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ABSTRACT

This paper considers an undiscounted semi-Markov decision model with
a denumerable state space and compact metric action sets where the one-step
expected costs and transition times are allowed to be unbounded. Under a
condition which, roughly speaking, requires the existence of a finite set
such that the supremum over all stationary policies of the expected time
and the total expected absolute cost incurred until the first return to this
set are finite for any starting state, we shall verify the existence of a
finite solution to the average costs optimality equation and the existence
of an average cost optimal stationary policy. These results considerably

generalize results so far obtained in the literature.
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1. Introduction

We are concerned with a dynamic system which at decision epochs
beginning with epoch 0 is observed to be in one of the states of a
denumerable state space I and subsequently is controlled by choosing
an action. For any state ieI, the set A(i) denotes the set of pure
actions available in state i. If at any decision epoch the system is
in state i and action aeA(i) is taken, then, regardless of the history
of the system, the following happens:

(i) an immediate cost c(i,a) is incurred
(ii) the time until the next decision epoch and the state at the next
decision epoch are random with joint probability distribution

function Q(.,.li,a).

For any 1eI and ael, let

p..(a) = Q(=,j|i,a) for jeI and T(i;a) = [ tQ(dt,j|i,a).
ij .
Jel O
i.e. pij(a) denotes the probability that the next state will be j and
t(i,a) denotes the unconditional . mean time until the next decision

epoch when action a is taken in state i. Observe that I, j(a) =1

jEIPi
for all i,a. We make the following assumption.

ASSUMPTION 1.

(a) For any iel, the set A(i) ©s a compact metric set.

(b) For any iel, both c(i,a), pij(a) for any jel and t(i,a) are continuous
on A(i).

(c) There is a number e>0 such that t(i,a) 2 € for all iel and ae A(i).

We now introduce some familiar notions. For n = 0,1,.., denote by
Xn and a the state and the action at the nth decision epoch (the Oth
decision epoch is at epoch 0). A policy m for controlling the system is
any measurable rule which for each n specifies which action to choose
at the nth decision epoch given the current state Xn and the sequence
(Xg>apse-
may be randomised. A policy 7 is called memoryless when the actions chosen

"Xn—l’an—l) of past states and actions where the actions chosen

are independent of the history of the system except for the present state.
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Define R as the class of all stochastic matrices P = (Pij)’ i,jeI such

that for any ieI the elements of the ith row of P can be represented by

(1.1) Pij = A{i) pij(a).ni(da) for a;l jel ‘

for some probability distribution ﬂi{.} on A(i). Then any memoryless
policy m can be represented by some sequence (Pl’PQ"') in R such that
the ith row of Pn gives the probability distribution of the state at

the nth decision epoch when the current state at the (n-1)st decision
epoch is i and policy 7w is used. Define F = XiEI A(i). Observe that,
under assumption 1(a), F is a compact metric set in the product topology.
For any feF, let P(f) be the stochastic matrix whose (i,j)th element

is pi.(f(i)), i,jel and for n = 1,2,... denote by the stochastic matrix
Pp(f) :(p?j(f)) the n-fold matrix product of P(f) with itself. A
memoryless policy m = (P

er alln=>1and?P

1’P2"") is called stationary when Pﬁ = P for

P(f) for some feF. This policy which always

prescribes to take the single action f(i) e A(i) whenever the system

is in state i will be denoted by f(w)

(=)

. Observe that under the stationary
policy f the process {Xn, 2 0}is a Markov chain with one-step
transition probability matrix P(f).

Forn = 0,1,..., denote by ™ the time between the n-th and (n+l)st
decision epoch. A policy n" is said to be (strongly) average cost optimal
when lim Supn+w¢n(i’“*) is less than or equal to lim supn+w¢n(i,n)

(1im infn+m¢n(i,ﬂ)) for any iel and policy m where ¢n(i,ﬂ) is defined by

n

E {5 e(X,a )X, = 1)

:1}

(1.2) ¢ (i,m) = n=0,1,.

il Zk=

o :
E Do 1l
with B1T is the expectation under policy m. We here assume that this
quantity is well-defined for any iel and policy w as is the case under
the additional assumption 2(a) to be stated below.

