let R be an 

arbitrary but fixed finitely generated subring of Q over Z. Then R = 
l [ ..L, ... , ..L] with appropriate rational primes P1, ... , Ps ( s ~ 0). For 

P1 Pa 
every a E Q with a= k/l; k, l E Z, (k, l) = 1 we put h(a) = max(Jkj, IZJ). 

Theorem L (Gyory [30]). Suppose that 

(i) Co ha.'3 rank m; 

(ii) Co can be divided into subsei8 £ 1 , ... , Ch with the following prop

erties: if Card(Cj) ~ 2 for some j, then for each r, r' with 

Lr, Lr' E Cj, there exists a .'Jequence Lr = Lr1 , ••• , Lr, = Lr in 
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.Cj such that, for q = 1, ... , t - 1, Lr9 , Lr,+i has a linear combina
tion with coefficients in G* which belongs to Cj; 

(iii) .C =.Co or [, = £ 0 U {Xk} for some k E {1, ... , m} according as 
h = 1orh>1; 

(iv) If h > 1, then Xk can be expressed as a linear combination of the 
forms from C; for every j E {1, ... , h }. 

Then all solutions ~ = (x1, ... , Xm) of (1') satisfy max(h(x1), ... , 
h(xm)) ~ Cs, where Cs is effectively computable. 

If h = 1 (this is the case e.g. for Thue equations), conditions (iii) 
and (iv) can be obviously dropped and Theorem L provides an effective 
finiteness result for ( 1). The discriminant forms, binary forms considered 
in Theorem B, and norm forms considered in Theorem G all satisfy 
the conditions of Theorem L. Therefore Theorem L implies (with the 
explicit C8 ) Theorems B, C, F, G, H and I (cf. [30]). For extensions 
of Theorem L to the case of arbitrary ground rings which are :finitely 
generated over Z we refer to Gyory [31], [33]. Apart from the forms of the 
bounds, these general versions imply all the above-mentioned effective 
finiteness results for decomposable form equations (cf. [31], [33]). The 
proofs involve among other things Baker's method, the analogues over 
function fields of the results in question and some effective specialization 
argument. 

In [14] we have recently shown that conditions (i), (ii), (iii), (iv) of 
Theorem L together imply the following condition 

(i*) For every £-admissible subspace V of Qm of dimension ?: 2 we have 
r(V,Co) = 3. 

Since the number of subspaces V under consideration is in general 
infinite, it is hard to decide whether condition (i*) is satisfied or not. 
Let again C be as in Theorem K. We shall show that in Theorem L 
conditions (i) to (iv) can be replaced by a weaker version of (i*) which 
involves only finitely many and effectively determinable subspaces. 

Theorem 1. There is a finite, effectively determinable set of £
admissible subspaces V of Qm of dimension ?: 2 such that if r(V, Co) = 3 
for all V in this set, then all solutions ~ = (x1, ... , xm) of (1') satisfy 
ma.x(h(x1), ... , h(xm)) ~ C9, where C9 is effectively computable. 

Theorem L is a consequence of Theorem 1. Further, Theorem 1 is 
easier to compare with Theorem K. We should, however, remark that in 
the most important special cases when C = Co U { X k} for some k, we do 
not know any equation to which Theorem 1 can be applied but Theorem 
L cannot. Furthermore, it is easier to check the more explicit conditions 
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of Theorem L. 

The proof of Theorem 1 will be based on an effective finiteness result 

of Gyory [25] obtained for S-unit equations in two unknowns, which was 

proved by means of Baker's method and its p-adic analogue. 

In what follows, we may suppose without loss of generality that 

in (1'), b E Z \ {O}. Under assumption (i"), we derived in [14] the 

bound n( 4 x 7u(2s+2w(b)+3))m-l for the number of solutions of (1') where 

n = deg(F) and g = [G : Q]. By using an upper bound of Evertse 

[12] established for the numbers of solutions of S-unit equations in two 

unknowns we shall here deduce almost the same bound subject to the 

weaker and effective assumption of Theorem 1. 

Theorem 2. There is a finite, effectively determinable set of £
admissible subspaces V of qm of dimension ~ 2 such that if r(V, .C0 ) = 3 

for all V in this set, then the number of solutions of (1') is at most 

n(3 x 7g(2s+2w(b)+3)r-1. 

