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ABSTRACT

This survey paper considers an undiscounted semi-Markov decision
problem with denumerable state space and compact metric action spaces.
Recurrence conditions on the transition probability matrices associated
with the stationary policies are considered and relations between these
conditions are established. Also it is shown that under each of these con-

ditions the optimality equation for the average costs has a bounded solu-

tion.
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INTRODUCTION

In this paper we consider an undiscounted semi-Markov decision model
specified by five objects (I, A(i), pij(a), c(i,a),t(i,a)).We are concerned
with a dynamic system which at decision epochs beginning with epoch 0 is
observed to be in one of the states of the denumerable state space I.

After observing the state of the system, an action must be chosen. For any

state ieI, the set A(i) denotes the set of possible actions for state 1i.

If the system is in state i at any decision epoch and action acA(i) is

chosen, then regardless of the history of the system, the following happens:

(1) an immediate cost c(i,a) 1s incurred;

(ii) the time until the next decision epoch is random with mean t(i,a);

(1iii) at the next decision epoch the system will be in state j with probability
pij(a) where ZjeIpij(a) = 1 for all iel and aeA(i).

Unless stated otherwise, we make throughout this paper the following assumptions.

Al. For any iel, the set A(1) Zs a compact metric space on which both c(i,a),
1(i,a) and Pij(a) for any jel are continuous.

A2. There is a finite number M such that |c(i,a)|<M and 1(i,a)s<M for all iel
and aeA(i).

A3, There 1is a positive number 8§ such that t(i,a)28 for all iel and aeA(i).

We note that Assumption Al is satisfied when A(i) is finite for all iel.

A policy m for controlling the system is any (possibly randomized) rule
for choosing actions. For any initial state i and policy m, denote by X and
a_the state and the action chosen at the nth decision epoch for n = 0,1,....
(the 0th decision epoch is at epoch 0). Denote by Eﬂ the expectation when
policy n is used. Let F = xieIA(i)’ i.e. F is the class of all functions f which
add to each state i€l a single action f(i)eA(i). For any feF, denote by f(w)
the stationary policy which prescribes action f(i) whenever the system is in
state i. Under each stationary policy f(m) the process {Xn,n20} is a Markov-
chain with one-step transition probability matrix P(f) = (pij(f(i))), i,jel.
For n = 1,2,..., denote the n-step transition probability matrix of this
Markov chain by Pn(f) = (p?j (£)), i,jel.

In this survey paper which is based on results in 31 and [4] we shall
study a number of recurrence conditions on the stochastic matrices P(f), feF.

In section 2 we give these conditions and prove several relations between them.
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We discuss in section 3 the optimality equation for the average costs and

verify that under each of the above conditions this optimality equation

has a bounded solution.

. RECURRENEE CONDITIONS

We first introduce the following notation. For any set AsI, define

N, = min{nz1|X €A} where N,=o if X ¢A for all n>1.
n A n
Consider now the following recurrence conditions CI1-C5 on the stochastic

matrices P(f), feF.

Cl. There is a finite set K and a finite number B such that

(2.1) E

; oo){NKIXO=i}SB for all iel and.feF.

(
Further for any f€éF the stochastic matvix P(E£) has mé two disjoint closed
sets.
C2. There is a finite set K and a finite number B such that for any feF

a state s ek exists for which

(2.2) E {N{S }|X0=i}SB for all iel.
f

(=)

C3. There is a finite set K, an integer vzl and a number p>0 such that

(2.3) T po. (£)2p for all iel and feF.
jek ]

Further, for any feF the stochastic matrix P(f) has no two disjoint closed sets.

C4. There is an integer vzl and a number p>0 such that

V V

(2.4) z min[pi
2

.(£), p.
jel 17 t

j(f)]2p for all il’i2€I and feF.
C5. There is an integer vzl and a number ¢>0 such that for each feF a probability
distribution {nj(f),jeI} (say) exists for which

(2.5) [ z p?.(f) - 3 ﬂj(f)ls(l_p)[n/V]

for all A€l, jel and n=1,
jeA jie A :
je je

where [x] denotes the largest integer less than or equal to x.



