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This paper establishes a rather complete optimality theory for the average cost semi-Markov 
decision model with a denumerable state space, compact metric action sets and unbounded 
one-step costs for the case where the underlying Markov chains have a single ergodic set. Under a 
condition which, roughly speaking, requires the existence of a finite set such that the supremum 
over all stationary policies of the expected time and the total expected absolute cost incurred until 
the first return to this set are finite for any starting state, we shall verify the existence of a finite 
solution to the average costs optimality equation and the existence of an average cost optimal 
stationary policy. 

Semi-Markov decision processes unbounded one-step costs 
denumerable state space average costs 
optimal stationary policy optimality equation 

1. Introduction 

We are concerned with a dynamic system which at decision epochs beginning with 
epoch 0 is observed to be in one of the states of a denumerable state space I and 
subsequently is controlled by choosing an action. For any state i E J, the set A(i) 
denotes the set of pure actions available in state i. If at any decision epoch the system 
is in state i and action a E A(i) is taken, then, regardless of the history of the system, 
the following happens: 

(i) an immediate cost c (i, a) is incurred, 
(ii) the time until the next decision epoch and the state at the next decision epoch 

are random with joint probability distribution function Q( · , ·Ii, a). 

For any i EI and a E J, let 

P;i(a) = Q(oo, jli, a) for j EI 
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and 

;(i, a)= 2: f"° tO(dt,jli, a). 
jel Jo 

i.e. p;i(a) denotes the probability that the next state will be j and r(i, a) denotes the 
unconditional mean time until the next decision epoch when action a is taken in 
state i. Observe that Lie! p;i(a) = 1 for all i, a. We make the following assumption. 

Assumption 1. (a) For any i E /,the set A(i) is a compact metric set, 
(b) for any i E /,both c(i, a), p;i(a) for any j EI and r(i, a) are continuous on A(i), 

(c) there is a number s > 0 such that r(i, a);;;.: s for all i EI and a E A(i). 

We now introduce some familiar notions. For n = 0, 1, ... , denote by Xn and an 
the state and the action at the nth decision epoch (the Oth decision epoch is at epoch 
0). A policy 1r for controlling the system is any measurable rule which for each n 
specifies which action to choose at the nth decision epoch given the current state Xn 
and the sequence (X0, a0 , ••• , Xn-i. an-1) of past states and actions where the 
actions chosen may be randomised. A policy 1r is called memoryless when the actions 
chosen are independent of the history of the system except for the present state. 
Define g'l as the class of all stochastic matrices P = (p;i ), i, j EI such that for any i EI 

the elements of the ith row of P can be represented by 

p;i=f p;i(a)7r;(da) foralljeJ (1) 
A(i) 

for some probability distribution 7r;{ · } on A(i). Then any memoryless policy ,,, can 
be represented by some sequence (Pi, P2 , ••. ) in fll such that the ith row of Pn gives 
the probability distribution of the state at the nth decision epoch when the current 
state at the (n - l)st decision epoch is i and policy 7T is used. Define F = X;er A(i). 
Observe that, under Assumption 1 (a), F is a compact metric set in the product 
topology. For any f E F, let P(/) be the stochastic matrix whose (i, j)th element is 
P;i(/(i)), i, jel and for n = 1, 2, ... denote by the stochastic matrix P"(/) = (p~(/)) 
then-fold matrix product of P(f) with itself. A memoryless policy 7T = (P1, P 2 , ••. ) is 
called stationary when Pn = P(f) for all n ~ 1 for some f E F. This policy which always 
prescribes to take the single action/(i) E A(i) whenever the system is in state i will be 
denoted by / 00l. Observe that under the stationary policy /"°l the process {Xn, n ;;;;. O} 
is a Markov chain with one-step transition probability matrix P(f). 