We note that g ::; n!. From Theorem 2 one can easily obtain bounds 

of a similar type for the numbers of solutions of the Thue equations, 

Thue-Mahler equations (cf. Theorem D), discriminant form and index 

form equations, and the norm form equations considered in Theorems F 
and G. 

In §§2 and 3, we shall state and prove Theorems 1 and 2 in a more 

precise and more general form, for equations considered over the rings 

of S-integers of algebraic number fields. 

§2. Some new results 

Let K be an algebraic number field of degree d. Denote by MK the 

set of places (that is, equivalence classes of multiplicative valuations) 

on K. Places in MK are called finite if they contain non-archimedean 

valuations, and infinite otherwise. The field K has at most d infinite 

places. In every place p on Q we choose a valuation I · IP normalized in 

the usual way (for elementary properties of places and heights which will 

be used in §§2 and 3 we refer to [16), §§1, 2, in this volume). Further, in 

every place v on K we normalize a valuation I · Iv in the following way: if 

v lies above p E MQ and if Qp, K,, denote the completions of Q at p and 

K at v respectively, then we choose I · Iv such that ia:!v = ia:l~Kv:Qp]/d for 

each a: E Q. The set of valuations thus normalized satisfies the product 

formula. 
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Let S be a finite subset of MK with cardinality s which contains 
all infinite places. Suppose that the finite places in S lie above rational 
primes not exceeding P(?:. 2). By Os we shall denote the ring 

{a EK: iaiv::; 1 for all v E MK\S}. 

The elements of Os and 05 are called S-integers and S-units, respec
tively. If S consists only of the infinite places, then Os is just the ring 
OK of integers in K. We note that the ring Os is finitely generated over 
Zand every subring R of K which is finitely generated over Z is a subring 
of such a ring Os. Moreover, if in particular K = Q then R = Os for 
an appropriate finite subset S of MQ. 

For any integer t ?:. l 1 we define the height of fr = ( a 11 .•. , O:t) E Kt 
by 

h(g_) = IT max{l, 1~~t \O!jlv }. 
vEMK _J_ 

In particular, 

h(a)= IT max{l 1 \a\v} 
vEMK 

will denote the height of a E K. For every positive number C there 
are only finitely many fr in Kt with h(g_) :=::; C and these belong to an 
effectively determinable subset of Kt (cf. (11), (12)). We define the 
height of a polynomial 

P(x X) ~ (. · )xi1 xit 
1 1 ··• 1 t = ~ az1 1 ..• ,Zt 1 ••· t 

by 

h(P)= IT max{l,.mru<; \a(i1, ... ,it)\v}· 
vEMK •i, ... ,s, 

The heights h(g_), h(a) and h(P) depend only on g_, O! and P, respec
tively, and not on the choice of the number field K. 

Let F(X) = F(X1, ... 1 Xm) E K[X1, ... 1 Xm] be a decomposable 
form of degree n ?:. 3 in m ?:. 2 variables with height :=::; A which factorizes 
into linear factors over a finite extension G of K. Let g = [G : K] and 
let Da denote the absolute value of the discriminant of G (over Q). Let 
.Co be a maximal set of pairwise linearly independent linear factors of F 
over G and let .C 2 Co be a finite set of linear forms in G[X1 , ••. ,Xm]· 
For any subspace V of Km of dimension ?:. 1 we define r(V1 Co) in the 
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same way as in §1. Similarly, we shall say that V is £-admissible if no 
form in C vanishes identically on V. For given C ~ 1, there are only 
finitely many linear forms LE K(X1, ... ,Xm] with h(L) :5 C. We shall 
denote by W(K, m, C) the collection of subspaces V of Km of the type 

where r can be any integer with 1 :5 r $ m -1, and {L1, ••• , Lr} can be 
any set of linear forms from K[X1,. .. ,Xm] with heights :5 C. The set 
W(K, m, C) is finite and Km E W(K, m, C). Let f3 e K* with height 
:5 B and consider the equation 

F(:£.) = f3 in~ E Os with L(£) # 0 for all LE C\Co. (10) 

Theorem l'. There are effectively computable numbers Ci, C2 depend
ing only on d, g, Da, s, P, n, A, m and B with the following property : 
if 

(i') r(V, Co)= 3 for every £-admissible subspace V of Km of dimension 
~ 2 which belongs to W(K,m,C1), 
then all solutions ~ of (10) satisfy h(~) $ C2. 

