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ABSTRACT 

This paper considers an undiscounted semi-Markov decision model with 

a denumerable state space and compact metric action sets where the one-step 

expected costs and transition times are allowed to be unbounded. Under a 

condition which, roughly speaking, requires the existence of a finite set 

such that the supremum over all stationary policies of the expected time 

and the total expected absolute cost incurred until the first return to this 

set are finite for any starting state, we shall verify the existence of a 

finite solution to the average costs optimality equation and the existence 

of an average cost optimal stationary policy. These results considerably 

generalize results so far obtained in the literature. 
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1. Introduction 

We are concerned with a dynamic system which at decision epochs 

beginning with epoch O is observed to be in one of the states of a 

denumerable state space I and subsequently is controlled by choosing 

an action. For any state iEI, the set A(i) denotes the set of pure 

actions available in state L If at any decision epoch the system is 

in state i and action aEA(i) is taken, then, regardless of the history 

of the system, the following happens: 

(i) an immediate cost c(i,a) is incurred 

(ii) the time until the next decision epoch and the state at the next 

decision epoch are random with joint probability distribution 

function Q(.,. li,a). 

For any iEI and aEI, let 

00 

p .. (a) 
l.J 

= Q( 00 ,jji,a) for jEI and T(i,a) = r J tQ(dt,jli,a). 
jEI 0 

i.e. p .. (a) denotes the probability that the next state will be j and 
l.J 

T(i,a) denotes the unconditional . mean time until the next decision 

epoch when action a is taken in state i. Observe that r. 1p .. (a)= 1 
]€ l.J 

for all i,a. We make the following assumption. 

ASSUMPTION 1. 

(a) For any iEI, the set A(i) is a compact metric set. 

(b) For any iEI, both c(i,a), p .. (a) for any jEI and T(i,a) are continuous 
l.J 

on A( i). 

(c) There is a number E:>0 such that T(i,a) ~ E for all iEI and aEA(i). 

We now introduce some familiar notions. For n = 0,1, .. , denote by 

X and a the state and the action at the nth decision epoch (the oth 
n n 

decision epoch is at epoch 0). A policy TI for controlling the system is 

any measurabJe rule which for each n specifies which action to choose 

h th d · · h . h d h at ten ecision epoc given t e current state X an t e sequence 
n 

(X0 ,a0 , ... ,Xn-l'an_1 ) of past states and actions where the actions chosen 

may be randomised. A policy TI is called memoryless when the actions chosen 

are independent of the history of the system except for the present state. 



Define Ras the class of all stochastic matrices P = (p .. ), i,jEI such 
l.J 

that for any iEI the elements of the i th row of P can be represented by 

( 1.1) p . . = f p .. ( a) 1T • ( da) for all j € I 
1.J A(i) 1.J 1. 

for some probability distribution 1r.{.} on A(i). Then any memoryless 
l. 

policy 1T can be represented by some sequence (P1 ,P2 , .. ) in R such that 

the i th row of P gives the probability distribution of the state at 
n 

the nth decision epoch when the current state at the (n-l)st decision 

epoch is i and policy 1T is used. Define F = X. I A(i). Observe that, 
1.€ 

under assumption l(a), Fis a compact metric set in the product topology. 

For any fEF, let P(f) be the stochastic matrixwhose (i,j)th element 

is p .. (f(i)), i,jEI and for n = 1,2, ..• denote by the stochastic matrix 
l.J 

P°(f) =(p~.(f)) then-fold matrix product of P(f) with itself. A 
l.J 

memoryless policy 1T = (P1 ,P2 , ... ) is cal~ed stationary when P~ = P for 

for all n ~ 1 and P = P(f) for some fEF. This policy which always 

prescribes to take the single action f(i) € A(i) whenever the system 

is in state i will be denoted by f( 00
). Observe that under the stationary 

policy f(oo) the process {X, ~0}is a Markov chain with one-step 
n 

transition probability matrix P(f). 

