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ABSTRACT 

This survey paper considers an undiscounted semi-Markov decision 

problem with denumerable state space and compact metric action spaces. 

Recurrence conditions on the transition probability matrices associated 

with the stationary policies are considered and relations between these 

conditions are established. Also it is shown that under each of these con­

ditions the optimality equation for the average costs has a bounded solu­

tion. 
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1 . INTRODU«:TION 

In this paper we consider an undiscounted semi-Markov decision model 

specified by five objects (I, A(i), pij(a), c(i,a),T(i,a)).We are concerned 

with a dynamic system which at decision epochs beginning with epoch O is 

observed to be in one of the states of the denumerable state space I. 

After observing the state of the system, an action must be chosen. For any 

state iEI, the set A(i) denotes the set of possible actions for state i. 

If the system is in state i at any decision epoch and action aEA(i) is 

chosen, then regardless of the history of the system, the following happens: 

(i) an immediate cost c(i,a) is incurred; 

(ii) the time until the next decision epoch is random with mean T(i,a); 

(iii) at the next decision epoch the system will be in state j with probability 

p .. (a) where I. Ip .. (a)= 1 for all iEI and aEA(i). 
1J JE 1J 

Unless stated otherwise, we make throughout this paper the following assumptions. 

Al. For any iEI, the set A(i) is a compact metric space on which both c(i,a), 

T(i,a) and p .. (a) for any jEI are continuous. 
1J 

A2. There is a finite number M such that Jc(i,a) J::,J1 and T(i,a)~M for aU iEl 

and aEA(i). 

A3. There is a positive number o such that T(i,a)~o for all iEI and aEA(i). 

We note that Assumption Al is satisfied when A(i) is finite for all iEI. 

A policy TI for controlling the system is any (possibly randomized) rule 

for choosing actions. For any initial state i and policy TI, denote by X and n 
a the state and the action chosen at the nth decision epoch for n = 

n 
0, I , ••.• 

(the oth decision epoch is at epoch 0). Denote by E the expectation when 
TI 

policy TI is used. Let F = X. IA(i), i.e. Fis the class of all functions f which 1E 
add to each state iEI a single action f(i)EA(i). For any fEF, denote by f(oo) 

the stationary policy which prescribes action f(i) whenever the system is in 

state i. Under each stationary policy f(co) the process {X ,n2'.0} is a Markov-
n 

chain with one-step transition probability matrix P(f) = (pij(f(i))), i,jEI. 

For n = 1,2, ... , denote then-step transition probability matrix of this 

Markov chain by Pn(f) = (p~. (f)), i,jEI. 
1J 

In this survey paper which is based on results in'. 37 and [4] we shall 

study a number of recurrence conditions on the stochastic matrices P(f), fEF. 

In section 2 we give these conditions and prove several relations between them. 
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We discuss in section 3 the bptimality equation for the average costs and 

verify that under each of the above conditions this optimality equation 

has a bounded solution. 

2. RECURRENeE CONDITIONS 

We first introduce the following notation. For any set AsI, define 

Consider now the following recurrence conditions Cl-CS on the stochastic 

matrices P(f), fEF. 

Cl. There is a finite set Kand a finite number B such that 

(2. 1) 

Further for any fe:F the ·stcSchastic·matiii:x··pcfJ Jias·-ni:Y-two disjoint closed 

sets. 

C2. There is a finite set Kand a finite number B such that for any fEF 

a state sfEK exists for which 

(2.2) 

C3. There is a finite set K, an integer v~l and a number p>O such that 

(2. 3) 
V 

E p .. (f)~p for all iEI and fEF. 
• K l.J JE 

Further, for any fEF the stochastic matrix P(f) has no two disjoint closed sets. 

C4. There is an integer v~l and a number p>O such that 

(2.4) 

CS. There is an integer v~l and a number p>O such that for each fEF a probability 

distribution { 1r . ( f) , j EI} (say) exists for wh-ich 
J 

(2.5) n I [n/v] 
J E p .. (f) - E 1r.(f) :o;:(1-p) · for aU A~I, jEI and n~l, 
j EA l.J j;EA J 

where [x] denotes the largest integer less than or equal to x. 
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The condition Cl was considered in [4], cf. also [10]. Clearly condition 

C2 implies c1:· . The condition C3 was introduced in [41 and called the 

simultaneous Doeblin condition since for each fEF the stochastic matrix 

P(f) satisfies the so-called Doeblin condition from Markov chain theory. 