For n = 0, 1, ... , denote by Tn the time between the nth and (n + l)st decision 
epoch. A policy 1r* is said to be (strongly) average cost optimal when 
Jim supn ... ro <Pn (i, 7r*) is less than or equal to Jim supn ... ro <f>n (i, 7T) (lim infn ... oo <f>n (i, 1r )) 

for any i EI and policy 1r where <f>n (i, 7T) is defined by 

E,,.Lt c(Xk. ak) I X 0 = t} 
<f>n(i,1r) , n=0,1,... (2) 

E.,,.{ t Tk I Xo = t} 
k=O 
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with E'Tt is the expectation under policy Tr. We here assume that this quantity is 
well-defined for any i EI and policy Tr as is the case under the additional Assumption 
2(a) to be stated below. 

It is well-known that an average cost optimal policy may not exist and even an 
example has been given in [7] in which an average cost policy exists but any average 
cost optimal policy is nonstationary. It is remarkable in this example, that besides 
uniformly bounded c (i, a) and T(i, a), any stochastic matrix PE G't is irreducible and 
positive recurrent. In general we can only state that for fixed initial state we may 
restrict ourselves to the class of memoryless policies. More precisely, by a slight 
generalization of the proof of Theorem 2 in [2], we have the known result that for any 
fixed io EI and policy Tro a memorlyless policy 7rM can be found such that for any 
k el, Borel set B ~A(k) and n ;;;.O, 

(3) 

Another general result says that if the average cost optimality equation has a solution 
satisfying some regularity condition then any stationary policy generated by the 
optimality equation is strongly average cost optimal, cf. [14]. 

In this paper we shall establish for the average cost optimality criterion a rather 
complete theory for the denumerable state semi-Markov decision model with 
unbounded one-step costs for the case where the underlying Markov chains have 
only a single ergodic set. This theory both extends considerably and unifies the finite 
state space model and the special cases of the denumerable state space model so far 
studied in the literature, cf. [1, 3, 4, 9, 10, 13, 14, 17-19]. This paper exhibits the 
existence of a finite solution to the average cost optimality equation and the existence 
of a strongly average cost optimal stationary policy under a condition which, roughly 
speaking, requires the unichainedness of the stochastic matrices P(J), f E F and the 
existence of a finite set K such that the supremum over the stationary policies of both 
the expected time and the total expected absolute costs incurred until the first return 
to this set K are finite for any starting state. This assumption considerably weakens 
the usual conditions requiring that the set K is a singleton or assuming that both the 
one-step costs and the mean recurrence times are uniformly bounded. The latter 
asumptions are seldom met in typical applications as in inventory and queueing 
theory. 

In Section 2 we will give the essence of our analysis by first establishing relation­
ships between the original decision processes and the embedded decision processes 
on the finite set K. Next in Section 3 we will prove both the average cost optimality 
equation and the existence of a strongly average cost optimal stationary policy by 
using proof techniques developed in [4, 9, 14, 18]. We conclude this section 
be remarking that extensions of the theory presented for the unichained case to 
the important case of 'communicating Markov decision chains' (cf. [l, 9]) will 
require different proof techniques as possibly linear programming or fixed point 
methods. 
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2. Analysis 'Of embedded decision processes 

We first need some notation. For any Ac: I, define 

N(A) = inf{n;;;.: 1 !Xn EA} 

where N(A) =co if Xne A for all n ;;;.: 1, i.e. N(A) denotes the number of transitions 
until the first return to the set A. Also for any Ac: I and f E F, define for i, j e I and 
n ;;;.: 1 the taboo probability 

Apij(f) = P100>{Xn = j, XkeA for 1 ~k ~ n -1 I Xo= i}. (4) 

Observe that 
00 

Er'"'>{N(A)IXo=i}= 1+ I L AP'J(f)). (5) 
n = 1 jeA 

We now introduce our main assumption. 

Assumption 2. (a) There is a finite set K such that for any i e I the quantities u *(i) 
and y*(i) are finite where 

{ 
N(K)-1 } 

sup E100> L Tk I X 0 = i = u*(i) for all i e I 
feF k=O 

(6) 

and 

{
N(K)-1 I } 

sup Er00> L jc(Xk, ak)I Xo = i = y*(i) for all i EI, 
feF k=O 

(7) 

(b) for any f e F, the stochastic matrix P(f) has no two disjoint closed sets. 