It is well-known that an average cost optimal policy may not exist
and even an example has been given in [7] in which an average cost policy
exists but any average cost optimal policy is nonstationary. It is
remarkable in this example, that besides uniformly bounded c(i,a) and

T(i,a), any stochastic matrix PeR is irreducible and positive recurrent.
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In general we can only state that for fixed initial state we may restrict
ourselves to the class of memoryless policies. More precisely, by a
slight generalization of the proof of Theorem 2 in [2], we have the

known result that for any fixed ioeI and policy T, @ memoryless policy
my can be found such that for any keI, Borel set BcA(k) and n20,

(1.3) PPWM{ank’ aneB[XO=1O} = PrnO{ank’ aneB|X0=1O}.
We also have as general result that if a finite constant g and a
finite function v(i), iel exist satisfying the average cost optimality

equation

(1.4) v(i) = min {c(i,a)-gr(i,a) + I p:.(a)v(3)} for all ieI,
aeA(i) jel *

then under an additional condition on the function v(.) any stationary

)

policy f(°° such that the pure action f(i) minimizes the right side of
(1.4) for all iel is strongly average cost optimal.

We shall focus our attention on the existence of a finite solution
to the average cost optimality equation and the existence of a strongly
average cost optimal stationapy policy. So far most of the existing
literature has dealt with these questions both under the severe assumption
of uniformly bounded functions c(i,a) and t(i,a) and under very strong
recurrence conditions on the stochastic matrices P(f), feF, cf.

[31-[5], [97 and {13]. The recurrence condition in [4]-T5] required

the unichainedness of the stochastic matrices P(f), feF and the existence
of a finite set K such that the supremum over the stationary policies

of the mean recurrence time fo this set K is bounded in the starting
state where in [3] and [13] the special case of K equal to a singleton
was considered. However, the assumption of mean recurrence times that

are bounded in the starting state is too strong for many applications

as in inventory and queueing theory where also the one-step costs

c(i,a) are usually unbounded. A treatment of the average cost model with
unbounded c(i,a) has been given in [9], [17] and [19]. This paper also
allows for unbounded one-step costs and exhibits the existence of a
finite solution to the average cost optimality equation and the existence
of a strongly average cost optimal stationary policy under a condition
which, roughly speaking, requires theunichainedness of the stochastic

matrices P(f), feF and the existence of a finite set K such that the



supremum over the stationary policies of both the expected time and the
total expected absolute costs incurred until the first return to this
set K are finite for any starting state. These results considerably
generalize on the one hand results in [4J]-[5] by relaxing both the
assumption of uniformly bounded c(i,a) and 1(i,a) and the assumption
that the above mean recurrence times are bounded in the starting state.
On the other hand, they genéralize results in (9] where a Liapunov
condition was considered which is in fact the above condition with the
set K equal to a singleton. Under different but related assumptions
the papers [17] and [19] only deal with the existence of an average
cost optimal stationary policy for the discrete-time Markov decision
model.

In section 2 we will give the main body of our analysis by first
establishing relationships between the original and the decision
processes embedded on the finite set K. Next in section 3 we will
verify both the average cost optimality equation and the existence of

a strongly average cost optimal stationary policy.

Analysis of embedded decision processes.

We first need some notation. For any set A < I, define the random

variable
N(A) = inf {n = 1[X_ e A},

i.e. N(A) denotes the number of transitions until the first return to
the set A where N(A) = o if Xn ¢ A for all n =2 1. Also, for any A c I
and f € F, define the taboo probability

n _ .
(2.1) Apij(f) = Pr {Xn—], X, ¢ A for 1

IA

< - = 1
() k €£n-1 X, i},

£
i,je I andn = 1,2,....
Observe that

(2.2) E ,_\{NA)[X, =i} =1+ £ § pi.(f).
f( ) 0 n=1 i¢h AT

We now introduce our main assumption.



ASSUMPTION 2.

(a) There is a finite set K such that for any iel the quantities u* (1) and

v (i) are finite where

N(K)-1 .
(2.3) sup E (w){ ) TleO=i} = u (i) for all iel
feF f k=0
and
N(K)-1 | N
(2.4) sup E _\{ I |e(X ,a )||X =i} = y (i) for all iel.
fer £ k=0 B

(b) For any feF, the stochastic matrix P(f) has no two disjoint closed

sets.