The conditions C4 and CS were introduced in [3]. Following Markov chain 

terminology, the conditions C4 and CS could be called a simultaneous 

scrambling condition (cf. [15]) and a simultaneous quasi-compactness 

condition (cf. [9]) respectively. Observe that under each of the above 

conditions any stochastic matrix P(f), fEF has no two disjoint closed sets. 

Further, any P(f) is aperiodic under both C4 and CS. Finally, we note that 

the left side of (2.4) denotes the ergodic coefficient of the stochastic 

matrix Pv(f) and that { TI.(f), jEI} in CS denotes the unique stationary 
J 

probability distribution of P(f). 

Before proving a number of relations between the above conditions, we 

first mention the following facts which will be frequently used hereafter. 

Since F=X. I A(i), we have by Al that the set Fis a compact metric space 
1E 

in the product topology. Further,using the relation 

(2.6) m+l m 
p .. (f) =L Pik(f)pk.(f) for all i,jEI, m~l and fEF. 
iJ k<l .. J 

and Proposition 18 on p. 232 in [11], it innnediately follows by induction 
* that for any n~l and i,jEI the function p~. (f) is continuous on F. 

1] 

From Markov chain theory we have that for any fEF 

(2. 7) 
I n k 

lim - I: p .. (f) = TI .. (f) (say) exists for all i,jEI 
n-+m n k=l iJ 1J 

In case P(f) has no two disjoint closed sets, then 

(2.8) TI .. (f) = TI.(f) (say) for all i,J0 EI 
l.J J 

where the non-negative numbers TI.(f) satisfy 
J 

(2.9) TI.(f) = I: p .. (f)TI.(f) for all jEI. 
J . I 1J i 1E 

We note that additional assumptions are needed to ensure that {TI.(f)} in (2.8) 
J 

is a probability distribution in which case {TI.(f),jEI} is the unique 
J 

probability distribution satisfying (2.9). 

* . . . In the remainder of this section we shall not use the product property 

F = XA(i) but only the fact that f is a compact metric space. 
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We now first prove 

THEOREM 2.1 (cf. [4]). Suppose for any fEF that the stochastic matrix P(f) 

has no -two disjoint cZosed sets and that { 1T. (f) ,jEI} is a probability 
J 

distribution. Then the function n.(f) is continuous on F for each jEI 
J 

if and only 1:f for each e;> 0 there is a finite set K(e:) such that 

(2. 10) I 1T.(f)~l-e: for aZZ fEF. 
jEK(e:) J 

PROOF. Suppose first that for each e:>O we can find a finite set K(e:) such 

* that (2.10) holds. Now, let {f ,n~l} be any sequence in F such that f +f 
n n 

as n-+oo, Choose hEI. We shall now verify that 

(2.11) 

To do this, let ah be any limit point of {1Th(fn),n~l}. By the well-known 

diagonalization method, we can choose a subsequence {~,~1} of integers 

for which 

lim 1T.(f ) = 1T. (say) exists for all jEI such that 1Th=ah. 
k-+oo J ~ J 

Take f=f in (2.9) and let k-+oo. Using the fact that p .. (f) is continuous 
~ iJ 

on F for all i,j and using Proposition 18 on p. 232 in [11], we find 

(2.12) * 1T. = I pk.(f )1Tk for all jEI. 
J kEI .J 

Further, using (2.10), we have 

(2.13) I1T,=l. 
jEI J 

By (2.12)-(2.13) and the fact 

distribution, it follows that 

which verifies (2.11). 

* that P(f) has a unique stationary probability 

1Tj=1Tj(f*) for all jEI. In particular ah=1Th(f*), 

Suppose next that 1T.(f) is continuous on F for each jEI. Let now 
J 

{K ,n~l} be any sequence of finite subsets of I such that 
n 

K 1~K for all n~l and lim K =I. n+ n n n-+oo 
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Define for n=l,2, ••.• , 

a (f) = 
n 

,r,(f), fEF. 
J 

Then a (f) is continuous on F for all n~l. Further, we have for any fEF that 
n 

a 1(f)~a (f) for all n~l and lim a (f) = 1. 
~ n n n-too 

Now, by Theorem 7.13 in [12], it follows that a (f)converges to 1 uniformly 
n 

in fEF as n-too. Hence for each e:>O we can find a finite n such that 

a (f)~l-£ which verifies (2.10). 
n 

We note that (2.10) states that the collection [{,r.(f),jEI}lfEF] of 
J 

probability distrioutions is tight. 