The condition Cl was considered in [4], cf. also [10]. Clearly condition
C2 implies C1. - The condition C3 was introduced in [4] and called the
simul taneous Doeblin condition since for each feF the stochastic matrix
P(f) satisfies the so-called Doeblin condition from Markov chain theory.

The conditions C4 and C5 were introduced in [3]. Following Markov chain
terminology, the conditions C4 and C5 could be called a simultaneous
scrambling condition (cf. [15]) and a simultaneous quasi-compactness
condition (cf. [9]) respectively. Observe that under each of the above
conditions any stochastic matrix P(f), feF has no two disjoint closed sets.
Further, any P(f) is aperiodic under both C4 and C5. Finally, we note that
the left side of (2.4) denotes the ergodic coefficient of the stochastic
matrix Pv(f) and that {Tg(f), jeI} in C5 denotes the unique statiomary
probability distribution of P(f).

Before proving a numbef of relations between the above conditions, we
first mention the following facts which will be frequently used hereafter.
Since F=Xi€I A(i), we have by Al that the set F is a compact metric space
in the product topology. Further, using the relation
m*1

(2.6) (£) =X p. . (Dp".(f) for all i,jeI, m>1 and feF.
1k 7 Fkj

kel

and Proposition 18 on p. 232 in [11], it immediately follows by induction
*
that for any n21 and i,jel the function p?j (f) is continuous on F.

From Markov chain theory we have that for any feF
T
2.7) 11m-; T pij(f) = nij(f) (say) exists for all i,jel

n->-w k=1

In case P(f) has no two disjoint closed sets, then
(2.8) n:j(f) = ﬂj(f) (say) for all 1i,jel
where the non-negative numbers ﬂj(f) satisfy

(2.9) m.(f) = I p..(E)m,(f) for all jel.
] ier *J t

We note that additional assumptions are needed to ensure that {Wj(f)} in (2.8)

is a probability distribution in which case {ﬂj(f),jeI} is the unique

probability distribution satisfying (2.9).

* . . .
In the remainder of this section we shall not use the product property

F =XA(i) but only the fact that T is a compact metric space.



We now first prove

THEOREM 2.1 (cf. [41). Suppose for any feF that the stochastic matrix P(f)
hasrx)twod%sjointclosedsetsandthat{nj(f),jel} 18 a probability
distribution. Then the function wj(f) 18 continuous on F for each jel

if and only if for each e 0 there is a finite set K(e) such that

(2.10) T m.(£)21-e for all feF.
jeK(e)
PROOF. Suppose first that for each €0 we can find a finite set K(e) such

that (2.10) holds. Now, let {fn,nzl} be any sequence in F such that fn+f*

as n»». Choose heIl. We shall now verify that

(2.11)  limm (£) = m (£

n-ro

To do this, let ap be any limit point of {wh(fn),nZI}. By the well-known
diagonalization method, we can choose a subsequence {nk,kzl} of integers

for which

=0

lim ﬂj(f ) = m. (say) exists for all jeI such that = he

koo J h

Take f=fn in (2.9) and let ko=, Using the fact that pij(f) is continuous

on F for %11 i,j and using Proposition 18 on p. 232 in [11], we find

i

* .
(2.12) ﬂj Zkaj(f )nk for all jelI.

ke

Further, using (2.10), we have

(2.13) T m. = 1.
jel J

By (2.12)-(2.13) and the fact that P(f*) has a unique stationary probability

=wh(f*),

distribution, it follows that nj=ﬁj(f*) for all jeI. In particular oy

which verifies (2.11).
Suppose next that ﬂj(f) is continuous on F for each jeI. Let now

{Kn,nZI} be any sequence of finite subsets of I such that

K 2K for all n=!1 and lim K =I.
n+l" n n
n->o



Define for n=1,2,....,

a (f) = = m.(f), feF.
n .
JeK.n

Then an(f) is continuous on F for all n>1. Further, we have for any feF that

an+1(f)2an(f) for all n>1 and lim an(f) = 1.
n->o©

Now, by Theorem 7.13 in [12], it follows that an(f)converges to 1 uniformly
in feF as n>~., Hence for each 0 we can find a finite n such that

an(f)ZI-e which verifies (2.10).