In words, Assumption 2(a) requires the existence of a finite set K such that the 
supremum over all stationary policies of both the expected time and the total 
expected absolute cost incurred until the first return to the set K are finite for any 
starting state. To satisfy Assumption 2(a) in applications, it may be necessary to 
exclude in certain states those actions which are far from being 'optimal', e.g. in an 
Ml M/ c queueing system with a controllable number of operating servers consider 
only policies under which all c servers will be operating when the queue size exceeds 
some given large value. By other arguments based on the specific form of the 
application, it is usually not difficult to show that any other policy can be improved in 
average costs by a policy belonging the class of policies considered. We remark that 
Assumption 2(a) is satisfied with bounded functions u* and y* when the quantities 
c(i, a) and r(i, a) are uniformly bounded and any of the recurrence conditions on the 
set (P(f),f E F) given in [ 6] holds, cf. also [5]. 

We shall now first verify as key result that under the Assumptions 1 and 2 for any 
f e F a state St e K exists such that under policy f 00> the expected time and the total 
expected absolute cost incurred until the first return to the state St are bounded by 
u*(i)+c and y*(i)+c respectively for any starting state i for some constant c 
independent off E F. We shall need the following lemma whose proof is standard. 
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Lemma 1. Let A be any subset of I. Then, for any i EI and f E F 

{
N(A)-1 } {N(A)-1 } 

Er<00> L r(Xk, ak) I Xo = i = Er<001 L Tk I Xo = i 
k=O k=O 

00 00 

= r(i,f(i))+ L L r(j,f(j))Ap'?;(n. (8) 
n=ljl!.A 

By Lemma 1, we may replace rk by r(Xk, ak) in (6). This result will be essentially 
used in the analysis hereafter. It now follows from Lemma 1 and (5)-(6) that under 
the Assumptions l(c) and 2(a), 

. u*(i) 
Er<00>{N (K) I Xo = i} :%;-- for any f E F and i EI. 

e 
(9) 

It is our conjecture that (9) implies tightness of the collection of the stationary 
probability distributions of the stochastic matrices P(f), f E F. 

Under Assumption 2, define for any f E F 

00 

q;j(f) = L Kpij(f), i EI, j EK, (10) 
n=l 

i.e. q;i(f) is the probability that at the first return to the set K the transition occurs 
into state j starting from state i and using policy t 00>. Observe that, by (9), 

L q;i(f) = 1 for all i EI. 
jeK 

For any f E F, define for i EI and j EK the (possibly infinite) quantity 

v;i(f) =expected number of returns to the set K until the first 
transition into state j occurs starting from state i 
and using policy t 00>. 

Theorem 1. Suppose that the Assumptions 1 and 2 hold. Then 

(11) 

(12) 

(a) for any f E F, the finite stochastic matrix (q;i(f)), i, j EK has no two disjoint closed 
sets, 

(b) for any i EI and j EK, the probability q;i(f) is continuous on F, 
(c) there is a finite number B such that for any f E Fa state sr EK exists for which 

v;,,(/) :o;;; B for all i EI. 

Proof. (a) Fix f E F. Let K 1 <;; K and K 2 £ K be any two non-empty sets that are 
closed under the stochastic matrix Q(f} = (q;i(f)), i, j EK. To prove that Kin K2 is 
not empty, define for r = 1, 2 the set 

I, = {j E I Ip'?;(/) > 0 for some i E K, and n ;;;.: 1}. 
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It is immediate that both sets / 1 and 12 are closed under P(f) and hence 11 n Ii,=. 0. 
Choose now t E 11n12. Since t E Ii. it follows that 

p';:(f) > 0 for some s E K1andm;;::,1. (13) 

Using (9), t E 12 and the fact that K 2 is closed under Q(f) it is readily verified by 
contradiction that 