Theorem 1' implies that there are finitely many £-admissible sub
spaces V of Km of dimension ~ 2 such that if r(V, £ 0 ) = 3 for all of 
these V then (10) has only finitely many solutions. Moreover, if K, S, (3, 
G, n and the coefficients of F and of the linear forms in£ are effectively 
given in the sense defined in [69] and [34], p. 59, then both the subspaces 
V in question and the solutions of (10) can be effectively determined. In 
the special case K = Q, this gives Theorem 1 stated in §1. 

There are only finitely many v E MK \ S for which I.BI,, # 1 or F 
has a coefficient with v-value > 1. In the sequel the number of these v 
will be denoted by ws(/3, F). 

Theorem 2'. If the condition (i') holds with the C1 specified in Theorem 
1', then the number of solutions of (10) is at most 

In the case K = Q, Theorem 2' gives Theorem 2 formulated in §1. 

As was mentioned in §1, the conditions (i) to (iv) of Theorem L 
together imply the assumption (i') of Theorems 1' and 2'. Therefore 
Theorem 1' provides, as a consequence, a generalization of Theorem 
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L to equations over Os. Such a generalization was earlier proved by 
Gy&ry [30] with an explicit upper bound for the heights of the solutions. 
It implied more general versions over Os of Theorems C, F, G, H, I 
presented in §1 (cf. Gyory [30]). This means that apart from the forms 
of the bounds, these more general versions of Theorems C, F, G, H, I can 
also be deduced from Theorem 1'. Similarly, Theorem 2' implies (with 
slightly different bounds) the results of Evertse [12] and Evertse and 
Gy&ry [14] on Thue equations, discriminant form equations and index 
form equations over S-integers of number fields. 

§3. Proofs 

We shall keep the notation of §2. It is important to note that if H( a) 
denotes the maximum absolute value of the coefficients of the minimal 
polynomial of an algebraic number a over Zand if dis the degree of a, 
then H(o:) and h(o) (called sometimes the usual and absolute height of 
a, respectively) are related by 

(11) 

(cf. [44], Ch. 3, p. 54 and Theorem 2.8). Further, if a= a/b E Q with 
a, b E Z and (a, b) = 1 then 

h(o:) = H(a) = ma.x(lal, lbl). 

Let Ma be the set of places on G and suppose that the valuation 
I· lw in w E Ma is normalized in the same way as was indicated in §2. 
The height function can be extended to q x t matrices with entries in G. 
Let A= (o;k) be such a matrix. Put 

The following lemma states a few elementary properties of height func
tions. Let Mq,t(G) denote the set of q x t matrices with entries in G. 

Lemma 1. (i) If A= (a;k) E Mq,t(G) then 

(12) 
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(ii) If A E Mq,t( G), B E Mt,r( G), a E G* then 

h(AB) $ th(A)h(B), h(aA) $ h(a)h(A) (13) 

(iii) If A E Mq,q( G) and A is invertible then 

h(A-1 ) $ h(det A)(q - l)!h(A)q-l $ (q!)2 h(A)2q-l. (14) 

(iv) Let w1, ... ,wq be K-linearly independent elements of G. There exist 

effectively computable numbers c1 and c2 , depending only on q, such that 

for every I= 6w1 + ... + ~qwq with 6, ... , eq EK we have 

(15) 

Proof. (i). Straightforward consequence of the definitions of the heights. 

(ii), (iii). Straightforward application of the inequality 

ia1 + · · · + O::tlw $ t max{ ia1 lw, · . ., latlw} 
for a1, ... ,at E G and w E Ma. 

(iv). Let o-1 ••. , o-9 be distinct K-isomorphisms of G for which n = 
(o"i(wk)), with 1 ::::; j, k $ q, is invertible. Let3 ~ = (6, ... ,eq)T, Q. = 
(0-1(!'), ... ,0"q(T))T. Then Q = n~. Since h(aj(Wk)) = h(wk) for 1:::; 
j, k ::::; q, we have h(O) :::; h(w1 , ••• ,wq)c4 where c4 = c4 (q) is effectively 
computable in terms of q. Now (15) follows by applying first (14) to n 
and then (13) to ~ = n-1 Q. Ill 

For every polynomial P E G[X1 , ..• , Xm] and for every w E Ma 
we denote by IPlw the maximum of the w-values of the coefficients of 
P. It is known (cf. [44]) that if w is a finite place then for every P, Q E 
G(X1, ... ,Xm] 

IPQlw = IPlw · JQlw· (16) 

Put 
h*(P) = II \Plw· 

wEMo 

Then, by the product formula, h*(aP) = h*(P) for any a E G* and 

1 $ h*(P) $ h(P). (17) 

3 We denote by BT the transposed matrix of a matrix B. 
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Further, if at least one of the coefficients of P is equal to 1 then h*(P) = 
h(P). 