We note that (2.10) states that the collection [{ﬂj(f),jel}|feF] of

probability distributions is tight.

THEOREM 2.2 (cf. [41). The following three conditions are equivalent

(1) Condition C3 without the requivement that for any feF the stochastic
matrix P(f) has no two disjoint closed sets.

(ii) There is a finite set K and a finite number B such that for all iel
and feF

(2.14) E

; {NK|X0=1}SB;

(=)

(iii) For any e 0 there is a finite set K(e) and an integer v(e)=1 such that

(2.15) z nge)(f)zl—s for all iel and feF.
jeK(e)

PROOF. Suppose first that (i) holds with triple (K,v,p) in C3. We shall

verify (ii). Now,

Pr {XnéK for lsnsv!XO=i}Sl-p for all ieI and feF.

(=)

Hence, for all m>1,

(=)

Pr [m/v] for all iel and feF,

{X_¢K for 1<nsm|X, =il}<(1-p)
£ n 0



using the fact that this probability is non-increasing in m. Next by the
relation
[ee]

{NK|X0=1}=1+ E Pr
m=1

(2.16) E {XnéK for ]SnSm|XO=i}, iel and feF,

(=) £

we get (ii).

Suppose next that (ii) holds. We shall now verify (iii). Fix O<e<l and

choose 0<y<l such that (l—y)zzl—e. Then we can find an integer N21 such
that
(2.17) Pr {XnéK for ]Sn§N|XO=i}SY for all ieI and feF.

(=)

To prove this, suppose that for each integer m>1 there exists a state iel

and a feF such that Pr {X ¢K for ISnSm|X0=i]>y. Since this probability

f(°°) n
is non-increasing in m, it follows from (2.16) that E (w){NK|XO=i}>1+HW
which contradicts (2.14). Hence (2.17) holds. We next show that there is

a finite set A such that

(2.18) ) p@.(f)ZI—Y for all ieK, 1<m<N and feF.

. ij

jeA
To do this, fix ieK and 1<k<N. In the same way as in the second part of the
proof of Theorem 2.1, we find that for each y> 0 there is a finite set A(y)

such that
k
X pi.(f)ZI—y for all feF.
jeAa(y) M

Using this result and the finiteness of the set K, we obtain (2.18). Now,

by (2.17) and (2.18) we find for all iel and feF,

N
oy (D25 3 Pr (X =k,X ¢K for lsmsn-1|X =i} I pi (F) =
jea *J n=1 kekK f jea <3

> (1-v)Pr {XneK for some ISnsN|XO=i}2(1—y)221~e

£

which verifies (iii) since ¢ was arbitrarily chosen. Finally, it is immediate

that (iii) implies (1i).



Theorem 2.2 has the following corollary.

THEOREM 2.3 (cf. [4]). Suppose that condition C3 holds without the
requirement that for any feF the stochastic matrix P(f) has no two disjoint

closed sets. Then for any >0 there is a finite set K(e) such that

T ni.(f)zl—e for all 1iel and feF,
jeK(e)

Z.e. [{wij(f),jeI}lieI,feF]is a tight collection of probability distributions.

PROOF. Using Theorem 2.2 and relation (2.6), we have that for any €>0

there is a finite set K(e¢) and an integer v(e)=1 such that

z p?.(f)ZI—e for all iel, feF and n=v(e).
jeK(e)

Together this relation and (2.7) imply the Theorem.

The proof of the next theorem does not require assumption Al.

THEOREM 2.4 (cf. [1] and [31). Condition C4 implies condition C5.