P7u(f) > 0 for some u E K2andn;;::,1. (14) 

By (13) and (14), p';'.,+n(f)>O. This implies that u EK2 can be reached from s EK1 

under Q(f). Since K 1 is closed under Q(/), it follows that u E K 1 so that K1nK2 ,t.0. 
(b) By Assumption 1, we have that Fis a compact metric set on which Pii(f) is 

continuous for any i, j EI. Using this fact and the relation 

it fo11ows by induction that Kp'ij(f) is continuous on F for any n ;;::, 1 and i, j EI. Hence 
q;i(f) is continuous on F if the sum (10) converges uniformly on F. To prove this, fix 
s EI and observe that, by (9), 

00 u*(s) 
I Pr"""{N(K)>n IXo=s}:s=;-- for allfEF. (15) 

n=O e 

Choose now 0 < 8 < 1. Then there is an integer M such that 

Pr>{N(K)>MIXo=s}:s:;8 for all[ EF. (16) 

To prove this, assume the contrary. Using the fact that P roo>{N(K) > n I Xo = s} is 
non-increasing inn, we then get a contradiction with (15). Now, by (16) we have for 
any jeK 

"" L KP~i(f):s;;Pt<00>{N(K)>MIXo=s}:s;;8 forallfEF 
n=M+l 

which proves the desired result since 8 > 0 was chosen arbitrarily. 
(c) By the finiteness of K and the assertions (a) and (b) of the theorem, this 

assertion is an immediate consequence of Theorem 2.6 in [5] or Theorem 4 in [6]. 

The following theorem will play a crucial role in the analysis in the next section. 

Theorem 2. Suppose that the Assumptions 1 and 2 hold. Then there is a finite number 
c such that for any f E Fa state sr EK exists for which 

{
N({sf})-1 } 

Er 00> k~o r(Xk, ak) IXo = i :so; u*(i) +c for all i e I (17) 

and 

(18) 



A. Federgruen, A. Hordijk, H.C. Tijms I Semi-Markov decision processes 229 

Proof. By Theorem 2 we can choose a finite number Band for any f E Fa state sr EK 
such that 

v;,,(/) ~ B for all i EI and f E F. (19) 

We shall now verify (17). The proof of (18) is identical. Fix now f E F. We introduce 
the following notation. For any i EI and j EK, define qJ1(f) = q;f(f) and, for n = 
2, 3, ... , let 

q'ij(f) = I q;k (f)q~i- 1 (f) for i EI and j EK. 
kEK 
k;<sr 

Observe that qij(f) is the probability that during the first n -1 returns to the set K no 
transition occurs into state sr and that at the nth return to the set K a transition occurs 
into state j starting from state i and using policy /""l. We have 

ro 

Visr = 1 + L L q;j(f) for all i EI. 
n = l jEK 

j rf=sr 

(20) 

Define v0 = 0 and, for n ~ 1, Vn = inf{m > Vn-i I Xm EK}. Also, define So= 1 and, for 
any k ~ 1, Sk = 1 if Xm ;.f sr for 1 ~ m ~ k and Sk = 0 otherwise. Denote by T(i, f) the 
first expression in (8) with A= K. Then using the first equality in (8) and (6), we find 

00 

= T(i,f) + 2:: 2:: q;;- 1 (f)T(j,f) 
n=2j;<sr 

~u*(i)+maxu*(j) I 2:: qij- 1 (/) foralliEJ. 
iEK n =2 i"'sr 

Invoking (19) and (20), we now get the desired result. 

We need the following results from positive dynamic programming (cf. [9, 16]). 

