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1. INTRODUCTION 

The processor sharing (PS) service discipline is widely used to model time sharing in computer sys
tems. During the last ten years considerable attention has been paid to the analysis of the M/G/l PS 
queue, see e.g. the surveys by Jaiswal [4] and Yashkov [13]. The major problem in processor sharing 
queues is the problem of characterizing the sojourn time distribution. Only recently exact expressions 
for the Laplace-Stieltjes transform of the sojourn time distribution have been obtained by Yashkov 
[11], Ott [6] and Schassberger [7]. Due to their complexity these formulas are not attractive for practi
cal applications. Only for the mean sojourn time a simple explicit expression exists; this expression is 
insensitive to the service time distribution apart from its first moment (K.leinrock [5]). Formulas for 
the second moment of the sojourn time (Ott [6], Yashkov [13]) require perfect information about the 
service time distribution, which is almost never available in practice. Moreover, these formulas con
tain a (double) integral which, in general, can only be evaluated numerically. As far as we know no 
attention has been paid to the derivation of approximations or asymptotic formulas which are useful 
for practical evaluation, apart from [I] and a paper by Yashkov [12]. Yashkov derives some asymp
totic estimates for the conditional sojourn time variance for customers with small or large service 
times. An extension of these results is presented in [I]. 
The aim of the present study is to derive approximations for the second moment of the sojourn time 
distribution, which are quite simple and yet accurate enough for most practical purposes. We first 
show that a lower and upper bound for the second moment of the sojourn time can be expressed in 
terms of the first and second moment of the service time. Next some very simple approximation for
mulas based on the first and second moment of the service time are presented. The accuracy of the 
approximations is tested for a large number of different service time distributions and a wide range of 
traffic intensities. A refinement of the approximation is obtained by taking the third moment of the 
service time into account. This refinement yields remarkably accurate results with relative errors less 
than 1.5 percent in most cases. 
The organization of the rest of the paper is as follows. In Section 2 we introduce the notations and 
give a summary of those known sojourn time results which are relevant for our study. We also 
present some extensions and new results. In particular an upper bound for the second moment of the 
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sojourn time is derived. Section 3 is concerned with the second moment of the conditional sojourn 
time of a customer with service demand x. We propose an approximation formula which is based on 
an asymptotic result for X-'P-0 derived in [I]. In Section 4 approximations are developed for the 
second moment of the unconditional sojourn tin~e. We first propose an approximation which uses 
only information about the first and second moment of the service time distribution. A refinement of 
the approximation is derived for the case that the squared coefficient of variation of the service time 
distribution is smaller than one. Finally, for service time distributions with a squared coefficient of 
variation larger than one, we construct a very accurate approximation formula which is based on the 
first three moments of the service time distribution. 

2. NOTATIONS AND PRELIMINARY RESULTS 
Customers arrive at a single server queue according to a Poisson process with rate l\. Their service 
requirements are i.i.d. non-negative random variables with a general distribution B (·) with first and 
second moment /3 and /32• All customers are served simultaneously according to the processor sharing 
(PS) service discipline, i.e. whenever i customers are present, each customer receives service at a rate 
of l!i. We assume that p:="A./3<1 and that the system is in steady state. Let S(x) be the sojourn 
time of a tagged customer who requires an amount x of service at his arrival. It is well-known that 
E S(x) is linear in x (see Kleinrock [5]): 

x E S(x) = -- . 
1-p 

The second moment of the~distribution of S(x) has been obtained by Yashkov [11) and Ott [6]: 

2 2 x 
E S 2(x) = x 2 + 2 j (x - t)(l - R (t)) dt , 

(l-p) (1-p) t=O 

(2.1) 

(2.2) 

where R (t) represents the waiting time distribution for the M/G/ 1 first come first served (FCFS) 
queue with service time distribution B ( · ), 

00 

R(t) = (l-p)2;pnpn•(t)' 
n=O 

l I 

F(t) = /3uL(l-B(u)) du. 

Note, for the waiting time distribution R (t) in (2.2), that l - R (t)=s;;; I - R (0) = p, t ;;;;;.o. Hence, 

E S2(x):;;;;; l+p 2 
(l-p)2x . 

(2.3) 

(2.4) 

A lower bound for E S 2(x) follows immediately from (2.1) and Schwartz' inequality (see also (2.2)), 

2 
E S2(x) ;;;.: x y 

(1-p (2.5) 

So, 

x2 1 +p 2 --- :;;;;; E S 2(x)::;;;; x (l-p)2 (l-p)2 . (2.6) 
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Note that the upper bound is 100p% higher than the lower bound and that these bounds depend only 
on the first moment of the service time distribution; this supports a certain robustness of E S 2(x) for 
the service time distribution. 