THEOREM 2.2 (cf. [4]). The following three conditions are equivalent 

(i) Condition C3 without the requirement that for any fEF the stochastic 

matrix P(f) has no two disjoint closed sets. 

(ii) There is a finite set Kand a finite number B such that for all iEI 

and fEF 

(2.14) 

(iii) For any e:>O there is a finite set K(£) and an integer v(£)~1 such that 

(2.15) 

PROOF. Suppose first that (i) holds with triple (K,v,p) in C3. We shall 

verify (ii). Now, 

Pr (oo){Xn/K for l~n~vJxO=i}~l-p for all iEI and fEF. 
f 

Hence, for all m~l, 
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using the fact that this probability is non-increasing in m. Next by the 

relation 

co 
(2.16) E (co){NKIXo=i}=I+ L Pr (co){XniK for l~n~mlxo=i}, iEI and fEF, 

f m=I f 

we get (ii). 

Suppose next that (ii) holds. We shall now verify (iii). Fix 0<£<1 and 

choose O<y<I such that (l-y) 2~1-£. Then we can find an integer N~I such 

that 

(2. I 7) Pr (co){XniK for l~n~NIX0=i}~y for all iEI and fEF. 
f 

To prove this, suppose that for each integer m~I there exists a state iEI 

and a fEF such that Pr (co){XniK for l~n~m!X0=i}>y, Since this probability 
f 

is non-increasing in m, it follows from (2. 16) that E (co) {NKjx0=U> l+my 

which contradicts (2.14). Hence (2.17) holds. We nexE show that there is 

a finite set A such that 

(2.18) m 
L p .. (f)~l-y for all iEK, l~~N and fEF. 

. A l.J JE 

To do this, fix iEK and l~k~N. In the same way as in the second part of the 

proof of Theorem 2.1, we find that for each y>O there is a finite set A(y) 

such that 

L p~.(f)~l-y for all fEF, 
jEA(y) l.J 

Using this result and the finiteness of the set K, we obtain (2.18). Now, 

by (2.17) and (2.18) we find for all iEI and fEF, 

N+l N N I 
L p .. (f)~ L L Pr ( ){X =k,X iK for l~m~n-1 ix0=i} L p: -n(f) ~ 

jEA l.J n=I kEK f co n m jEA kJ 

~ (1-y)Pr (co){XnEK for some l~n~NIX0=i}~(l-y) 2~1-£ 
f 

which verifies (iii) since£ was arbitrarily chosen. Finally, it 1.s immediate 

that (iii) implies (i). 
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Theorem 2.2 has the following corollary. 

THEOREM 2.3 (cf. [4]). Suppose that conditionC3holds without the 

requirement that for any fEF the stochastic matrix P(f) has no two disjoint 

closed sets. Then for any £>0 there is a finite set K(E) such that 

I TT •. (f)2l-£ for all iEI and fEF, 
jEK(€) 1.J 

i.e. [{TT •• (f),jEI}liEI,fEF]is a tight collection of probability distributions. 
1.J 

PROOF. Using Theorem 2.2 and relation (2.6), we have that for any €>0 

there is a finite set K(E) and an integer v(€)2l such that 

I p~.(f)2)-€ for all iEI, fEF and n2v(€). 
jEK(€) 1.J 

Together this relation and (2. 7) imply the Theorem. 

The proof of the next theorem does not require assumption AI. 

THEOREM 2.4 (cf. [1] and [3J). Condition C4 implies condition C5. 