Lemma 2. Let P, Q E G[X1 ,. .. , Xm]· Suppose that at least one of the 
coefficients of P is equal to 1 and that PQ has degree ~ n. Then 

Proof. We have 

4-dg(n+l)mh*(PQ) ~ h*(P)h*(Q) 

~ 4dg(n+l)m h*(PQ) 
(18) 

(cf. [44], Ch. 3, Prop. 2.4). Now Lemma 2 follows from (17) and (18). 
Let S' be the subset of Ma lying above the places in S, and let Os' 

be the ring of S'-integers in G. Then Os' contains as a subring the ring 
0 0 of integers of G. We define the S'-norm by 

Ns1 (a) = (IT JaJw) dg for a E G*, 
wES' 

where dg = [G : Q]. It is easily seen that the S'-norm is multiplicative. 
Further, if a E 0 S' then 

The proof of Theorem 11 is based on the following lemma which is 
an easy consequence of an effective result of Gyory [25] on homogeneous 
S'-unit equations in three unknowns. We note that Gyory [25] gave an 
explicit bound for the heights of the solutions. Following the arguments 
of the proofs below of Theorems 11 and 2' and using the explicit bound 
mentioned, it would not be difficult to derive explicit values for C1 and 
C2 in Theorems 1' and 2'. 

Lemma 3. Let N 2:: 1 and let 11,/2,/3 E Oa\{O} with heights ~ r. 
Then all solutions of the equation 

/1X1 +12x2 +/3X3 = 0 in x1,x2,x3 E Os' \{O} 

with max Ns1(xi) < N 
i::;is3 -

(19) 
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satisfy h(xif x2) S c5Nc6 where c 5 , c5 are effectively computable positive 
numbers depending only on d, g, Da, s, P and r. 

In fact this lemma can be found, in a more explicit form, in the 
work [32] of Gyory. Since [32] was written in Hungarian, we shall give 
here a complete proof. 

Proof. Let f;J1, ..• , fiJs', be the prime ideals in Oa corresponding to the 
finite places in S'. Clearly s' S g · s. Since Xi E Os1, the ideal (xi) 
generated by Xi can be written as v;p~il ... p:f•', where v; is an integral 
ideal in G cop rime with p1 , ... , p s', and a;1, ... , a; 8 • are non-negative 
rational integers. Obviously N( v;) S N. Let ha and Ra be the class 
number and regulator of G. Then 

max{ha, Ra}< c1(d,g, Da), 

where c7 is effectively computable in terms of d, g, Do (cf. [61]). Let 
b;j be rational integers such that b;j = a;i (mod ha) and 0 :S b;j < ha 

for each i and j. Then v;p~11 ••• r!:•' is a principal ideal, say (yi), with 
Yi E Oa and INa;Q(Yi)I ~ csN, i = 1,2,3. Here Cs and c9, c10 below 
denote effectively computable positive numbers depending only on d, g, 

Da, s, p and r. We have X; = y;/5; with some 8; E 05,, i = 1,2,3. 

Putting f;J~a = ('1rj) with appropriate 7rj E Oa for j = 1, ... ,s1, there 

are positive integers bi, ... , bs' such that p; := 5;7r~; ... 7r!:' E Oa n 08, 
for i = 1, 2, 3. For xi := 7r~ 1 ••• 7r!:' x; = y;p; we have 

)'1X~ + r2X~ + /3X; = 0 

and Lemma 6 of Gyory [25] gives 

h(xifx2) = h(x~/x~) :S c9 Nc10 • 

Denote by T the smallest subset of MK containing S such that 
both l,Blv = 1 and the v-values of all coefficients of F are S 1 for all 
v E MK \ T. Further, let T 1 be the subset of places of Mo lying above 
the places in T, Or, the ring of T'-integers in G and t' the cardinality 
of T 1• Then e S g(s + ws(,8,F)). Furthermore, we have ,8 E 07',, 
FE Or1[X1, ... ,Xm] and Os s;;: Or'· 

The main tool in the proof of Theorem 21 will be the following result 
of Evertse [12]. 