In words, assumption 2(a) requires the existence of a finite set K
such that the supremum over all stationary policies of both the expected
time and the total expected absolute cost incurred until the first return
to the set K are finite for any starting state.

We shall now first verify as key result that under the assumptions

(=)

1-2 for any feF a state s. € K exists such that under policy f

f
the expected time and the total expected absolute cost incurred until

. * ., * .,
the first return to the state sp are bounded by u (i) + c and y (1) + ¢
respectively for any starting state i for some constant ¢ independent

of feF. We shall need the following lemma.

LEMMA 2.1. Let A be any subset of 1. Then, for any iel and feF

N(A)-1 N(A)-1
(2.5) E I t(X,a)[x=i}=E _{ = 7 [|X =i} =
=) 0 Keoad %o =) D, ko
= t(i,f(i)) + T T 1(3,£(3)),pr.(£).
n=1 ¢A | ATij

PROOF. Fix ieI and feF. For k=1,2,..., define the random variable

1 if Xm ¢ A for 1 <m<k

0 otherwise.



Then, using the nonnegativity of T and Gk’
N(A)-1 ! o I .
E{ ¢ 1t |x=i} =E{t, + I 1,68 |X.=i} = 1(i,£(i)) + I E{r 6 [X. =i}=
k=0 k'™0 ‘O k=1 k'k'"0 k=1 k'k'"0

©o

(i, f(i)) + T I 1(3,.£(3))
k=1 j¢A

n
Apij(f).

By the same arguments, we have that the first expression in (2.5)
equals the last one in (2.5) which verifies the relation (2.5).

By this lemma, we may replace T, by T(Xk,ak) in (2.3). This result

k
will be essentiallyused in the analysis hereafter. It now follows from
Lemma 2.1 and (2.2)-(2.3) that under. the assumptions 1(c) and 2(a),

*, .
(2.6) E {N(K)|X0=i} < H—éil for any feF and iel

(=)

REMARK. In [4]-[5] the uniformly boundedness of the functions c(i,a)
and 1(i,a), the unichainedness of the stochastic matrices P(f), feF
and the so-called simultaneous Doeblin condition were assumed. This
recurrence condition assumes that a finite set K, an integer v 21

and a number p > 0 exist such that Zj (f) =2 p for all feF and iel.

v
eKPij
Since this condition is equivalent to the condition requiring that, for

some finite set K and constant B, E (w){N(K)|XO=i} < B for all feF and
f

iel (cf. [4] and [9]), we have that assumption 2 is satisfied with bounded
] * * ‘s . .

functions u and y under the conditions considered in [4]-[5]. We note

that in [6] several recurrence conditions were studied which are equivalent

to the simultaneous Doeblin condition.

Under assumption 2, define for any feF

(2.7) qij(f) = 3 (£f), ieI, jekK,

pn
0 K¥ij

1
i.e. qij(f) is the probability that at the first return to the set K the

transition occurs into state j starting from state i and using policy

f(w). Observe that, by (2.6),



(2.8) L q, (f) = 1 for all iel.
jeK

For any feF, define for iel and jeK the (possibly infinite) quantity

(2.9) vij(f) = expected number of returns to the set K until the first
transition into state j occurs starting from state i

and using policy f(m).

We now prove the following Theorem.

THEOREM 2.2. Suppose that the assumptions 1-2 hold. Then

(a) For any feF, the finite stochastic matrix (qij(f)), i,jeK has no
two disjoint closed sets,

(b) For any iel and jeK, the probability qa; (f) 18 continuous on F .

(c) There is a finite number B such that *br any feF a state sf € K
exists for which visf(f) < B for all iel.

PROOF. (a) Fix feF. Let Kl.f K and K2 < K be any two non-empty sets

that are closed under the stochastic matrix Q(f) = (qij(f)), i,jekK.

To prove that KfﬁKQ is not empty, define for r=1,2 the set

P n ' .
I, = {jeI|pij(f) > 0 for some ieK  and nx1}.