PROOF. Let C4 holds with pair (v,p). Fix fEF and A~I. For n=l,2, ... , define 

n n M =sup Ip .. (f) and m =inf Ip .. (f). 
n iEI jEA 1.J n iEI jEA 1.J 

Using (2.6), it follows that 

(2.19) M 1~M and m 12m for all n2l. n+ n n+ n 

+ + -For any number a, let a =max(a,O) and a =-min(a,O). Then a ,a 20 and 
+ - I a=a -a. For any sequence {a.,jEI} of numbers such that I. 1 ja. <00 and 

+ J - JE J 
I. 1a.=O, we have I. 1a. = I. 1a .. Further, we note that (a-b)+ = a-min(a,b) 

JE J JE J JE J 
for any numbers a,b. Fix now iEI and n>v, Then 
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n n Ip .. (f)- Ip .(f) = v v n-v 
I {p.k(f)-p k(f)} I pk. (f) = 

jEA l.J jEA rJ kEI i r jEA J 

V V + n-v V V -
I {p.k(f)-p k(f)} I pk. (f) - I {p.k(f)-p k(f)} = 

kEI i r jEA J kEI l. r 

:5 {M -m } 
n-v n-v 

V V + 
I {p.k(f) - p k(f)} 

kEI l. r 
= 

= {M -m }{I- L min[p"i·k·(f), p"rk(f)]}~ n-v n-v 
kEl 

:5 (1-p)(M -m ). n-v n-v 

Since i and r were arbitrarily chosen, it follows that 

M -m :5(1-p){M -m } 
n n n-v n-v for all n>V. 

Hence, since M -m is non-increasing in n~I, 
n n 

(2.20) M -m :5(1-p)[n/v] 
n n 

for all n~I. 

Together (2.19) and (2.20) imply that for some finite non-negative number TI(A) 

lim M =lim m =TI(A). 
n n n400 n400 

Further for any n~I, 

(2.21) and n 
m :5 I p .. ( f) :5M 

n . A l.J n JE 
for all iEl. 

It now follows from (2.20) and (2.21) that 

I I p~.(f) - TI(A) 1:5(1-p)[n/v] for all n~I. 
jEA l.J 

Since this relation holds for any A5I, it follows that TI{.} is a probability 

measure on the class of all subsets of I which completes the proof. 
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THEOREM 2.5 (cf. [3]) The condition C3 together with the assumption that 

for each fEF the stochastic matrix P(f) is aperiodic is equivaient to 

each of the conditions C4 and C5. 

PROOF. Suppose first that C3 with triple (K,v,p) holds and that any P(f) 

is aperiodic. We shall then verify condition C4. Since for any fEF the 

stochastic matrix P(f) satisfies the Doeblin condition, has no two 

disjoint closed sets and is aperiodic, we have from Markov chain theory 

( e . g. [ 2 J) that 

(2.22) 1 . n 
imp .. 

n-+oo lJ 
(f) = ,r.(f) 

J 
for all i,jEI. 

Since (2.3) implies I. Kp~.(f)~p for all iEI, fEF and n~v, we have 
JE lJ 

(2.23) I ,r,(f)~p for all fEF. 
jEK J 

Define now 

(2.24) 

where IKI denotes the number of states in K. Then, by (2.23), 

Using the Theorems 2.1 and 2.3 and the fact that Fis a compact metric space, 

it follows that for any kEK the set Fk is closed and hence compact. For any 

iEI and kEK, define 

(2.25) 

By (2.22), n(i,k,f) exists and is finite. Using the fact that Pn(f) is 

continuous on F for each n~I, it is immediately verified that for each iEI 

and kEK the set {fEFkln(i,k,f)~a} is closed for any real a, i.e. for each iEI 

and kEK the function n(i,k,f) is upper semi-continuous on the compact set Fk. 
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Now, by Proposition 10 on p. 161 in [11], we have that for each iEI and kEK 

the function n(i,k,f) assumes a finite maximum on Fk. Hence, using the 

finiteness of K, we can find an integer µ~1 such that 

(2.26) 

Next define for any kEK 

(2. 27) 

We now verify that for each kEK the set Sa={fEFklm(k,f)~a} is closed for any 

real a.. Fix kEK and an integer a>l. Suppose that f ES for n~l and that n a 
f ➔f* as n➔oo, Then we can find a subsequence {~,h~l} of integers and integers 
n t 

rand t with Js;rs;a-1 and rs;ts;r+µ such that pkk(f )s;p/2IKI for all h;?;l. 

Hence, by the fact that p!k(f) is continuous on~ we find p~k(f*)s;p/2IKI and 
* so f ESa. We have now proved that for any kEK the function m(k,f) is upper 

semi-continuous on the compact set Fk. Hence there exists an integer N;?;l 

such that 

m(k,f)<N for all kEK and fEFk. 

