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Sensitive optimality criteria in countable state dynamic programming *)
by

A. Hordijk & K. Sladky

ABSTRACT

Discrete time Markov decision processes with a countable state space are
investigated. Under a condition of Liapunov function type the Laurent ex-
pansion of the total discounted expected return for the various policies is
derived. Moreover, the equivalence of the sensitive optimality criteria as

introduced by Veinott, is shown.
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1. INTRODUCTION AND SUMMARY

This paper investigates discrete time Markov decision processes with
a countable state space and arbitrary decision sets. Under a condition of
Liapunov function type introduced in section 2, we derive in section 3 the
Laurent expansion of the total discounted expected return for the various
policies. This extends the wellknown results of MILLER & VEINOTT [6] to the
denumerable state case. In section 4 we give for each policy the asymptotic
expansion of the m-fold summation of the infinite stream of expected returns.
Using the results of sections 3 and 4 we prove in section 5 that a policy
is n-discount optimal if and only if it is n—average optimal. This shows
the equivalence of the sensitive optimality criteria as introduced by
VEINOTT [101, [11], [12]. Section 5 extends results of LIPPMAN [4], MANDL [5],
SLADKY [7] and VEINOTT [10], [11], [12]. Moreover, the results of section 5
guarantee the existcence of stationary n-discount (n-average) optimal policies.

In the remainder of this section we introduce notions and notations
used in this paper.

We are concerned with a dynamic system which at times t = 1,2,..., is
observed to be in one of a possible number of states. Let E denote the
countable space of all possible states. If at time t the system is observed
in state i then a decision must be chosen from a given set P(i). The prob-
ability that the system moves to a new state j (the so-called transition
probability) is a function only of the last observed state i and the sub-
sequently taken decision. In order to avoid an over-burdened notation we
shall identify the decision to be taken with the probability measure on E
that is induced by it. Thus for each i ¢ E the set P(i) consists of prob-
ability measures p(i,.). Let P be the set of all stochastic matrices P
with p(i,.) e P(i) for each i ¢ E. Hence P has the product property: with
Pi’ i € E the set P also contains that P with for every i ¢ E the i-th row
of P equal to the i~th row of P..

A policy R for controlling the system is a sequence of decision rules
for the times t = 1,2,..., where the decision rule for time t is the in-
struction at time t which prescribes the decision to be taken. This instruc-
tion may depend on the history, i.e., the states and decisions at times

I,...,t=1 and the state at time t. When the decision rule is independent



of the past history except for thé present state then it can be identified
with a P ¢ P. A memoryless or Markov policy R is sequence PI’PZ"" e P,
where Pt denotes the decision rule at time t. Pt also gives the transition
probabilities at time t. It follows from a theorem in DERMAN & STRAUCH [2],
generalized in STRAUCH & VEINOTT [8] that we do not loose generality by re-
stricting the class of policies to the Markov policies, (see also section 13
of HORDIJK [3]. In this paper we shall only use Markov policies.

A memoryless policy which takes at all times the same decision rule,
i.e., P = (P,P,...), P € P is called a stationary policy.

When in state i decision p(i,.) is taken then an immediate return de-
pending on i and p(i,.) is incurred. Let rp(i) be the immediate return when
taking decision p(i,.) (the i-th row of matrix P) in state i and write r_ for
the vector with i-th component rp(i). Note that if P, Q ¢ P with p(i,.) =
= q(i,.) then rP(i) = rQ(i).

The expectation of the cost at time n when starting in state i at time
one and using policy R = (PI’PZ"") will be denoted by Ei,R r(gn), where

X (random variables are underlined) is the state at time n. ER r(§n) de-

notes the vector with i-th component Eli R r(§n). It is easily seen that
3

]ER r(gn) = Pl Pl Pn—l rpn.

We shall use the notation P;ﬁl for the matrix P] oo Pt-l’ where P

t-1

R 1s the

unit matrix for t = 1.