It is immediate that both sets Il and 12 are closed under P(f) and

hence Il n I2 # ¢. Choose now t € Il n 12. Since t € Il’ it follows that

(2.10) p:t(f) > 0 for some seK, and m>1.

We shall now verify that

(2.11) piu(f) > 0 for some ueK2 and nx1,

To prove this, assume the contrary. Then, by Pr ( ){N(K)<w|X =t} =
we have p (f) > 0 for some veK\K

? (£) >0 for some i€K
1t

5 and k=>1. Slnce teIQ, it follows that
9 and hzl and so ph+k(f)>0 This implies that VEK\K

can be reached from state ieK, under Q(f) contradicting that K, is closed

2 2
under Q(f).



_.8_
Hence (2.11) holds. By (2.10) and (2.11) pzzn(f) > 0. This implies that
ueK,. can be reached from state seK. under Q(f). Since K., is closed

2 1 1

under Q(f), state u also belongs to K n K. # § as was to be

.so that Kl 5

1
verified.
(b) By assumption 1, we have that F is a compact metric set on which

pij(f) is continuous for any i,jeI. Using this fact and the relation

n-1

n —
Kpi'(f) = z pih(f) Phi

(£) forn = 2,3,...
] h¢K

it follows by induction that Kpglj(f) is continuous on F for any n = 1
and i,jeI. Hence qij(f) is continuous on F if the sum (2.7) converges
uniformly on F. To prove this, fix sel and observe that, by (2.6),

(o]

(2.12) z Pr m){N(K)>n|XO=s} <

u(s)
n=0 f(

for all feF.
Choose now 0 < § < 1. Then there is an integer M such that

(2.13) Pr {N(K) >M|X =s} < § for all feF.

(=)
To prove this, assume the contrary. Using the fact that Pr (W){N(K)>n|Xo=s}
is non-increasing in n, we then get a contradiction with (5.12). Now,

by (2.13) we have for any jeK

I ypos(£) S PrINGK)>M[X =s} < 6 for all feF
n=M+1 f
which proves the desired result since §>0 was chosen arbitrarily.
(c) By the finiteness of K and the assertions (a)-(b) of the Theorem,
this assertion is an immediate consequence of Theorem 2.6 in [51 or
Theorem 4 in [6].
The following theorem will play a crucial role in the analysis in

the next section.

THEOREM 2.3. Suppose that the assumptions 1-2 hold. Then there is a

finite number c such that for any feF a state s €K exists for which



N({sf})—l
(2.14) Ef(“){ =z (% 58 ) [X =i} < u (i)+e for all iel
and _

N({s -1
(2.15) Ef(w){ kio le(x,a)|[%,=i} < y"(i)+c for all iel.

PROOF. By Theorem 2.2. we can choose a finite number B and for any

feF a state sfeK such that

(2.16) 2 (f) < B for all iel and feF.

b
We shall now verify (2.14). The proofvof (2.15) is identical. Fix now
feF. We introduce the following notation. For any ieI and jeK, define

aij(f) = qij(f) and, forn = 2,3,..., let

~n _ ~n-1 . .
qij(f) = X qik(f)qkj (f) for iel and jeK.

keK

Z

k sf
Observe that ﬁ?j(f) is the probability that during the firstn-1 returns
to the set K no transition occurs into state s_. and that at the nth

f
return to the set K a transition occurs into state j starting from

()

state i and using policy f . We have

(2.17) v, =1+ I 3 ﬁ?.(f) for all iel.
£ n=1 jeKk
1Z
J#s ¢

Define v,.=0 and, for n>1, v _=inf{m>v |X eK}. Also, define 6§ =1 and,
0 n n-1'"m 0

for any k=z1, 6k=l if Xmis for 1<m<k and 6k=0 otherwise. Denote by

£
T(i,f) the first expression in (2.5) with A=K. Then using the first

equality in (2.5) and (2.3), we find
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N({sf})—l

E . = 1(X,a)[X=i} =E _ {I 6§ t(X ,a)|x=1} =
O R K3 ¥y £(=) 2k K% o

v -1

E {z T 8, t(X ,a )|X.=i} =
£(®) 121 =y K R30 |.0 '
n-1
v -1
o n
T(i,f) + = Ef(w){kzz 5kr(xk,ak)|x0=1} =

n=2 vn-l

T(iL,E) ¢+ L X a?fl(f) T(3,£) <
n=2 j#sf

W(4) +max u () T3 q?fl (£)  for all iel. .
jekK n=2 j#sf ]

IA

Invoking (2.16)-(2.17), we now get the desired result.