For any kEK and fEFk' we have by (2.25)-(2.27) 

µ+m(k,f)(f)> n(i,k,f)(f) m(k,f)+µ-n(i,k,f)(f) p2 
pik -Pik pkk > 

4IKl2 
for all iEK. 

Hence, for any kEK and fEFk, 

Using this result, we now find for any kEK and fEFk, 
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which verifies C4. 

By Theorem 2.4 we have that condition C4 implies condition CS. Suppose now 

that condition CS holds. Then any P(f), fEF is aperiodic. To complete the 

proof, we now verify that condition C3 holds. Since Pn(f) is continuous on 

F for each n~I, it follows from (2.5) that for any jEI the function ~.(f) 
J 

is continuous on F. By Theorem 2.1, we now have that any e>O there is a 

finite set K(e) such that (2.10) holds. Next by using the uniform convergence 

in (2.5), we find that for any e>O there is a finite set K(e) and an integer 

v(e)~I such that (2.15) holds. Now, by Theorem 2.2, we find that condition C3 

holds which completes the proof. 

THEOREM 2.6 The conditions Cl, C2 and C3 are equivalent. 

PROOF.By Theorem.2.2, Cl and C3 are equivalent.Suppose now that C3 holds 

with triple (K,v,p). We shall verify C2. As in the first part of the 

proof of Theorem 2.5, we again obtain relation (2.23) and the compactness 

of the set Fk for any kEK where Fk is d:fined by (2.24). Fix now kEK. For 

any fEFk, define the stochastic matrix P(f)=(p .. (f)), i,jEI by 
l.J 

(2.28) 

Denote by Pn(f) then-fold matrix product of P(f) with itself for n~I. Using 

the fact that P(f) is continuous on F, it is immediately verified by induction 

that Pn(f) is continuous on Fk for each n~I. By the definition (2.28), we have 

for any fEFk that the expected number of transitions until the first return to 

state k under P(f) is equal to that under P(f) for any initial state i~k. 

Hence, by the finiteness of Kand the fact that ukEKFk = F, it suffices to 

prove that there is a finite number Bk such that for each fEFkAthe expected 

number of transitions until the first return to state k under P(f) is less 

than or equal to Bk for each initial state iEI. To prove this, we first 

observe that, by (2.28) and the fact that kEK, we have 

(2.29) 

A 

E p~. (f) ~ 
. K l.J JE 

V 
E p .. (f) ~ p for all id and fEFk, 

• K l.J JE 

i.e. P(f) satisfies the Doeblin condition. 
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Since for any fEFk we have that under P(f) state k is positive recurrent 

and hence can be reached fr~m any other state, it follows for any fEFk 

that the stochastic matrix P(f) has no two disjoint closed sets and that 

under P(f) any state i~k is transient and state k is an aperiodic positive ... 
recurrent state. Since P(f) also satisfies the Doeblin condition, we have 

from Markov chain theory (e.g. [2]) that for any fEFk 

lim prk(f) = for all iEl. 
n~ 

Define now for any iEI 

Since Pn(f) is continuous on Fk' it follows for any iEI the finite function 

n(i,f) is upper semi-continuous on the compact set Fk. Hence there is an 

integer µk~I such that 

(2.30) for all iEK and fEFk. 

We shall now verify that 

(2. 31) 

To do this, observe that, by (2.29), for any iEI and fEFk we can find a state 

jEK such that p~.(f) ~ p/lKI and so p~k+n(j,f)~p~.(f)p~k(j,f)>p/2IKJ. This 
iJ i iJ J .... 

relation and (2.30) imply (2.31) since state k is absorbing under P(f). From 

(2.31) it follows for any fEFk that the expected number of transitions until 

the first return to state k under P(f) is less than or equal to 2IKJ(v+µk)/p 

for any starting state iEI which completes the proof. 

Finally we show ·that in condition Cl the set K can be taken as a singleton 

when the stochastic matrices P(f), fEF have a common recurrent state. 

THEOREM 2.7. (cf.[41). (a) Suppose that condition C3 holds without the 

requirement that any P(f), fEF has no two disjoint closed sets. Let Ae:I and 

the compact set G~F be such that for each iEI and fEG there exists a state jEA and 

an integer n::2: I for which p 1!-. { f) >O. Then there is a finite number B such that 
iJ 



-13-

E (oo) {NAlxo=ihB for aU iEl and fE.G. 
f 

(b) Suppose that there is a state i OEI such that for any iEI and fEF there 

exists an integer n~l for which p~. (f)>O. Then in condition Cl the set K can 
l.l. 

be taken equal to the singleton { i 0 ~. 