Lemma 2. Consider the positive dynamic program (S, D(s), q(t\s, a), r(s, a)) where 
the state space Sis denumerable, the action set D(s) is a compact metric set for any s ES 
and the immediate return r(s, a) is non-negative/oral! s ES and a E D(s). Also assume 
that for any sES both r(s,a) and the one-step transition probability q(tjs,a) 
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for any t ES are continuous on D(s ). For any policy 1T, define V(s, 7T) = 
E.,,.{I~=o r(Xn. an) IXa =s}, s ES where Xn and a11 denote the state and the action at the 
nth decision epoch. Let V(s) =sup 17 V(s, 7T), s ES. Then 

sup V(s,/00l) = V(s) for alls ES, 
fEF 

V(s)= sup {r(s,a)+I V(t)q(tJs,a)} forallsES. 
aED(s) tES 

(21) 

(22) 

Proof. We need some notation. For any integer M ~ 1, let rM (s, a) = 
min (r(s, a), M) for alls, a. For any 0 <a< 1, s ES and policy 7T, define 

V.,(s, 7T) = E71'L~o a"r(Xm an) IXo = s} and 

V;;1(s, ~)=E.,,.L~a anrM(Xm an)lXo=s}. 

Using the non-negativity of r(s, a) we have by the monotone convergence theorem 

Jim v;;1(s,7T) = V., (s, 7T) for any 0 <a< 1, s ES and policy 7T, (23) 
M-oo 

and, by a Tauberian theorem, 

lim V., (s, 1T) = V(s, 1T) for any s ES and policy 7T. 
"-> l 

(24) 

Letting V~ (s) =sup.,,. VZ1" (s, 7T ), s EI, it is well-known from discounted dynamic 
programming (e.g. cf. [9, 12]) that for any 0 <a< 1 and M ~ 1 

V~(s)= max {r(s,a)+a I VZ1"(t)q(tis,a)} forallsES (25) 
aeD(s) teS 

and 

sup v;;1 (s, /""'l) =sup V;;1 (s, 1T) for all s ES. (26) 
fEF .,,. 

Using the fact that limn-.oo SUPx gn (x) = SUPx limn-oo gn (x) for any non-decreasing 
sequence of functions {gn}, we obtain from (23) and (26) that SUPteF V"(s, /rol) = 
sup71' V,, (s, 1T) for all s ES and 0 <a < 1. Next, by letting a _,. 1 in this relation and 
using (24) we get (21). The optimality equation (22) follows by the same reasoning 

• from (23)-(25) by first letting M _.,,.co and next letting a ...,,.1. 

By defining an appropriate Markov decision model with an absorbing state co, the 
next theorem is an easy consequence of Assumption 2(a) and Lemma 2. 
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Theorem 3. Suppose that the Assumptions 1 and 2(a) hold. Then 

u*(i)= sup {T(i,a)+ L Pi;(a)u*(j)} foralliEl, 
aEA(i) jeK 

(27) 

y*(i)= sup {ic(i,a)J+ I p;;(a)y*(j)} foralliEI. 
aEA(i) jeK 

(28) 

By this theorem, we have that Assumption 2(a) is equivalent to the condition 
requiring the existence of a finite set K and a finite non-negative function y (i), i EI 
such that 

[c(i,a)[+T(i,a)+ I Pi;(a)y(j):r;;.y(i) foralliE!andaEA(i). (29) 
jeK 

The condition (29) with K equal to a singleton was first studied in [9] where this 
condition was called a Liapunov condition, cf. also [8, 10] for further investigations 
on Liapunov conditions. 

For any PE 0?, define the substochastic matrix f> = (p;;) by 

.. {Pi; 
Pi;= O 

for i E I, j e K, 

for i E l, j E K. 

Then, by Theorem 3, 

Pu*:;-;;. u* and Py*:;-;;. y* for any PE 0?. 

(30) 

(31) 

Lemma 3. Suppose that the Assumptions 1 and 2(a) hold. Then, for any sequ/nce 
(Pi, P 2 , ••• ) of stochastic matrices in 0?, 

n-1 

P 1 · • • P,,y*(i)~y*(i)+max y*(j)+ 2: L Pk+!··· Pny*(h) 
jEK k=l heK 

~ y*(i) + n max y*(j) 
jeK 

for all n ;;,,, 1 and i EI. 

The same inequalities apply when y* is replaced by u*. 