For n = 0,1, .•. , denote by 1T the time between the nth and (n+l)st 
n 

decision epoch. A policy 1r* is said to be (strongly) average cost optimal 

when lim sup $ (i,1r*) is less than or equal' to lim sup $ (i ,1r) n-+<» n n-+<» n 
(lim inf $ (i,1r)) for any iEI and policy 1T where$ (i,1r) is defined by n-+<» n n 

( 1. 2) 
E1r{E~=0c(~k'~)lx0 = i} 

ElT{E~=O Tk,XO = i} 
,n=0,1, ... 

with E is the expectation under policy 1r. We here assume that this 
1T 

quantity is well-defined for any iEI and policy 1T as is the case under 

the additional assumption 2(a) to be stated below. 

It is well-known that an average cost optimal policy may not exist 

and even an example has been given in [7] in which an average cost policy 

exists but any average cost optimal policy is nonstationary. It is 

remarkable in this example, that besides uniformly bounded c(i,a) and 

T(i,a), any stochastic matrix PER is irreducible and positive recurrent. 
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In general we can only state that for fixed initial state we may restrict 

ourselves to the class of memoryless policies. More precisely, by a 

slight generalization of the proof of Theorem 2 in [2], we have the 

known result that for any fixed i 0EI and policy TIO a memoryless policy 

TIM can be found such that for any kEI, Borel set BcA(k) and n~O, 

( 1. 3) Pr {X =k, a EBIX0=i0} 
TIM n n 

We also have as general result that if a finite constant g and a 

finite function v(i), iEI exist satisfying the average cost optimality 

equation 

(1.4) v(i) = min {c(i,a)-gT(i,a) + L p~ .(a)v(j)} 
aEA(i) jEI l] 

for all iEI, 

then under an additional condition on the function v(.) any stationary 

policy f(~) such that the pure action f(i) minimizes the right side of 

( 1. 4) for all id is strongly average .cost optimal. 

We shall focus our attention on the existence of a finite solution 

to the average cost optimality equation and the existence of a strongly 

average cost optimal stationary policy. So far most of the existing 

literature has dealt with these questions both under the severe assumption 

of uniformly bounded functions c(i,a) and T(i,a) and under very strong 

recurrence conditions on the stochastic matrices P(f), fEF, cf. 

[3]-[5], [9] and [13]. The recurrence condition in [4]-~5] required 

the unichainedness of the stochastic matrices P(f), fEF and the existence 

of a finite set K such that the supremum over the stationary policies 

of the mean recurrence time to this set K is bounded in the starting 

state where in [3] and [13] the special case of K equal to a singleton 

was considered. However, the assumption of mean recurrence times that 

are bounded in the starting state is too strong for many applications 

as in inventory and queueing theory where also the one-step costs 

c(i,a) are usually unbounded. A treatment of the average cost model with 

unbounded c(i,a) has been given in [9], f17] and [19]. This paper also 

allows for unbounded one-step costs and exhibits the existence of a 

finite solution to the average co~t optimality equation and the existence 

of a strongly average cost optimal stationary policy under a condition 

which, roughly speaking, requires theunichainedness of the stochastic 

matrices P(f), fEF and the existence of a finite set K such that the 



supremum over the stationary policies of both the expected time and the 

total expected absolute costs incurred until the first return to this 

set Kare finite for any starting state. These results considerably 

generalize on the one hand results in. C4]-[5] by relaxing both the 

assumption of uniformly bounded c(i,a) and T(i,a) and the assumption 

that the above mean recurrence times are bounded in the starting state. 

On the other hand, they generalize results in f9] where a Liapunov 

condition was considered which is in fact the above condition with the 

set K equal to a singleton. Under different but related assumptions 

the papers [17] and [19] only deal with the existence of an average 

cost optimal stationary policy for the discrete-time Markov decision 

model. 

In section 2 we will give the main body of our analysis by first 

establishing relationships between the original and the decision 

processes embedded on the finite set K •. Next in section 3 we will 

verify both the average cost optimality equation and the existence of 

a strongly average cost optimal stationary policy. 

2. Analysis of embedded decision processes. 

We first need some notation. For any set Ac I, define the random 

variable 

N(A) = inf {n ~ 11x EA}, 
n 

i.e. N(A) denotes the number of transitions until the first return to 

the set A where N(A) = m if X i. A for all n ~ 1. Also, for any Ac I n 
and f E F, define the taboo probability 

(2.1) n 
Ap .. (f) = 

J.J 

Observe that 

(2.2) 

Pr {X =J· Xk i. A for 1 ~ k (m) n ' 
f 

i,j EI and n = 1,2, .... 