PROOF. (a) Let (K,v,p) be the triple in C3. For each iEI, define 

n(i,f)=min{n~tl r p~.(f)>O} 
• A l.J 

for fE G • 

JE 

It is readily verified that for each iEI the finite function n(i,f) is upper 

semi-continuous on the compact set G. Hence we can find an integer µ~1 such 

that n(i,f)~µ for all iEK and fEG, so 

Pr (oo){XnEA for some l~n~µIX0=i}>O 
f 

for all iEK and fEG. 

Since for each iEK this probability is a continuous function in fEG and G is 

compact, there exists a number a>O such that 

Pr (oo){XnEA for some l~n~µIX0=i}~a 
f 

We now find 

Pr (oo){XnEA for some l~n~v+µIX0=i}~ 
f 

V 
L p .. (f)Pr ( ){X EA 

jEK l.J f 00 n 

for all iEK and fEG. 

for all iEI and fEG. 

Hence Pr (oo) {XniA for l~n~v+µIXO=ihl-ap for all iEl and fE.G which implies 

part (a)fof the Theorem with B = (v+µ)/ap. 

(b) This part is an immediate consequence of Theorem 2.2 and part (a) of 

Theorem 2.7. 

REMARK. In Theorem 2.6 it was proved that C3 implies C2. Alternatively, this 

result may be obtained by considering the compact sets Fk defined in (2.24) 

which have the property that state k can be reached from any other state under 

P(f) for fEFk and by applying part (a) of Theorem 2.7. 
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3. THE OPTIMALITY EQUATION. 

In this section we shall discuss the optimality equation for the average 

costs. As a consequence of the Theorems 2.5 and 2,6 we have that each of 

the conditions Cl-CS implies condition C2. In the next theorem we shall prove 

under a slight weakening of condition C2 that the optimality equation for 

the average costs has a bounded solution. 

THEOREM 3.1 (cf. [3], [4] and [10]). Suppose that a finite nwriber B exists 

such that for any fEF there is a state sf for which 

Then there exists a constant g and a bounded function v(i), iEI such that 

( 3. l) v(i) = min {c(i,a)-gr(i,a) + 
aEA(i) 

p .. (a)v(j)} for all iEI 
1J 

PROOF. To establish (3.1) it is no restriction to assume that the 

times between the decision epochs are deterministic,since in (3.1) the 

transition times only appear through their expectations. Now, we first 

consider the discounted cost model. For any a.>O, define for each policy 1r 

00 -a ( T Q + ... +T ) 
v (i,1r)=E { I e n c(X ,a )ix0=i} 

a 1T n=O n n 
for iEI, 

where T0=0 and, for n~l, Tn denotes the time between the (n-l)st and nth 

decision. Further, for any a.>O, let V (i)=inf V (i,1r) for iEI. The above 
a 1T a 

quantities are well-defined. Letting the constants Mand o be as in the 

assumptions A2 and A3, we have for any a.>0 and policy ,r that 

IV (i,1r) l~M/(1-e-a.0) for all iEI. Hence, since a./(1-e-a.o)➔l/o as a.➔O, we 
a * 

can find a number a >Osuch that 

(3 .2) f . * or any 1EI, O<a<a. and policy 1r. 

Using kriown results for the discounte<l cost model (see [4], 18] and [13]), 

we have that for any ci > 0 the function Va (i), iEI is the unique bounded' 
s,olutinn to 

(3. 3) V (i)=min {c(i,a)+e-a.T(i,a) Ip .. (a)V (j)} 
a A(.) . I 1J a aE 1 JE 

for iEl. 
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Moreover, for any a.>O, there'exist a f EF such that a. 

(3.4) V (if(~))= V (i) for all iEI 
a. 'a. a. 

and f EF satisfies (3.4) if and only if f (i) minimizes the right side of 
a. a. 

(3.3) for all iEI. We shall now verify that there is a finite number y such 

that 

(3.5) Iv (i)-v (j)i:o;;y a. a. 
for all i,jEI and O<a.<a.*. 