Proof. By a last exit decomposition, we have for any n;;,,, 1, i EI and je K, 

n-1 

(P1···Pn)ij=(P1···Pn)i;+ L L (P1···Pkh(A+1···Pnh; 
k=lheK 

By this relation and a repeated application of (31), we get (32). 

(32) 

We can now conclude by Lemma 3 and (3) that for any policy 'TI' the quantity 
<f>n (i, 'TI') in (2) is well-defined and finite. 



232 A. Federgruen, A. Hordijk, H.C. Tijms /Semi-Markov decision processes 

3. The average cost optimality equation 

We first analyse a discounted cost function to derive the average cost optimality 
equation by a technique developed in [14, 18]. For any {3 > 0 and policy 71', let 

V13 (i, 1T) = E,,.{ I e -/32:~:~, T(X •• a.l C (Xm a,,) I Xo = i}, i E I 
n=O 

and, for any (3 > 0, let 

V13 (i) = inf V13 (i, 1T ), i EI. 
Tr 

Using Lemma 3 and (3), it is straightforward to verify that for any (3 > 0 the quantity 
Vs (i, 1T) is well-defined for any i, 7T and that, for constant c13, 

I V13(i)J"" c13y*(i) for all i EI. (33) 

We now make the following assumption. 

Assumption 3. For any i E J, Li EI Pii(a ){u*(j) + y*(j)} is continuous on A(i). 

Note that, by Assumption 1 and a convergence theorem of Scheffe, the sequence 
of probability distributions {(p;i(an), j E J), n;:;;. 1} converges setwise to the prob­
ability distribution (p;i(a), j E J) as an" a. By (33) and the convergence theorem in 
[15, p. 232], it follows that under this additional assumption 3 LiPii(a) V 13 (j) is 
continuous on A(i) for any i EI. Using this result, a minor modification of the proof 
of Theorem 6.1 in [14] shows that for any (3 > 0 (cf. also [12]) 

V13 (i) = min. {c(i, a)+e-/3T(i,al I p;i(a)V13 (j)} 
aEA(1) jEl 

for all i E J. (34) 

Moreover, let /~00 l be any stationary policy such that the action ff3 (i) minimizes the 
right side of (34) for all i E J, then 

V13 (i,f~00l) = V13 (i) for all i EI 

as may be easily verified by iterating repeatedly the equality 

V13 (i) = c (i, /13 (i)) + e -/3TU.faUll I p;i(//3) V13 (j), i EI 
jEl 

and using (33) and Lemma 3. 

(35) 

Lemma 4. Suppose that the Assumptions 1-3 hold. Then there are finite numbers (3*, 
y > 0 such that for any f E Fa state s1 EK exists for which 

lf3V13(sr,f""l)l""Y forall 0<{3<(3* 

and, for any i E J, 

JV13(i,f00l)- V13 (srj00l)J:;:::;; y(u*(i) + y*(i)) for all 0 < (3 < /3*. 
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Proof. By Theorem 2, we can choose a constant c and for any f E F a state sr EK 

such that (17)-(18) hold. Fix now {3 > 0 and f e F. We have 

{ 
N({~,))-1 

V13 (i, / 00)) =Et=) I e -(3 r.; ::, T(X.,ak) c ex .. , a .. ) I Xo = i} 
n=O 

for all i EI. 
(36) 

Taking i = sr in (36) and using (18) and Assumption l(c), we derive from (36) that 

IV. ( f<""l)I =::;;; (y*(sr) + c) 
/3 Sf, l -13s -e 

(37) 

From (36), (17), (18) and the inequality 1-e-x :;s;;x for x ;a.O, we easily derive 

I V13 (i,/00
)) - V13 (sr./00l)I :s;; y * (i) + c + (u * (i) + c )l/3 V13 (sr. l''"l)I for all i EI. 

(38) 
Together (37), (38) and the finiteness of the set K imply the lemma. 

We are now in a position to verify the average cost optimality equation. 