The heavy traffic behaviour of E S 2(x) can be derived from (2.2) by noting that the heavy traffic 
behaviour of the waiting time distribution for the M/G/l FCFS queue is, for p~l, negative exponen
tial, i.e. (see Cohen [3]) 

R(-1-),....,, l-e-11d, for p~l, 
1-p 

(2.7) 

Substituting (2.7) into (2.2) yields 

E S 2(x),...., l +p2 x 2 , for p~l . 
(1-p) 

(2.8) 

Other asymptotic results apply.-to the case that the required service time x of the tagged customer 
becomes either very small or very large. In [ 1] it is shown that 

var(S(x)) = E S 2(x) - (E S(x)'f,..., P 2 x 2 - 3P(p x 3 , forx~o. (2.9) 
• (1-p) 1-p) 

The x 2-term in this formula has already been obtained by Yashkov [12]. 
The quadratic behaviour of the sojourn time variance, var(S(x)), for x~o contrasts with the linear 
behaviour for large x (see Yashkov [12], and [l] ): 

for x~oo. (2.10) 

For exponential and deterministic service times, simple, explicit expressions for E S2(x) are known, 
see e.g. Ott [6]. For future use we state these expressions: 

E S2( ) 2p/J x _ 2p{f (l-e-x(l-p)/fl), 
X EXP= 

(l-p)3 (l-p)4 
x;:;;a.O, (2.11) 

ES2(x)DET= 2 x 2 - 2/f (epxlfl-1-px!P), 0<.x<.p. 
(l-p)2 p2(1-p) 

(2.12) 

Let S be the unconditional sojourn time, i.e. 

00 

Pr{S<.t} = f Pr{S(x)<.t}dB(x), t~O. (2.13) 
x=O 
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From the above results for S (x) it follows immediately that 

ES=_/}_ 
1-p ' (2.14) 

(2.15) 

(2.16) 

For exponential and deterministic service times, 

E S 2 = (l +1±£.) /f 
EXP 2 _p (l-p)2 (2.17) 

2 2/f Es DET = -~-
(l-p)2 

2/32 
-p2-(~l--p-) (eP-1-p). (2.18) 

REMARK. (2.15) implies that, for the M/G/l PS queue, the dependence of E S 2 on the third moment 
of the service time distribution is limited. This should be contrasted with the behaviour of the second 
moment of the sojourn time distribution for the M/G/l FCFS queue. For the FCFS discipline it 
depends linearly on the third moment of the service time distribution. 

In the following sections the above results are exploited to develop simple approximations for 
E S2(x) and E S 2 • We present extensive tables comparing the approximations with exact values. 
The service time distributions which we have chosen to test the approximations are: 

exponential distribution 
deterministic distribution 
k-stage Erlang distribution (Ed 
two-stage hyper exponential distribution (H 2 ), in particular 
H 2 with balanced means (HfM), and 
H2 with gamma normalization (JI'.jN) 
two-stage Coxian distribution (C2 ) 

three-stage hyper exponential distribution (H 3) 

These types of service time distributions are often used for practical applications in queueing theory, 
see Tijms [8] and Whitt [9, 10]. 
In practice service times are often characterized by the mean, /3, and the squared coefficient of varia
tion, cv, defined by 

r?-
cv = 7 · 

where r?- denotes the service time variance, see Tijms [8]. In the rest of this paper we shall use cv 
rather than r?- to characterize the variability of the service times. 
The HfM and HfN distributions have been introduced to reduce the number of parameters of the H 2 
distribution, see Tijms [8]. The HfM and HfN distributions are uniquely determined by their first 
two moments. In particular, the HfN distribution with mean f3 and cv ~ l has the same third moment 
as the gamma distribution with mean /3 and squared coefficient of variation cv. In Section 4 the class 
of H 2 distributions will be considered in more detail. 
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The tables presented at the end of the paper contain relative errors of the approximations for various 
service time distributions. The relative error is defined as 

1 OO% approximation result - exact result . 
exact result 

The exact values of E S 2(x) and E S 2 have been obtained from the formulas derived in [I]. For Hk 
and Ck (and Ek) service time distributions these formulas require the roots of a polynomial of degree 
k and the solution of a set of k linear equations. Even for the case k = 2, the resulting expressions are 
very large and complicated and do not give much insight into the influence of the parameters. 

3. APPROXIMATION OF E S 2(x) 
In this section we show that the asymptotic result (2.9) yields a good approximation for E S 2(x) for 
an important range of x-values. 
We define (cf. (2.9)), 

E S2( ) 1 + p x2 _ p 3 
X 'APPX = (l-p)2 3/J(l-p) X · (3.1) 

Note that E S 2(x)APPX satisfies the heavy traffic behaviour of E S 2(x) (see (2.8)) and that 
E S 2(x)APPX is smaller than the upper bound of E S 2(x) given by (2.4). Approximation 
E S 2(x)APPX is independent of the service time distribution apart from its first moment. Obviously it 
can not be applied for too large values of x because it becomes negative for x>3/J(l +p)l(p(l-p)). 
Moreover, assuming that the variance of S(x) is a convex function of x (cf. (2.9) and (2.10)), we may 
not expect that E S2(x)APPX is a good approximation for x>xi. where x 1 =/J!(l-p)=E Sis the 
point of inflection of (cf. (2.9)) 

!( ) P x2 _ P 3 
x = (1-p)2 3/J(l-p) x . 

