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Entire functions for the logistic map I 

by 

H.A. Lauwerier 

ABSTRACT 

A class of entire functions is introduced satisfying a functional equa

tion of the logistic type. Computer plots of the zeros reveal phenomena that 

can be understood by a perturbation analysis in the "chaotic" regime. 
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1 • INTRODUCTION 

This report is the first in a series of reports dealing with complex 

analysis functions and iterated maps. In our opinion the important results 

obtained recently in connection with simple iterated maps such as the logis

tic difference equation have their counterpart in the asymptotic behaviour 

of certain entire functions in the complex plane. The idea can be made clear 

by considering the following elementary example. 

To the special logistic iterated map 

( 1. 1) x = 4x (1-x ) n+l n n 

we associate the addition rule 

( 1. 2) F(4z) = 4F(z)(I-F(z)) 

for some analytic function F(z). 

Obviously (1.2) is solved by 

( I. 3) ( ) . 2; F z = sin z, 

an entire function of fractiqnal order 1/2. 

( 1. 4) 

Thus (I.I) can be parametrized by 

X 
n 

The properties of the map (I.I) can be studied using this representation. 

Moreover (1.4) gives a suitable extension of the difference equation (I.I) 

to the continuous case in the same sense as the garmna function is the exten

sion of the factorial function. Furthermore the representation (1.4) shows 

in a simple way what happens if x and e are complex. 
n 

The next elementary example is 

( 1.5) 
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The corresponding addition rule 

(I. 6) F(2z) = 2 F(z)(I-F(z)) 

is solved by 

(I. 7) 

an entire function of order I. This gives the parametrization 

(I. 8) X 
n 

It will be shown here that the general iterated logistic map 

( I. 9) x = ax (1-x ) n+I n n 
I <a:,; 4 , 

can be parametrized as 

( I. 10) 
n 

x = F (a e) , 
n 

where F(z) is a well-defined entire function satisfying the addition rule 

( I. 11) F(az) = a F(z)(I-F(z)). 

In the subsequent sections these functions will be subjected to a careful 

analysis. Of particular interest are the structure of the zero set of F(z) 

and the behaviour of F(z) on the positive real asis. A number of interesting 

results have been obtained using a HP 85 computer and a plotter. It will be 

shown that the entire functions satisfying (I.II) are of fractional order 

µ with 

( I. I 2) = log 2 µ 
log a 

In the next section we prove the more general result that a functional equa

tion of the kind 
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(I. 13) F(az) = ¢(F(z)), 

where ¢(z) is holomorphic at z 0 with 

( I. 14) ,HO) = 0 , ¢' (0) = a , I a I > I 

can be solved by a holomorphic function. Moreover, if ¢(z) is entire - e.g. 

polynomial -- then F(z) is an entire function. In section 3 the parametriza

tions (1.4) and (1.8) are studied in more detail. The power series expansion 

of the entire function F(z) defined by (I. II) and normalized by F'(O) = I 

is explicitly determined in the form 

(I. 15) F(z) 

00 

I c-1 t- 1 

k=I 

where the coefficient satisfy a quadratic recurrent relation. It is proved 

that F(z) is of the orderµ as given by (I. 12). For ck an upper bound has 

been derived which shows that the type CT of F(z) does not exceed 2. Computer 

results show that CT = 2 only for a = 2 and a = 4 and that 1.826 <a< 2 in 

the interval (2.4) with the lower bound at a 2.60 (cf.table I). In section 

4 the zeros of F(z) are studied in dependance of the parameter a, 2 ~a~ 4. 

Obviously for any zeros of F(z) also as,a2s,a3s••· are zeros but on each ray 

there is a first zeros such that F(s/a) = I. Therefore we consider the 

roots of F(z) = I instead. Figures 1,2 and 3 show that those zeros traverse 

arcs in the complex plane with a curious way of forming bundles at certain 

places. A perturbation procedure at a= 4 given a complete understanding 

of this phenomenon. Apparently it has to do with a small value of 

cos(2-k(n+!)n) for some k = 1,2,3 ... and where n numbers the zero. This 

takes place for n = 4,8,16,22 .... The first few perturbation terms of the 

n-th zero are given explicitly in theorem 4.1. They appear to give quite 

good approximations even when a is appreciably less than 4, say a= 3.9. 

In a subsequent report we shall consider the asymptotic properties 

of F(z) in the complex plane as lzl + 00 and the behaviour of the entire 

functions on the positive real axis for various values of a. Figures 4 

and 5 show typical cases of "strange" behaviour. 