<X) 

1 + 
n 

E E Ap .. (f). 
n=l ji.A J.J 

We now introduce our main assumption. 



-5-

ASSUMPTION 2. 

(a) There is a finite set K such that for any iEI the quantities u*(i) and 

y*(i) are finite where 

(2.3) 
N(K)-1 

sup E (oo){ L 'klxo=i} = u*(i) for aii iEI 
fEF f k=0 

and 

(2.4) 
N(K)-1 

sup E (oo){ I !c(¾,ak)IIX0=i} = y*(i) for aU iEI. 
fEF f k=0 

(b) For any fEF, the stochastic matrix P(f) has no two disjoint closed 

sets. 

In words, assumption 2(a) requires the existence of a finite set K 

such that the supremum over all stationary policies of both the expected 

time and the total expected absolute cost incurred until the first return 

to the set Kare finite for any starting state. 

We shall now first verify as key result that under the assumptions 

1 2 f f F t t K . t h th t d pol1°cy f(oo) - or any E as a e sf E exis s sue a un er 

the expected time and the total expected absolute cost incurred until 

the first return to the state sf are bounded by u*(i) + c and y*(i) + c 

respectively for any starting state i for some constant c independent 

of fEF. We shall need the following lemma. 

LEMMA 2.1. Let A be any subset of I. Then, for any iEI and fEF 

(2.5) 

00 00 

= ,(i,f(i)) + I I ,(j,f(j))Ap~.(f). 
n=l jtA l.J 

PROOF. Fix iEI and fEF. For k=l,2, ... , define the random variable 

if X t A for 1 ~ m ~ k 
m 

otherwise. 



Then, using the nonnegativity of Tk and ok, 

N(A)-1 
E{ E -rklx0=i} = 

k=0 

Cl0 

Cl0 

Cl0 

-r(i,f(i)) + L E{-rkok!Xo=i}= 
k=l 

n = -r(i,f(i)) + E E -r(j ,f(j)) Ap .. (f). 
k=l jiA 1 J 

By the same arguments, we have that the first expression in (2.5) 

equals the last one in (2.5} which verifies the relation (2.5). 

By this lemma, we may replace Tk by -r(¾,ak) in (2.3). This result 

will be essentially used in the analysis hereafter. It now follows from 

Lemma 2.1 and (2.2)-(2.3) that under.the assumptions l(c) and 2(a), 

(2.6) for any·fEF and iEI 

REMARK. In [4]-[5] the uniformly boundedness of the functions c(i,a) 

and -r(i,a), the unichainedness of the stochastic matrices P(f), fEF 

and the so-called simultaneous Doeblin condition were assumed. This 

recurrence condition assumes that a finite set K, an integer v ~ 1 

and a number p > 0 exist such that E. Kp~.(f) ~ p for all fEF and iEI. 
]€ 1] 

Since this condition is equivalent to the condition requiring that, for 

some finite set Kand constant B, E (c,o}{N(K)lx0=i} ~ B for all fEF and 
f 

iEI (cf. [4] and [9]), we have that assumption 2 is satisfied with bounded 

functions u* and y* under the. conditions considered in [4]-[5]. We note 

that in [6] several recurrence conditions were studied which are equivalent 

to the simultaneous Doeblin condition. 

Under assumption 2, define for any fEF 
Cl0 

(2.7) q •. (f) = E Kp~.(f), id, jEK, 
1J n=l 1J 

i.e. q .. (f) is the probability that at the first return to the set K the 
1] 

transition occurs into state j starting from state i and using policy 

f(c,o). Observe that, by (2.6), 



(2.8) E q .. (f) = 1 for all iEI. 
• K 1J 
]€ 
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For any fEF, define for iEI and jEK the (possibly infinite) quantity 

(2.9) v • . ( f) = expected number of returns to the set K until the first 
1] 

transition into state j occurs starting from state i 

d . 1 • f( 00 ) an using P9 icy • 

We now prove the following Theorem. 

