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Necessary and sufficient conditions are given for the convergence of the first moment 
of functionals of Markov chains. 

stationary Markov chain convergence of moments 

1. Introduction 

Let {x(t)} 7=o be an irreducible positive recurrent Markov chain with 
countable state space and with standard semigroup {P(t)} ~=o of transi 
tion probabilities. If rr(j) := limr .... cc Pi/t) and f is a functional of the 
chain, is it true that 

lim E{f(x(t))} = 6 rr(j)f(j)? ( 1.1) 
t-+ cc j 

Here E stands for expectation. 
If L/rrU) lf(j)I < 00 and the chain is not started too badly, it is reason

able to suppose relation ( 1.1) to be correct. In applications it is com
mon practice to take ( 1.1) for granted and to take for example for the 
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mean "in the long run" the m~an with respect to the stationary distri
bution { 1T(i)}. However, it turhs out to be difficult to find an expli-
cit discussion of the problem in the literature. As far as we know the 
only place where a proof of ( 1.1) (for chains with discrete time param
eter) is presented is a paper by Kesten and Runnenburg [3, Theorem 
4.3]. 

In this paper we give a very simple proof of ( 1.1) and consider some 
additional and related questions, yielding a simplified proof of a well
known theorem due to Chung (cf. [2, Theorem 3, p. 93] ). 

For the terminology we refer to Chung [ 2]. 

2. Results 

2.1. Theorem. Consider an irreducible positive recurrent Markov chain 

with one-step transition matrix (p1i ), i,j = 1, 2, .... Let 

n 
1T(j) := lim n- 1 6 p~~>, 

n-+ 00 k = 1 I/ 

with p}jkl the k-step transition probabilities. Let x 0 = i0 and let f ~ 0 be 

a functional of the chain with l:i=l 1T(j)f(j) < 00 • Then 

n oo 

lim n- 1 6 E{f(xk)} = 6 7r(j)f(i) 
n-+"" k=l j=l 

for each i0 = 1, 2, ... ,and if the chain is aperiodic, 

00 

lim E{f(xn)} = 6 7r(j)f(j) 
n-+oo j=l 

for each i0 = 1, 2, .... 

Proof. Fix i 0 . Since ~i= 1 7r(i) PW) = 7r(i) for each n = 1, 2, ... ,we have 

1T(io) p}~) ~ 7r(i), 

and hence 

Both assertions follow now by the bounded convergence theorem. D 
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2.2. Remarks 
(1) Theorem 2.1 remains true if we start the chain with a distribution 

with finite support. 
(2) If f~ 0 and ~f=l rr(j)f(j) = 00 , it follows from Fatou's lemma that 

the assertions are true if the chain is started with arbitrary initial distri
bution. 

(3) Theorem 2.1 is also correct for arbitrary f, provided that 

"" 
E 1f(j) lf(j)I < 00 • 

j=l 

( 4) The proof of Theorem 2.1 applies verbatim in case the chain has 
continuous time parameter and is standard (in this case the phenomenon 
of periodicity does not occur). 

In the next theorem we consider relation ( 1.1) in case the chain is 
null- or non-recurrent and obtain at the same time an alternative proof 
of the aperiodic part of Theorem 2.1. We write iaP&n) for 

P[x 11 = j, xv * i 0 , 1 ..;:;; v < n I x 0 = i]. 

2.3. Theorem. Let the Markov chain {xn }~=O with discrete time param
eter n be irreducible and null- or non-recurrent with x 0 = i0 . Let T 

stand for the return time to state i0 , i.e. 

T :=inf{n> 0: x 11 =i0 }. 

If f~ 0 is a functional of the chain with E{~~=of(x11 )} < 00 , then 

lim Elf(x12 )} = 0. 
n--+"" 

Proof. We apply the "last exit decomposition" of state i 0 . We find 

(withp~~/0 := 1): 
n-1 

p\ 11 ~ = 6 p\v)_ . p\11 -: v) for all n ~ 1, j ~ 1. 
zoJ v=O zozo zo Zof 

It follows that 
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We write 

"" n-l oo 

6 p\n~f(j) = 6 p\v). (6 . p(n-:v) f(j)\ 
j=l lo/ v=O 1010 j=l 10 10 1 J 

n oo 

=L] (6 ([) f(j)) <n-l) 
l=l j=l iopioi Pio io · 

00 

al := :0 1·0 P1\0l)J.f(j), 
j= 1 

b ·=p(/) 
l · i0 i0 ' 

so that by hypothesis 

t a = t ( 't . p \l). f (j)) < oo. 
l=I l l=l j=l io lo/ 

l ~ l, 

(2.1) 