13 e

‘We need a notion of convergence on P. A sequence Pn,n = 1,2,00.,, 18
convergent to P if %ig pn(i,j) = p(i,j) for all i and j. In this case we
shall say that %ig Pn = P, P with this product topology is a metric space.
We assume that P is compact and T, is continuous in P i.e. for each i ¢ E
the limit of er (i) is rP(i) as Pn converges to P. Note that these assump-
tions are automatically fulfilled if P(i) is finite for all i ¢ E. For vec-
tors x,y with i-th components x(i), y(i) we write x < y resp. x < y if x(i)

< y(i) for all i ¢ E resp. x(i) < y(i) for all i and x(i) # y(i) for some i;

for vectors x, x_, n = 1,2,..., we write lim x = 0 if lim x (i) = 0 for all
. . I'l . . n_)oo n >0
L ¢ E and 1im x = x if 1lim x (1) = x(i) for all i ¢ E.

nrw n n—rw n

For the vector with i-th component the sum of the expected discounted
(to time zero) returns up to time T when starting in state i, using policy

R = (P],Pz,...) and for discountfactor a, we write v%(R), where ;p is the



(1-a)a—1 or o = (1+p)_l. Hence

interest rate i.e. 0
t-1

T
t _ t
a ER r(§t) tZ] a PR rp .

T
P

t=1

. 9] . .
Let v (R) denote 11mT+w vp(R). Under the assumptions of section 2 all ex-
pectations, sums and limits which we use, exist and converge (cf. [3A] sec-
tion 3). Following VEINOIT [11] we say that policy R* is n-discount optimal

withn = -1,0,1,2,..., if

liminf o VY @®") - vY@®)] 2 o,
0+0

for each policy R.

1
Let v;(R) denote the vector of expected returns under policy R up to time T

i.e.

1 T

v = =

(R =L Eg r(x)
t=1

and define recursively for n 2 1

n
| v (R)

Il o~11

n+1
Vo (R) =
t

Again following Veinott we call policy R n-average optimal with

n=-1,0,1,2,..., if

n+2,_ %

liminf %-[VT (R) - v¥+2(R)] >0, for each policy R.

T

2. ASSUMPTIONS AND PRELIMINARY RESULTS.

Throughout this paper, we assume the existence of a state, say state 0,

and the existence of finite nonnegative vectors SISO ARS SERRR such that yo(i)

> max ]rP(i)[ and yo(i) 2 1 for all i ¢ E and for m = 0,1,...

0 cy

(2.0.1) Yo * Py ]

m+

for 211 P « P and



(2.0.2) Pym is continuous in P,

where 4P is the matrix obtained from P by replacing the elements of the

0-th column by zeros i.e.
« . 0 j= 0
op(F.3) = {p(i,j) j#o.

For a finite state space the above assumption is equivalent to the
condition that state 0 can be reached from each state under each stationary
policy. For E denumerable we need that state 0 is positive recurrent under
each stationary policy. More precisely (2.0.1) for m is equivalent to assum-
ing that the supremum over all stationary policies of the total expected
return, with immediate return in state i equal to ym(i), until reaching
state 0 is finite. In fact, ym+](i) can be taken as that supremum when
starting state is i. In HORDIJK [3] section 5 where this type of condition
was introduced it is shown that for queuing models with Yo 2 polynomial of
degree 1 in state i then y;, is a polynomial of degree 2. Similar Yo is a
polynomial of degree m + 1.

Further in the case that rP(i) is bounded and the simultaneous Doeblin con-
dition is satisfied then as is shown in HORDIJK [3] section 12.6 all ym's
are bounded vectors.

We conclude that the above assumptions are satisfied in an interesting
class of countable state Markov decision processes, such as stationary in-
ventory models with backlogging and waiting line models (see also HORDIJK
[3A] sections 2.1 and 2.2).

2.1. THEOREM. There are a sequence of vectors g,u EEERp with g a constant

0"
vector |um| < k y  for some constant k_ and a monotone decreasing sequence

of nonempty compact subsets of P say P=P_. o PO > P] > ... such that for

-1

- - > -
(2.1.1) Wp : rp + luO uO
andd
(2.1.2) vpi=-u o+ Pu - u, m=1,2,.