Functional equations of the kind (I.II) have been considered in the 
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nineteenth century by a number of authors starting with Abel. The following 

equation bears his name 

( I. 16) F(q,(z)) = F(z) + a , 

where q,(z) is a given function and a a given constant. SCHRODER (1870,1871) 

has given his name to the following equation 

(I. 17) F(<l>(z)) = a F(z) 

which is merely an equivalent from of Abel's equation. The first systematic 

treatment of the subject was given by KOENIGS (1884,1885). His main result 

1.s as follows: 

Let the iterated map 

(1.18) z 1 = f(z) , z0 = z n+ n 

have the attracting fixed point O with a= f'(O) IO and assume that f(z) 

1.s holomorphic at z = 0 then the limit 

(I. 19) -n a f(z) + F(z) n 

exists as a holomorphic function satisfying the Schroder equation (1.17) 

with F(O) = 0 and F'(O) = 1. The work of Koenigs is briefly reviewed by 

FATOU (1919,1920), KNESER (1950) and DE BRUYN {1961). 

If in (1.17) F(z) is replaced by its inverse we obtain the functional 

equation 

( I. 20) F(az) = <I> (F(z)). 

Our functional equation (1.11) is a special case of this. Equations of the 

kind (1.20) are mentioned by Fatou. He remarks that a solution of (1.20) 

gives a parametrization of the map z + q,(z) but this possibility is not 

worked out any further. Functional equations of the kind (1.20) have also 
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-been considered by POINCARE (1890) in a general setting when considering 

functions admitting a multiplication rule. 

Iterated maps have recently gained an enormous popularity. In a stim

ulating review the biologist MAY (1976) showed that a simple model such as 

(1.9) describing a succession of generations of say blowflies has a very 

complicated intriguing behaviour. A few excellent surveys showing the pre

sent state of the art are given in the references. Between 1918 and 1920 

Julia and Fatou published comprehensive studies of iterated maps. Their 

work is of great historic and still of actual interest. Their main result 

is the description of the closure F of the set of repelling periodic points 

of the iterated map. They show that Fis a perfect set in the complex plane 

and that there are three possibilities 

1. Fis the entire plane. 

2. F is linearly connected but has no interior points and consists of a col

lection of arcs. 

3. Fis disconnnected and is a Cantor set. 

Moreover, as a rule Fis a curve without tangents such as the snowflake 

curve of Hedge van Koch, i.e. a fractal in modern language. Although both 

writers use mainly function theoretic techniques such as conformal mapping 

and normal families the subject is hardly brought into relation with the 

Schroder equation and its inverse. 

It seems that the time is ripe to revive the subject. Undoubtedly the 

new tools of modern analysis and the facilities of the computers may enable 

us to solve old problems and to create new ones. In this connection we draw 

attention to a very recent note by Sullivan. 
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2. FUNCTIONAL EQUATIONS 

In order to get some experience we start with the simplest iterative 

map 

(2. 1) 

It is solved by 

(2. 2) X = n 

= ax + b n 

b n 
+ Ca , 

a-1 

where C is a constant. 

a I: I. 

The correponding functional equation 

(2. 3) F (az) = a F (z) + b , 

where F(z) is holomorphic at z = 0 is solved by a linear function since 

F(k)(O) = 0 for all 

Hence we must have 

(2. 4) F(z) = 
b 

- -- + CZ , 
a-1 

k ~ 2 • 

where c is an arbitrary constant. The solution of (2.3) can be made unique 

by the additional requirement F'(O) = 1. 

(2. 5) 

The next example is less trivial but still elementary 

.ax n 
xn+l = 1-x 

n 

7 

-1 
The iteration is linear in x and it is not difficult to obtain the follo

n 
wing solution 

(2. 6) X 
n 

= 
(a-l)an 
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The corresponding functional equation 

(2. 7) F(az) aF(z) =---1-F(z) 

is apparently solved by 

(2.8) F(z) 
(a- I) z 

= , c-z 

where c is an arbitrary constant. For 

F'(0) = c = a-I 

we obtain the unique solution 

(2. Sa) F(z) (a-I )z 
=-'---'-

a-1-z 

We note that F(z) has a pole at z = a-1. 

Next we consider the general case 

(2. 9) I <I> I (O) I > I 

where <j>(z) is holomorphic at the origin with 

<j>(0) = 0, a= <l>'(0). 

