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Sensitive optimality criteria in countable state dynamic programming*) 

by 

A. Hordijk & K. Sladky 

ABSTRACT 

Discrete time Markov decision processes with a countable state space are 

investigated. Under a condition of Liapunov function type the Laurent ex­

pansion of the total discounted expected return for the various policies is 

derived. Moreover, the equivalence of the sensitive optimality criteria as 

introduced by Veinott, is shown. 

KEY WORDS & PHRASES: Markov decision processes, discrete time, countable state 

space, equivalence sensitive optimality criteria, 

Lapunov function criterion. 

* ) This paper 1s not for review; it 1s meant for publication 1n a journal. 





I. INTRODUCTION AND SUMMARY 

This paper investigates discrete time Markov decision processes with 

a countable state space and arbitrary decision sets. Under a condition of 

Liapunov function type introduced in section 2, we derive in section 3 the 

Laurent expansion of the total discounted expected return for the various 

policies. This extends the wellknown results of MILLER & VEINOTT [6] to the 

denumerable state case. In section 4 we give for each policy the asymptotic 

expansion of them-fold summation of the infinite stream of expected returns. 

Using the results of sections 3 and 4 we prove in section 5 that a policy 

is n-discount optimal if and only if it is n-average optimal. This shows 

the equivalence of the sensitive optimality criteria as introduced by 

VEINOTT [10], [11], [12]. Section 5 extends results of LIPPMAN [4], MANDL [5], 

SLADKY [7] and VEINOTT [IO], [II], [12]. Moreover, the results of section 5 

guarantee the existence of stationary n-discount (n-average) optimal policies. 

In the remainder of this section we introduce notions and notations 

used in this paper. 

We are concerned with a dynamic system which at times t = 1,2, ••• , is 

observed to be in one of a possible number of states. Let E denote the 

countable space of all possible states. If at time t the system is observed 

in state i then a decision must be chosen from a given set P(i). The prob­

ability that th~ system moves to a new state j (the so-called transition 

probability) is a function only of the last observed state i and the sub­

sequently taken decision. In order to avoid an over-burdened notation we 

shall identify the decision to be taken with the probability measure on E 

that is induced by it. Thus for each i EE the set P(i) consists of prob­

ability measures p(i,.). Let P be the set of all stochastic matrices P 

with p(i,.) E P(i) for each i EE. Hence P has the product property: with 

P., i EE the set Palso contains that P with for every i EE the i-th row 
l. 

of P equal to the i-th row of P .. 
l. 

A policy R for controlling the system is a sequence of decision rules 

for the times t = 1,2, ••• , where the decision rule for time tis the in­

struction at time t which prescribes the decision to be taken. This instruc­

tion may depend on the history, i.e., the states and decisions at times 

1, ... ,t-1 nnd the state at time t. When the decision rule is independent 
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of the past history except for the present state then it can be identified 

with a PEP. A memoryless or Markov policy R is sequence P1 ,P2, ••• E P, 

where Pt denotes the decision rule at time t. Pt also gives the transition 

probabilities at time t. It follows from a theorem in DERMAN & STRAUCH [2], 

generalized in STRAUCH & VEINOTT [8] that we do not loose generality by re­

stricting the class of policies to the Markov policies, (see also section 13 

of HORDIJK [3]. In this paper we shall only use Markov policies. 

A memoryless policy which takes at all times the same decision rule, 

i.e., P~ := (P,P, ••• ), PEP is called a stationary policy. 

When in state i decision p(i,.) is taken then an immediate return de­

pending on i and p(i,.) is incurred. Let r (i) be the immediate return when p 
taking decision p(i,.) (the i-th row of matrix P) in state i and writer for 

p 
the vector with i-th component r (i). Note that if P, Q E P with p(i,.) = 

p 

= q(i,.) then rp(i) = rQ(i). 