1L holds that



(2.1.3) WP =0 forP ¢ Pm
and
(2.1.4) max Wg = 0.
PeP
m-1

PROUF. The proof proceeds by induction on m. For the vectors g resp. uy we
can take g identically equal to the g9 of (5.4.3) in [3] and uy equal to the
v of (5.4.5) in [3]. Suppose 8rUpsUyse el and P_] DFb >... nF}larefound. The
problem of finding U+l
of [3]. For completeness we give here a slightly different proof of it.

and Pm+1 is again the problem studied in section 5.6

For R = (PI’PZ"") an arbitrary policy we find by iterating the in-

equality

Y + 0Pym+1 < Yo+1®
successively for PT’PT—1’°"P1 that

T T

<
tzl of 1 oft-1 Ym * oF Yme1 = Tmer”
Since OPTym > 0 for all T it follows that
<

(2.1.5) tzl oP1 0PeetVm < Ymel

The inequality ]uml < kmym gives

<
(2.1.6) sup Z OPI"'OPt—l lUm‘ < km Yl
R t=1
Let e denote the unit vector i.e. all components equal to 1. Then e < yo < Yo

and consequently also

ic~18
fae
lae
™
IA

t=1

for each policy R = (PI’PZ"")'

Define constant

(2.1.7) g = Sup
m [eo]

ReR
mo)



with R = (PI’PZ"") € Rm if P, € Pm for k = 1,2,... and WhereOPl"'OPt—lx(o)

k
is the zero component of the vector OPl"'OPtml X.

Define vector

e}

(2.1.8) v := sup Yy P

ceenP _(-u -g e).
R€Rm t=1 01 0t-1" m °m

Then as a direct consequence of (2.1.7) we have that v(0) = 0.

Furthermore it is wellknown that v satisfies Bellman's optimality equation.

= -u - Pv).
(2.1.9) v = sup ( u-ge+, v)
PeP
m
Now, since v(0) = 0 we can take the matrix P instead of OP in the
right hand side of the above equality. Further if we take as new vector u
the old one minus 8 times the unit vector then since Zj p(i,j) = 1 the

relations (2.1.3) and (2.1.4) remain true for m. However, for the new

vector u_ relation (2.1.9) reads with u for v
m m+1
= - + P
Ymt1 Pi;P ( Unm um+l)’
m

Hence

m+1

WP < 0 for all P ¢ P .

m

Moreover, since Pm is compact and the right hand is continuous in P

there are P's for which the right-hand side is maximal.

Define
= ¢ - + Py - = .
Pm+] {P « Pm u el St 0}
Then Pm+l is nonempty and closed, and as a closed subset of a compact set in
a metric space again compact. "
Finally since |u | < k y we have that the first vector u satisfies
m m’ m m+ 1

lum+]l - (km+gm) Ym+1” )



Using the inequality [uml < kmym we can derive the following inequality

which we need in the sequel.

2.2. LEMMA. Each policy R = (PI’PZ"") satisfies

vt t-1 -1
(2.2.1) tZ] a PR lumi <p kmym+1(0)
and
-1.7T-1
(2.2.2) lim T 'p lu | = 0.
T R m

PROOF. Using the last exit decomposition of state O before time t+1 (cf.
CHUNG [1] p.46) it follows

t
-1 .
(2.2.3) P; y (i)

L PP (5,00 gPyee Py ¥, (0)

IA

t
) 0Pk ofeog V(0 < ¥, ,(0).

k=1 m+1

Hence,

t t-l v t _ -l
la Pe ]um] <k tzl oy, (0) =0 Ky (0.

i~ 8

t
Relation (2.2.2) is obvious with (2.2.3). [J

2.3. REMARK. For the specialized case that P consists of one element P i.e.
P = {P} it is clear from theorem 2.1 that for the sequence g(P), uO(P),
u](P),..., now depending on P, holds that Wsl = - Um_](P) + Pum(P) - Um(P) =0

for m= 1,2,...

3. LAURENT EXPANSION OF THE DISCOUNTED EXPECTED RETURN

In this section we focus on the discounted expected return for discount-
factors a near 1 or small interest rates. Under the assumptions of section 2
we can expand the discounted expected return for the various interest rates

as a Laurent series in powers of p in a neigbourhood of p = 0.



3.1. THEOREM. For each policy R = (PI’PZ"
it holds that

T=1,2,...

B.1.1) A® = (-aDe g+ ] oMu -

PROOF .

(3.1.2)

Similarly,

(3.1.3)

v%(R) =

for m. =

T+m
z at P
t=1

M-1 T+m+1 _T+m T+m ¢
Ppu + ) o P
m=0 n t=1
M TgM t el
P ¢ R M-l
t=1
t t-1
a P r
R Pt
t t-l
o PR [rPt— g + Pt uy - uO] +
T
T, -1 t, _t t-1
+ -— - —
(1-a7)p g ZOL(PRuO Pp o up)

(1-ap g+ § o P

t=

T

t=1

)y all M =1,2,...