This means that x = 0 is an unstable fixed point. The corresponding function

al equation is 

(2. I 0) F(az) =· <I> (F(z)). 

Imposing the additional requirement 

F' (0) = 

we try a formal power series expansion 



00 

(2. 1 1 ) \ k 
F(z) = l ckz 

k=1 

Let ¢(z) be given by its Taylor series 

(2. 12) q> (z) 

then we have the formal identity 

(2. 13) n c (az) = 
n 

00 00 lk I ak ( I c ,e_ z ) • 
k=1 l= 1 

Equating coefficients of equal powers of z we obtain 

9 

k 
Generally (a -a)ck can be obtained from the cj with indices up to k-1 by a 

polynomial expression with positive coefficients. There exists a positive 

constant r such that 

for all k. 

I al 
-k-1 
r 

If in the relations from which the ck are to be deterrained a is replaced 

by la! and lakl is replaced by lalr-k we obtain upper bounds for the original 

ck. What we have done is the special choice 

(X) la! k 
--z 

k-1 
r 

I al z 

1- ~ r 

However, in that case we can use the functional equation (2.7) with the so

lution (2.8). Thus we have the result 

i~ (z) = 
Cla'i-I)rz 

(Ia 1-1) r-z 
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This function is holomorphic at z = 0 and this fact already guarantees that 

(2.10) has an analytic solution which is holomorphic at 0. In fact, we have 

the inequality 

1 
I ck+ 1 I :S l k · 

(lal-1) tr 

By virtue of the functional equation (2.10) any domain of regularity can be 

enlarged by a factor lal. Therefore if ~(z) is free from singularities it 

can be enlarged indefinitely. In other words, if ~(z) is entire then (2.10) 

has an entire solution which is unique with F'(O) =I.Thus we have proved 

the following property. 

THEOREM 2.1. The functional equation 

F(az) = ¢(F(z)) 

where ~(z) is holomorphic at z = 0 with 

HO) = O ~' (O) = a lal > I 

has a solution F(z) holomorphic at z = 0 with F(O) = 0. With the additional 

condition F'(O) = I the solution is unique. If Hz) is an entire function 

then also F(z) is entire. 

It may be of interest to list a few cases of (2.10) where the solution 

1.s a well-known special function: 

(2. 14) F(2z) = 

has the solution 

(2.15) F(z) = 

(2. I 6) F(4z) = 

has the solution 

2 F (z) 
2 1-F (z) 

tan z. 

2 4F(z)(I-F(z))(l-k F(z)) 

(l-k2F2 (z)) 2 



(2. I 7) 

(2. 18) F(-2z) = F2 (z) - 2 F(z) 

has the solution 

(2. 19) F (z) 
z 1T 

I - 2 cos ( --= + - ) • 
h 3 

3. POWER SERIES EXPANSION 

We have seen in the introduction that the logistic iterated map 

(3. I) = ax ( 1-x ) 
n n 

is elementary for a= 2 and a= 4. We now give some more details. 

I I 

For a= 2 we have the explicit solution (1.8). This formula also shows what 

can be expected in the complex case. If 8 is complex with Re 8 > 0 then x 
n 

still converges to the fixed point 1/2, but if Re 8 < 0 the sequence x 
n 

diverges to infinity. This means that the basin of attraction for the fixed 

point 1/2 is the circular region 

I XO - I/ 2 I < I/ 2 • 

On the boundary there are a number of unstable fixed points of higher order 

corresponding to 8 = ir where r is a rational number. E.g. for r = 2/3 we 

find the period 2 fixed points ¾ ± ¾ i/3. 

For a= 4 we have the explicit solution (1.4). We see that for a start 

with rational 8 a periodic orbit is obtained. E.g. for 8 = 1/7 a period 3 

orbit is obtained, but for 8 = - 1/7 we get another period 3 orbit. Of course 

all periodic: orbits are unstable. It is helpful to consider 8 as an infinite 

binary fraction O•b 1h2b3b4 •... The effect of an iteration step is merely a 

shift of one binary position to the left with removal of the integer part 
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However, when working on a computer, 9 will be given by a restricted number 

of binary digits so that after some 40 steps, say, further iteration has 

lost its meaning. Much depends on the manner the computer fills empty posi

tions with ones or zeros. 