The expectation of the cost at time n when starting in state i at time 

one and using policy R = (P 1 ,P 2 , ••• ) will be denoted by Ei ,R r(;), where 

x (random variables are underlined) is the state at time n. ERr(x) de--n -n 

notes the vector with i-th component lE. R r(x ). It is easily seen that 
1, --n 

lER r ( x ) = P 1 P 1 • • • p 1 r • -n n- p 
t-1 n 

We shall use the notation PR for the matrix P1 
t-1 

Pt-I' where PR 1s the 
unit matrix fort= 1. .. . 

·we need a notion of convergence on P. A sequence P ,n = 1,2, ••• ,, is 
n 

convergent to P if limp (i,j) = p(i,j) for all i and j. In this case we n~ n 
shall say that lim P = P. P with this product topology is a metric space. 

n-+«> n " 
We assume that Pis compact and rp is continuous in P i.e. for each i EE 

the limit of rpm (i) is rp(i) as Pn converges to P. Note that these assump­

tions are automatically fulfilled if P(i) is finite for all i EE. For vec­

tors x,y with i-th components x(i), y(i) we write x $ y resp. x < y if x(i) 

< y(i) for all 1 EE resp. x(i) 5 y(i) for all i and x(i) j y(i) for some i; 

for vectors x, xn, n = 1,2, ..• , we write lim x = 0 if lim x (i) = O for ull 
n➔oo n n ►"' n 

L c E and lim x = x if lim x (i) = x(i) for all i EE. 
n• ►oo n n-+w n 

For the vector with i-th component the sum of the expected discounted 

(to time zero) returns up to time T when starting in state i, using policy 

I{= (P 1,P2, .•. ) and for discountfactor ex, we write v!;(R), where 11 is the 
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rate i.e. 
-I -I 

interest p = ( 1-a.)a. or a. = (I +p) • Hence 

p T T t-1 
}: t r(x) = I t 

vT(R) = a. ER a. PR rp 
t=l -t t=l t 

Let vp(R) denote lim vPT(R). Under the assumptions of section 2 all ex-
T-J,00 

pectations, sums and limits which we use, exist and converge (cf. [3A] sec-

tion 3). Following VEINOTT [II] we say that policy R* is n-discount optimal 

with n = -1,0,1,2, ... , if 

liminf P-n[vp(R*) - vp(R)] ~ 0, 
p+O 

for each policy R. 
I 

Let vT(R) denote the vector of expected returns under policy R up to time T 

i.e. 

I 
V (R) 

T 

and define recursively for n ~ 

T 

I 
t=l 

T t-1 
I PR 

t= I 

Again following Veinott we call policy R* n-average optimal with 

n = -I,0,1,2, ••• , if 

liminf ½ [v;+2(R*) - v;+2(R)] ~ 0, 
T"7<)0 

2. ASSUMPTIONS AND PRELIMINARY RESULTS. 

for each policy R. 

Throughout this paper, we assume the existence of a state, say state 0, 

and the existence of finite nonnegative vectors y ,y ,y , ... such that y (i) 
0 I 2 0 

> max Ir (i)I and y0(i) ~ I for all i EE and form= 0,1, ... p p 

(2.0.1) 

f, > r :1 11 P r P and 
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(2.0.2) Pym 1.s continuous in P, 

where 0p is the matrix obtained from P by replacing the elements of the 

0-th column by zeros i.e. 

Op( i ,j) = { 0 
p(i,j) 

J = 0 

J 'f O. 

For a finite state space the above assumption is equivalent to the 

condition that state O can be reached from each state under each stationary 

policy. For E denumerable we need that state O is positive recurrent under 

each stationary policy. More precisely (2.0.1) form is equivalent to assum­

ing that the supremum over all stationary policies of the total expected 

return, with innnediate return in state i equal toy (i), until reaching 
m 

state O is finite. In fact, y 1(i) can be taken as that supremum when 
m+ 

starting state 1.s 1.. In HORDIJK [3] section 5 where this type of condition 

was introduced it is shown that for queuing models with y0 a polynomial of 

degree 1 in state i then y 1, is a polynomial of degree 2. Similar ym is a 

polynomial of degree m + I. 