(3.2) 

For x<xi. E S 2(x)APPX is within the bounds of E S 2(x) given by (2.6). 

In Table 1 approximation results are compared with exact results for a number of different values of 

x (x = ~ p, {J, ; /J, 2/J, ~: , ~) and different service time distributions. For each of these cases 

p varies from 0.1 to 0.9. For the sake of clarity only the relative approximation errors are given. It 
appears that for most cases the relative approximation errors are negative. As expected, the approxi
mation becomes less accurate when x grows. For O<,.x<,.{J the relative errors are less than 2.34% in 
absolute value. For O<,.x <,.2/J the maximum relative error is 6.56%. When x remains constant the 
maximum errors occur for p~0.3. For x =/J/(2(1-p)) and x =/J/(1-p) the relative errors tend to 
increase when p grows. For x =/J!(l-p) the maximum error is 11.29%. 
It is seen from the results for different service time distributions that the accuracy of the approxima
tion tends to decrease when cv becomes larger. 

REMARK. In [2] we have derived an approximation for E S 2(x) for the whole range of possible x
values (x ;;i.o) by appropriately combining the two asymptotic formulas (2.9) and (2.10). The idea is 
as follows. Two values x 1 and x 2 are determined, such that for x<,.x 1 (2.9) yields a good approxima
tion and for x;;;;i.x 2 (2.10) yields a good approximation. For x 1 <,.x<,.x2 , E S 2(x) is approximated by 
the term x 2 /(1-p)2 plus a linear function of x, cf. (2.10). We took x 1 =/J!(l-p). Details about the 
determination of x 2 are given in [2]. The approximation yields reasonably good results for service 
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time distributions with cv not too large (cv .;;;;4). For these cases we found relative errors which are 
typically less than 10%. 

4. APPROXIMATION OF E S 2 

In this section we propose some approximations for the second moment of the unconditional sojourn 
time S. First we derive a very simple approximation which is based on the exact formula of E S 2 for 
exponentially distributed service times. This approximation uses only the first two moments of the 
service time distribution. Next it is shown how this simple approximation can be improved. For that 
purpose we distinguish between models with a service time squared coefficient of variation cv between 
zero and one, and models with cv larger than one. In the latter case also the third moment of the ser
vice time distribution is taken into account. 

4.1. A simple approximation 
It follows from (2.15) that an approximation E S 2 APP of E S 2 ' which satisfies 

/32 2 l+p f3 
2 .,;;;; ES APP .,.;;; (l-p)2 2 , (1-p) 

(4.1) 

yields relative errors which are bounded by 100p% in absolute value. This observation and the rela
tions for E S 2 given in Section 2 support the idea to derive an approximation for E S2 which is 
based only on the first two moments of the service time distribution. We start with the exact formu
las (2.17) and (2.18) for the case of exponential and deterministic service times. These formulas can 
be rewritten as follows: 

(4.2) 

2 Q=.el P2 ES DET = 2(1- 2 (eP-1-p)) 2 
p (l-p) 

(4.3) 

- 2 l 2 1 3 /32 
- (1+-3p+-4p +-ISP+ ... ) 2 

(1-p) 

(4.2) and (4.3) suggest that E S 2 is almost linear in f3z. This observation and relation (2.15) lead to 
an approximation, E S 2 APP• for E S 2 which reads as follows: 

2 _ a l +e · P2 
E SAPP - (l-p)2 /32 + (l-a) (l-p)2 ' 

with Oo:;;;a..;;;I. 

To determine a suitable choice of the weight factor a we shall require that the approximation is exact 
for exponential service times. It is easily seen from (4.2) that this requirement yields a= 1/(2-p). 
So, we propose 

2 P P2 
ES APP= (1+-2-) 2 

-p (1-p) 
(4.4) 

Note that this approximation has the following appealing properties: 
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APPROXIMATION PROPERTIES 

(1) The approximation is exact for exponentially distributed service times. 
(2) The approximation yields values between the lower and upper bound of E S 2 given by (2.15). 
(3) The approximation satisfies the heavy traffic 1ehaviour of E S 1 (see (2.16)). 
(4) The approximation yields the exact value of E S 1 for p=O: 

E S2APP = E S 2 = Pi , for p=O. 