1

t-1 O t
Y -p z a P
R Pt =1 R
T
T+1 _T t
Ppuy* L o P
t=1
T+1

and all



= - Z at P;fl wg +p z o PE—I um
t=1 t t=1
T+m+1 T+m
- u a P
m R m
T+m
= - {[u T+m+1 §T+m a + z at Pt 1 wm 7 +
m R m R P
t=1 t
T+m+1 =1
-p Z o PR u }
t=
Substituting (3.1.3) for m = 1 in (3.1.2) and then substituting (3.1.3)

for m = 2 in the result etc. gives after (M-1) substitutions the expression

3.1.1). 0O

Theorem 3.1 together with lemma 2.2 gives

SR =L Tt t-l
(3.1.4) vP(R) = p g + Z o) [um + z a PR YP ]
m=0 t=1 t

M-2
+p r(p,R),

where lim r(p,R) = 0, uniformly in all policies R.
p+0 ’

This relation (3.1.4) together with remark 2.3 yield for stationary policy P
0,y -l Mo M-1
(3.1.5) V(B =p g(®) + ] p u(P)+0(p ).
m=0
Relation (3.1.5) is a partial Laurent series in powers of p.
The question raises then whether also a complete Laurent series 1is true i.e.
M = o, Indeed, without pursuing this result here we state that under the

Doeblincondition for P with bounded return vector r_, M can be taken equal

P’
to infinity (see sections 11 and 12 of [3]).
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4. ASYMPTOTIC BEHAVIOUR OF THE TOTAL EXPECTED RETURN.

. . . . . . m
We derive in this section an asymptotic expansion of vT(R) as T » =,

4.1, THEOREM. For each policy R = (PI’PZ"")’ all M= 1,2,... and all
T =1,2,... the following equality is satisfied

M-1 M-1
M T+M-1 k) (T+M-k-2
Gy WMe = ( )g £ 7 3 ( ) k- >u .
T .M 020 Wl ( M-k-1/"%
M-1
M-1
) PE zz ( 2 )uz ' ¢¥(R)'
=0
where
T
1 t-1 0
(4.1.2) op(R) = ) Pp U
t=1 t
and
(4.1.3) ¢m+l(R) - 'f ‘¢m(R) N mil (m-l) Pt—] I])Z+]\-
T o] VB gsg \ 2/ RTR)

PROOF. It is easily proved by induction on k that for all T = 1,2,..., and
all k = 1,2,...

T
t+k-1\ _ [T+k
(4.1.4) Z] ( K ) = (k+l>

t

From relation (3.1.3) for p = 0 or o = 1 we find for ¢ = 0,1,...

T T
el T t-1 g+l
(4.1.5) - z PR u, = U, PR Y Z PR P
t=1 t=1 t
Hence, 1
. ‘
t T T t-1 o+l
(4.1.6) tzl PR Uy T Uyt Uy T Ppuy T Ppugy tzl Pr P,

The proof of (4.1.1) proceeds by induction on M. Relation (3.1.2) for

p = 0 yields

|
(4.1.7) vp(R) = Tg + uy = Ppoug +
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Substituting (4.1.2) for the last term on the right hand side we find
that (4.1.7) is (4.1.1) for M = 1 (note that we use the convention (5) = |
for k = 0,1,...).

By induction hypothesis assume that (4.1.1) is true for M = m and all
T=1,2,.... Hence using relation (4.1.4) we find

m+ 1 _ m
(4.1.8) vT R) = Vt(R)

1

_ (THmer-1Y mil mi' K\ (T+m+l-k=2)
. om+l )8 ) m+1-k-1/)%

o~

T

S et (m")u + 7w
L 'R v fla Tt L SR

The last two terms give with relation (4.1 .6)

m-1
-1 T T
(4.1.9) z (mg‘ ) (u£+u2+]_PR uQ,—PR u9,+]\ +

2=0 \

- % {¢ M(R) + mil (m"')Pt"] w2+]J
g=1 L € g=p \ P SRTRL

Using (4.1.3) and (m;l) + (E_;> = (?) we find that (4.1.9) equals

m m+1-1
/m) T /m+l—l)u m+1
4.1.10 - P R).
( ) zzo )Y " Pr RZO g Mt ®

Substituting (4.1.10) in (4.1.8) gives relation (4.1.1) for M =m + 1. [

4,2. REMARK. For stationmary policy P we find with g(P), uO(P),u](P),...
defined in remark 2.3 that for all M = 1,2,...