We noW give some known results in positive dynamic programming
(e.g. cf. [1], [9] and [16]). Since a directly accessible reference

seems not be available, we include for completeness a simple proof.

LEMMA 2.4. Consider the positive dynamic program (S,D(s),q(t]|s,a),
r(s,a)) where the state space S is denumerable, the action set D(s)
18 a compact metric set for any seS and the immediate return r(s,a)
is non-negative for all seS and aeD(s). Also assume that for any seS
both r(s,a) and the one-step transition probability q(t|s,a) for any
teS are continuous on D(s). For any policy m, define

V(s,m) = Bﬂ{zn=0
and the action at the n = decision epoch. Let V(s) = sup_ V(s,m),
seS. Then

r(X_,a_)|X.=s}, seS where X_and a_ denote the state
n° n 0 n n

(2.18)  sup V(s,f(w)

feF

) = V(s) for all seS

and

(2.19)  V(s) = sup {r(s,a) + I V(t)q(t|s,a)} for all seS.
aeD(s) teS
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. . . M
PROOF. We need some notation. For any integer M21, let r (s,a) =

min (r(s,a),M) for all s,a. For any 0<a<l, seS and policy m, define

[o2]
n —
Eﬂ{ €vu r(Xn,an)|Xo—s} and

V (s,m)
o n=0

(o]
n M _
E{ZI ar (Xn,an)IXO-S}.

Vg(s,n)
n=0

Using the non-negativity of r(s,a) we have by the monotone convergence

theorem

(2.20) 1lim VS(S,W) = Va(s,ﬂ) for any O<a<l, seS and policy m,

M->c0

and, by .a Tauberian theorem,

(2.21) 1lim Va(s,n) = V(s,m) for any seS and policy .
o1
. M M L ey s .
Letting Va(s) = supﬂVa(s,ﬂ), sel, it is well-known from discounted
dynamic programming (e.g. cf. [9] and [11]) that for any O<a<l and
M>1

(2.22) VM(s) = max {r(s,a) +ol VM(t)q(t|s,a)} for all seS
o o
aeD(s) teS

and

(2.23) sup VM(s,f(w)) = sup VM(s,w) for all seS.
a ) o
feF i
Using the fact that llmn+msupxgn(x) = supxllmn+wgn(x) for any non-
decreasing sequence of functions {gn}, we obtain from (2.20) and (2.23)

(m)) = supﬂVa(s,n) for all seS and O<a<l. Next, by

that supfeFVa(s,f
letting a1 in this relation and using (2.21) we get (2.18). The
optimality equation (2.19) follows by the same reasoning from (2.20)-

(2.22) by first letting M+~ and next letting a-1.

We can now prove the following Theorem.
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THEOREM 2.5. Suppose that the aésumptions 1 and 2(a) hold. Then

sup {t(i,a) + I p
aeA(i) JéK

(2.24) u"(i)

ij(a)u*Gj)} for all iel

(2.25) y*(i) sup {|c(i,a)| + = pij(a)y*(j)} for all ieI.

aeA(i) J€K

PROOF. To get (2.24), use the first equality in (2.5) and apply Lemma

2.3. with, for some artificial state « and action a_s

S =1Ivu {=}, D(s) = A(s) for seI, D(x) = {a_},

r(s,a) = ti{s,a) for seI and aeD(s), r(x,a_) = 0

pst(a) for sel, aeD(s), teI\K

a(t|s,a) =4 0 for sel, aeD(s), tekK,
L p_.(a) for seI, aeD(s), t==
st
teK ‘
1 for t = «
q(t]e,a ) =
0 otherwise.

In the same way we get (2.25) by taking r(s,a) = lc(s,a)l for sel and aeD(s).