The map (1.1) has also the fixed point x = J. Substitution of 

(3. 2) X = ¾ - ¼ y n n 

gives the new map 

(3. 3) 

According to (2.19) we obtain the parametrization 

(3 .4) 
n 7f 

yn = I - 2 cos(l+(-2) 8) 3 

so that 

(3. 5) 
2 n 7f 

xn = cos (l+(-2) 8) 6 . 

It is of interest to compare this with the parametrization (1.4). However, 

for (3.5) no elementary continuous extension is possible. 

For the general logistic map (3.1) we consider the functional equation 

(3. 6) F(az) = a F(z)(I-F(z)) a > I. 

In view of the procedure proposed in the previous section we write 

(3. 7) + ••• 

Substitution in (3.6) gives without difficulty 

(3. 8) 
k k 

(a -I) ck+l = I cJ.ck-j+l 
j=I 

The first few coefficients are 

k ~ with c 1 = l. 



cl = , c2 = , a-1 

a+5 
c4 = 2 3 (a-l)(a -l)(a -1) 

For a = 2,3,4 we have in particular 

a = 2 

c2 

c3 2/3 

c4 1/3 

cs 2/15 

c3 = 

, cs = 

a= 3 

1/2 

1/8 

1/52 

2 

(a-l)(a2-J) 

2(2a2+3a+7) 

17/8320 

13 

a =4 

I /3 

2/45 

1/315 

2/14175 

That F(z) is entire follows at once from theorem I. An independent way of 

proving the analiticity of F(z) consists in showing that for all k 

-k 
(a-1) 

by means of (3.8). 

Since all coefficients are positive F(z) is of maximal growth on the 

negative x-axis. If in the 4sual notation M(r) is the maximum of IF(z)I on 

the circle lzl = r then 

M(r) = - F(-r) 

and 

(3. 9) M(ar) =· a ~ (r) + a M(r). 

This relation can be used to prove the following statement. 

THEOREM 3.1. F(z) is an entire function of order 

µ = log 2 
log a a > l. 
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PROOF. From the inequality 

2 2 
(aM(r)) :s; a M (ar) :s; (aM{r)+b) - b, 

where 

b ~ max(½a, I), 

we obtain for positive integer n by repeated application 

Setting 

we obtain 

where 

This inequality shows that F(z) has the orderµ. 

Perhaps the simplest entire function of fractional orderµ that presents 

itself is 

(3. 10) 
def <I>(z,µ) 

00 

L 
k=O 

k z 

(k JJ) ! 

Only in a few cases <I>(z,µ) is an elementary function. We have e.g. 

2 
(3.1 la) <I>(z,2) z z). = e ( l+erf 

(3. I lb) <I>(z, I) z = e . 

(3.llc) Hz, D = cosh lz. 2 2 . 
3 1T1 1/3 - - 1T1 1/3 

I I 1/3 3 
(3.lld) qi(z,3) = 3 (exp(z ) + exp(e z ) + exp(e z ) ) . 
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Integral representation can easily be derived from the Laplace pair 

(3. I 2) <P(rl/µ,µ) . 

so that e.g. 

(3. 13) cp(z,µ) = 21ri 

where the contour encloses the negative real axis arid the poles on the cir

cle lwl=lzµI. Other representations are 

(3.14) cp(z,µ) 

valid for µ > ! 
2 ' 

and 

4>(-z,µ) 

(3. 15) 

<X) 

µ 'IT 

J 
exp-(tz)µ 

sin - 1T 2 1T µ 
1-2t cos -+t 

0 ]J 

larg zl < 
1T 

2µ ' 

µ1Ti µ -µ1ri µ 
= µ(exp(e z) + exp(e z )) + 

<X) 

- ~ sin~ 1( 1T µ 

0 

exp-(tz)µ 
1r 2 dt 

1+2t cos - +t 
µ 

valid for ½ < µ < 1 , I arg z I < 2:. 

dt 

The entire functions F(z) and 4>(z,µ) seem to be closely related. In fact 

we have the rather sharp inequality for 2 ~a~ 4, i.e. for½~µ~ I, 

THEOREM 3.2. 

(3. 16) I - 2F(-r) ~ 4> (ar,µ) 2 ~a~ 4, 

o~ in terms of the coefficients of (3.7) 

(3.17) 
2(k/µ) ! ' k = 1,2, .... 
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PROOF. The inequalities (3.16) and (3.17) are equalities for a =2 (µ=I) and 

a =4 (µ=1/2). The proof is somewhat technical but not difficult. At first 

we show that (3.17) holds fork= I. This is done by using a convexity argu

ment for the logarithm of the gammafunction. Fork~ 2 we proceed by induc

tion using (3.8). It turns out that it is sufficient to cons~der only the 

lowest value of k, i.e. k=2. Again using a suitable integral representation 

this can be done in a similar way as the case k =I.The proof uses the fol

lowing integral representations 

(3. 18) a. ! 