PROOF. Let C4 holds with pair (v,p). Fix feF and A<I. For n=1,2,..., define

M =sup I p?.(f) and mn=inf bX p?.(f).
iel jeA J iel jeA J

Using (2.6), it follows that

(2.19) Mh+1SMn and oo

>m_ for all n21.
n
+ — -—
For any number a, let a =max(a,0) and a =-min(a,0). Then a+,a >0 and
+ - .

a=a -a . For any sequence {aj,JeI} of numbers such that ZjFIIaj|<w and

= = - _— += — 1
zjelaj 0, we have ZjeIaj ZjeIaj' Further, we note that (a-b) a-min(a,b)
for any numbers a,b. Fix now i€l and n>v. Then



z P (£)- ¢ p (f) = ¢ {plk(f) p (f)} z pk V(£) =

jeA ij jeA rj kel jeA

= = {p} (B)-p (DY % p) (f) - 2 {ps (E)-po (£)} 1z pV(f) =
kel ik jeA kel 1k rk jeA kJ

<{M -m } I {p\.l)k(f) - p\;k(f) }+ =

n-v n-v kel

{Mn—v—mh v}{l— b3 mln[p (f), p (f)]}_
kel

IA

(I=p) (1 _ -m__ ).

Since i1 and r were arbitrarily chosen, it follows that

—-m <(1- - vV,
Mn m (1 p){Mn—v mn_v} for all n>

Hence, since Mn—mn is non-increasing in n21,

[n/v]

(2.20) Mn—th(l—p) for all n=1.

Together (2.19) and (2.20) imply that for some finite non-negative number m(A)

1lim M =lim m =n(A).
n n

n->® n->«°

Further for any nxl,

(2.21) mnSN(A)SMn and mhsJeA J(f)<M for all iel.

It now follows from (2.20) and (2.21) that

[(n/v]

for all n21,

| = (f) - m(A)|<(1-p)
J€A

Since this relation holds for any A€I, it follows that n{.} is a probability

measure on the class of all subsets of I which completes the proof.
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THEOREM 2.5 (cf. [31) The condition C3 together with the assumption that
for each feF the stochastic matrix P(f) is aperiodic is equivalent to
each of the conditions C4 and C5.

PROOF. Suppose first that C3 with triple (K,v,p) holds and that any P(f)
is aperiodic. We shall then verify condition C4. Since for any feF the
stochastic matrix P(f) satisfies the Doeblin condition, has no two
disjoint closed sets and is aperiodic, we have from Markov chain theory

(e.g. [2]) that

(2.22) 1lim p?j (f) = nj(f) for all i,jel.

n->o°

Since (2.3) implies Zj (f)zp for all iel, feF and nzv, we have

n

erij

(2.23) r m.(£)=2p for all feF.
jeK

Define now

(2.24)  F = {£eF|m () = T%T} for keK,

where |K| denotes the number of states in K. Then, by (2.23),

Using the Theorems 2.1 and 2.3 and the fact that F is a compact metric space,
it follows that for any keK the set Fk is closed and hence compact. For any

iel and keK, define

) . n P
(2.25)  n(i,k,f) = mln{n21lpik(f) > iTiT} for feF, .

By (2.22), n(i,k,f) exists and is finite. Using the fact that Pn(f) is
continuous on F for each n2l, it is immediately verified that for each iel
and keK the set {feFk[n(i,k,f)Za} is closed for any real a, i.e. for each iel

and keK the function n(i,k,f) is upper semi-continuous on the compact set Fk'
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Now, by Proposition 10 on p. 161 in [11], we have that for each ieI and keK

the function n(i,k,f) assumes a finite maximum on F, . Hence, using the

K
finiteness of K, we can find an integer u>1 such that

(2.26) n(i,k,f)<py for all ieK, keK and feFk.

Next define for any keK

(2.27) m(k,f) = min{nzllpik(f) > Ef%T for all n<m<n+p} for feFk.

We now verify that for each keK the set Sa={feFk|m(k,f)2a} is closed for any
realo. Fix keK and an integer a>1. Suppose that f eS for n=1 and that

f +f as n»», Then we can find a subsequence {nh,h>1} of integers and integers
T and t with 1<r<a-1 and r<t<r+p such that pkk(f )<p/2|K| for all h>1.

and

Hence, by the fact that pkk(f) is continuous on F, we find pkk
so £ €S, . Ve have now proved that for any keK the function m(k,f) is upper

semi-continuous on the compact set F Hence there exists an integer N21

K’
such that

m(k,f)<N for all keK and feFk.