By this theorem, we have that assumption 2(a) is equivalent to
the condition requiring the existence of a finite set K and a finite

non-negative function y(i), i€l such that

(2.26) |c(i,a)| + t(i,a) + pij(a)y(j) < y(i) for all ieI and aeA(i).
J£K

The condition (2.26) with K equal to a singleton was first studied in

[9] where this condition was called a Liapunov condition, cf. also [8] and

[10] for further investigations on Liapunov conditions. V

As a consequence of Theorem 2.5., we have that
* . *. . * . *x. . . .
(2.27) Ip..(@u(j) <u(i)and = p,.(a)y (j) €y (i) for all iel and aeA(i).
. ij . ij
J#K J¢K
For any stochastic matric P = (pij), i,jel, define the substochastic

matrix P = (ﬁij), i,jel by
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(pij for ieI, j¢K
(2.28)

e
e
e
1l

to for ieI, jeK
Then, by (2.27), we have for any P € R that
(2.29) Pu*(i) < u*(i) and ﬁy*(i) < y*(i) for all iel

where Rx(i) = ZjeIrin(j) for any matrix R = (rij), i,jel and function
x(.) on I. We conclude this section with the following Lemma.

LEMMA  2.6. Suppose that the assumptions 1 and 2(a) hold. Then, for

any sequence (Pl’P ..) of stochastic matrices in R,

2°°
* * x3 n-1 = - %
(2.30) P ...Pnu (i) €u (i) + max u (§) + = T P ...Pu(h) <

1 jeK k=1 hex Kt R

u*(i) + n max u*(j) for all n2l1 and iel.
jeK

IA

The same inequalities apply when u is replaced by y*.

PROOF. By a last exit decomposition, we have for any n21, ieI and Jj¢K,

- - n-1 - -
.o .. ...PD).. + I r (P...P. )., (P L.P ).
1 n'ij 1 n’ij k=1 heK 1"7"k7ih " k+1" " "n’hj

(P

By this relation and a repeated application of (2.29), we get (2.30).

We can now verify that under the assumptions 1 and 2(a) definition
(1.2) makes sense. By Theorem 2.5., we have |c(i,a)| < y*(i) for all
ieI and aeA(i) and so, using assumption 1(c) and Lemma _ 2.6., it follows
that for all n2l and iel the quantity ¢n(i,w) is well-defined for any

memoryless policy 7 and consequently, by (1.3), for any policy .
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3. The average cost optimality equdtion.

To derive the average cost optimality equation, we first analyse a
discounted cost function, cf. 713] and [18]. For any B>0 and policy m, let
= L)
(3.1) VB(i,ﬂ) = Eﬂ{ e , c(Xn,an)|XO=i} for iel.

n=0
We shall first verify that this quantity is well-defined under the
assumptions 1 and-2(a). By (1.3) it suffices to verify this for the
memoryless policies m. Choose any memoryless policy 7 and let w be

represented by the sequence (Pl’P ..) of stochastic matrices in R.

27
By assumption 1(c) and (2.25), we have 1(i,a) 2 € and |c(i,a)]| < y*(i)

for all iel and aeA(i). Using Theorem 2.6., we now find

© —BZE;% T(Xk,ak) ,
(3.2) E{z le c(xk,ak)|!xo=i} <
n=0
<E{ze P )x =i} = y¥ (i) + £ e B L. P yY() <
m™ _ n 0 _ 1 n
n=0 , n=1
Be

IA

)_Qmax y*(j) for all iel.
jekK

2y (1) + (1-e”

This proves that VB(i,w) is-well-defined. For any B>0, define

VB(i) = inf VB(i,n) for iel.
m

Then, since for any 6>0 we can find a policy Ts such that

VB(i,ﬂ )-6§ < VB(i) < VB(i,WG) for qll ieI, we have by (3.2) that for any B>0

Be)—Q max y*(j) for all iel.

(3.3) |V, (i) < 2y7(1) + (1-e~
i B .
JjeK

We now make the following assumption.

ASSUMPTION 3. For any iel, both Zj

continuous on A(i).

