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Connected spaces in which all connected sets containing some fixed 

point are closed. 

J.L. Hu.rsch 

A. Verbeek-Kroonenberg 

Notations. 

Let X be a connected T1-space and x
0 

some fixed point of X such that 

any connected set containing x0 is closed. 

The characters z, y, z, u, v, ••. denote points of X. 

For a topological space Y, we write Y =A+ B if Y is the topological 

sum,· of its subspaces A and B. 

We will frequently apply the following two wellknown lemma's, most 

often with Y = {z} for some z £. Z: 

Lemma 1 • If Z and Y c Z are connected and Z \Y = A + B, then Y v A 

(and Yu B) is connected. 

.. ""'",.,_....- ei.r 1-0 

Lemma 2. If Zand Y c. Z are connected and C is a component of Z\Y then 

Z \ C is connected. 

Let< be the relation (partial order) defined on X by: 

x0 < y for all y t:::.X \ {x0} 

x < y if x separates x0 and y 

Then X and< have the following properties: 

Proposition 1. The relation< is antisymmetric and transitive; i.e. 

is a partial order. 

Proof. If x < y and y < x then there exist A, B, C, De· X such that 

X\{x} =A+ B, X\{y} = C + D, x0 cs.A nB, y eB and xe.D. Now 

Au {x} is connected (lemma 1), contained in C + D, but meeting both 

C(in x0 ) and D(in x). Contradiction. 
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If x < y and y < z then there exist A, B, X, D c. X such that 

X\ {x} = A + B, X \ {y} = C + D, x0 ~A" C, yfi£..B and z e;:D. Since 

DV {y} J.s connected (lemma 1) and intersects B ( in y) DU {y} c::; B. 

Hence x < z .I 

Proposition 2. For each xE:.X {y 

wellordered by>, see 6) 
y < x} J.S linearly ordered (and 

Proof. Let y < x, z < x but y .i z and z i y. Then there exist A, B, ~~ 

De X such that X\{y} =A+ B, X'\{z} = C + D, x0 e:.A ()C and 

X e:,B n D, but z ~B, y ~D and so z G!-A and y e.c. Since D V {z} J.S 

connected (lemma 1), and intersects A (in z), but does not contain y, 

Du { z} c A. This is contradictory to x e-D \A.■ 

Proposition 3, If x e X and C is a component of X \{x} which does not 

contain x
0

, then C is open in X. •· and c- = C V {x}. ( if x
0 

e. C, then C 

is closed in X). 

Proof. X\ C is connected (lemma 2), contains x
0 

and·.is·:hen~e:oJ:.osed. Now 

C cannot be closed in X, because Xis connected. As C is closed in 

X \ { x}, only x can be another limi tpoint of C. I 

Proposition 4. For any x :.( {yJ3$hr}, is the component of X \ {x} which 

contains x0 , and hence this set is closed. So its complement 

{y I x ~ y} is connected and open.•'.· 

Proof. By definition of< {y J x iy} is the quasicomponent of x
0 

J.n 

X\ {x}. If this set was not connected, then it would contain a component 

C of X\ {x} which does not contain x
0

• But this C is open in X (by 3) and 

closed in X \ {x}. Thus {y I x i y} is not a quasi component. 
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The connectedness of {y Ix .::_y} follows from lemma 2.■ 

Proposition 5a. For each non empty linearly ordered Ac: X there is 

a (unique) x e.-X such that x = inf A. 

5b. Each YE;. X\. {x
0

} has an immediate predecessor, which 

will be denoted by y'. For this pointy': 

{z I y .::_ z}- = {z I y .::_ z} u {y'} 

Proof. (a) Let A*= {z f]ae,A a< z}. By 4 this set is open and 
. . * hence not closed, as Xis connected. Let x be a boundary point of A. 

At first we will show that x < a for all as A (or a re-A*). Since 

x dj;,-A* we have a f x for all a GA. Suppose x and some a 6-A are not 

comparible. Then, by 2, x cannot be compared with any acE A. But then 

again by 2, {y I x .::_ y} n A*=~- Since {y I x .::_ y} is open (see 4), 

x ~A-. 

Contradiction. 

Secondly assume that for some y x < y and y < a for all a E-A. 

For a e. A let C be the component of a in X\ {y}. Since, by 4, 
a 

{z I a < z} c C , the family {C I a~ A} has no disjoint members. 
- a a 

Hence it has a connected union. This means that for some component 

C of X\ {y} A cc. By 3 C- = C V {y}, but C does not contain x ·si·n:ce 

x < y. This contradicts x e;A-c. C-. 

So if A has no smallest element then x = inf A. 

(b) Let A= {y}, y' = x = the boundary point of {z I x ,:_ z}.■ 

* For each ordertype a, ordered by<, let a denote the ordertype of a, 

ordered by >. It follows immediately from 5a and 5b that for each x e X 

the set {y I y.::. x} has ordertype a* for some ordinal a. If A is a 

linearly ordered subset of X, and Bis an infinite strictly increasing 

sequence, then by consequence Bis cofinal with A. It follows from 4 
and 5b that X cannot have maximal members. 

Thus we proved: 

Proposition 6. Let A be a linearly ordered subset of x, with. ordertype 

a. If A is bounded in X then a= s* for some ordinals. If A is not 

bounded in X then a= I 
nO 

{s
1

, s~, ... }. 