The approximation results for the test set of service time distributions and traffic intensities are 

presented in Table 2. It appears that the approximation yields reasonably good results. In all tested 

cases the relative approximation error is smaller than 9%. In particular for service time distributions 

with cv close to one (O~cv~2) the relative errors are less than 5.17%. Obviously this is due to the 

fact that the approximation is exact for exponential service times. For larger values of cv (cv>2) the 

approximation becomes worse. It is noticeable that the approximation is significantly better for the 
H 2 distribution with gamma normalization (HfN) than for the H 2 distribution with balanced means 

(H~M). In the next subsection we shall show that this is due to the influence of the third moment of 

the service time distribution on E S 2 . 

4.2 Detailed approximations 
The simple approximation ( 4.4) tends to be less accurate if the squared coefficient of variation of the 
service time distribution becomes larger. In this subsection we shall develop two new approximations, 

one for the case that O~cv~l (APPl) and one for the case that cv:;;;;.l (APP2). APPl is obtained 

by appropriately weighing the exact values of E S 2 for exponential and deterministic service times. 

APP 2 is based on simple exact expressions for E S2 for two classes of H 2 distributions. 

The case O~cv.:;;;I 
For service time distributions with O~cv~l we propose a refinement of E S 2APP• E S 2APP1' which is 
based on the exact formulas (2.17) and (2.18) for exponential and deterministic service times. For 

O~cv ~ l it is natural to approximate E S2 by a linear interpolation between E S2 EXP and E S2 DET: 

E S 2APPI = cvE S 2EXP + (l-cv)E S 2DET. (4.5) 

So, 

2µ2 
-p2_( ....... l--p-) (eP-1-p)). (4.6) 

Additional to possessing the approximation properties of ES 2APP given in Subsection 4.1, ES2 APPi 

yields exact results for deterministic serviee times. 

We tested APP l for a number of service time distributions: E 4 (cv =0.25), E 3 (cv =0.33), 

E1 (cv =0.50), C 2 (cv =0.75, 0.92). The results are given in Table 3. It appears, as expected, that 

APP I is much more accurate than the simple approximation APP proposed in the previous subsec
tion. The relative error of APP I is less than 0.50% in all (test) cases. 

The case cv ;;;;., 1 
For service time distributions with cv;;;.o} we shall develop an approximation, APP2, for E S 2 which 

is based on simple exact formulas for two classes of extreme H 2 distributions. This approximation 
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contains the first three moments of the service time distribution. 

We start with recalling some characteristics of the class of H 2 distributions. The H 2 distribution 
function is given by 

-o) -<2) 

BH,(t) = a(l-e-ttP ) + (1-a)(l-e- 11P ) , (4.7) 

-(I} -(2) 
where o,,;;;;a:s;;;; l o,,;;;;p ,,;;;;p . 

' -(I} -(2) 
So, there are three parameters. Given the mean {:J = af3 + ( 1 - a ){J and cv ;;;;;.1 there is thus one 
remaining degree of freedom, r, defined by 

-(I) 
r = -~-a_._f3 __ ~ 

ajP> +(l-a)p<2> 

r = l I 2 yields the class of H 2 distributions with balanced means (HfM). 

Obviously, if /3 and cv are given, r determines the third moment, {33 , of the H 2 distribution. For fixed 
fJ and /32 ( cv ), the smallest possible value of {33 is obtained for r = 0. In that case [33 = ; {3~ I {:J. For 

r__.,,1, /33__.,,oo, (see Whitt [9,10]). 

Our numerical experience with respect to H 2 distributions indicates that E S2 becomes smaller when 
{13 grows (/3 and {:J2 constant). So (cf. (2.15)), we expect that E S 2H, has a limit for {:J3 __.,,oo, f3 and {32 

fixed. From the formulas for E S2 given in Section 3 of [1) it is found that, for {:J and /32 fixed, 

lim E S 2 H, 
p,-.oo(r->I) 

3 
and, for {:J3 = 2 {:J~ I /3 (r = 0), 

It is easily seen that, for cv ;;;a. I, 

In (4.10), equality holds if cv = 1 ({:J2 =2/32), i.e. if the service times are exponentially distributed. 
Note that (cf. (4.4)), 

E si H',=• = E s2 APP • 

(4.8) 

(4.9) 

(4.10) 

This explains why approximation APP yields better results for HfN service time distributions (with a 
relatively small third moment) than for HfM service time distributions. 

Now we introduce two approximation assumptions to extend the above results with respect to H 2 dis
tributions to general service time distributions. 

Assumption l: E S 2 depends only on the first three moments (/3, {:J2 , {:J3) of the service time distribu
tion. 
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Assumption 2: E S 2 decreases if {33 grows (/3 and P2 fixed). 

Under these assumptions it follows from (4.8) and (4.9) that, for cv ~ 1, fJ3 ~f /J~ I fJ, 

/32 + -1:e_ /f ~ E s2 ~ (1 +_e_2 ) /32 2 
(1-p)2 2-p (1-p)2 -p (1-p) 

(4.11) 

(4.8), (4.9) and (4.11) suggest an approximation, APP2, for E S 2 which reads as follows: 

ES 2 (l+_e_) /32 +(1 )( /32 +-1:L ff ) 
APP2 = Y 2-p (1-p)2 -y (l-p)2 2-p (l-p)2 ' 

(4.12) 

where y: =y(p,fJ,fJz,/33), O~y~ I. 