Further in the case that rp(i) 1.s bounded and the simultaneous Doeblin con­

dition is satisfied then as is shown in HORDIJK [3] section 12.6 ally 's 
m 

are bounded vectors. 

We conclude that the above assumptions are satisfied in an interesting 

class of countable state Markov decision processes, such as stationary in­

ventory models with backlogging and waiting line models (see also HORDIJK 

[3A] sections 2. I and 2.2). 

2. I. THEOREM. There are a sequence of vectors g,u0 ,u 1, ..• , with g a constant 

vector !u I ~ k y for some constant k and a monotone decreasing sequence m mm m 
of nonempty compact subsets of P say P = P _ 1 :::i PO :::i P 1 :::i • • • such that for 

(2.1.1) 

onrl 

(2.1.2) 

0 

'JI p 

'Jim 
p 

7'.t, holdc that 

.- r 
p 

.- - u 

- g+ Pu - uo 0 

+ Pu - u m == I , 2, ... m-1 m m' 
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(2. 1.3) '¥m = 0 for Pe: p 
p m 

and 

(2.1.4) max '¥m = o. 
Pe:Pm-1 

p 

PROOF. The proof proceeds by induction on m. For the vectors g resp. u0 we 

can take g identically equal to the g0 of (5.4.3) in [3] and u0 equal to the 

v of (5.4.5) in [3]. Suppose g,u0 ,u 1 , ... ,um and P_ 1 :>P0 :> ... =>Pmarefound. The 

problem of finding um+l and Pm+l is again the problem studied in section 5.6 

of [3]. For completeness we give here a slightly different proof of it. 

For R = (P 1 ,P 2 , ••• ) an arbitrary policy we find by iterating the in­

equality 

T 

I op1···opt-l ym + OPT Ym+l :.:; Yrn+t· 
t= 1 

T 
Since 0P ym ~ 0 for all Tit follows that 

co 

(2.1.5) 

The inequality 

(2.1.6) 

lu I m 

co 

:.:; k y gives 
m m 

Let e denote the unit vector i.e. all components equal to I. Then e :.:; y0 :.:; Ym 

and consequently also 

co 

Define constant 
00 

(2.1.7) 
co 

l ,t,···opt-1 e(O) 
t= I 
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with R = (P 1,P2 , •.. ) E Rm if Pk E Pm fork= 1,2, ... and where 0P1 ... 0Pt_ 1x(O) 

is the zero component of the vector 0P1 .•• 0Pt~I x. 

Define vector 

(2.1.8) v := sup 
RER 

m 

00 

Then as a direct consequence of (2.1.7) we have that v(O) = 0. 

Furthermore it is wellknown that v satisfies Bellman's optimality equation. 

(2.1.9) v = sup 
PEP 

m 

(-u -g e + 0Pv). 
m m 

Now, since v(O) = 0 we can take the matrix P instead of 0P in the 

right hand side of the above equality. Further if we take as new vector u 
m 

the old one minus g times the unit vector then since E. p(i,j) = 1 the 
m J 

relations (2.1.3) and (2.1.4) remain true form. However, for the new 

vector u relation (2.1.9) reads with u 1 for v m m+ 

Hence 

u 
m+I 

m+l 
'¥p 

= sup ( -u + Pu 1) , 
PEP m m+ 

m 

~ 0 for all PEP. 
m 

Moreover, since P is compact and the right hand is continuous in P 
m 

there are P's for which the right-hand side is maximal. 

Define 

P ={PE P m+l m 

Then Pm+I is nonempty and closed, and as a closed subset of a compact set in 

a metric space again compact. 

Finally since lu I m 
~ kmym we have that the first vector um+I satisfies 

(k +g) y 1• m m m+ n 



Using the inequality ju I ~ k y we can derive the following inequality m mm 
which we need in the sequel. 