(a.;(3) (a.;(3) 

(3. 19) 

- t•(cost) 0 cos Bt dt , 

0 

dt. 

The representation (3.18) is welLnknown but (3.19) will be proved in the 
,, 

Appendix. 

The first step in the proof of (3.17) is as follows. The inequality 

(3. 17) for k = I is 

(3-1 f((3+1) s 2 , f s (3 s 2, 

where for typographical reasons we have written 

(3 = =-~ 
µ log 2 • 

We consider the function 

$((3) = log f((3+1) - ((3-1) log 2 

and note that $(1) = $(2) = O. Since $"((3) > 0 for all (3 the inequality does 

hold. Next it is assumed that the inequality is fulfilled up to index k. 
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Then using (3.8) we should have 

k+l k 
I k-+- I a I a 

ck+! $ 
k $ 

4 (a - I) j=I (j S) ! ( (k+ 1-j) S) ! 2 ((k+ I) S) ! 

This means we have to show that 

(3.20) 
k 

I 
((k+l)C3)! 

---
j=l (j S) ! ((k+ 1-j) S) ! 

fork 2:: with I:,; S:,; 2. 

After a few elementary steps using (3.18) this inequality can be written as 

h 
(3. 2 I ) 

TI 
I (cost)(k+l)S 

0 

The left-hand side can be replaced by an expression as shown 1n (3.19). Then 

the inequality takes the following form 

l I/ S (k+ I) S 

I c-\ ) 
0 

dt 
2 l-2tcos STI+t 

-B I 
$ 2 - 28. 

The left-hand side takes it largest value fork= l but instead of proving 

the last inequality for k = I we return to (3. 2 l). For k = I we get 

h 
¾ J (cost) 28 dt ~ 2-S(l-2-S) 

0 

or equivalently 

TI 

l I (l+cost)s dt :,; I - 2-s. 
2TI 

0 

Consider the function 

TI 

~(S) = 2ir° f (l+cost)S dt - l + 2-S 

0 

and note that~(!)= ~(2) = 0. Clearly ~"(S) > 0 so that finally ~(S) < 0 

for l < S < 2. This completes the proof. 
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4. ZEROS 

In this section the notation F(z) will be replaced by the more detailed 

notation F(z,a) if necessary. We consider here the zeros of F(z)- c for a 

few special values of c such as c =0, I and 1/2. The zeros of F(z,a) are 

arranged on rays radiating from the origin into the right-hand half of the 

complex plane. Obviously ifs is a zero then also as is a zero buts/a can 

be a zero of F(z)-1. On each ray there is a first zeros such that aJ~ are 

zeros for j =0,1,2, ... but that F(s/a) =I.Therefore it suffices to 

consider the zeros of 

( 4. I) F(z,a) = I. 

Such a zero can be labelled by an integer index n and is then written as 

z (a). We have the elementary cases 
n 

(4. 2) { 
zn(2) 

z (4) 
n 

± (n+½) 1ri 

( I) 2 2 = n+2 1T , n=0,1,2, ... 

Since for a~; 4 the zeros occur in conjugate pairs we need to consider only 

those with Im z (a) ~ 0. If a runs from 2 to 4 we may expect that for each 
n 

n z (a) describes a certain continuous path. We might think that the path 
n 

of zµ (a) is more or less circular since I zµ (a) I = (n+½ )1r for a= 2 and a= 4. 
n n 

However, computer plots obtained from a HP85 computer and a 7225A plotter 

reveal some unexpected features. There seem to be concentrations of zeros at 

n =4,8,16, •.. already for a-values slightly below 4. A perturbation proce

dure, the details of which will be given later on, shows that this phenome

non has to do with resonances of 

-k tan(2 (n+½)1r) 

in particular when 

Stated as a theorem 

k=l,2,3, .•• 
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2 
THEOREM 4.1. For a= 4 - £ , 0 ~ £ « I, we have the following expansions 

(4. 3) 

where 

(4. 4) 

and 

(4. 5) 

with 

(4. 6) 

{
Re z!12 (a) = (n+½)n + AE: 2 + 0(£4) , 

Im z 112 (a)=½£+ BE: 3 + 0(£5), n 

I A = - 8 M((n+½)n) , 

I I B = 24 - 16 M'((n+½)n) , 

def 00 k -k 
M(x) X - l (2 tan(2 x) - x) = 

k=I 

I 3 2 5 = X -9x - --x -
225 

Of related interest are the zeros of F'(z,a). 

