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. *
A note on the Fermat equation
by

C.L. Stewart

ABSTRACT

Let x,vy,z and n denote positive integers with x <y < z and (x,y,z) = 1.
We prove that if y~x is small in comparison to z there are at most finitely

many positive integers n for which the Fermat equation,

admits solutions.
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Let x,y,z and n denote positive integers with x < y < z and

(x,y,z) = 1. The purpose of this note is to prove two theorems, the first

of which 1is

THEOREM 1. If y - x < C, ,1=(1/V/n)

for some positive number C., and if

0

(1) n n n

then n is less than C,a number which is effectively computable in terms
of CO.

Thus if y — x is small in comparison to z there are at most finitely
many positive integers n for which the equation (1) admits solutions. We
remark that the function 1/v/n in the exponent of z above was chosen for
neatness; it may be replaced by a function which tends to 0 more rapidly
with n. The proof of Theorem 1 depends upon a straightforward application
of a lower bound, due to Baker [3], for certain linear forms in logarithms.
It yields a value for C of 52(4 log S)6 where S = 32401 + log Cé

Cé = max{e,CO}. Sharper numerical bounds can certainly be obtained for C,

and

however, by reworking the argument of [3] for the case of the particular
linear form which arises in the proof of Theorem 1. We note for comparison
that Wagstaff [7] has shown that equation (1) has no solutions for n in the
range 3 £ n < 105.

That (1) has only a finite number of solutions x, y and z with
y - x < C0 for n a fixed odd prime was proved by Everett [5] by means of
the Thue-Siegel-Roth theorem. Recently Inkeri (see Theorem 4 of [6])
generalized the work of Everett. He used estimates due to Baker [2] for
the size of solutions of the hyperelliptic equation to show that if
n 2 3, (1) holds and either y — x or z — y is less than CO’ then x, y and

z are less than a number which is effectively computable in terms of n

and CO only. It follows from Theorem 1 that if y - x < CO then n is bounded



in terms of CO. Applying the result of Inkeri we see that in this case
X,y and z are also bounded in terms of CO. Therefore we have

THEOREM 2. 7If n 2 3, y - x ©s less than a positive number Cqy and

then x, y, z and n are all less than C, a number which is effectively
computable in terms of CO.

Thus, in principle, all the solutions of (1) such that x and y differ
by a given number may be explicitly determined. The bound for C in Theorem
2 depends upon the estimates obtained in [2], however, and is so large that
a direct computation of the solution set for a given C0 does not seem
feasible. We remark, see below, that Theorem 2 remains valid if the condi-
tion y - x < CO is replaced by 2 < z - y < CO. If z -y =1, when the
problem is related to Abel's conjecture (see §3 of [6]), or if n is even
and z — y = 2, then the argument given here does not apply.

Before beginning the proof of Theorem 1 I should like to thank
M. Mauclaire for suggesting to me, at the Journées Arithmétique in Caen,
that the methods of Baker might be applicable in this context.

Since (x,y,z) = | we may deduce from [4] or Lemma 1 of [1] that if
(1) holds then for some positive integers a and b,

1. -1.n 2. -1.n
(2) z-x=2 d,  a and z -y =2 d2 b,
where €1 similarly €95 is either 0 or 1 and where dl and d2 are positive
divisors of n. (Both €, and e, are zero if n is odd.) From (2) we see that
if z — y > 2 then it is necessarily also.2 2%/n and so if 2 <z -y < CO
then n 1s bounded in terms of CO. Therefore, by [6], Theorem 2 holds with

this condition in place of y — x < CO. Subtracting z — y from z - x gives

(3) 2 'd, a -2°79d, b =y-x.



We shall now assume that the conditions of Theorem 1 apply, so that (1)
holds and

ARV

(4) y = x <Gy

and we shall prove that this implies n is bounded in terms of CO. Further

we shall assume that C0 > e and that n > 46 (log C0)2; clearly this in-

volves no loss of generality.

We first observe that z — x > 2. For if z - x = 2 then

xT+ (x+DT = (x+2)7,

hence certainly 2 < (1+2/x)n; and since log(l+r) < r for r > 0, we have

log 2 < 2n/x and thus x < 3n. But for n > 6 there exist, by Theorems 1 and
5 of [4], primes P> Py and p, congruent to 1 (mod n) which divide

X, x + 1 and x + 2 respectively and therefore x > 3n giving a contradiction.

Thus z — x > 2 and as a consequence a > 2 . Furthermore since X < y < z

we have 2 x" < z™ and thus x < 2—l/n z whence, since n > 46,
-1/n
z - x> (1-2 ) z > z/2n. From (4) we deduce that
1-(1/V/n)

y - x < 2n Co(z—x)

and since n- (logn /loga) > jn for n > 8, we have from (2) that,

-1
(5) (y=x)/(z-x) < 2n Coa NG;
Since a = 2 and n > 46(10g CO)2 we find that (y-x)/(z-x) < }. Further,
from (2) and (3) we have
62—81 n
(6) 1 - (y=x)/(z=x) = 2 (dl/dz)(b/a) .

Therefore using the inequality |1og(1-r)| < 2r, which is valid for

0 <r <}, with ¥ = (y-x)/(z-x) we conclude from (5) and (6) that



/n

9

ro—

|log s + n log(b/a) | < 4n COa‘

€,~€
2 71 . . . .
where s = 2 dl/dz' Denoting the left hand side of the above inequality

by T and taking logarithm yields
(7 log T < log 4n Cy = iVn log a.

Recently Baker [3] proved that if b] and b2 are integers with absolute
values at most B (24), if a, and a, are rational numbers the numerators

and denominators of which are in absolute value at most A] (24) and
A, (24) respectively and if bllog a # —b2 log a, then

(8) log[bl log a; + b2 log azl > - C1 log B log A] log A2 loglog A2’
for C] = 32400. Since y - x > 0 we have log s # - n log(b/a) and thus

we may use (8) to obtain a lower bound for log T. Putting a =b/a,

a, = s, bl = n and b2 = | we conclude from (8), since B = n,

A, < max{4,a,b} and A, < 2n, that

1 2

log T > - 2C](1og n)3log(max{a,b}),

By (6) we have (a/b)™ > d1/2d2 > 1/2n = 27% from which it follows that
2 a > b.

Therefore

3
(9) log T > -Acl(log n)~ log a.
Comparing (7) and (9) we find

/n log a < 8C](log n)3log a + 2 log 4nC0

0 6 2
and thus, recall that Cl = 3240 and n > 4 (log CO) ,

vn(log n)”3 < 32401 + log CO'



On setting the right hand side of the above inequality equal to S we

conclude that
n < 82(4 log 8)6

as required. This completes the proof of Theorem 1.

Theorem 2 follows as a consequence of Theorem 1.
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