The choice of the weight factor y will be partially determined by the approximation properties listed 
below (4.4). Besides these four properties we require that 

(5) for {3, {32 fixed, 

f32 2p 132 
lim E s2APP2 = + ---~-

p,_..oo (l-p)2 2-p (l-p)2 

(6) 
3 

for {$3 = 1JJ~ I /3, 

2 _e_ P2 
E S APP2 = (1 + 2 ) 2 -p (1-p) 

Note, that, without any further specification of y, APP2 satisfies the approximation properties (1) and 
(4). Considering the other required properties ((2), (3), (5) and (6)) it is natural to choose y as fol
lows, 

y = 3 , 
1 +11(/33 -2/3~ I {$)(1-p) 

(4.13) 

where y1 represents the relative influence of {$3 on E S 2 • y1 remains to be specified. We assume that 

y1 depends only on /3 and /Ji. Note that y1 has to be chosen such that y is dimensionless. The most 
obvious choices are y 1 = 11 fJ3 or y1 = 11 (/3fJ2 ). For both cases we compared approximation results 
with exact results. Our test set consisted of H 2 service time distributions with cv ranging from 1 to 
20. For each value of cv a large number of fJ3 values was considered. It appeared that the choice 
y1 = 11 (/3/32) yields much better results than y1 = 1 I {33• However, in most cases the choice 
y1 = 11 (/3/32) underestimated E S 2 . In particular for larger values of cv the approximation results 
became worse. Extensive tests of the approximation for some variants of y1 =1 / (/3/32) led to a 
modification which yields remarkably accurate results: 

1 1 
'YI = (cv -1) /J/32 . 

So, the ultimate approximation formula is given by (4.12), with 
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y= (4.14) 

It is seen from Table 4 that for HfM and HfN service time distributions (with cv = 2, 4, 6) APP 2 
yields very accurate results with relative errors less than I%. 
Table 5 illustrates the influence of fh on E S 2• This table shows exact values of E S 2 for a number 
of H 2 distributions with the same first and second moment but with a different third moment. The 
traffic intensity varies from 0.1 to 0.95. The relative approximation errors of APP2 are indicated 
below the exact values of E S 2 • As we stated before E S decreases when /j3 grows. Note that even 
for large cv (cv = 10) the relative approximation errors are less than 1.5%. It may be concluded from 
Table 5 that the influence of the third moment of the service time distribution on E S 2 increases 
when cv grows, cf. (2.15). 
In Table 6 APP 2 is tested for some arbitrarily chosen H 3 and C 2 service time distributions. The 
relative errors are in all cases less than 1.5%. 

Originally, APP2 has been developed for service time distributions with cv;;;;;. l, /j3 ;;;;;: ; /J~ I /3. For 

these cases E S 2APP 2 can be interpreted as an interpolation formula, see (4.12). Nevertheless, approx
imation formula (4.12) (together with (4.14)) can be applied to service time distributions with cv<l or 
/33 < ; /3~ I /3 as well. In T-able 7 some results are shown for deterministic, C 2 and Ek service time 

distributions with cv<L It appears that the accuracy of APP2 for these cases is about the same as 
the accuracy of APP l. 

5. CONCLUSIONS 

In this paper we have studied the second moment of the conditional and unconditional sojourn time, 
E S 2(x) and E S 2 , for the M/G/l processor sharing queue. An upper bound and some asymptotic 
properties (like the heavy traffic behaviour) have been derived. Based on these properties and on 
exact expressions for specific service time distributions we developed some simple approximations. 
The approximations have been compared with exact results for a large number of different service 
time distributions and a wide range of traffic intensities. We conclude as follows. 
- The influence of the third and higher moments of the service time distribution on E S 2(x) and E S 2 

is limited. An upper and a lower bound for E S 2(x) can be expressed in terms of x (the service 
demand of a tagged customer) and the traffic intensity p, see (2.6). The corresponding upper and 
lower bound for E S 2 contain only the second moment of the sojourn time distribution and p, see 
(2.15). 
- Approximation APPX for E S 2(x), given by (3.1), is based on an asymptotic result for x~o derived 
in [I]. It depends on the service time distribution only through its first moment. APPX yields rea
sonably good results for not too large values of x, see Table 1. For Oo;;;,.xo;;;,.fj the relative error of the 
approximation is a few percent. The approximation becomes less accurate when x increases. For 
x =2/3 the relative errors are typically less than 7%. APPX satisfies the heavy traffic behaviour of 
E S 2(x), see (2.8). 
- The approximations for E S 2, APP, APPI and APP2, given by (4.4), (4.6) and (4.12), have been 
constructed in such a way that they have the following appealing properties: 
* they are exact for exponential service times 
*they yield values between the lower and upper bound of E S 2 