Since F' (az) = F' (z) (1-2 F(z)) they are also arranged along rays. If on a 

ray~ is a first zero we must have F(~/a) = 1/2. Let us now consider the 

possibility of a double root of F(z) = c where c is a real or complex con

stant. Then there exists a non-negative integer m such that 

F(z0 /a) = 1/2, 

However, this means that c can be reached from 1/2 by forward iteration. 

Then c is real and belongs to the sequence starting from 1/2. Thus we have 

proved 

THEOREM 4.2. The equation F(z,a) = c has no double roots unless c is real 

with O < c < !a and belonging to the sequence starting from 1/2. 

We now turn to the analysis of the behaviour of the zeros z (a) when a 
n 

is close to 4. At first sight we could try an expansion such as 

F (z, a) 
2 = F(z,4) + £ F1(z) + 0(£ ), 
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where a=4 - e. However, this does not work since z (4) is a double zero of 
n 

F (4) which fore> 0 splits into a conjugate complex pair. Before present
n 

ing the right procedure we bring the functional equation (1.11) into a 

slightly simpler form 

(4. 7) 
2 G(az,a) = G (z,a) - A, 

where 

(4. 8) G(z,a) = ½a - a F(z,a) 

and 

(4. 9) 
2 

A = ¼ (a -2a). 

The condition F(z,a) = is equivalent to G(z,a) = - ½a and next to 

(4. IO) 
z G(-,a) 
a 

= ± ½i /4a-a2 • 

This prompts us to set 

£ ~ 0 

and to solve 

(4. 11) G(z /a,a) = ± ie 
n 

I 2 4 
(I-8 e +O(e )). 

In order to do this we need the expansion 

(4. I 2) G(z/a,a) 
2 r· 4 = G(z/4,4) - e H(vz) + O(e ). 

We have 

(4. 13) G(z/4,4) = 2 cos lz 



and 

(4.14) H(vz) = a G (z/a,a) aa for a =4. 

The first few forms of the power series expansion of H(v'z) can be obtained 

in a straightforward way from (3.7) and (4.8) as 

(4. 15) H ( v'z) = ! 7 2 
144 z + 

41 3 
10800 z 
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We also need information on H for large values of lzl but this will be post

poned a bit. We try an expansion of the kind 

(4. 16) 

which should be substituted into 

(4. 17) 2 cos /zTa) - E 2 H(v'z(a)) = 
n n 

After some elementary steps we obtain for the upper zeros 

(4. I 8) 
= ½ , A= ½(-l)n+I 

= __ I_ + _!_ (-.-I) n+ I 
12 4 . 

H(vz(4)), 
n 

H'( ✓z (4)). 
n 

The problem of determining H(vz) for large values of lzl can be solved by 

differentiating the functional equation (4.7) with respect to a for a =4. 

A simple calculation gives the following functional equation for H(z) 

(4.19) 
3 1 

H(2z) = 4 cos z H(z) - 2 + 2 z sin 2z. 

Substitution of 

(4.20) 1 1 H(z) = 2 cos z + 4 sin z M(z) 

changes this into a simpler equation 

(4. 21) 
1 
2 M(2z) - M(z) = z - tan z. 
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From (4.15) we obtain the first few terms of the power series expansion 

(4.22) M(z) 

Noting that M'(O) = 

forward way as 

the solution of (4.21) can be obtained in a straight-

(X) 

(4.23) M(z) = z - l 
k=l 

k -k ( 2 tan ( 2 z ) - z ) . 

From the well-known expansion 

(4. 24) 
(X) 

tan z - z = 2 L (2 .) 2j-l 
r,; J z ' 

j=2 
lzl<½1r, 

we obtain the general form of the expansion (4.22) as 

(4.25) M(z) = z - 2 I 
j=2 2J·-2 

2 -1 

r,; (2j) 
2. 

1T J 

2j-l 
z ' lzl < ~ 1r. 

If desired the zeta function values can be expressed in Bernoulli coeffi

cients 

(4.26) r,; (2j) = 

with 

The derivative of M(z) follows from (4.23) as 

(4.27) 

and 

(4. 28) 

M' (z) = 1 - I 
k=I 

M' (z) = 
1 2 

- 3 z 

2 -k tan (2 z) 

2 4 
- 45 z 

5 
= 66 , . . . . 