2.2. LEMMA. Each policy R = (P 1,P2 , ••• ) satisfies 

(X) 

t-1 (2.2.1) I t 
lu I -1 

kmym+1 (O) a. PR ~ p 

t= I m 

and 

(2.2.2) 
-I T-1 lu I = o. lim T PR 

T4<X> m 

PROOF. Using the last exit decomposition of state O before time t+l (cf. 

CHUNG [1] p.46) it follows 

(2.2.3) 

Hence, 

p t-1y ( 1.) = 
R m 

Relation (2.2.2) 1s obvious with (2.2.3). 0 

7 

2.3. REMARK. For the specialized case that P consists of one element P i.e. 

P = {P} it is clear from theorem 2.1 that for the sequence g(P), u0(P), 

u 1(P), ... , now depending on P, holds that IJ'm = - u 1(P) + Pu (P) u (P) - 0 p m- m m 

for m = 1,2, .... 

3. LAURENT EXPANSION OF THE DISCOUNTED EXPECTED RETURN 

In this section we focus on the discounted expected return for discount­

factors a near I or small interest rates. Under the assumptions of section 2 

we can expand the discounted expected return for the various interest rates 

as a Laurent series in powers of 11 in a neigbourhood of I' = 0. 
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3.1. THEOREM. For each policy R = (P 1,P2, ••• ), all M = 1,2, •.• and all 

T = 1,2, ..• it holds that 

(3.1.1) 

PROOF. 

(3. I. 2) 
T t-1 vi'. (R) l t = a. PR rp 

t= 1 t 

T t-1 l t 
uo - uo] + = a. PR [rp - g + p 

t= 1 t t 

T -1 T 
t t t-1 + (I-a. )p g - I a. (PR uO - p R uo) 

t= 1 

T -1 T 
1/Jo 

T+I 
t-1 I t t-1 I t = ( 1-a. )p g + a PR - p a PR 

t= 1 
p 

t=l t 

T+l PT + u - a. uo 0 R 

T -1 0 T+l PT 
T t-1 I t = ( 1-a )p g + p [uo - a uo + a PR R t= 1 

T+ I 

I t t-1 
- p a PR uo· 

t= 1 

Similarly, for rr. = 1,2, ... 

T+rn T+m 
(3.1 .3) 

, t t-1 
l a PR urn-I 

t= I 
= - I t t-1 

a P ( -u + P u - u ) + 
R rn-1 t rn rn t= I 

uo + 

'l'o 
pt 

] + 



T+m _ I t t-1 m 
= t= 1 a p R. I/Ip t + p 

T+m+1 
I 

t=l 

- u 
m 

u 
m 

T+m+l PT+m + a u 
R m 

T+m+1 
- p I 

t=l 

9 

Substituting (3.1.3) form= 1 in (3.1.2) and then substituting (3.1.3) 

form= 2 in the result etc. gives after (M-1) substitutions the expression 

(3.1.1). D 

Theorem 3.1 together with lerrona 2.2 gives 

(3.1.4) 
-1 

= p g + 
M-1 

\ m [u + 
l p m 

m=O 

00 
\ t t-1 
l a PR 'l'p J 

t=1 t 

M-2 + p r(p,R), 

where lim r(p,R) = O, uniformly in all policies R. 
p 4-0 

. 00 
This relation (3.1.4) together with remark 2.3 yield for stationaT'?J pol~cy P 

(3. 1.5) 
M-1 

vp(P00) = p-lg(P) + l pm um(P) + O(pM-1). 
m=O 

Relation (3.1.5) is a partial Laurent series in powers of p. 

The question raises then whether also a complete Laurent series is true i.e. 

M = 00 • Indeed, without pursuing this result here we state that under the 

Doeblincondition for P with bounded return vector rp, M can be taken equal 

to infinity (sec sections 11 and 12 of 131). 
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4. ASYMPTOTIC BEHAVIOUR OF THE TOTAL EXPECTED RETURN. 