(2.2) 

According to (2.1) we have EU(xn)} < 00 for all n;;;.: 1. As limn_,. 00 bn = 0, 
clearly 

n 

lim E{f(xn)} = lim 6 a1 bn-l = 0. 0 
n-+oo n-+ 00 1=1 

2.4. Remark. If the conditions of Theorem 2.1 apply, we obtain 

since then 

( cf. [ 2, p. 51] ), and limn...,. 00 bn = 7r(i0 ) if the chain is assumed to be 

aperiodic. We then find 

00 

lim E{f(xn)} = 6 7r(j)f(j), 
n-+ oo j=l 

an alternative proof of the aperiodic part of Theorem 2.1. 

In general, Theorem 2.1 fails to be true if the chain is started arbi

trarily. This will be illlJstrated by the following example. 
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2.5. Example. Consider the Markov chain on the non-negative integers 
{0, 1, 2, ... }with 

for j = 0, 1, 2, .. ., 
for i = 1, 2, .. ., 
otherwise, 

for 0 < p < 1 and q = 1--p. A simple calculation shows that 

p~n) = qip 
lj 

(n) = 1 
Pn-l+k,k-1 ' 

p~n) = 0 
lj 

for j = 0, 1, 2, .. ., i = 0, .. .,n-1, 
for k = 1, 2, .. ., 
otherwise. 

This chain is irreducible, aperiodic and positive recurrent with 

lim p~~l =qip, j=O, 1,2,. ... 
n _,, oo lf 

If L/=o qi lf(j) I< 00 , we have with initial distribution {p(n)}~ =o that 

t ( t p(i) Pfn)) f(j) = (p(O)+ ... +p(n-1 )) t P qi f(j) + t p(n+j)f(j), 
1=0 1=0 I 1=0 1=0 

and we have convergence to Lf= 0 pqi f(j) as n -"> 00 if and only if 

If now 

we have 

00 

!im 6 p(n + j) f(j) = 0. 
n-+ 00 j=O 

f(j) := j2 
/J(O):= 0, 

for j ~ 0, 
p(j) := 6n- 2 r 2 for j ~ 1, 

00 

E{f(xn )} = 6 p(n + j)f(j) = 00 for all n ~ 0. 
j=O 

In the next theorem we give necessary and sufficient conditions for 
the convergence of moments in a stationary chain. 
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2.6. Theorem. Consider an irreducible, aperiodic, positive recurrent 
chain with initial distribution {p(i)} and stationary distribution {7r(i)}. 

Let f ;;;i. 0 be a functional of the chain with r,j 7r(j)f(j) < 00 • Let 

Po (j) := p(j), 

Let r stand for the entrance time in state i0, i. e. 

r:=inf{n>O: xn =io}· 

Then in order that 

lirn E pn(j)f(i) = L; n(i)f(i), 
n-oo j j 

it is necessary and sufficient that 

lirn E{f(xn)X{r>n}} = 0, 
n-oo 

(2.3) 

where x stands for the iii'dicator function. 

Proof. With the "last exit decomposition" of state i0 we find 

n-1 

L) Pn (J)f(j) = L) Pk (i ) (L:; · P~n-:k) f(j)\ + L) p(i) (E · P~~)f(j)) · 
i k=l 0 i 10 10 1 ~ i j 10 11 

As in the proof of Theorem 2.3, it follows that the first term on the right
hand side tends to "Ej 7r(}) f(j) as n ~ CX). Since 

E{f(xn) X{T~ n}} = ~ p(i) (~ iop}j> f(j)), 

the assertion follows. D 

2. 7. Remark. One easily verifies that condition (2.3) is satisfied if a con
stant c and an n0 ;;;i. 0 exist such that 

Pno (i)/7r(i) ~ c for all i. 