THEOREM 2.2. Suppose that the asswr£Ptions 1-2 hoZd. Then 

(a} For any fEF, the finite stochastic matrix (q .. (f)), i,jEK has no 
1] 

two disjoint cZosed sets. 

(b} For any iEI and jEK, the probabiZity q .. (f) is continuous on F· 
1] . 

(c) There is a finite number B such that for any fEF a state sf EK 

exists for which v. (f) :;;; B for aU id. 
1Sf 

PROOF. (a) Fix fEF. Let K1 s_ Kand K2 S. K be any two non-empty sets 

that are closed under the stochastic matrix Q(f) = (q .. (f)), i,jEK. 
1] 

To prove that K1nK2 is not empty, define for r=l,2 the set 

I = {jEijp~.(f) > 0 for some iEK and n~l}. 
r 1J r 

It is immediate that both sets r1 and r 2 are closed under P(f) and 

hence r1 n r 2 ~ ¢. Choose nowt E r 1 n r 2 . Since t E r 1 , it follows that 

(2.10) 

We shall now verify that 

(2.11) 

To prove this, assume the contrary. Then, by Pr (oo){N(K)<00 jX0=t} = 1, 
f 

k 
w~ have ptv(f) > 0 for some VEK\K2 and k~l. Since tEI 2 , it follows that 

pit(f) > 0 for some iEK2 and h~l and so p1:k(f)>O. This implies that vEK\K2 
can be reached from state iEK2 under Q(f) contradicting that K2 is closed 

under Q(f). 
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Hence (2.11) holds. By (2.10) and (2.11) p::n(f) > 0. This implies that 

uEK2 can be reached from state SEK1 under Q(f). Since K1 is closed 

under Q(f), state u also belongs to K1 so that K1 n K2 ;t ¢ as was to be 

verified. 

(b) By assumption 1, we have that Fis a compact metric set on which 

p .. (f) is continuous for any i,jEI. Using this fact and the relation 
l.J 

for n = 2,3, ... 

by induction n is continuous on F for it follows that Kp .. (f) any n;;::: 1 
l.J 

and i,jEI. Hence q .. (f) is continuous on F 
l.J 

if the sum (2.7) converges 

uniformly on F. To prove this, fix sEI and observe that, by (2.6), 

(2.12) 
00 * I u (s) 
E Pr (m){N(K)>n X0=s} ~ --- for all fEF. 

n=0 f E 

Choose now 0 < o < 1. Then there is an integer M such that 

(2.13) for all fEF. 

To prove this, assume the contrary. Using the fact that Pr (oo){N(K)>nlx0=s} 

is non-increasing inn, we then get a contradiction with (~.12). Now, 

by (2.13) we have for any jEK 

00 

E Kpn.(f} ~ Pr (oo){N(K)>MIXo=s} ~ o 
n=M+l SJ f ~ 

for all fEF 

which proves the desired result since o>0 was chosen arbitrarily. 

(c) By the finiteness of Kand the assertions (a)-(b) of the Theorem, 

this assertion is an immediate consequence of Theorem 2.6 in [SJ or 

Theorem 4 in [6]. 

The following theorem will play a crucial role in the analysis in 

the next section. 

THEOREM 2.3. Suppose that the assumptions 1-2 hold. Then there is a 

finite nwriber c such that for any fEF a state sfEK exists for which 
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(2.14) 

and 

(2.15) 

N( {sf} )-1 

E (oo) { 1: jc(Xk'¾) I lxo=i} ::; y*(i)+c for au iEI. 
f k=0 

PROOF. By Theorem 2.2. we can choose a finite number Band for any 

fEF a state sfEK such that 

( 2 .16) v. (f)::; B for all iEI and fEF. 
lSf 

We shall now verify (2.14). The proof of (2.15) is identical. Fix now 

fEF. We introduce the following notation. For any iEI and jEK, define 

q~.(f) = q .. (f) and, for n = 2,3, ... , let 
l] l] 

~n 
q .. (f) = 
l] 

