Connected spaces in which all connected sets containing some fixed
point are closed.

J.L. Hursch

A. Verbeek-Kroonenberg

Notations.

Let X be a connected T_{1}-space and X_{0} some fixed point of X such that any connected set containing x_{0} is closed.
The characters z, y, z, u, v, \ldots denote points of X.
For a topological space Y, we write $Y=A+B$ if Y is the topological sum of its subspaces A and B.
We will frequently apply the following two wellknown lemma's, most often with $Y=\{z\}$ for some $z \in Z$:

Lemma 1. If Z and $Y \subset Z$ are connected and $Z \backslash Y=A+B$, then $Y \cup A$ (and $Y \cup B$) is connected.

Lemma 2. If Z and $Y \subset Z$ are connected and C is a component of $Z \backslash Y$ then $Z \backslash C$ is connected.

Let < be the relation (partial order) defined on X by:

$$
\begin{array}{ll}
x_{0}<y & \text { for all } y \in X \backslash\left\{x_{0}\right\} \\
x<y & \text { if } x \text { separates } x_{0} \text { and } y
\end{array}
$$

Then X and < have the following properties:

Proposition 1. The relation < is antisymmetric and transitive; i.e. is a partial order.

Proof. If $\mathrm{x}<\mathrm{y}$ and $\mathrm{y}<\mathrm{x}$ then there exist $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D} C \mathrm{X}$ such that $X \backslash\{x\}=A+B, X \backslash\{y\}=C+D, x_{0} \in A \cap B, y \in B$ and $x \in D$. Now $A \cup\{x\}$ is connected (lemma 1), contained in $C+D$, but meeting both $C\left(\right.$ in $\left.x_{0}\right)$ and $D($ in $x)$. Contradiction.

If $x<y$ and $y<z$ then there exist $A, B, X, D \subset X$ such that $X \backslash\{x\}=A+B, X \backslash\{y\}=C+D, x_{0} \in A \cap C, y \in B$ and $z \in D$. Since $D U\{y\}$ is connected (lemma 1) and intersects B (in y) $D U\{y\} \subset B$. Hence $\mathrm{x}<\mathrm{z}$.

Proposition 2. For each $x \in X\{y \mid y<x\}$ is linearly ordered (and wellordered by >, see 6)

Proof. Let $y<x, z<x$ but y 立 z and $z \frac{1}{1} y$. Then there exist A, B, C, $D \subset X$ such that $X \backslash\{y\}=A+B, X \backslash\{z\}=C+D, x_{0} \in A \cap C$ and $x \in B \cap D$, but $z \notin B, y \notin D$ and so $z \in A$ and $y \in C$. Since $D \cup\{z\}$ is connected (lemma 1), and intersects A (in z), but does not contain y, $D \cup\{z\} \subset A$. This is contradictory to $x \in D \backslash A . l$

Proposition 3. If $X \in X$ and C is a component of $X \backslash\{x\}$ which does not contain x_{0}, then C is open in X. and $C^{-}=C \cup\{x\}$. (If $x_{0} \in C$, then C is closed in X).

Proof. $X \backslash C$ is connected (lemma 2), contains x_{0} and is hence:closed. Now C cannot be closed in X, because X is connected. As C is closed in $X \backslash\{x\}$, only x can be another limitpoint of C.

Proposition 4. For any $x,\{y\} x d\}$ is the component of $X \backslash\{x\}$ which contains x_{0}, and hence this set is closed. So its complement | $\{y \leq y\}$ | is connected and open.! |
| :--- | :--- |

Proof. By definition of $<\{y \mid x \notin y\}$ is the quasicomponent of x_{0} in $X \backslash\{x\}$. If this set was not connected, then it would contain a component C of $X \backslash\{x\}$ which does not contain x_{0}. But this C is open in $X($ by 3) and closed in $X \backslash\{x\}$. Thus $\{y \mid x \nmid y\}$ is not a quasicomponent.

The connectedness of $\{y \mid x \leq y\}$ follows from lemma 2.

Proposition 5a. For each non empty linearly ordered $A \subset X$ there is a (unique) $x \in X$ such that $x=\inf A$.
5b. Each $y \in X \backslash\left\{x_{0}\right\}$ has an immediate predecessor, which will be denoted by y^{\prime}. For this point y^{\prime} :

$$
\{z \mid y \leq z\}^{-}=\{z \mid y \leq z\} \cup\left\{y^{\prime}\right\}
$$

Proof. (a) Let $A^{*}=\{z \mid \exists a \in A \quad a<z\}$. By 4 this set is open and hence not closed, as X is connected. Let x be a boundary point of A^{*}. At first we will show that $x<a$ for all a \quad a (or $a \in A^{*}$). Since $x \notin A^{*}$ we have $a \notin x$ for all $a \in A$. Suppose x and some $a \in A$ are not comparible. Then, by $2, x$ cannot be compared with any $a \in A$. But then again by 2; $\{y \mid x \leq y\} \cap A^{*}=\emptyset$. Since $\{y \mid x \leq y\}$ is open (see 4), $x \notin A^{-}$.