* To do this, choose O<a.<a. and fEF. Then, letting N = N{sf}' 

-a, ( T Q + • , • +T ) 
e n c(X ,a )IXo=i} + 

n n 

.id. 

-x Next, using the fact that 1-e :o;;x for x~O and (3.2), we obtain 

for all iEI, 

Together, this relation and (3.4) imply (3.5) since a. and f were arbitrarily 

chosen. Fix now any state rEI and define for any a.>O 

h (i) = V (i)-V (r) a. a. a. for iEl. 

Then (3.3) can be equivalently written as 

(3.6) h ( ') . { (' ) -a.T(i,a) ( )h (J') + -;:;;-1 (e-a.T(i,a)_l)"'Va.(r)}, i'EI. 1. =min c 1.,a +e E p .. a ~ ~ 
a. aEA(i) jEI l.J a. 

For any a.>O, let f EF be such that f (i) minimizes the right side of (3.6) 
a. a. 

for all iEI. Now, observe that by (3.2) and (3.5), both h (i) and a.V (i) a. a. 
are uniformly bounded in iEI and O<a.<a.*. Using the well-known diagonalization 

method and the fact that A(i) is a compact metric space for any iEI, we can find 

* a sequence {a. ,n~l} of numbers with a. -+Oas n~, a function f EF and a finite 
n n 

constant g and a bounded function v(i), iEI such that 
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lim a V 
n a 

(r)=g, lim h (i)=v(i) and lim f for all id. 
n-+<x> :n 

a n-+<x> n 

Now, for any :n2':l and iEI, we have 

a n-+<x> n 

h 
a 

n 

-a ,(i,a) 
(i)5c(i,a)+e n Ip .. (a)h (j) 

. I 1.J a 
+­

a 
n JE n 

-a T(i,a) 
(1-e n )a V 

for aEA(i), 

n a n 
(r) 

where the equality sign holds for a=f (i). Now, letting n-+<x>, using assumption 
a . 

Al and Proposition 18 on p. 232 in~1]~we find for any iEI 

v(i)5c(i,a)+ Ip .. (a)v(j)-T(i,a)g for aEA(i) 
. I 1.J JE 

where the equality sign holds for a=f*(i). This gives (3.1). 

We end this paper by making some remarks .. We first remark that, by using a 

data transformation introduced in [14] and results in [5], it was shown 

in [3] that value iteration may be used to determine a bounded solution to 

the optimality equation (3. I) under each of the conditions CI-CS. Further, 

it was proved in [3] that under condition Cl with Ka singleton the policy 

iteration algorithm generates a sequence of stationary policies for which both 

the associated average costs and relative cost functions converge so that the 

linits satisfy the optimality equation. 

We next remark that a repeated application of the result of Theorem 3.1 

gives a sequence of optimality equations that are involved when considering 

the more sensitive and selective n-discounted optimality criteria, cf. [6J 

and [7]. 

Finally we remark that so far we have assumed that both c(i,a) and 

T(i,a) are uniformly bounded in i,a. For the case in which only the 

assumptions Al and A3 are made, it was shown 1.n chapter 5 of r4] that the 

optimality equation (3.1) has a finite solution under the following 

condition C6. 

C6. There exists a states and finite non-negative numbers y., id such that 
1. 

(a) lc(i,a) j+T(i,a)+L 1p .. (a)y.5y. for all id and aEA(i), 
JE 1.J J 1. 

(b) For any · id, I. 1p .. (a)y. is continuous on A( i), 
JE 1.J J 

(c) lim I. 1p1:.(f)y.=O for aU iEI and fEF, 
n-+<x> JE 1.J J 
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where, for aZZ i,jEI and aEA(i), 

p .. (a)=p .. (a) if i~ and p .. (a)=O if i=s, 
l.J l.J l.J 

and, for any fEF, p~.(f) is the n-foZd matrix product of the matrix 
l.J 

(p .. (f(i))), i,jEI with itself 
l.J 

It was shown in chapter 12 of' [4] that in case assumption A2 does holds 

the condition C6 with a bounded function y., iEI is equivalent to the 
l. 

condition Cl with the set K consisting of a single state. The Liapunov 

function approach given by condition C6 was further investigated in [6] 

and [7] where in particular sensitive optimality criteria were studied. 
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