For, with n > n0 , 
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= c ,6 rr(io) ('t . p~t).) (6 . p~'.1- no) f(j)) 
i*io l=l 10 zoz j lo 17 

00 

= c rr(i 0 ) 6 (6 . p~1l. f(j)), (2.4) 
!=11- no+l j zo lo! 

since 

The right-hand term in (2.4) tends to zero as n ~ 00 • It should be noted, 
however, that this result is also immediate from the bounded conver
gence theorem. For p11 o U) ~ c rrU) for all j implies by iteration that 
p 11 (j) ~ c 7r(J) for all j and n ;;;;., n0 , and hence 

lim 6 pn (j) f(j) = .6 rr(j) f(j). 
11->oo j j 

As an application we now show that a well-known theorem due to 
Chung [ 2, Theorem 3, p. 93]) is an immediate consequence of Theo
rem 2.1 and a strong law of large numbers. To be complete, we first 
state this strong law in the next lemma. 

2.7. Lemma (cf. [2, Theorem 2, p. 92] ). Let the chain {xn };=O with 
x 0 = i 0 be irreducible and positive recurrent with stationary distribu
tion {7r(j)}, so that 

n 
7r(j) := lim n- 1 .6 p\k! , 

n-> 00 k=l IQ] 

and let f be a functional of the chain with L:,jrr(j) [/(})[ < 00 . Then 

11 

lim n- 1 6 f(x1) = 6 rr(j)f(j) a.s. 
11--+oo i=l j 

(2.5) 
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Proof. We may restrict to the case f> 0. Define To = 0 and 

Tn :=inf{k: xk =i0 for thenth time}, n> 1, 

Tz(n) < n < Tz(n)+ 1, n > 0, 

i.e. Tz(n) is the time of last visit to state i0 before or at time n (n > 0) 
and l(n) is the number of visits to t0 after tinie 0 and before or at time 
n. We now have 

l(n)-1 7 k+l -l n l(n) 7 k+l -l 

6 6 f(xi) < ~ f(xi) < 6 6 f(xi), n > 1. (2.6) 
k=O Tk z=l k=O Tk 

The random variables 

Tk+ 1 -1 

Yk := 6 f(xi), k > 0, 
Tk 

are independent and identically distributed and have finite mean 

E{y } = 6 1T~) f(j) 
1 i 1T(lo) ' 

since 

co k- 1 

= !Uo) + 6 E 6 . p~1) • • P~~-o JU) 
k = 1 i= 1 i * io lo zoJ lo I lo 

co co 

= f(i ) + 6 6 6 . p~l), . p~~-l) fl'(j) 
O j<t-io i=l k=i +l 10 1ol 10 110 

= 6 t . p ~l)_ f(j) = 6 1T(j) fi'(j) 
i i=l lo loJ i 1T(io) , 

since 
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We further have (recurrence) that f(n)-7 co (n-? oo) a.s., so that (Kol
mogorov's law of large numbers) 

1 l(n) . l 1(11) -1 
lim -1 ) 6 Yk = hm - 6 Yk a.s., 

11-+oo (n k=O n-+oo l(n) k=O -

= E{y1} a.s. 

and with (2.6) we conclude 

. 1 11 rr(j) 
hm - 6 f(xi) = '6 ---. f(j) 

11->oo /(n) i=l i rr(z 0 ) 
a.s. 

If we choose, in particular, f = 1 it follows that 

n 1 
--7--
l(n) rr(i0 ) 

a.s. as n-? oo, 

which proves (2.5). 0 

2.8. Theorem. Let the chain {x 11 };=o with x 0 = i0 be irreducible and 
positive recurrent with stationary distribution {rr(j)}, and let f be a func
tional of the chain with 2:,j rr(j) lf(j) I< oo. Then 

lim \E n- 1 t f(xi)- L! rr(j)f(j)I = 0. 
11-> 00 z=l J 

Proof. From Theorem 2.1 we know that 

;~00 E{n- 1 i~ lf(x)I} = yrr(j)l/(j)I. (2. 7) 

(2.7) and (2.5) imply that the sequence {n- 1 2.:,7= 1 lf(xi)I}, and a fortiori 
the sequence {n- 1 2:,7= 1 f(xi)} , is uniformly integrable. This fact 
and (2. 5) finally imply the assertion ( cf. [ 1, pp. 91, 94] ). 0 
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