Theorem 4. Suppose that the Assumptions 1-3 hold. Then there is a constant g and a 
function. v (i), i e I with 

Iv U)I 
sup <oo 
ieI u*(i) + y*(i) 

(39) 

satisfying the average cost optimality equation 

v (i) = min. {c(i, a)- gr(i, a)+ I Pii(a)v(j)} for all i EI. 
aeA(I) jel 

(40) 

Proof. Following [14, 18], fix some states EI. By (35) and Lemma 4 we can choose 
finite numbers /3 *, c > 0 such that for all 0 < {3 < {3 * we have 

for all i EI. Using Assumption l(a), the diagonalization method and the convergence 
theorem in [15, p. 232], it is now standard (e.g. cf. [14, p. 146]) to derive from (34) the 
desired results. 

The Assumptions 1-3 are satisfied in the example in [7] for which any average cost 
optimal policy is nonstationary. Hence an additional assumption is required to 
guarantee that a stationary policy / 00> such that the action f (i) minimizes the right 
side of (40) for all i EI is average cost optimal, cf. also [13]. We now state the 
following condition. 

Assumption 4. For any f E F, limn ... oo Pn(f)(u* + y*) = 0 where Pn(f) denotes the 
n-fold matrix product of the substochastic matrix P(f) with itself. 
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Lemma 5. Suppose that the Assumptions l, 2(a), 3 and 4 hold. Then, for any sequence 
(P1, P2 , .•. ) of stochastic matrices in 9't, 

lim .!_P1 • · ·Pn(u*+y*)(i)=O foralliEI. 
n_.ro n 

Proof. Define x0 (i) = u*(i) + y*(i), i EI and for n ~ 1 define Xn recursively by 

Xn(i)= sup I p;;(a)xn-1(j), iE!. (41) 
'aEA(iJ jeK 

By the same arguments as in the proof of Lemma 3.7 in [10], we find by Assumption4 
that Xn (i) monotonically decreases to 0 as n -7 oo for any i EI. Now, let (Pi, P2, ... ) be 
any sequence of stochastic matrices in fill. By (41), Pxn-1 ~ Xn for all PE fill and n ~ 1 
and so Pk+l .. · Pnxo ~ Xn-k for any n ~ 1 and k < n. Using this inequality and 
Lemma 3, we find 

n-1 

P1 · · · Pnxo(i) ~ Xo(i) + max x 0 (j) + I I Xn-k (h) for all n ~ 1 and i EI. 
jeK k=l heK 

Together this inequality, the finitenesss of K and limn ... oo Xn (i) = 0 for all i imply the 
lemma. 

We now state our final result. 

Theorem 5. Suppose that the Assumptions 1-4 hold. Let {g, v(i) Ii EI} be any finite 
solution to the average cost optimality equation (40) such that (39) holds. Choose any 
stationary policy lxo) such that the action f(i) minimizes the right side of (40) for all 
i EI. Then policy r<00 l is strongly average cost optimal and g is uniquely determined by 
g = limn ... oo <Pn (i, l""')) for all i EI. 

Proof. Using (39) we have by Lemma 5 and (3) that 

1 
lim -E.,,.{jv(Xnll IXo = i} = 0 for any i EI and policy 7r. 
n-co n 

Now, by observing that we can replace Tk by T(Xk. ak) in (2) a repetition of the 
well-known proof of Theorem 7.6 in [14] gives the desired result. 

Remark. Suppose the Assumptions 1-4 hold and let {g, v (i) Ii E J} be a solution to 
(40) such that (39) holds. Then the function v(i), i EI is uniquely determined up to an 
additive constant under the regularity condition to be stated below. Therefore note 
first that, by (17), for any f E F the stochastic matrix P(f) has a unique stationary 
probability distribution { 7r; (/), j EI}. Suppose now that for any strongly average cost 
optimal stationary policy the total expected cost incurred until the first return to the 
finite set K is finite for any starting state when the one-step costs in state i are given 
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by u*(i) + y*(i). Then, using a standard ergodic theorem, we have that for any 
strongly average cost optimal stationary policy / 00l the Cesaro limit of the sequence 
{r(f)(u* + y*)(i), n ~ 1} equals the finite number Li 7rj(/)(u*(j) + y*(j)) for any 
i EI. Next a minor modification on the proof of Lemma 3 in [11] shows that the 
function v(i), i EI is uniquely determined up to an additive constant. 