Lemma 4. For every 7, 8 E G* the equation 

)'X + Oy = 1 in x,y E Or, 
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ha.s at most 3 x 7dg+2t' .solution8. 

Proof. This is Theorem 1 in [12]. 

Before proving our theorems we show that we can make certain as
sumptions without loss of generality. We may assume that the coefficient 
of Xf in F, say a0 , is different from zero. Indeed, there is a rational in
teger a with 0 $ a $ mn such that F(l, a, ... , am-I) =/= 0. On applying 
the linear transformation 

X . _ i-1x1 + X! • - a 1 ,, i = 1, ... , m, 

to F, .Co, C and (10), all conditions of our theorems will be satisfied 
together with the assumption required. 

Further, replacing the linear forms in £ by appropriate proportional 
factors if necessary, we may choose the factorization 

F(X) = L1 (X) ... Ln(X) (20) 

of Finto linear forms L1 , ... , Ln from G[X1, ... , Xm] such that 

(21) 

where cu and c12, c13 below are effectively computable positive num
bers depending only on d, g, n, A and m. Indeed, we may choose the 
coefficients of X1 in L 1 , .•• , Ln to be a0 , 1, ... , 1, respectively. Then by 
Lemma2, 

A 2 h(F) 2 c12max{h(Lifao),h(L2), ... ,h(Lm)}. (22) 

Further, ao is a coefficient of F so that h(a0 ) s h(F). Hence, by (13), 
h(L1) S h(ao)h(Lif ao) $ c13. Together with (22) this proves (21). 

Finally, we show that if (10) is solvable then there are µi, ... , µn E 
G* such that 

µ;L;(~) E 07', (j = 1, ... , n) 

for all solutions~ of (10) 
(23) 

(see also [14]). Indeed, let w E Ma\ T'. Then for every solution ~ we 
have 
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a.nd, by (16), l.Blw = 1 a.nd IFlw $ 1, 

n 

II (IL;(:f.)lw/IL;lw) = IF(>f)lw/IFlw = l.Blw/IFlw ~ 1. 
j=l 

Hence 
IL;(>f)lw = IL;lw for j = 1, ... ,n. (24) 

Let i£.o be a fixed solution of (10) and put µ1 = ,8L1 (:f.o)-1 and µ; = 
L;(~)-1 for j = 2, ... , n. Then, by (24), jµ;L;(:f)lw = 1 (j = 1, ... , n) 
and (23) holds. 

Both Theorem 1' and Theorem 2' are easy to deduce from the next 
lemma. 

Lemma 5. Let q be a rational integer with 0 ~ q $ m -2, let c; ~ 1, 
and let V be an C-admissible subspace of Km of dimension m - q with 
VE W(K,m,C;) and r(V,Co) = 3. Then there exi.sts an effectively 
computable number c;+i (~ c;) depending only on d, g, Da, s, P, A, n, 
m, Band c; such that all solutions :f. E VnOs of (10) are contained in 

at most 3 x 7dg+2t' C-admissible subspaces of V with dimension m-q-1 
which belong to W(K,m,c;+1). 

Proof In what follows, c14 , ••• ,c19 will denote effectively computable 
positive numbers depending only on d, g, Do, s, P, A, n, m, B, c;. 
Further, for convenience we put N = 3 x 7dg+2t'. 

Suppose that (10) has a solution in V n 08. Consider a fixed fac
torization of the form (20) of F with the property (21) and fix some 
µ1, . .. , µn E G* for which (23) holds. In view of (11) and (12), the 
height of the least common multiple, say a, of the denominators of the 
coefficients of L 1 , ••• , Ln occurring in (2) is at most C14. Let :f. E V n 05 
be an arbitrary but fixed solution of (10). Then aL;(:f) E Os1 a.nd by 
(10) and (20), we have 

an f3 E Os1 and aL;(!Q.) divides an /3 in Os• for j = 1, ... , n. (25) 