Finally from (4.18) and (4.20) we obtain the expressions (4.4) and (4.5) 

of theorem 4. I. A number of values of M, M', A and B for z = (n+½),r , 
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n = 0 (I) 40 is given in tables 2 and 3. However, without consulting nume

rical data it is obvious that possible extreme values of A and Bare to be 

expected where the right-hand sides of (4.23) and (4.27) contain a large 

term when 

(4. 29) 

This happens in particular when n is some power of 2. A rough estimate for 

(4. 30) 

gives 

(4.31) { 
M(z) 

M' (z) 

m » I 

i:::1 _I_ i2m + 3 
1T 

i:::1 __ I_ 2 2m +4 
2 • 

1T 

Then theorem 4.1 gives at once 

(4.32) 

with 

I 22m 3. 2 El.+ ••• , 

1T 
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APPENDIX 

We consider the integral 

h 

I a. sin(a.-f3)t 
I = (cost) dt , 

'IT sin St 
0 

where a.> - and 0 < f3 < 2. 

We write I as a Cauchy integral with w = exp it 

!,r 
a. -'3 2-a. f -) a. w dw 

I = (w+w ) 
'IT i s -a w 

-!,r 
w -w 

We make the substitution w2 +wand note that the new variable describes a 

path in the complex w-plane as shown in the sketch below. 

I.. 

\ 
\ 
, I 

If the semi-pole at w= I is split off the path of integration can be closed 

at w= I so that it might be contracted. We obtain 

a. - I 
(w+I) w 1 

f3 dw + 2B. 
w -1 

I = 
2,ri I 

In order to avoid trouble at the pole w = 0 we use the trick I = ( 1-w 13 ) + w13 

and write 

a. 13-1 
-a. 2 -a. I ( w+ 1 ) w 

2 + -- f3 dw. 
2,ri w -1 

Finally contraction of the path of integration to lower and upper side of 

the interval (-1,0) of the negative real axis gives the desired result 

(3.19). 
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a a a 

2 2 2.68 1.82800 3.36 1.90038 

2.02 I. 98297 2.70 I. 82878 3.38 1.90331 

2.04 I. 96740 2.72 I. 82969 3.40 I. 90625 

2.06 1.95315 2.74 1.83073 3.42 1.90921 

2.08 1.9401 I 2.76 1.83189 3.44 1.91220 

2. 10 1.92818 2.78 1.83317 3.46 1.91520 

2. 12 1.91726 2.80 1.83455 3.48 1.91821 

2.14 I. 90729 2.82 1.83603 3.50 1.92125 

2. 16 J.89817 2.84 1.83761 3.52 I • 92429 

2. 18 1.88986 2.86 1.83929 3.54 I. 92736 

2.20 1.88227 2.88 1.84105 3.56 I. 93043 

2.22 1.87537 2.90 1.84289 3.58 I. 93352 

2.24 I. 86909 2.92 1.84481 3.60 I .93662 

2.26 I. 86340 2.94 1.84680 3.62 I. 93972 

2.28 I. 85826 2.96 1.84886 3.64 I. 94284 

2.30 1.85362 2.98 I. 85099 3.66 I. 94597 

2.32 1.34945 3.00 I. 853 I 9 3.63 1.94911 

2.34 1.84571 3.02 1.85544 3.70 I. 95225 

2.36 I. 84239 3.04 1.85775 3.72 I. 95540 

2.38 I. 83945 3.06 1.8601 I 3.74 I. 95856 

2.40 1.83687 3.08 1.86252 3.76 1.96173 

2.42 1.83462 3: 10 1.86498 3.78 I. 96489 

2.44 1.83268 3. 12 1.86749 3.80 I. 96807 

2.46 I.83104 3.14 I. 87004 3.82 1.97125 

2.48 I. 82968 3. 16 1.87263 3.84 I. 97443 

2.50 I. 82857 3.18 1.87526 3.86 I. 97762 

2.52 1.82770 3.20 1.87793 3.88 1.98081 

2.54 1.82707 3.22 1.88063 3.90 I. 98400 

2.56 1.82665 3.24 1.88337 3.92 I. 98720 

2.58 I. 82643 3.26 1.88613 3.94 I. 99040 

2.60 J.82641 3.28 1.88893 3. 96 I. 99360 

2.62 I. 82656 3.30 1.89176 3.98 I. 99680 

2.64 1. 82688 3.32 1.89461 4.00 2 

2.66 J.82737 3.34 1.9748 

Table I. Type of F(z,a) for 2 :;; a :;;4. 
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N M M' A B 