For any keK and feFk, we have by (2.25)-(2.27)

pg;m(k f)(f)> n(1 k, f)(f) m(k £)+u-n(i,k f)(f) S F |2 for all ieK.
4K

Hence, for any keK and feFk,

+u+m(k, £ + 3
‘i)k“ mk,B) gy 5 g J(f) ;‘ mCk, ) gy 5 —9—7 for all iel.
jeK 4|K|
Using this result, we now find for any keK and feFk,
z minlpy §N(E), py tTN ()] 2
jel 17 2J
v+u+m(k, £) N m(k f v+u+m(k, £ N-m(k, £
> % minlp} Y (5)p )(£), p 12111 (k£ ¢y pkjm( 57 s

jel 1
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\

3 _ 3
SJEULIR, pﬂ.m(k’f)(f) =L for all i,,i
4]K| jer 4|K|

261,

which verifies C4.,

By Theorem 2.4 we have that condition C4 implies condition C5. Suppose now
that condition C5 holds. Then any P(f), feF is aperiodic. To complete the
proof, we now verify that condition C3 holds. Since Pn(f) is continuous on

F for each n>1, it follows from (2.5) that for any jeI the function ﬂj(f)

is continuous on F. By Theorem 2.1, we now have that any €>0 there is a
finite set K(e) such that (2.10) holds. Next by using the uniform convergence
in (2.5), we find that for any €>0 there is a finite set K(e) and an integer
v(e)21 such that (2.15) holds. Now, by Theorem 2.2, we find that condition C3
holds which completes the proof.

THEOREM 2.6 The conditions C1, C2 and C3 are equivalent.

PROOF. By Theorem 2.2, Cl and C3 are equivalent.suppose now that C3 holds
with triple (K,v,p). We shall verify C2. As in the first part of the
proof of Theorem 2.5, we again obtain relation (2.23) and the compactness

of the set F, for any keK where F, is defined by (2.24). Fix now keK. For

k k

any feF define the stochastic matrix P(f)=(ﬁij(f)), i,jeI by

k’

(2.28) By (£) = py(£) for i, jeT and By, (H)=1.

Denote by Pn(f) the n-fold matrix product of ﬁ(f) with itself for n21. Using
the fact that P(f) is continuous on F, it is immediately verified by induction

that Pn(f) is continuous on F, for each n21. By the definition (2.28), we have

k

for any feF, that the expected number of transitions until the first return to

k
state k under P(f) is equal to that under P(f) for any initial state izk.

Hence, by the finiteness of K and the fact that u F, it suffices to

keKk =

prove that there is a finite number Bk such that for each feFk the expected

number of transitions until the first return to state k under P(f) is less

than or equal to B, for each initial state ieI. To prove this, we first

k
observe that, by (2.28) and the fact that keK, we have

(2.29) T ﬁz.(f) > T p;j(f)z p for all i€l and feF

jek J jeK k

i.e. P(f) satisfies the Doeblin condition.
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Since for any feFk we have that under P(f) state k is positive recurrent
and hence can be reached frgm any other state, it follows for any feFk
that the stochastic matrix P(f) has no two disjoint closed sets and that

under ﬁ(f) any state izk is transient and state k is an aperiodic positive
recurrent state. Since E(f) also satisfies the Doeblin condition, we have
from Markov chain theory (e.g. [2]) that for any feFk -

lim ﬁ’i‘k(f) =1 for all iel.

n->oo

Define now for any iel

. . AN
n(i,f) = m1n{n21|pik(f)>%} for feFk
Since Pn(f) is continuous on Fk’ it follows for any iecI the finite function
n(i,f) is upper semi-continuous on the compact set Fk' Hence there is an
integer ukzl such that

(2.30) n(i,f)suk for all ieK and feFk.

We shall now verify that

v+u
-~ k o .
(2.31) iy (f) > ETET for all ieI and feFk.