M-1 M-1 M-1
M, T+M-1Y) (k\ [T+M-k-2 T M-1)

(4.2.1) v (P) = < g+ ) ] o @) - ) u, (P).
T M) 020 K2g \e )\ M-k-1 ) % 0o Lo )70

BIBLIOTHEEK MATHEMATISCH CENTRUM
. e AMSTERDAM———
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5. EQUIVALENCE OF SENSITIVE OPTIMALITY CRITERIA.

In this section we prove the equivalence of the sensitive optimality
criteria as introduced by Veinott. Actually we shall prove that policy R
is n-discount optimal if and only if it is n—average optimal. For stationary
policy R the assumptions of section 2 are sufficient for nonstationary pol-
icy R we need an extra condition (relation (5.1.4) which is always satisfied

if the decision sets P(i) are finite.

5.1. LEMMA. If policy R = (PI’PZ"") 18 such that for certain i € E
(5.1.1) P- WD (i) =0,

for all m = 0,l,...,m0—1 and all t = 1,2,...

then each of the following two conditions imply the property:

for each e > 0 there exists a finite negative integer hE such that for non-

T
negative constants €13€gsens with Z €, < T.e,
t=1
m_+1 m
t-1 0 . t-1 0,.
<
(5.1.2) PR wP (1) < h€ PR wP (i) + €,
t t
The conditions are
(5.1.3) a. R is a stationary policy Z.e. P, = P, = .
m_.+1
0 .
b tPP (1) m
) . t 1 .
(5.1.4) limsup | — {wPO(l) # 0} < =,
tro v 0 (i) t
p @
t
Mo
REMARK . Co?dition b is essentially a condition on the derivatives of wP
— et

and Vp with respect to P. It is always satisfied if the set of deci-

sions in 1 is finite.
PROOF. For any P and any j it follows from theorem 2.1 that

the first nonzero element of
0,. 1,.
(4, (), ¥y (3),00)

is negative
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.. -1,. . ..
Assume that for some t and some j with P; (i,j) positive we have that

m
(5.1.6) wPO(j) > 0.
t

Then define

(5.1.7) m = min {3g with P;"(i,z> > 0 and ¥0(2) # 0}
t

then it follows from (5.1.5) and (5.1. 6) that m < L Moreover, for g with

(1 2) > 0 we have by (5.1.7) that wP (2) = 0 for n < m. Hence from

(5 1.5) if Pt L' (i,2) > 0 then

m
bp(2) <0
t
Consequently
I m,.
PR l1"})(1) < 0’
t
which is in contradiction with assumption (5.1.1). Conclusion

m
(5.1.8) 9o (3) €0 for all j with By ' (i,i) > 0.
t

Also, from the above arguments if for j with P (1,3) >0

mo m0+l
(5.1.9) ¥, (§) = 0 then v (§) <0
t t

. .. t-1,. .
Relations (5.1.8) and (5.1.9) imply for each j with PR (1,7) > 0
the existence of a negative integer h(j) such that

m_+1

o', .. "o,
(5.1.10) Yo (i) < h(j) bp (3)
t t

Now if the decision pt(j,.) is the same for all t, which is the case if
R is a stationary policy, or when relation (5.1.4) is satisfied then we have
for all t = 1,2,.

m_ +1 m

(5.1.11) wpo (i) < h(3) Vp (J) if P (1,3) >0
t
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Let constant ¢ be such that

m +1
]¢ 0 | <S¢y for all P. That such a constant ¢ exists
P m0+1
.follows from theorem 2.1. In fact, for ¢ we canrtake km0+'2km0+l + ym0+](0).

Now choose & > 0 arbitrarily, then there exists a finite set AE

such that for all policies R = (P],Pz,...)

o]

.. . -1
(5.1.12) Y} APy P (1,3) y (j) < ¢ ".e.
TN 0 1°°°0 t-1 m+1

The proof of the existence of AE is not short. However, it is easy to

state the facts implying the above result.

They are:
a. The set R of all policies R is a compact set, where Rn = (Pnl’PnZ"")
converges to R _ = (Pw],sz,...) if and only if lim Pnk = Pook

for all k = 1,2,... e

The proof of the compactness of R is a direct application of the well-

known diagonal procedure and the compactness of P.
b.