*, . * .
€Ipij(a)u (3) and Zjelpij(a)y (3) are
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By assumption 1 and a well-known convergence: result,
1lim

n->o zjeAPij(an) - ZjeAPi
by (3.3) and the convergence theorem on p. 232 in [15], it follows that

j(a) for any set Acl if lim & =a. Hence,

under the additional assumption 3 the function ZjeIpij(a)VB(j) is
continuous on A(i) for any ieI. Using this result, a minor modification

of the proof of Theorem 6.1 in [14] shows that for any B>0,

(3.4) VB(i) = min {c(i,a) + e_BT(l’a) pX pi.(a)VB(j)} for all iel.
' aeA(1) jel ]
Let féw) be any stationary policy such that the action fB(i) minimizes

the right side of (3.4) for all ieI. Then

()

(3.5) VB(i’fB

) = VB(i) for all ielI.

. —Br(i,fs(i))
To prove this, iterate VB(l) = C(l,fs(l)) + e Zjelpij(fB)VB(j)’ iel.
This gives

m-1 —BZE:éT(Xk,ak)
(3.6) V(i) = E {2 e - c(X_,a )|x =i} +
B £=) 2 n>“n’ 1%
8 n=0 n-1
BT (X3 )
+ E ( ){e V. (X )|x =i}  for all m>1 and ieI.
wa B m 0

Using assumption 1(c), the inequality (3.3) and Lemma 2.6 , we find
that for some constant c, the second term in the right side of (3.6) is

B
bounded by

2e—6me e—BmE

{y*(i)+m max y*(j)+c

(P"(E)y (1) + cgl < 2
jeK

B}
for all m=1 and iel.

Hence, by letting m»~ in (3.6), we find (3.5). We now prove

LEMMA 3.1. Suppose that the assumptions 1-3 hold. Then there are finite

numbers 8° » y > 0 such that for any feF a state s_eK exists for which

£

()

(3.7)  [BVy(sp,E )| <y foraill 0 <g<g”

and, for any iel,
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()

(3.8)  [vy(i,e™)) - VB(sf,f(m))l < y(* ()45 (1)) for all 0 < B < B .

PROOF. By Theorem 2.3., we can choose a constant c and for any feF a state

sgeK such that (2.14)-(2.15) hold. Fix now B>0 and feF. We have
-1 _
) N({sf]) ‘BzizéT(Xk’ak)
(3.9) V (i,f 7)) = E (w){ T e Ce(X ,a )Ixozi} +
B £ n=0 non
—BZN({Sf})_lT(Xk,ak)
k=0

_s () .
+ Ef(m){e IXO—l}VB(sf,f ) for all iel.

Taking i=s_ in (3.9) and using (2.15) and assumption 1(c), we derive

f
from (3.9) that

(3.10) [V (s )] < (7" (s )re)/(1-e7FE).

B(Sfa
From (3.9), (2.14)-(2.15) and the inequality 1-e * < x for x20, we easily

derive

(=) (w)l

(3.11)  |Vg(i, 87 )V (s f < y*(i)+c+(u*(i)+c)|sv8(sf,f(”))|for all iel.

Be

. . —Bey-1 e
Since B(1l-e ) e as B>0 and the set K is finite, we get the Lemma

from (3.10)-(3.11).
We are now in a position to verify the average cost optimality equation.

THEOREM 3.2. Suppose that the assumptions 1-3 hold. Then there is a constant

g and a function v(i), iel with supiEI]v(i)I/{u*(i)+y*(i)} < » guch that

(3.12) wv(i) = min {c(i,a)-gt(i,a) + I p..(a)v(j)} for all iel.
aeA(i) jel +J

PROOF. Following [13] and [18], fix some state seI. By (3.5) and Lemma 3.1,

. . *
we can choose finite numbers B , ¢>0 such that

(3.13)  |BVy(s)] <c forall o< <8

and for any iel,

(3.14)  [Vp(i)-V(s)] < c(u (i)+y (1)) for all 0 < 8 < B~.
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For any B>0, let f_eF be such that fB(i) minimizes the right side of

B8
(3.4) for all ieI. Now, using (3.13)-(3.14), assumption 1(a) and the
diagonalization method, we can find a sequence {Bk} with Bk+0 as koo,
a constant g, a function v(i), i€l and an action a(i)eA(i) for any iel

such that

(3.15) 1lim B Ve (s)=g, lim Vg (i)—vB (s) = v(i) and 1im £, (i) =a(i)
k> k koo Tk k k> Bk

for all iel.