Observe that q~.(f) is the probability that during the firstn-1 returns 
l] th 

to the set K no transition occurs into state sf and that at then 

return to the set Ka transition occurs into state j starting from 

state i and using policy f( 00
). We have 

(2.17) = 1 + 
00 

q~.(f) for all iEI. 
l] 

Define ,J0=o and, for n:?:1, v =inf{m>v 1 \x EK}. Also, define cS 0=1 and, n n- m 
for any k:?:1, cSk=l if Xm~sf for 1::;m:s;k and cSk=0 otherwise. Denote by 

T(i,f) 1~he first expression in (2.5) with A=K. Then using the first 

equality in (2.5) and (2.3), we find 
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N({sf})-1 

E (ex,){ r •<\:,¾) lx0=i} = 
f k=O 

CX) 

= T(i,f) + L L q~:l(f) T(j,f) ~ 
n=2 j;ts l.J 

f 
CX) 

~ u*(i) max u*(j) L L 
-n-1 (f) + q .. 

j e:K n=2 j;ts l.J 
f 

. for all ie:I .. 

Invoking (2.16)-(2.17), we now get· the desired result. 

We now give some known results in positive dynamic programming 

(e.g. cf. [1], [9] and [16]). Since a directly accessible reference 

seems not be available, we include for completeness a simple proof, 

LEMMA 2.4. Consider the positive dynmnic program (S,D(s),q(tls,a), 

r(s,a)) where the state space Sis denumerable, the action set D(s) 

is a compact metric set for any se:S and the irronediate return r(s,a) 

is non-negative for aU se:S and ae:D( s). Also. assume that for any se:S 

both r(s,a) and the one-step transition probability q(tls,a) for any 

te:S are continuous on D(s). For any policy n, define 

V(s,n) = E {i:CX)_ 0 r(X ,a )!x0=s}, se:S where X and a denote the state 
n n- n nth n n 

and the action at the n decision epoch. Let V(s) = sup V(s,n), 
n 

se:S. Then 

(2.18) 

and 

(2.19) 

sup V(s,f(cx,)) = V(s) for all se:S 
fe:F 

V(s) = sup {r(s,a) + 
ae:D(s) 

E V(t)q(tls,a)} for all se:S. 
te: s 
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M 
PROOF. We need some notation. For any integer M~l, let r (s,a) = 

min (r(s,a),M) for all s,a. For any O<a<l, SES and policy TI, define 

00 

V (s,TI) 
a 

n = E {Ea r(X ,a )IX0=s} and 
TI n=O n n . 

M V (s,TI) = 
a 

00 

n M I E { E a r (X ,a) x0=s}. TI · n n 
n=O 

Using the non-negativity of r(s,a) we have by the monotone convergence 

theorem 

(2.20) 
M lim V (s,TI) = V (s,TI) for any O<a<l, SES and policy TI, 

M-+«> a a 

and, by .a Tauberian theorem, 

(2.21) lim V (s,TI) = V(s,TI) for any sES and policy TI. 
a a+1 

M M Letting V (s) = sup V (s,TI), sEI, it is well-known from discounted a TI a 
dynamic programming (e.g. cf. [9] and [11]) that for any O<a<l and 

M~l 

(2.22) 

and 

(2.23) 

max {r(s,a) + aE VM(t)q(tls,a)} for all sES 
aED(s) tES a 

M sup V (s,TI) for all SES. 
a TI 

Using the fact that lim sup g (x) = sup lim g (x) for any non-n-+«> x n x n+co n 
decreasing sequence of functions {g }, we obtain from (2.20) and (2.23) 

(co} n 
that supf FV (s,f ) = sup V (s,TI) for all sES and O<a<l. Next, by 

E a TI a 
letting :a+l in this relation and using (2.21) we get (2.18). The 

optimality equation (2.19) follows by the same reasoning· from (2.20)

(2.22) by first letting M+co and next letting a+l. 