0 1.03 -.22 - . 13 .06 

I 5.66 -6.40 -.71 .44 

2 26. 19 -8.44 -3. 27 .57 

I 
3 4.69 -26.29 -.59 1.68 

4 86 44 -27.22 -10.81 I. 74 
I-

5 58.30 -12.03 -7.29 .79 

6 58.09 -17.84 -7.26 I. I 6 

7 -46.32 -104.31 5.79 6.56 

8 279.93 - I 04. 77 -34.99 6.59 

9 172.57 
>-

-19.29 -2 I. 57 1.25 

10 165.89 -14.76 -20.74 . 96 

I I 126.34 -31.91 -15.79 2.04 

12 188.39 -34.56 -23.55 2.20 

13 129.91 -25.06 -16.24 I. 6 I 
14 63. 12 -52.74 -7.89 3.34 

15 -367.90 -415.68 45.99 26.02 

I 6 938.20 -415.91 - I I 7 . 02 26.04 

I 7 503.73 -53.43 -62.97 3.38 

18 434.01 -26.24 -54.25 I. 68 
19 370. 96 -36.29 -46.37 2.31 

20 426.59 -34.28 -53.32 2. 18 
21 378.42 -17.90 -47.30 I. I 6 
22 360.43 -23.39 -45.05 1.50 
23 238.28 -110.14 -29.78 6.93 

24 545.05 - I I I • 44 -68. 13 7.01 

Table 2. COEFFICIENTS PERTURBATION EXPANSION ZEROS F-1 
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N M M' A B 

25 414.52 -27.51 -51. 82 1. 76 

26 378. 11 -25. 71 -47.26 1.65 

27 297.23 -47.79 -37. 15 3.03 

28 295.82 -60.34 -36.98 3.81 

29 124.59 -75.12 -15.57 4.74 

30 -203.62 -191 . 24 25.45 11. 99 

31 -1938.79 -1660.77 242.35 103.84 

32 3276.71 -1660.88 -409.59 103.85 

33 1540.83 -191. 58 -192.60 12.02 

34 1211.18 -75.70 -151.40 4.74 

35 1037. 77 -61.15 -129.72 3.86 

36 1033.42 -48.85 -129. 18 3.09 

37 948.82 -27.03 -118.60 I. 73 

38 907.85 -29.11 -113.48 1.86 

39 771 . 86 -I 13.32 -96.48 7. I 2 

40 l 072. 23 -112.35 -134.03 7.06 

41 942.62 -25.94 -117. 83 1.66 

42 916.03 -20.84 -114. 50 1.34 

43 857.99 -37.64 -107.25 2.39 

44 902.32 -40.13 -112.79 2.55 

45 826.37 -30.63 -103.30 l. 96 

46 741. 90 -58.45 -92.74 3.69 

47 292.54 -421.66 -36.57 26.40 

48 1577.23 -422.31 -197. 15 26.44 

49 1123. 80 -60.41 -140.48 3.82 

Table 3. COEFFICIENTS PERTURBATION EXPANSION ZEROS OF F-1 
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Description of the figures 

Figure I gives the positions of the first eleven zeros of F(z,a) for a= 2 

to 4 step 0. I. The positions of zc are given with c = log 2/log a. We note 
C C 

that that for a = 4 z = (n+Dir , n = O( I) IO and that for a = 2 z =(n+Diri. 

Figure 2 gives the positions of the next ten zeros of F(z,a) for a= 3 to 4 

step 0.05. 

Figure 3 gives the positions of the zeros n = 13(1)18 for a= 3.8 to 4 step 

0.01. 
C 

Figure 4 gives the graph of F ~ ,a) with a= 3.9, c = log a/log 2 = 1.963 

for O < t < 20. Note that for a = 4 we would have F(t2 , 2) = sin2t. 
t Figure 5 gives the graph of F(a ,a) with a= 3.5 for O < t < 10, i.e. 

t 
I < a < 275 .. 9. For this value of a the iterated map has the stable 4-cycle 

0.8750, 0.3828, 0.8269, 0.5009. Obviously fort • 00 the graph of F con

sists of horizontal parts at the positions of the 4-cycle separated by ver

tical lines. 
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