We derive in this section an asymptotic expansion of v;(R) as T ➔ 00 • 

4.1. THEOREM. FoP each policy R = (P 1,P2, ... ), all M = 1,2, .•• and all 

T = 1,2, ••• the following equality is satisfied 

(4.1.1) 

whePe 

(4.1.2) 

and 

(4.1.3) 

M = (T+M-l)g + Mtl M;l (k) (T+M-_k-_2)u + 
vT(R) \ M R,;0 k;R, Q, M k 1 R, 

T 
= \ t-1 1/Jo 

l PR pt 
t=l 

PROOF. It is easily proved by induction on k that for all T = 1,2, ... , and 

allk=1,2, ... 

(4.1.4) I (t+k-1) = (T+k) 
t=l k k+l 

From relation (3.1.3) for p = 0 or a= we find for Q, = 0,1, ..• 

T t·· l T T t-1 R,+ 1 
(4. 1.5) - I PR UR,= UQ,+1 - PR uQ.+l + I PR 1/Jp • 

t= 1 t=1 t 
Hence, 

T T T 
T 

t-1 Q,+) 
(4.1.6) I t I PR uQ, = UR,+ UQ,+l - PR UR, - PR uQ,+l + PR 1/Jp • 

t=l t=1 t 

The proof of (4.1.1) proceeds by induction on M. Relation (3.1.2) for 

p = 0 yields 

(4.1.7) 
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Substituting (4.1.2) for the last term on the right hand side we find 

that (4.1.7) is (4.1.1) for M = (note that we use the convention(~)= 

fork= 0,1, ••• ). 

By induction hypothesis assume that (4.1.1) is true for M = m and all 

T = 1,2, .•.. Hence using relation (4.1.4) we find 

(4.1.8) -JU+ 1 (R) = 
T 

T 

I 
t=l 

( ) m-1 m-1 () ( ) = T+mm++l1-I g + , , k T+m+l-k-2 u + 
l l 9, m+1-k-1 .e, .e,=0 k=.e, 

The last two terms give with relation (4. 1 .6) 

(4. 1.9) 

T 

+ I 
t= 1 

Using (4.1.3) and (m;l) + (:::)=(~)we find that (4.1.9) equals 

(4.1.10) 
m ( m+l-1 ( } l m) u _ PT l m+ 1-.1 + qi m+ I (R) • 

£=0 \.e, £ R £=0 \ £ £ T 

Substituting (4.1.10) in (4.1.8) gives relation (4.1.1) for M = m + I. D 

4.2. REMARK. For stationary policy P we find with g(P), u0 (P),u 1(P), •.. 

defined in remark 2.3 that for all M = 1,2, .... 

M( oo) _ (T+M-1\ (P) M~l M~l (k\ (T+M-k-2) (P) _ PT M~l (M-1\u (P). 
(4.2.1) VT p - M jg + l l \2,) 1. M-k-1 uQ, "=f.0 \ ~-) Q, 

£=0 k=£ ' ' · ,., 

B!BLIOTHEEK MATHEMATISCH CENTRUM 
~. -AMSTERDAM--
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5. EQUIVALENCE OF SENSITIVE OPTIMALITY CRITERIA. 

In this section we prove the equivalence of the sensitive optimality 

criteria as introduced by Veinott. Actually we shall prove that policy R 

is n-discount optimal if and only if it is n-average optimal. For stationary 

policy R the assumptions of section 2 are sufficient for nonstationary pol­

icy R we need an extra condition (relation (5.1.4) which is always satisfied 

if the decision sets P(i) are finite. 