We can now prove the following Theorem. 
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THEOREM 2.5. Suppose that the assumptions 1 and 2(a} hold. Then 

(2.24). u*cu = sup {-r(i,a). + E p •. (a}u*Gj)} for aZZ iEI 
acA(i} jiK J.J 

(2.25). *c) {lc(i,a}I + E p .. (a}y*(j)} for aU icI. y J. . = sup 
acA(i} j iK J.J 

PROOF. To get (2.24)., use the first equality in (2.5) and apply Lemma 

2.3. with, for some artificial state()() and action a00 , 

S = I U {00 }, D(s). = A(s). for sEI, D( 00 } ={a}, 
00 

r(s,a). = ,(s,a). for sEI and aED(s), r( 00 ,a) = 0 
00 

{ 
Ps/a} for SEI, aED(s), tEI\K 

q(tls,a) = 0 for sEI~ aED(s), tEK, 

E p t(a} for SEI, aED(s), t=oo 
tEK s 

for t = 00 

otherwise. 

In the same way we get (2.25) by taking r(s,a) = lc(s,a)I for sEI and aED(s). 

By this theorem, we have that assumption 2(a) is equivalent to 

the condition requiring the existence of a finite set Kand a finite 

non-negative function y(i), iEI such that 

(2.26) lc(i,a)I + ,(i,a) + · E p .. (a)y(j) ~ y(i) for all id and aEA(i). 
jiK J.J 

The condition (2.26) with K equal to a singleton was first studied in 

[9] where this condition was called a Liapunov condition, cf. also [8] and 

[10] for further investigations on Liapunov conditions. 

As a consequence of Theorem 2.5., we have that 

(2.27) 

For any stochastic matric P 

matrix P = (p .. ), i,jEI by 
J.J 

= (p . . ), i,jEI, define the substochastic 
J.J 
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1.J 
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for id, j,tK 

for ie:I, j e:K 

Then, by (2.27}, we have for any Pe: R that 

(2.29) - * * - * * Pu (i) ~ u (il and Py (i} ~ y (i) for all ie:I 

where Rx(i) = E. 1r .. x(j) for any matrix R = (r .. ), i,je:I and function 
]€ 1.J 1.J 

x( .} on I. We conclude this section with the following Lemma. 

LEMMA 2.6. Suppose that the assumptions 1 and 2(a) hold. Then., for 

any sequence (P1 ,P2 , ... ) of stochastic matrices in R., 

(2.30) ~ u*(i) + max u*(j) + n~l E pk 1··-P u*(h) ~ 
je:K k=l he:K + n 

~ u*(i) + n max u*(j.) for all n~l and id. 
j e:K 

* * The same inequalities apply when u is replaced by y. 

PROOF. By a last exit decomposition, we have for any n~l, ie:I and j,tK, 

By this relation and a repeated application of (2.29), we get (2.30). 

We can now verify that under the assumptions 1 and 2(a) definition 

(1.2} makes sense. By Theorem 2.5., we have lc(i,a)I ~ y*(i) for all 

ie:I and ae:A(i) and so, using assumption l(c) and Lemma 2.6., it follows 

that for all n~l and ie:I the quantity~ (i,TI) is well-defined for any 
n 

memoryless policy TI and consequently, by (1.3), for any policy TI. 
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3. The average cost optimality equation. 

To derive the average cost optimality equation, we first analyse a 

discounted cost function, cf. [13] and [18]. For any B>O and policy ir, let 

n-1 
00 -BEk=OT(¾,ak} 

v8(i,TI} = ETI{ Ee . c(Xn_,an)!X0=i} for iEI. 
. n=O 

(3.11 

We shall first verify that this quantity is well-defined under the 

assumptions 1 and·2(a). By (1.3} it suffices to verify this for the 

memoryless policies TI. Choose any memoryless policy TI and let TI be 

represented by the sequence (P1 ,P2 , ... } of stochastic matrices in R. 
I * . By assumption l(c) and (2.25}, we have T(i,a) ~£and !c(i,a) s y (1) 

for all id and aEA( i}. Using Theorem 2. 6. , we now find 

( 3. 2) 

oo -BEn-1 
E { E le k=O 

TI n=O 

* -Be -2 * s 2y (i} + (1-e ) max y (j) 
jEK 

for all id. 