To do this, observe that, by (2.29), for any i€l and feF, we can find a state

. AV ~v+n(j,f) . ~n(j,f) .
jeK such that pij(f) > p/|K| and so Py Zpij(f)pjk >p/2|KI; This
relation and (2.30) imply (2.31) since state k is absorbing under P(f). From

(2.31) it follows for any feF, that the expected number of transitions until

k
the first return to state k under P(f) is less than or equal to 2|K|(v+uk)/p

for any starting state iel which completes the proof.

Finally we show that in condition Cl1 the set K can be taken as a singleton

when the stochastic matrices P(f), feF have a common recurrent state.

THEOREM 2.7. (cf.[41). (a) Suppose that condition C3 holds without the
requirement that any P(f), feF has no two disjoint closed sets. Let A<I and
the compact set GSF be such that for each iel and feG there exists a state jeA and

an integer nxl for which p?j(f)>0. Then there is a finite number B such that



_.]3..

Ef(m){NA!XO=i}sB for all iel and feG.

(b) Suppose that there is a state i el such that for any iecl and feF there

0
exists an integer nx=1 for which p?i (£)>0. Then in conditiom C1 the set K can

be taken equal to the singleton {iog;
PROOF. (a) Let (K,v,p) be the triple in C3. For each ieI, define

n(i,f)=min{n2]| T p?.(f)>0} for feG.
jeA ]

It is readily verified that for each ieI the finite function n(i,f) is upper
semi-continuous on the compact set G. Hence we can find an integer u2l such
that n(i,f)<p for all ieK and feG, so

Pr {XneA for some ]SnSu|X0=i}>0 for all ieK and feG.

£

Since for each ieK this probability is a continuous function in feG and G is
compact, there exists a number o>0 such that

Pr {XneA for some ISnsu|X0=i}2a for all ieK and feG.

()

We now find

Pr {XneA for some 1£n£v+ulX0=i}2

()

> T pY.(f)Pr {X eA for some ISnsulx =j}20p for all iel and feG.

. ij () "n 0
jek f

Hence Pr (w){XniA for ISnSv+uIXO=i}S1—ap for all iel and feG which implies

part (a) of the Theorem with B = (v+u)/op.

(b) This part is an immediate consequence of Theorem 2.2 and part (a) of
Theoren 2.7.

REMARK. In Theorem 2.6 it was proved that C3 implies C2. Alternatively, this

result may be obtained by considering the compact sets F, defined in (2.24)

k
which have the property that state k can be reached from any other state under

P(f) for feFk and by applying part (a) of Theorem 2.7.
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3. THE OPTIMALITY EQUATION.

In this section we shall discuss the optimality equation for the average
costs. As a consequence of the Theorems 2.5 and 2.6 we have that each of
the conditions C1-C5 implies condition C2. In the next theorem we shall prove
under a slight weakening of condition C2 that the optimality equation for

the average costs has a bounded solution.

THEOREM 3.1 (cf. [3], Tu4] and [10]). Suppose that a finite number B exists

such that for any feF there is a state s_ for which

f J

E {N{Sf}|x0=i}33 for all iel.

Then there exists a constant g and a bounded function v(i), iel such that

(3.1) v(i) = min {c(i,a)-gt(i,a) + I vp..(a)v(j)} for all iel
aeA(1) jel 1]

PROOF. To establish (3.1) it is no restriction to assume that the

times between the decision epochs are deterministic, since in (3.1) the

transition times only appear through their expectations. Now, we first

consider the discounted cost model. For any o>0, define for each policy =
o =0 (T +...+T )

. 0 n . .
Va(l’ﬂ)=E“{nioe c(Xn,an)|X0=1} for iel,

where T0=0 and, for n21, T denotes the time between the (n-1)st and nth
decision. Further, for any o>0, let Va(i)=infﬂYa(i’ﬂ) for ieIl. The above
quantities are well-defined. Letting the constants M and § be as in the
assumptions A2 and A3, we have for any o>0 and policy w that
|Va(i,ﬂ)|£M/(l—e_a6) for all iel. Hence, since a/(l—e_ad)él/é as a0, we