5.1. LEMMA. If policy R = (P 1,P2, .•. ) is such that for certain i EE 

(5. 1. 1) 

for all m = 0,1, ••• ,m0-1 and all t = 1,2, •.• 

then each of the follOI.J)ing two conditions imply the property: 

for each e > 0 there exists a finite negative integer h such that for non-
T e 

negative constants e 1 ,e 2 , ••• with l et~ T.e, 
t=l 

m +l m 
(5. 1.2) p~-l ljlpo (i) ~ he p~-I ljlp0 (i) + Et. 

t t 

The conditions are 

(5.1.3) a. 

b. 
(5.1.4) 

R is a stationary policy 

m +l 

m 

i.e. 

limsup 

lj/Po (i) 
t 

mo 
1{ljlpO(i) f O} < 00 • 

t 
ljlp (i) 

t 

mo 
REMARK. Condition bis essentially a condition on the derivatives of ljlp 

m0+J 
and ljlp with respect to P. It is always satisfied if the set of deci-

sions in i is finite. 

PROOF. For any P and any j it follows from theorem 2.1 that 

('.i.l.S) 
{. 

the first nonzero element of 

{fPo(j), ,P1(j), ... } 

is negative 
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Assume that for some t and some J with P!-1(i,j) positive we have that 

(5.1.6) 

Then define 

(5.1.7) m = min 

then it follows from (5. l .5) and 
pt-l(i,t) >Owe have by (5.1.7) 

R 
(5.1.5) if P~-l (i,£) > 0 then 

Consequently 

t-1 m 
PR ~p(i) < 0, 

t 

(5. L6) that ~ < _tn0 . Moreover, . for£ with 
n . 

that ~p (£) = 0 for n < m. Hence from 
t 

which 1s 1n contradiction with assumption (5.1 .1). Conclusion 

(5.1.8) 

Also, from the above arguments if for J with P~-l(i,j) > O 

(5.1. 9) 
m +I 

= 0 then ~PO (j) ~ O 
t 

Relations (5. 1.8) and (5. 1.9) imply for each j with Pi- 1(i,j) > 0 

the existence of a negative integer h(j) such that 

(5.1.10) 

Now if the decision pt(j,.) is the same for all t, which is the case if 

Risa stationary policy, or when relation (5. I .4) is satisfied then we have 

for all t = 1,2, ... 

(5.1.ll) 
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Let constant c be such that 

m +I 
lwpo I for all P. That such a constant c exists 

follows from theorem 2.1. In fact, for c we can take k +. 2k +I+ y +l(O). 
mo mo mo 

Now choose E > 0 arbitrarily, then there exists a finite set A 
E 

such that for all policies R = (P 1,P2, ••. ) 

.1. l 0P1···0Pt-1(i,j) Ym +t(j) < 
JfA t=I 0 

E 

( 5. 1 • 12) 
-I 

C .E. 

The proof of the existence of A is not short. However, it is easy to 
E 

state the facts implying the above result. 

They are: 

a. The set R of all policies Risa compact set, where R n 
converges to R = (P 1,P 2 , ••• ) 

00 00 00 
if and only if lim Pk= 

n-+<x> n 
for all k = 1,2, •••• 

The proof of the compactness of Risa direct application of the well­

known diagonal procedure and the compactness of P. 
b. 

(5.1.13) 
00 

is a continuous function of policy R = (P 1,P2, •.. ). The proof of this 

is direct from the fact that (cf. (2. 1.5)) 

00 

and the fact that the right-hand side of this inequality tends to zero 

uniformly in R (for a proof see the first part of the proof of lenuna 

5.7 of [3] or lemma 3.7 in [3A]). 

Now we sketch the proof of relation (5.1. 12). Take sequence of finite 
00 

subsets A1 c A2 c ••• , such that 0 M1 An= E and suppose for each n there is 

a policy R such that for R relation (5.1. 12) is not satisfied with A for n n n 
A • LPt R be n limit of some subsequence R • Then it fol lows from tJa, 

I "' Ilk 
l'onl irrni ly of r.(R) thnt (cf .I 3 I lemmas 4.11 and 4.12) 
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00 

-1 
;,c: C •e:, 

which is clearly not true. By contradiction we find that finite set A does 
e: 

exist. 