* . . S , for some suitable countable set of ordinals 
n 
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We feel that the following facts deserve special attention 

7. Any point of X\{x0} separates X in infinitely many components 

(as follows from 41". 

8. Any connected space has a non-closed connected (proper) subset (else 

it were a space like X, but X'\ {x
0

} is non-closed and connected). 

9. ZARANKIEWICZ [2]. If M is a connected separable metric space and D 

is the set of points x ~ M for which M \ {x} has at least 3 compo

nents, then Dis countable. On the other hand M has continuously 

many points. 

Corollary.Xis not separable metric. 

Example of a Hausdorffspace X. 

Let N be the set of natural numbers,and P cJ the set of primenumbers. 

Put X = U {]Jln I n E. Jr} lJ { 0}. 

For x.S. X we define length X - (2 
n+2 

We define a partial order on X by taking O < x for all x Q. X and x .::_ y 

if x is an initial sequent of y, i.e. if x c;;;. Wn, y c;.:,f1, n .::. m, and 

there exist a 1 , ••• am e, li such that x = (a1 , ••• an), y = (a1 , ••• am). 

If x = (a
1

, ••• an) then let x' = (a1 , ••• an_ 1 ). 

As a subbase for the open sets we tflke all sets 

(i) {z x < z} for each x ~X 

for each x GX (ii) 

(iii) 

{z 

{z the only primes deviding lengthy are p1 , ••• pn} 

for each finite set of primes, p 1, ••• pn. 

10. Xis a Hausdorffspace 

Let u, v G-X. We distinguish between 

(a) u < v and even u < v' 

(b) neither u < v nor v < u 

(c) v,. = v'. 
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(a) In this case {y I v i.Y ~ y f v'} and {z Iv< z} are disjoint 

neighbourhoods of u and v. 

(b) Now {z I u < z and {z I v ~ z} are disjoint neighbourhoods 

of u and v, since u < z and v < z (for some z 6-X) would imply 

that u and v are comparable (by definition of X). 

(c) Let p
1

, •••Pn be the set of prime numbers which devide length 

u, and q
1

, •••~ idem for len~th v. Then {p
1

, ••• pn} n 
n{q

1
, ••• ~}=~and so 

{z I 't/p e P p I length z ~p s {p
1

, ••• pn}} and 

{z I "ljp <-- P Pl length z -=9P a. {q1, .. •'\n}} 

are disjoint neighbourhoods of u and v.l 

11. Any connected set C ex containing O is closed. 

If uc:;;;;:. X \ C then we will show that C is disjoint from {y I u ~ y}; 

hence C is closed. Suppose u ~y for some y GU, and u ~Wn, 

y = (a1, •• ·8m,_) elf. Now 

C = (CO {z I (a, ••• an+ 1) ~ z}) + (Cn{z I (a1 , ••• an+1 ) 1 zfl.z f u}, 

contradictory to the connectedness of c.l 

12. Xis connected. 

Lemma. For each u eX\{O} the points u and u' have no disjoint 

closed neighbourhoods. 

Proof of the connectedness of X. 

Suppose X = A + B, 0 GA, y e B is such that length y is minimal. 

Then y' eA, and A and Bare disjoint closed neighbourhoods of 

y' and y. Contradiction.I 

Proof of the lemma. Let u = (a
1

, ••• a1 ). 

For each point xs X and each finite family {x
1

, ••• xn} such that 

x. 1. x and x' f x! we define the following neighbourhood of x: 
1 1 

U(x,{x
1

, ••• xn}) = {z Ix~ z}n 

"' { z I \/ p e. P ( p I length z) ~( p I length x) } 
n 

n f\ { z I x. 1. z /\ z + x!}. 
i=1 1 1 
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It should be clear that if the x1, ••• xn vary we obtain a neigh

bourhoodbase of x. (We may also vary only over those x. for which 
J. 

X < x!). 
J. 

For x = (a1, ••• an) we let max x = max{a1, ••• an}. 

Now let U(u' ,{x1, ••• xn}) and U(u,{xn+1, ••• xm}) be two arbitrary 

basic neighbourhood of u' and u. 

Put 

N = max{max .x. I i=1, .••• k} + 1 
J. 

L = (length x)(length x') - 2 

( a1, ••• a
1

, N, N, • • .N) 
L 

V = e.N • 

We will show that ve. U(u' ,{x1, ••• xn} )- Cl U(u,{xn+1, ••• xm} )- • 

Let U(v,{~+1, ••• }) be an arbitrary neighbourhood of v. Put 

N' = max{max x. I i=1, • • • k, ••• m, m+1, ••• } + 1 • 
1 

Let p, q_ GP be such that p J length u' , q_Jlength u, and choose 

r '-- ll such that pr> r Land q_ > L • Then 

• • • a
1

, N, ••• N, N', 

< L numbers > rV,.. ______ __,, 

p numbers 

and (a1, ••• a
1

, N, ••• N, N', ••• N') e:.U(u,{xn+1 ... xm}) f\ U(v,{xm+1, ... }) 

L numbers 
N q_ numbers 

C 

It is easily seen that if Cc Xis connected, then each x G-C dis
... .._~\e.. 

connects c, excepMnf C (cf 11 and 4 and 5). In the terminology 

of [1] : each connected subset of X has at most one endpoint. 

T he points ( 1 ) , ( 2) , ( 3) are such that none of them separates the 

other 2. Zo this settles the problem mentioned in [1] p 24 remark 3. 
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