Contradiction.

Secondly assume that for some $y \quad x<y$ and $y<a$ for all a $E A$. For $a \in A$ let $C a$ be the component of a in $X \backslash\{y\}$. Since, by 4 , $\{z \mid a \leq z\} \subset C_{a}$, the family $\left\{C_{a} \mid a \in A\right\}$ has no disjoint members. Hence it has a connected union. This means that for some component C of $X \backslash\{y\}$ A $A \subset C$. By $3 \quad C^{-}=C U\{y\}$, but C does not contain x since $x<y$. This contradicts $x \in A^{-} \subset C^{-}$.
So if A has no smallest element then $x=\inf A$.
(b) Let $A=\{y\}, y^{\prime}=x=$ the boundary point of $\{z \mid x \leq z\}$.

For each ordertype α, ordered by <, let α^{*} denote the ordertype of α, ordered by $>$. It follows immediately from $5 a$ and $5 b$ that for each $x \in X$ the set $\{y \mid y \leq x\}$ has ordertype α^{*} for some ordinal α. If A is a linearly ordered subset of X, and B is an infinite strictly increasing sequence, then by consequence B is cofinal with A. It follows from 4 and 5 b that X cannot have maximal members.
Thus we proved:
Proposition 6. Let A be a linearly ordered subset of X_{2} with ordertype人. If A is bounded in X then $\alpha=\beta^{*}$ for some ordinal β. If A is not bounded in X then $\alpha=\sum_{n \in \mathbb{N}} \beta_{n}^{*}$, for some suitable countable set of ordinals $\underline{\left\{\beta_{1}, \beta_{2}, \ldots\right\}}$

We feel that the following facts deserve special attention

7. Any point of $X \backslash\left\{x_{0}\right\}$ separates X in infinitely many components (as follows from 4).

8. Any connected space has a non-closed connected (proper) subset (else it were a space like X, but $X \backslash\left\{x_{0}\right\}$ is non-closed and connected).
9. ZARANKIEWICZ [2]. If M is a connected separable metric space and D is the set of points $x \in M$ for which $M \backslash\{x\}$ has at least 3 components, then D is countable. On the other hand M has continuously many points.

Corollary. X is not separable metric.

Example of a Hausdorffspace X.

Let \mathbb{N} be the set of natural numbers, and $P \subset \mathbb{I}$ the set of primenumbers.
Put $X=U\left\{\mathbb{N}^{n} \mid n \in \mathbb{N}\right\} \cup\{0\}$.
For $x \in X$ we define length $x= \begin{cases}2 & \text { if } x=0 \\ n+2 & \text { if } x \in \mathbb{N}^{n} .\end{cases}$
We define a partial order on X by taking $0 \leq x$ for all $x \in X$ and $x \leq y$ if x is an initial sequent of y, i.e. if $x \in \mathbb{M}^{n}, y \in \mathbb{N}^{m}, n \leq m$, and there exist $a_{1}, \ldots a_{m} \in$ such that $x=\left(a_{1}, \ldots a_{n}\right), y=\left(a_{1}, \ldots a_{m}\right)$. If $x=\left(a_{1}, \ldots a_{n}\right)$ then let $x^{\prime}=\left(a_{1}, \ldots a_{n-1}\right)$.
As a subbase for the open sets we take all sets
(i)
$\begin{array}{ll}\{z \mid x \leq z\} & \text { for each } x \in X \\ \left\{z \mid x \neq z \wedge z \neq x^{\prime}\right\} & \text { for each } x \in X \\ \{z \mid & \left.\text { the only primes deviding length } y \text { are } p_{1}, \ldots p_{n}\right\}\end{array}$ for each finite set of primes, $p_{1}, \ldots p_{n}$.
10. X is a Hausdorffspace

Let $u, v \in X$. We distinguish between
(a) $u<v$ and even $u<v^{\prime}$
(b) neither $u<v$ nor $v<u$
(c) $u=v^{\prime}$.
(a) In this case $\left\{y \mid v \neq y \wedge y \neq \mathrm{v}^{\prime}\right\}$ and $\{\mathrm{z} \mid \mathrm{v} \leq \mathrm{z}\}$ are disjoint neighbourhoods of u and v.
(b) Now $\{z \mid u \leq z$ and $\{z \mid v \leq z\}$ are disjoint neighbourhoods of u and v, since $u<z$ and $v<z$ (for some $z \in X$) would imply that u and v are comparable (by definition of X).
(c) Let $p_{1}, \ldots p_{n}$ be the set of prime numbers which devide length u, and $q_{1}, \ldots q_{m}$ idem for length v. Then $\left\{p_{1}, \ldots p_{n}\right\} n$ $n\left\{q_{1}, \ldots q_{m}\right\}=\emptyset$ and so
$\left\{z|\forall p \in P \quad p|\right.$ length $\left.z \Rightarrow p \in\left\{p_{1}, \ldots p_{n}\right\}\right\}$ and
$\left\{z|\forall p \in P \quad p|\right.$ length $\left.z \Rightarrow p \in\left\{q_{1}, \cdots q_{m}\right\}\right\}$
are disjoint neighbourhoods of u and v. .
11. Any connected set $C \subset X$ containing O is closed.