* they satisfy the heavy traffic behaviour of E S 2 

* they yield the exact value of E S 2 for p=O. 
In addition, APP 1 yields exact results for deterministic service times; APP 2 is exact for two classes 
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of extreme H 2 distributions. 
- Approximation APP is the most simple approximation. It depends on the first two moments of the 
service time distribution. For not too large values of cv (cv~6) it yields fairly accurate results, see 
Table 2. In practical situations APP may be apr 'ied as a first order approximation for E S 2• 

- APP 1, a refinement of APP, has been constructed for service time distributions with O~cv~l. It 
depends also on the first two moments of the service time distribution. APP 1 is very accurate. The 
relative approximation error is less than 0.4% in all of our examples, see Table 3. 
- APP2 depends on the first three moments of the service time distribution. It is based on exact for
mulas of E S2 for two classes of extreme H 2 distributions. The details of the construction of APP 2 
are rather heuristic. Nevertheless, it yields remarkably accurate results. APP2 has been tested for a 
large number of different service time distributions with cv ranging from 0 to 10, see Tables 4 through 
7. In all of these cases the relative error is less than 1.5%. 
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TABLE l 

Approximation of E S2(x). The table contains relative errors(%) of approximation APPX (given by 
(3.1)) for various service time distributions. 

Service time distribution: HfM, cv =2. 

1 
x =/3 x =}_/3 x=2P x =J__j}_ x=_j}_ p x=-P 

2 2 2 1-p 1-p 

0.1 -0.19 -0.66 -1.35 -2.18 -0.23 -0.80 
0.3 -0.32 -1.16 -2.40 -3.94 -0.62 -2.20 
0.5 -0.27 -0.99 -2.08 -3.46 -0.99 -3.46 
0.7 -0.15 -0.56 -1.19 -1.99 -1.44 -4.80 
0.9 -0.04 -0.15 -0.30 -0.51 -2.31 -6.61 

Service time distribution: HfM, cv =4. 

l 
x =/3 3 

x =2/3 x=J__j}_ x =_/}_ p x=-{J x=-P 
2 2 2 1-p 1-p 
~ 

0.1 -0.22 -0.77 -1.55 -2.46 -0.27 -0.93 
0.3 -0.39 -1.39 -2.83 -4.58 -0.76 -2.61 
0.5 -0.35 -1.26 -2.58 -4.23 -1.26 -4.23 
0.7 -0.21 -0.77 -1.60 -2.64 -1.93 -6.11 
0.9 -0.06 -0.23 -0.48 -0.79 -3.39 -8.98 

Service time distribution: HfM, cv = 6. 

x =.lp x ={J 3 
x =2/3 x =J__j}_ x =_/}_ p x=-P 

2 2 2 1-p 1-p 

0.1 -0.24 -0.82 . -1.63 -2.59 -0.29 -0.99 
0.3 -0.42 -1.50 -3.02 -4.86 -0.81 -2.78 
0.5 -0.38 -1.37 -2.80 -4.56 -1.37 -4.56 
0.7 -0.24 -0.86 -l.78 -2.92 -2.14 -6.67 
0.9 -0.07 -0.27 -0.55 -0.91 -3.85 -10.01 
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TABLE 1 (Cont'd) 

Service time distribution: HfN, cv = 2. 

x =J_/3 x =/3 
. 3 

x =2/3 x=J__L x=_L p x=-{3 
2 2 2 1-p 1-p 

0.1 -0.25 -0.83 -1.58 -2.45 -0.30 -0.98 
0.3 -0.45 -1.51 -2.91 -4.56 -0.85 -2.69 
0.5 -0.41 -1.38 -2.68 -4.21 -1.38 -4.21 
0.7 -0.26 -0.87 -l.69 -2.64 -1.99 -5.66 
0.9 -0.08 -0.27 -0.52 -0.79 -2.82 -7.15 

Service time distribution: HfN, cv = 4. 

x =J_fJ x=fJ 3 x =2/3 x=J__L x=_L p x=-{3 
2 2 2 1-p 1-p 

0.1 -0.34 -1.07 -1.98 -2.98 -0.41 -l.26 
0.3 -0.64 -2.03 -3.79 -5.75 -1.17 -3.52 
0.5 -0.61~ -1.96 -3.68 -5.61 -1.96 -5.61 
0.7 -0.41 -1.33 -2.50 -3.81 -2.93 -7.72 
0.9 -0.14 -0.46 -0.86 -1.30 -4.33 -10.02 

Service time distribution: HfN, cv =6. 