By assumption, among L 1 , ••• , Ln there are three linear forms, say 
Li, L2, L3 , whose restrictions to V are linearly dependent but pairwise 
linearly independent. Therefore there exist ')'1, 72, /3 E G* such that 
/1L1(X) + 12L2(X) + /3L3(X) = 0 identically on V. In view of V E 
W(K,m,c;), /i, 12 , 73 can be chosen from Oo\{O} with heights at 
most c15 . For the solution~ under consideration we have 
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Further, by (25) 

Ns•(L;(:!l)) $ Ns•(anf3) $ (h(anf3))dg $ C16· 

By applying now Lemma 3 to (26) we obtain 

On the other hand, it follows from (26) that 

( - ~:~~:) (::~:~~~) + (-~:~~:) (::~:~~~) = 1. 

Together with Lemma 4 and (23), this implies that (µ1L1(!!1.)/µ2L2(!!1.)) 
and hence L1 (!!1.) / L2 (:!1.) belongs to a subset of G* of cardinality at most 
N which does not depend on !!l· Consequently, there exist at most N 
elements .x E G* with heights$ C17 such that every solution :!l E vno5 
of (10) is a zero of at least one of the linear forms 

By the assumption made on £ 1, L2, none of the forms LA vanishes 
identically on V. 

As is known (see e.g. [28], p. 71), Oa has an integral basis 
{wi, ... ,wdg} such that 

h(wi, ... ,Wdg) $ h(w1) ... h(wd9 ) 

$ (lwil · ·. lwdul)dg $ c1s, 
(27) 

where lwi I denotes the maximum of the absolute values of the conjugates 
of Wi, i = 1, ... ,dg. We may assume that wi, ... ,w9 are K-linearly 
independent. Each LA considered above can be written as 

g 

L>.(X) = L w;l>.,;(X) (28) 
j=l 

with linear forms h,; E K[X1, ... , Xm] which do not all identically van
ish on V. By using Lemma 1, (iv) and (27) we obtain from (28) that 
h( l>.,i) $ c19 for j = 1, ... , g. Further, h,;(~.) = 0 (j = 1, ... , g) for every 
:!l E V with L>.(!!l) = 0. Thus we conclude that all solutions :!l E V n 05 
are contained in at most N £-admissible subspaces of V of dimension 
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m-q-1 which belong to W(K,m,C;+1) for c;+1 = max(C; ,c19). This 
completes the proof of the lemma. • 

Proof of Theorem 11• If assumption (i') holds with C1 ;:::: 1 then 
r(Km, Co) = 3. Hence we can apply Lemma 5 successively with q = 
0, 1, ... , m - 2 and with Cri = 1. Let 1 s Ci $ ... $ C~_2 $ C~_1 be 
the corresponding effectively computable numbers, specified in Lemma 
5, which depend now only on d, g, Da, s P, A, n, m and B. Put 
C 1 = c::i_2 and suppose that r(V, Co) = 3 for every £-admissible sub
space V of Km of dimension ;:::: 2 with V E W( K, m, C1 ). Then, by 
Lemma 5, it follows that all solutions of (10) are contained in subspaces 
of Km of dimension 1 belonging to W(K, m, C~_1 ). This means that 
every solution ~ of (10) can be written in the form ~ = "'~ with some 
"'E K* and~ E Km for which h(Ff') $ c20, where c20 as well as c21, c22 

introduced below are effectively computable numbers depending only on 
on d, g, Da, s, P, A, n, m and B. From (10) we obtain 

,,_n F(Ff..') = {3. 

Together with (12) and (13) this implies h("-) $ c21 whence h(~):::; c22. 

Proof of Theorem 2'. Apply again Lemma 5 successively in the same way 
as in the proof of Theorem 1'. Let 1 = Cri $ Ci :::; ... $ C~_2 S C~_1 
be as above, and suppose again that r(V, Co) = 3 for every £-admissible 
subspace V of Km of dimension ;:::: 2 which belongs to W(K, m, C1) 
for C1 = c::i_2 • Then Lemma 5 implies that all solutions of (10) are 
contained in at most Nm-l subspaces of Km of dimension 1. If Ff .and 
P!f. are solutions of (10) with some p E K* then 

pn = F(p[f_)/ F(;r) = 1. 

Therefore, every subspace of Km of dimension 1 contains at most n 
solutions. Hence the number of solutions of (10) is at most 

nNm-1 = n(3 X 7dg+2t' )m-1 

• 
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