If $u \in X \backslash C$ then we will show that C is disjoint from $\{y \mid u \leq y\}$; hence C is closed. Suppose $u \leq y$ for some $y \in U$, and $u \in \pi^{n}$, $y=\left(a_{1}, \ldots a_{m}\right) \ominus \mathbb{H}^{m}$. Now
$C=\left(C \cap\left\{z \mid\left(a, \ldots a_{n+1}\right) \leq z\right\}\right)+\left(C \cap\left\{z \mid\left(a_{1}, \ldots a_{n+1}\right) \notin z \wedge z \neq u\right\}\right.$, contradictory to the connectedness of C.
12. X is connected.

Lemma. For each $u \in X \backslash\{0\}$ the points u and u ' have no disjoint closed neighbourhoods.

Proof of the connectedness of X.
Suppose $X=A+B, O \in A, y \in B$ is such that length y is minimal. Then $y^{\prime} \in A$, and A and B are disjoint closed neighbourhoods of y^{\prime} and y. Contradiction.

Proof of the lemma. Let $u=\left(a_{1}, \ldots a_{1}\right)$.
For each point $x \in X$ and each finite family $\left\{x_{1}, \ldots x_{n}\right\}$ such that $x_{i} \neq x$ and $x^{\prime} \neq x_{i}^{\prime}$ we define the following neighbourhood of $x:$
$U\left(x,\left\{x_{1}, \ldots x_{n}\right\}\right)=\{z \mid x \leq z\} \cap$

$$
\begin{aligned}
& \cap\{z \mid \forall p \in P(p \mid \text { length } z) \Rightarrow(p \mid \text { length } x)\} \\
& \cap \bigcap_{i=1}^{n}\left\{z \mid x_{i} \pm z \wedge z \neq x_{i}^{\prime}\right\}
\end{aligned}
$$

It should be clear that if the $x_{1}, \ldots x_{n}$ vary we obtain a neighbourhoodbase of x. (We may also vary only over those x_{i} for which $\left.x<x_{i}^{\prime}\right)$.
For $x=\left(a_{1}, \ldots a_{n}\right)$ we let $\max x=\max \left\{a_{1}, \ldots a_{n}\right\}$.
Now let $U\left(u^{\prime},\left\{x_{1}, \ldots x_{n}\right\}\right)$ and $U\left(u,\left\{x_{n+1}, \ldots x_{m}\right\}\right)$ be two arbitrary basic neighbourhood of u^{\prime} and u.

Put

$$
\begin{aligned}
& \mathbb{N}=\max \left\{\max x_{i} \mid i=1, \ldots k\right\}+1 \\
& L=(\text { length } x)\left(\text { length } x^{\prime}\right)-2 \\
& v=\left(a_{1}, \ldots a_{1}, N, N, \ldots \mathbb{N}\right) \in \mathbb{N}^{L} .
\end{aligned}
$$

We will show that $v \in U\left(u^{\prime},\left\{x_{1}, \ldots x_{n}\right\}\right)^{-} \cap U\left(u,\left\{x_{n+1}, \ldots x_{m}\right\}\right)^{-}$. Let $U\left(v,\left\{x_{m+1}, \ldots\right\}\right)$ be an arbitrary neighbourhood of v. Put $N^{\prime}=\max \left\{\max x_{i} \mid i=1, \ldots k, \ldots m, m+1, \ldots\right\}+1$.
Let $p, q \in P$ be such that $p \mid$ length $u^{\prime}, q \mid$ length u, and choose $r \in$ such that $p^{r}>L$ and $q^{r}>L$. Then

It is easily seen that if $C \subset X$ is connected, then each $x \in C$ disconnects C, exceptivinf C (cf 11 and 4 and 5). In the terminology of [1]: each connected subset of X has at most one endpoint. The points (1), (2), (3) are such that none of them separates the other 2. Zo this settles the problem mentioned in [1] p 24 remark 3.

REFFERENCES

[1] H. Kok
On conditions equivalent to the orderability of a connected space. Wiskundig Seminarium der Vrije Universiteit Rapport 6 November 1969.
[2] C. Zarankiewicz and K. Kuratowski Bull. Amer. Math. Soc. 33(1927) 571.
7601