Observe that, by (3.14)-(3.15), ]V(i)|5c(u*(i)+y*(i)) for all ieI. Now,

subtracting VB (s) from both sides of (3.4) with B=B, »
k

the assumptions 1 and 3, relation (3.14) and the convergence theorem on

letting k»=, using
p. 232 in [15], we obtain (3.12) in a standard way.

The assumptions 1-3 are satisfied in the example in [7] for which
any average cost optimal policy is nonstationary. Hence an additional

assumption is required to guarantee that a stationary policy f(m) such
that the action f(i) minimizes the right side of (3.12) for all iel is

average cost optimal, cf. also [12]. We now state the following condition.

ASSUMPTION 4. For any feF, limn_mPn(f)u*(i)=limn+ooPn(f)y*(i) = 0 for all
iel where P (f) denotes the n—-fold matrix product of the substochastic
matrix P(E) defined by (2.28) with itself.

We can now prove the following lemma.

LEMMA 3.3. Suppose that the assumptions 1, 2(a), 3 and 4 hold. Then, for

any sequence (Pl’P ..) of stochastic matrices in R,

2°°

(3.16) 1im 1 P
S n

>

L Pn(u*+y*)(i) = 0 for all iel.

. . . . * . * ..
PROOF. Following the proof of Lemma 5.7. in 9], define x0(1)=u (i)+y (1),

ieI, and for n=1,2,..., define xn(i) recursively by

(3.17) xn(i) = sup I p..(a)x

(3, iel.
acA(i) j¢x

n-1
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Using the assumptions 1 and 3, the convergence theorem on p. 232 in [15]
and (2.27), we find by induction that we may replace sup by max in (3.17)

and that xn(i) < Xn—l(i) for all n=1 and ieI. Hence

(3.18) limn»wxn(i) = x(i) (say) exists for all iel
and for any iel and nzl we can choose an action an(i) which maximizes
the right side of (3.17). By assumption 1(a), we can find a sequence {nk}

of integers with n, »~ as k-« such that a, (i)»a(i) as k»= for some

a(i)eA(i) for any ?eI. Let fOeF be such kthat fo(i) = a(i) for all i.
Then, using assumption 3 and the convergence theorem on p. 231 in [15],
we get from (3.17)-(3.18) that x(i)=§(fo)x(i) for all i. Hence, using
xSxO, we have 0<x = En(fo)xsﬁn(fo)(u*+y*) for all n21 so that, by

assumption 4,
(3.19) (i) = 0 for all iel.

Now, let (P1°P
P < > P <

(3.17), Px _ S% for all PeR and nzl1 and so Pk+l'"anO < % for any

nz1 and k<n. Using this inequality and Lemma 2.6., we find

2,...) be any sequence of stochastic matrices in R. By

-

n-1

"Po..P x (i) € x (i)+max x.(3) + I I x (h) for all n=1 and iel.
1 n o0 0 . n-k
jeK k=1 heK

Together this inequality, the finiteness of K and the relations (3.18)-
(3.19) imply the Lemma.

We now state our final result.

THEOREM 3.4. Suppose that the assumptions 1-4 hold. Let f(w)

be any
stationary policy such that the action £(1) minimizes the right side of

(3.12) for all iel. Then

g = 1lim ¢ (i,f(w)) < lim inf ¢_(i,m) for any iel and policy m.
nse n->o n

PROOF. For any memoryless policy T represented by the sequence (Pl’P2"')
in R, we have that E {v(X )|x =i} = P
m n 0

1

...an(i). Since, for some constant
* *
c, |v(i)| < c(u (i)+y (1)) for all ieI, it now follows from Lemma 3.3.

that for any memoryless policy T
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(3.20) lim = E {|v(X )||%x,=i} = 0 for all ieI
n w n 0
n—-o

and so, by (1.3) we have that (3.20) holds for any policy w. Now, by
observing that we may replace Ty by T(Xk,ak) in (1.2) a repetition of

the well-known proof of Theorem 7.6. in [14] gives the desired result.
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