(5.1.13) E(R) := Z] P.....P yho+‘

is a continuous function of policy R = (PI,PZ,...). The proof of this

is direct from the fact that (cf. (2.1.5))

) APi.e.P Ly P....Py
t=T41 0 1770 t-1 mytl < 07 1°°°0°T my*2,

and the fact that the right-hand side of this inequality tends to zero

uniformly in R (for a proof see the first part of the proof of lemma
5.7 of [3] or lemma 3.7 in [3A]).

Now we sketch the proof of relation (5.1.12). Take sequence of finite
subsets A] « A2 € ... , such that n§1 An = E and suppose for each n there is
a policy R such that for Rn relation (5.1.12) is not satisfied with An for
A‘. Let R be a limit of some subsequence %1 . Then it follows from the

k
continuity of £(R) that (cf.| 3] lemmas 4.11 and 4.12)
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o]

. . . -1
R [} t=1 0P°°1 o OPmt-](l’J) ym +](J) > C €,
j¢ U A 0
n=1"n

which is clearly not true. By contradiction we find that finite set AE does

exist.
Using the last exit decomposition of state O(cf. lemma 2.2), we find

for policy R = (Pl’P cee), £ = 1,2,4..

2’
t-1 m0+l

g Pr (L,3) lvp, (D] <

jeA_ t

t
<c L Py e By (4,00 (P oo (P (0,3) v, ()
jeA_ k=1 0
t
< ¢ P ... P 0,1y (5D
ng k=1 0k 0 t-1 m0+1
€
Hence
T m.+1
1 -1 . . .
= ) Pp (1,1 |wP° (D] =<
t=1 j¢A t
€
c T T p p . .
<7 J ok "t ofe-1 0Dy (D)
k=1 jéA  t=k 0
< e
Consequently for
m,+1
t-1,. . 0 .
(5.1.18) e := z Py (L,3) lup ()]
, j Ae t
we have that
T
2 € < T.e
t=1
Define
h = min h(i)
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then h >-
€

and from (5.1.8), (5.1.11) and (5.1.14) for t=1,2,...

m_+1 m_+1
t-1 . t-1,. . .
Py tPPO (i) < ) Pr (l,J)llJPO (;|)+et
t jeA t
€
m
t-1,. . 0,.
sh TR R0 e,
jeA t
£
t-1 "o .
< he PR th(l) + €y 0

With the preliminary results of lemma 5.1 we are in a position to prove the

first main result of this section.

5.2. THEOREM. Policy R = (P],Pz,...) 18 n-discount optimal if and only if

(5.2.1) PR‘ vp =0 form=0,1,...,nand t = 1,2,...
and F_
(5.2.2)  limp § ot i 4B -0

40 t=1 t

PROOF. We first prove that condition (5.2.1) is necessary by showing that
if (5.2.1) is not satisfied then R is not n-discount optimal.

So let us assume that for some 1
t-=1 m

(5.2.3) PR0 wPO(i) # 0 for some ty and some m, < n.
and t
(5.2.4) U™ 20 form=0,1,...,m. . and t =1,2,...
R Pt 0-1
t-1 "0
Then as shown in lemma 5.1, PR wP < 0 for all t and hence
t
to—]
(5.2.5) P q,go(i) < 0.
%o
Let P be an element of P Then ¢] = = ¢n+] =0
n+l’ p -t T Y

Hence from (3.1.4)



m, @ m _, m.+1
(5.2.6)  vPR) -vP@ED) =00 T of ert Dy 0 4 ptl 0]
=1 L P ROR

i lim P7) = 0.
with Gio r(p,R,P ) 0

Using (5.1.2) we find that the right hand side multiplied by p © is

smaller than or equal to
m oo

Tl sen) w0 T e, + r(o,R,P) (D)
t € g=1  °F

t Lt
P
RS

1

o~18

t

For the second term we have the inequality

t=1 k=1 K
<p?e J aftcea!
t=1
to—l m
Hence for e < IPR Up (i)| we obtain
t
"My P Oo tO_] ™0
liminf 5 0 - * i .
V0 p [v©(R) Y (P )] < PR th(l) + e <0
0

Consequently R is not mo-discount optimal and a fortiori also not n-
discount optimal. The conclusion is that condition (5.2.1) is necessary.