x =J_/3 x =/3 3 
x =2/3 x=J__L x=_L p x=-/3 

2 2 2 1-p 1-p 

0.1 -0.38 -1.18 -2.16 -3.23 -0.45 -1.39 
0.3 -0.72 -2.26 -4.17 -6.29 -1.31 -3.88 
0.5 -0.69 -2.21 -4.11 -6.22 -2.21 -6.21 
0.7 -0.48 -1.53 _-2.85 -4.32 -3.33 -8.63 
0.9 -0.17 -0.54 -LOO -1.52 -4.98 -11.29 
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TABLE 1 (Cont'd) 

Service time distribution: exponential. 

x=l.p x=P 3 
x =2/3 x=J__L x=_L p x=-/3 

2 2 2 1-p 1-p 

0.1 -0.14 -0.53 -1.11 -1.85 -0.17 -0.64 
0.3 -0.23 -0.86 -1.86 -3.17 -0.45 -1.70 
0.5 -0.17 -0.66 -1.46 -2.53 -0.66 -2.53 
0.7 -0.08 -0.30 -0.67 -1.19 -0.83 -3.19 
0.9 -0.01 -0.04 -0.09 -0.16 -0.96 -3.74 

Service time distribution: E 2• 

I -x ={3 3 
x =2/3 x=J__L x=_L p x=-P- x=-/3 

2 2 2 1-p 1-p 

0.1 -0.03 -0.24 -0.68 -1.32 -0.05 -0.32 
0.3 -0.00 -0.24 -0.86 -1.88 -0.06 -0.75 
0.5 0.07 0.05 -0.26 -0.91 0.05 -0.91 
0.7 0.11 0.27 0.33 0.24 0.32 -0.84 
0.9 0.06 0.19 0.34 0.48 0.85 -0.53 
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TABLE2 

Approximation of E S2 • The table contains relative errors(%) of approximation APP (given by (4.4)) 
for various service time distributions. 

Service time distribution: H~M. 

p CV =2 CV =4 CV =6 

0.10 0.82 1.48 1.77 
0.30 2.30 4.22 5.07 
0.50 3.38 6.31 7.63 
0.70 3.63 6.87 8.37 
0.90 2.08 4.00 4.91 
0.95 1.19 2.30 2.83 

Service time distribution:.HfN. -

p cv=2 CV =4 cv=6 

0.10 0.40 0.73 0.86 
0.30 1.08 1.97 2.36 
0.50 1.52 2.78 3.34 
0.70 1.53 2.83 3.40 
0.90 0.81 1.51 1.82 
0.95 0.45 0.84 1.02 

Service time distributions with cv < 1. 

p DET E2 c2· 

0.10 -1.55 -0.40 -0.22 
0.30 -3.92 -1.06 -0.60 
0.50 -5.11 -1.46 -0.83 
0.70 -4.79 -1.45 -0.84 
0.90 -2.34 -0.75 -0.45 
0.95 -1.29 -0.42 -0.25 

*cv =0.75 
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TABLE 3 

Approximation of E S 2• The table contains relative errors (%) of approximation APPI (given by 
( 4.6)) for various service time distributions with cv < 1. 

p E4 E3 E2 qI) q2) 

0.10 0.18 0.14 0.13 0.00 0.00 
0.30 0.35 0.35 0.28 0.00 -0.02 
0.50 0.38 0.38 0.32 -0.07 -0.09 
0.70 0.25 0.24 0.21 -0.13 -0.11 
0.90 0.05 -0.01 0.04 -0.11 -0.07 
0.95 0.02 -0.01 0.02 -0.08 -0.04 

qI): CV =0.75, q 2>: CV =0.92. 

TABLE4 

Approximation of E S 2• The fable contains relative errors (%) of approximation APP2 (given by 
( 4.12) and ( 4.14)) for various service time distributions with cv;;. I, /33 ;;;;;. ; /3~ I /3. 

Service time distribution: HfM. 

p CV =2 CV =4 CV =6 

0.10 -0.15 -0.27 -0.32 
0.30 -0.32 -0.58 -0.69 
0.50 -0.31 -0.53 -0.61 
0.70 -0.12 -0.09 -0.04 
0.90 0.08 0.34 0.51 
0.95 0.07 0.26 0.39 

Service time distribution:HfN. 

p CV =2 CV =4 CV =6 

0.10 -0.12 -0.21 -0.25 
0.30 -0.23 -0.41 -0.48 
0.50 -0.17 -0.30 -0.35 
0.70 -0.01 0.01 0.03 
0.90 0.09 0.20 0.26 
0.95 0.07 0.14 0.18 



TABLE 5 

The influence of the third moment of the service time distribution (/33) on E S 2 . 

In the table the exact values of E S 2 are given. 1he relative approximation errors(%) 

of APP2 are indicated in parentheses below the exact values of E S 2• 

H 2 service time distributions with /3= 1, cv =4. 