We hnally note that it was pointed out by Professor M. Schal that in Assumption 1 
the continuity of the one-step costs c(s, a) can be weakened to lower semi­
continuity. 

References 

[1] J. Bather, Optimal decision procedures for finite Markov chains, Parts I, II and III, Advances in 
Appl. Probability 5 (1973) 328-339, 521-540, 541-553. 

[2] C. Derman and R. Strauch, A note on memoryless rules for controlling sequential control processes, 
Ann. Math. Statist. 37 (1966) 276-278. 

[3] C. Derman, Denumerable state Markovian decision processes-average cost criterion, Ann. Math. 
Statist. 37 (1966) 1545-1554. 

[4] A. Federgruen and H.C. Tijms, The optimality equation in average cost denumerable state 
semi-Markov decision problems, recurrency conditions and algorithms, J. Appl. Probability 15 
(1978) 356-373. 

[5] A. Federgruen, A. Hordijk and H.C. Tijms, Recurrence conditions in denumerable state Markov 
decision processes, in: M.L. Puterman, Ed., Dynamic Programming and its Applications (Academic 
Press, New York, 1978). 

[6] A. Federgruen, A. Hordijk and H.C. Tijms, A note on simultaneous recurrence conditions on a set of 
denumerable stochastic matrices, J. Appl. Probability 15 (1978) 842-847. 

[7] L. Fisher and S.M. Ross, An example in denumerable decision processes, Ann. Math. Statist. 39 
(1968) 674-675. 

[8] K. van Hee, A. Hordijk and J. van der Wal, Successive approximations for convergent dynamic 
programming, in: H.C. Tijms and J. Wessels, Eds., Markov Decision Theory, Mathematical Centre 
Tract No. 93 (Mathematisch Centrum, Amsterdam 1977). 

[9] A. Hordijk, Dynamic Programming and Markov Potential Theory, Mathematical Centre Tract No. 
51 (Mathematisch Centrum, Amsterdam, 1974). 

[10] A. Hordijk, Regenerative Markov decision models, in: R.J.B. Wets, Ed., Mathematical Program­
ming Study 6 (North-Holland, Amsterdam, 1976) 49-72. 

[11] A. Hordijk, P.J. Schweitzer and H.C. Tijms, The asymptotic behaviour of the minial total expected 
cost for the denumerable state Markov decision model, J. Appl. Probability 12 (1975) 298-305. 

[12] S.A. Lipman, On dynamic programming with unbounded rewards, Management Sci.·21 (1975) 
717-731. 

(13] D.R. Robinson, Markov decision chains with unbounded costs and applications to the control of 
queues, Advances in Appl. Probability 8 (1976) 159-176. 

(14] S.M. Ross, Applied Probability Models with Optimization Applications (Holden-Day, San Fran­
cisco, 1970). 

(15] H.L. Royden, Real Analysis (MacMillan, New York, 2nd ed., 1968). 
[16] M. Schii.l, Ein verallgemeinertes stationares entscheidungs model! der dynamische optimierung, in: 

Methods of Operations Research 10 (Anton Hain, Meisenheim, 1970) 145-162. 
[17) M. Schii.l, On negative dynamic programming with irreducible Markov chains and the average cost 

criterion, in: Dynamische Optimierung 98 (Bonner Mathematische Schriften, Bonn, 1977) 93-97. 
[18) H.M. Taylor, Markovian sequential replacement processes, Ann. Math. Statist. 36 (1965) 1677-

1694. 
(19] J. Wijngaard, Stationary Markovian decision problems and perturbation theory of quasi-compact 

linear operators, Math. Op. Res. 2 (1977) 91-102. 