Assuming that (5.2.1) is satisfied then we have (cf. lemma 5.1)

t-1 n+l

(5.2.7) PR wP <0 for all t.
t
Relation (5.2.6) for m, =1 gives
-n o " e-1 ot
Liminf o " [VP(R) - vP(P")1 = Lliminf o ) of P ¥,
p+0 p+0 t=1 t

With (5.2.7) we conclude that for R to be n-discount optimal also con-

dition (5.2.2) must be true. In that case the limit of p—nfvp(R) - VO(Pm)I
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as p ¥+ 0 does exist.
Using exactly the same arguments it is straightforward to prove that

for P ¢ Pn+] and arbitrary R

(5.2.8) liminf p © [v°(P°) - vP(R)] > 0,
p+0

i.e. P° is n-discount optimal.
The proof that conditions (5.2.1) and (5.2.2) are sufficient is now

simple. Indeed, for arbitrary policy R* we have from (5.2.8)

liminf o "vP (™) - vP@®™)1 2 0
p+0

with

lim o "wP@®) -vP (™)1 2 0
p¥0

we obtain

liminf p "vP@R) - vP(R")1 2 0. O
p+0

A very similar theorem for n-average optimality shall be proved now.

5.3. THEOREM. Policy R = (Pl’PZ"") 18 n-average optimal if and only if

(5.3.1) PR’ vp =0 form=0,1,...,nand t =1,2,...
t
and
T
(5.3.2) 1im% I e ! wg” - 0.
T t=1 t

PROOF. The proof proceeds very similar to that of theorem 5.2.
For the necessity of (5.3.1) assume relations (5.2.3) and (5.2.4).
From relations (4.1.2) and (4.1.3) it follows that

¢¥(R) =0 for m = 0,1,...m and T = 1,2,...

0
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m_ +2

T
(5.3.3) ¢p (R) = ]

=1 .m m0+1
Py [(T+m0+1—t) th + th J.

]
o~

For P ¢ Pn+ then ¢$(Pm) =0 form=0,1,..., n*2 and t = 1,2,...

1
Hence from relation (4.1.1) we find

i
m,+2 m_+2 mo* m,+1
0 0T ey T T (M0
(5.3.4) vpo (R) = v~ (P) = (P PR)g A b
_O . ’
T m m, +1
+ Z P;_][(T+m0+l—t) ¢P0+¢PO 1.
t=1 t t
t,=1 | "0
For e < PO |th(1)l let TO be such that Ty +my + I'>-h_. Since
0

in Cesaro limits a finite number of terms can be omitted we find with (2.2.2),

for the i-th component of

m0+2 m0+2 -
liminf T—FVT (R) - Vo (P )1
T
IT—TO -1 Mo I %3
< liminf = ) [(T+#m+1-t) + h ] Po g (i) + = ) ¢
Tom T B 0 el R'R T Lt
t m
<224 0i) + ¢ <o.
R Pt

Conscquently R is not m -average optimal and a fortiori not n-average

0
optimal.

Assuming that (5.3.1) is satisfied we have again relation (5.2.7).

Relation (5.3.4) for my = n gives
. o1 o2 n+2, o .1 % _t=l ol
(5.3.5) liminf = (v, “(R) = v, (P )] = liminf = ) P )
T T T T R P
T T t=1 t
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With (5.2.7) we conclude that for R to be n-average optimal also con-
dition (5.3.2) must be true. In that case the limit instead of limes infe-
rior in expression (5.3.5) can be taken. The rest of the proof is strictly

similar to that of theorem 5.2. [J]

5.4. COROLLARY. Policy R = (P],Pz,...) 18 n-discount optimal if and only if

it 18 n-average optimal.

PROOF. From theorems 5.2 and 5.3 it follows that the only thing we have to

prove is that under the condition (5.2.1) conditions (5.2.2) and (5.3.2)
;—l ¢;+l < 0 for all t it follows from a

wellknown Abel and Tauber theorem thaE (cf. TITCHMARSH [9] p. 224-229)

are equivalent. Indeed, since P

lim p z at Pt_] ¢;+l =0
p+0 t=1 t

if and only if
T
limg § 2t R =0, O

T-o0 T t

5.5. COROLLARY. Since for each n the subset Pn of P is not empty, it follows
from theorem 5.2. and 5.3 that for each n there exists a stationary policy

which is n-discount optimal and also n-average optimal.
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