{33 p=0.10 p=0.30 p=0.50 p=0.10 p=0.90 p=0.95 

37.500* 6.498 12.00 26.67 85.47 909.l 3810 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

49.084 6.434 11.68 25.65 82.10 889.2 3762 

(-0.25) (-0.50) (-0.40) (-0.01) (0.26) (0.19) 

68.329 6.388 11.43 24.78 78.74 864.3 3698 

(-0.26) (-0.58) (-0.56) (-0.15) (0.34) (0.29) 

105.42 6.35-3- 11.24 24.02 75.35 830.6 3609 

(-0.19) (-0.47) (-0.54) (-0.28) (0.24) (0.26) 

190.02 6.329 11.09 23.41 72.17 785.3 3441 

(-0.11) (-0.29) (-0.38) (-0.31) (0.01) (0.08) 

310.86 6.318 11.02 23.12 70.47 751.6 3295 

(-0.07) (-0.19) (-0.26) (-0.25) (-0.13) (-0.09) 

716.53 6.309 10.97 22.86 68.85 709.3 3063 

(-0.03) (-0.08) (-0.12) (-0.14) (-0.17) (-0.22) 

1391.8 6.306 10.95 22.77 68.21 689.0 2927 

(-0.02) (-0.04) (-0.06) (-0.08) (-0.13) (-0.20) 

2291.9 6.305 10.94 22.73 67.94 679.6 2856 

(-0.01) (-0.03) (-0.04) (-0.05) (-0.09) (-0.16) 

4541.9 6.304 10.93 22.70 67.74 671.9 2794 

(-0.00) (-0.01) (-0.02) (-0.03) (-0.05) (-0.10) 

00 6.303 10.92 22.67 67.52 663.6 2724 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

17 
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TABLE 5 (Cont'd) 

H 2 service time distributions with f3 = 1, cv = 10. 

{J3 p=0.10 p=0.30 p=0.50 p=0.10 p=0.90 p=0.95 

181.50* 14.29 26.41 58.67 188.0 2000 8381 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

223.21 14.17 25.80 56.78 181.9 1965 8298 
(-0.29) (-0.50) (-0.35) (0.05) (0.28) (0.19) 

330.00 14.01 24.95 53.89 171.3 1891 8110 
(-0.40) (-0.80) (-0.68) (0.03) (0.70) (0.53) 

502.34 13.90 24.34 51.62 161.6 1802 7859 
(-0.31) (-0.73) (-0.72) (-0.04) (l.00) (0.86) 

710.16 13.84 24.00 50.26 155.0 1724 7612 
(-0.-24) (-0.60) (-0.65) (-0.09) (1.13) (1.09) 

1323.2 13.78 23.61 48.65 146.4 1588 7093 
(-0.14)· (-0.37) (-0.44) (-0.11) (l.13) (l.37) 

1845.6 13.76 23.49 48.11 143.2 1523 6797 
• (-0.10) (-0.27) (-0.34) (-0.10) (l.04) (1.42) 

4162.2 13.73 23.31 47.31 138.4 1401 6129 
(-0.05) (-0.13) (-0.17) (-0.06) (0.69) (1.26) 

12263 13.72 23.22 46.89 135.7 1315 5543 
(-0.02) (-0.04) (-0.06) (-0.03) (0.30) (0.71) 

30488 13.71 23.19 46.76 134.8 1285 5305 
(-0.01) (-0.02) (-0.02) (-0.01) (0.13) (0.34) 

00 13.71 23.17 46.67 134.2 1264 5124 
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 



TABLE6 

Relative approximation errors(%) of APP2 for H 3 and C2 service time distributions. 

p 

0.10 
0.30 
0.50 
0.70 
0.90 
0.95 

TABLE 7 

MI> M2> qI) q2) 

-0.20 -0.29 -0.15 -0.30 
-0.54 -0.71 -0.31 -0.63 
-0.65 -0.82 -0.25 -0.54 
-0.44 -0.48 -0.04 -0.04 
-0.00 0.20 0.12 0.40 
0.00 0.10 0.09 0.31 

M1>: CV =2.778, /J3 =40.963. 
M2>: CV =4.130, /J3 =85.622. 
qi): CV =2.200, /J3=18.240. 
q2): CV = 5.000, /J3 = 84.000. 
q3>: CV =8.556, fJ3=187.33. 
In all cases: P= l. 

cy> 

-0.32 
-0.63 
-0.48 
0.05 
0.39 
0.28 

Relative approximation errors (%) of APP 2 for various service time distributions with cv,,;;;;; 1 and 

fh,,;;;;; I /J~ I fJ. 

p DET E4 E2 c2· 

0.10 -0.02 0.16 0.12 0.06 
0.30 -0.18 0.23 0.22 0.11 
0.50 -0.36 0.16 0.18 0.10 
0.70 -0.44 -0.02 0.05 0.04 
0.90 -0.25 -0.10 -0.04 -0.02 
0.95 -0.13 -0.08 -0.03 -0.02 

*CV =0.75 
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