Using the last exit decomposition of state O(cf. lemma 2.2), we find 

for policy R = (P 1,P 2 , ... ), t = 1,2, ••• 

Hence 

_).A 
J f e: 

m +1 
P~-1(i,j) ,~Po (j)I ~ 

t 

T 

l 
T t= 1 

Consequently for 

(5.1.14) 

we have that 

Define 

T 

I e:t~T.f:. 
t= l 

h = 
£ 

min 
irJ\ ,-

h(i) 
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then h > - 00 
E: 

and from (5.1.8), (5.1.11) and (5.1.14) for t=l,2, ... 

t-1 m +I 
Pt-IC ") 

m +I 
PR 1Pp O (i) :;;; I R i,J 1Pp O (j) + E: 

t jEA t t 
e: 

pt-I(" ") 
m 

:;;; h I R i,J I/Ip O (j) + e: 
e: t 

jEA t . e: 

t-1 m 
:;;; h PR 1/Jpo(i) + e: • D e: t t 

With the preliminary results of lemma 5. I we are in a position to prove the 

first main result of this section. 

5.2. THEOREM. Poliay R = (P 1,P2, ••• ) is n-disaount optimal if and only if 

(5.2.1) t-1 1/Jm = 0 form= 0,1, .•. ,n and t I , 2, ••• PR = 
pt 

and 

00 

(5.2.2) limp r t t-1 n+l 0 a. PR I/Ip = 
p+O t= I t 

PROOF. We first prove that condition (5.2.1) is necessary by showing that 

if (5.2.1) is not satisfied then R is not n-discount optimal. 

So let us 

(5.2.3) 

and 

(5.2.4) 

assume that for some i 
t -1 m 

PRO ,,,P0(1") 4 0 f d < o/ T Or some t 0 an some m0 - n. 
t 

pt-I ,,,m = O 
R o/p 

t 
for m = 0 , I , ••. , m0_ I and t = I , 2 , • • • • 

t-1 mo 
Then as shown in lennna 5.1, PR 1/Jp :;;; 0 

t 
for all t and hence 

t -I 
(5.2.5) p 0 1/J;o(i) < o. 

R 
ta 

Let P be an element of P 1• 1 1/Jn+l 0 Then 1/1 = = = n+ p p 
Hence from ( 3. I . 4) 



(5.2.6) 

• 00 

with lim0 r(p,R,P) = 0. 
P+ . 
Using (5.1.2) we find that the right hand side multiplied by pmo is 

smaller than or equal to 

00 t t-1 mo 00 t 00 • l CL PR ij,p (i)(l+ph) + p l CL Et+ r(p,R,P) (i) 
t= 1 t E t=l 

For the second term we have the inequality 

p 

00 

2 
= p r 

t= I 

00 

= p2 CL l 
t= I 

00 

t 
CL 

t 
CL 

s p 2 E l CLtt s E CL-I 

t=l 
m 

Hence for E < 

t -1 
IP 0 

R 
ij,PO (i)I we obtain 

to 

- vP (P00
) J s 

t -1 
p 0 

R 

Consequently R is not m0-discount optimal and a fortiori also not n­

discount optimal. The conclusion is that condition (5.2.1) is necessary. 

Assuming that (5.2.1) is satisfied then we have (cf. lemma 5.1) 

(5.2.7) t-1 n+l O 
PR ij,p s 

t 
for all t. 

Relation (5.2.6) for m0 = n gives 

liminf p-n IVP(R) - vP(P00 )l = 
p+O 

liminf p 
p+O 

With (5.2.7) we conclude that for R to be n-discount optimal also con­

dition (5.2.2) must be true. In that case the limit of p-nrvP(R) - vP(P00
) l 

17 
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asp~ 0 does exist. 

Using exactly the same arguments it is straightforward to prove that 

for PE Pn+l and arbitrary R 

(5.2.8) liminf p-n [vp(P..,) - vp(R)] ~ O, 
p~O 

CX) 
i.e. P is n-discount optimal. 