This proves that v8(i,TI} is well-defined. For any B>O, define 

v8(i} = inf v8(i,TI) for iEI. 
TI 

Then, since for any o>O we can find a policy TI 0 such that 

v8(i,TI0}-o s v8(i} s v8(i,TI0) for aZZ iEI, we have by (3.2) that for any B>O 

(3.3} lvs(i)I s 2y*(i) + (1-e-B£)-2 max y*(j) for all iEI. 
jEK 

We now make the following assumption. 

ASSUMPTION 3. For any iEI, both E. 1p .. (a)u*(j) and E. 1p .. (a)y*(j) are 
]€ 1] ]€ 1] 

continuous on A(i). 
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By assumption 1 and a well-known convergence-result, 

lim E. AP .. (a } = E. AP •. (a} for any set AcI if lim -+oo a =a. Hence, 
n-+<x> JE l.J n JE l.J - n n 

by (3.3) and the convergence theorem on p. 232 in [15], it follows that 

under the additional assumption 3 the function E. rP· .(a)v8(j) is 
JE l.J 

continuous on A(i) for any iEI. Using this result, a minor modification 

of the proof of Theorem 6.1 in [14] shows that for any f3>0, 

(3.4) v8(i) = min {c(i,a) + e-f3-r(i,a) E p .. (a)v8(j)} for all iEI. 
· aEA(i) jEI 1.J 

L f ( 00 ) b . 1 . . h h h . f ( . ) . . . et f3 e any stationary po icy sue tat t e action f3 1. minimizes 

the right side of (3.4) for all iEI. Then 

(3.5) 

-f3-r{i,ff3(i)) 
To prove this, iterate v8(i) = c(i,f8(i)) + e EjEipij(f8)v8(j), iEI. 

This gives 

(3.6) 

Using assumption l(c), the inequality (3.3) and Lemma. 2.6 , we find 

that for some constant c 8 the second term in the right side of (3.6) is 

bounded by 

2e-f3m£{Pm(f)y*(i") } -f3m£{ *(·) *(") } + c8 ~ 2e y i +m max y J +c 8 
jEK 

for all m~l and iEI. 

Hence, by letting m-+<x> in (3.6), we find (3.5). We now prove 

LEMMA 3.1. Suppose that the assumptions 1-3 hold. Then there are finite 

* numbers f3 , y >Osuch that for any fEF a state sfEK exists for which 

(3.7) 

and, for any iEI , 



(3.8) 

PROOF. By Theorem 2.3., we can choose a constant c and for any fe:F a state 

sfe:K such that (2.14)-(2.15) hold. Fix now 13>0 and fe:F. We have 

(3.9) 

for all ie:I. 

Taking i=sf in (3.9) and using (2.15) and assumption l(c), we derive 

from (3.9) that 

(3.10) 

From (3.9), (2.14)-(2.15) and the inequality 1-e-x ~ x for x~0, we easily 

derive 

(3.11) 

-SE -1 
Since S(l-e ) +£ as S+0 and the set K is finite, we get the Lemma 

from (3.10)-(3.11). 

We are now in a position to verify the average cost optimality equation. 

THEOREM 3.2. Suppose that the assumptions 1-3 hold. Then there is a constant 

g and a function v(i), ie:I with sup. 1 jv(i)l/{u*(i)+y*(i)} < 00 such that 
lE 

( 3 .12) v(i) = min {c(i,a)-gT(i,a) + L p .. (a)v(j)} for aZZ ie:I. 
ae:A(i) je:I lJ 

PROOF. Following [13] and [18], fix some state se:I. By (3:5) and Lemma 3.1, 

* we can choose finite numbers f3, c>0 such that 

(3.13) 

and for any ie:I, 

(3.14) * * * ~ c(u (i)+y (i)) for all 0 < f3 < f3 • 
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For any S>O, let f 6EF be such that f 6(i) minimizes the right side of 

(3.4) for all iEI. Now, using (3.13)-(3.14), assumption l(a) and the 

diagonalization method, we can find a sequence {Sk} with Sk+O ask~, 

a constant g, a function v(i), iEI and an action a(i)EA(i) for any iEI 

such that 

(3.15) = v(i) and lim fS (i) = a(i) 
k~ k 

for all iEI. 