The proof that conditions (5.2.1) and (5.2.2) are sufficient is now 

simple. Indeed, for arbitrary policy R* we have from (5.2.8) 

with 

we obtain 

liminf p-n[vp(P..,) - vp(R*)] ~ 0 
p~O 

lim p -n[vp (R) - VP (PCX))J ~ 0 
p~O 

liminf p-n[vP(R) - vp(R*)J ~ O. D 
p~O 

A very similar theorem for n-average optimality shall be proved now. 

5.3. THEOREM. Policy R = (P 1,~2, ••• ) is n-average optimal if and only if 

(5.3.1) P t- l ,,,m = O -P O 1 nd 1 2 R "'P J or m = . , , ••• , n a t = , , ••• 
t 

and 

T 
lim} l P!-l iji~+l = 0. 
T-+m t=l t 

(5.3.2) 

PROOF. The proof proceeds very similar to that of theorem 5.2. 

For the necessity of (5.3.1) assume relations (5.2.3) and (5.2.4). 

From relations (4.1.2) and (4.1.3) it follows that 

q,;(R) = 0 form= 0, 1 , ••• mo and T = 1 , 2, ••• 

m +I T t-1 mo 
q,T O (R) = I PR Wp 

t= 1 t 
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m +2 T 

{(kt k-1 %t-l mo) m +11 
(5.3.3) <PTO (R) I m t-1 O· = PR t/!pO + mo PR 1/Jp + PR 1/Jp f 

t= 1 k t t 

T 
t-1 mo m +1 

I 0 = P [ (T+m +l-t) 1/Jp + 1/Jp ]. 
t= I 

R . 0 
t t 

m oo 

For PE Pn+l then ¢t(P) = 0 form= 0,1, ... , n+2 and t = 1,2, •... 

Hence from relation (4.1.l) we find 

(5.3.4) 

t -I mo 
Fors< PRO lt/Jp (i)I let T0 be such that r 0 + m0 + I > - hs. Since 

to 
in Cesaro limits a finite number of terms can be omitted we find with (2.2.2), 

for the i-th component of 

:,; liminf 
T-+«> 

T-T 
I 0 

T I 
t= I 

t-1 mo 
f(T+m0+J-t) + h l PR 1/Jp (i) 

€ t 

T 
+ - l E 

T t= I t 

Consequently R is not m0-average optimal and a fortiori not n-average 

optimal. 

Assuming that (5.3.1) is satisfied we have again relation (5.2.7). 

Relation (5.3.4) for m0 = n gives 

(S.3.5) 
T t-l n+l 

= liminf \ P '" T l R 'f'p • 
T-+«> t= l t 
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With (5.2.7) we conclude that for R to be n-average optimal also con­

dition (5.3.2) must be true. In that case the limit instead of limes infe­

rior in expression (5.3.5) can be taken. The rest of-the proof is strictly 

similar to that of theorem 5.2. 0 

5.4. COROLLARY. Policy R = (P 1,P2, ••• ) is n-discount optimal if and only if 

it is n-average optimal. 

PROOF. From theorems 5.2 and 5.3 it follows that the only thing we have to 

prove is that under the condition (5.2.1) conditions (5.2.2) and (5.3.2) 
. 1 Id d • Pt-I n+l Of 11 . f 11 f are equiva ent. nee, since R Wp ~ or a tit o ows rom a 

wellknown Abel and Tauber theorem thaf (cf. TITCHMARSH [9] p. 224-229) 

00 

limp I t t-1 Wn+l 0 a PR = 
p~O t=l pt 

if and only if 

T t-1 Wn+l lim} l PR = o. 0 
T~ ~1 pt 

5.5. COROLLARY. Since for each n the subset Pn of Pis not empty, it follOl;)s 

from theorem 5.2. and 5.3 that for each n there exists a stationary policy 

which is n-discount optimal and also n-average optimal. 
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