Observe that, by (3.14)-(3.15), lv(i)j~c(u*(i)+y*(i)) for all iEI. Now, 

subtracting v6 (s) from both sides of (3.4) with S=Sk, letting k~, using 
k 

the assumptions 1 and 3, relation (3.14) and the convergence theorem on 

p. 232 in [15], we obtain (3.12) in a standard way. 

The assumptions 1-3 are satisfied in the example in [7] for which 

any average·cost optimal policy is nonstationary. Hence an additional 
. . . d h . 1· f(~) h assumption is require to guarantee tat a stationary po icy sue 

that the action f(i) minimizes the right side of (3.12) for all iEI is 

average cost optimal, cf. also [12]. We now state the following condition. 

ASSUMPTION 4. For any fEF, lim Pn(f)u*(i)=lim Pn(f)y*(i) = 0 for all n~ n~ 
iEI where Pn(f) denotes then-fold matrix product of the substochastic 

matrix P(f) defined by (2.28) with itself. 

We can now prove the following lemma. 

LEMMA 3.3. Suppose that the assumptions l, 2(a), 3 and 4 hold. Then, for 

any sequence (P1 ,P2 , ... ) of stochastic matrices in R, 

( 3 .16) lim l pl . n n~ 

PROOF. Following the proof of Lemma 5.7. in [9], define x0(i)=u*(i)+y*(i), 

iEI, and for n=l,2, ... , define x (i) recursively by 
n 

(3.17) X ( i) = 
n 

sup I: p .. (a)x 1(j), 
aEA(i) j¢K iJ n-

iEI. 
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Using the assumptions 1 and 3, the convergence theorem on p. 232 in [15] 

and (2.27), we find by induction that we may replace sup by max in (3.17) 

and that xn(i)::; xn_1(i) for all n2l and iEI. Hence 

(3.18) lim x ( i) = x( i) (say) exists for all iEI n~ n 

and for any iEI and n2l we can choose an action a (i) which maximizes 
n 

the right side of (3.17). By assumption l(a), we can find a sequence {nk} 

of integers with nk~ ask~ such that a (i)➔a(i) ask~ for some 
nk 

a(i)EA(i) for any iEI. Let f 0 EF be such that f 0 (i) = a(i) for all i. 

Then, using assumption 3 and the convergence theorem on p. 231 in [15], 

we get from (3.17)-(3.18) that x(i)=P(f0 )x(i) for all i. Hence, using 
-n -n * * x::;x0 , we have o::;x = P (f0 )x::;P (f0 )(u +y ) for all n2l so that, by 

assumption 4, 

(3.19) x(i) = 0 for all iEI. 

Now, let ( P 1 , P 2 , ... ) be any sequence of stochastic matrices in R. By 

( 3 .17), Px 1::;x for all PER and n2l and so Pk 1 ... P x0 ::; x k for any 
n- n + n n-

n2l and k<n. Using this inequality and Lemma 2.6., we find 

Pl .•. P XO ( i ) ::; XO ( i ) +max 
n . K JE 

n-1 
x0(j) + E Ex k(h) for all n2l and iEI. 

k=l hEK n-

Together this inequality, the finiteness of Kand the relations (3.18)

(3.19) imply the Lemma. 

We now state our final result: 

THEOREM 3.4. Suppose that the assumptions 1-4 hold. Let / 00
) be any 

stationary policy such that the action f(i) minimizes the right side of 

(3.12) for aU iEI. Then 

lim inf ¢ ( i, 1r) for any iEl .and policy 1r. 
n 

PROOF. For any memoryless policy 7r represented by the sequence (P 1 ,P2 , •• ) 

in R, we have that E {v(X )Jx0=i} = P1 ... P v(i). Since, for some constant 
7r n n 

c, lv(i)J ::; c(u*(i)+y*(i)) for all iEI, it now follows from Lemma 3.3. 

that for any memoryless policy 1r 
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(3.20) lim ! E {!v(X )! IX0=i} = 0 for all iEI 
n 'IT n n-+oo 

and so, by (1.3) we have that (3.20) holds for any policy 'IT. Now, by 

observing that we may replace Tk by T(~,ak) in (1.2) a repetition of 

the well-known proof of Theorem 7.6. in [14] gives the desired result. 
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