. *
can find a number o >0 such that
. 2M . * .
(3.2) luVa(l,n)lSE— for any ieIl, O<o<o and policy

Using known results for the discounted cost model (see 4], 8] and [13]),

we have that for any o > 0 the function Va(i), ieI is the unique bounded

solution to

(3.3) Va(i)=min {c(i,a)+e‘aT(i’a) X pi.(a)Va(j)} for iel.
acA(i) jer 1)
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Moreover, for any a>0, there exist a faeF such that

(3.4) Vu(i,fém)) =V (i) for all ieI

and faeF satisfies (3.4) if and only if fa(i) minimizes the right side of
(3.3) for all ieI. We shall now verify that there is a finite number y such

that

(3.5) |Va(i)-Va(j)lSy for all i,jeI and 0<a<a*.

To do this, choose O<a<a” and feF. Then, letting N = N{s 3o
f

- - N —a(t +...+7)
Vu(i’f( ))_Va(sf’f( ))=Ef(m){ NEJ € ° : C(Xn’an)lxo=i} *
n=0
=0 (Ta*.e . +Ty) - .
+ Va(sf,f(m))Ef(m){e 0 ¥ gm0V (5,57, et

Next, using the fact that 1-e *<x for x20 and (3.2), we obtain

|Vu(i,f(m))—Va(sf,f(w))iSMB+MB[uVa(sf,f(m))| <

2
Zﬁgﬁ for all ieI,

< MB +
Together, this relation and (3.4) imply (3.5) since o and f were arbitrarily

chosen. Fix now any state rel and define for any a>0
ha(l) = Va(l)—va(r) for ieI.

Then (3.3) can be equivalently written as

(3.6) h_(i)=min {e(i,a)+e @T(1ra) 4

: (i) + é—(e_uT(i’a)-l)ava(r)}, iel.
aeA(i) jel

pij(a)ha
For any o>0, let faeF be such that fa(i) minimizes the right side of (3.6)

for all iel. Now, observe that by (3.2) and (3.5), both ha(i) and uVa(i)

are uniformly bounded in ieI and O<a<a . Using the well-known diagonalization
method and the fact that A(i) is a compact metric space for any iel, we can find
a sequence {an,nzl} of numbers with an+0 as n»»~, a function £°¢F and a finite

constant g and a bounded function v(i), ieI such that
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{

lim a V_ (r)=g, lim h_ (i)=v(i) and lim £, (i)=£"(i) for all iel.
n>« n an n—-« n n->xe n

Now, for any n21 and ieI, we have

—anT(i,a) . . —anT(i,a)
h (i)=c(i,a)+e R pij(a)hu (3) + o= (I-e do V. (r)
n jel n n n

for aeA(i),

where the equality sign holds for a=fa (i). Now, letting n—>», using assumption

Al and Proposition 18 on p. 232 in[ll]?we find for any iel

v(i)<e(i,a)+ £ p..(a)v(j)-1(i,a)g for aeA(i)
jel 1]

where the equality sign holds for a=f*(i). This gives (3.1).

We end this paper by making some remarks. . We first remark that, by using a

data transformation introduced in [14] and results in [5], it was shown

in [3] that value iteration may be used to determine a bounded solution to

the optimality equation (3.1) under each of the conditions Cl1-C5. Further,

it was proved in [3] that under condition C1 with K a singleton the policy
iteration algorithm generates a sequence of stationary policies for which both
the associated average costs and relative cost functions converge so that the
limits satisfy the optimality equation.

We next remark that a repeated application of the result of Theorem 3.1
gives a sequence of optimality equations that are involved when considering
the more sensitive and selective n-discounted optimality criteria, cf. [61]
and [7].

Finally we remark that so far we have assumed that both c(i,a) and
1(i,a) are uniformly bounded in i,a. For the case in which only the
assumptions Al and A3 are made, it was shown in chapter 5 of [u4] that the
optimality equation (3.1) has a finite solution under the following

condition C6.

C6. There exists a state s and finite non-negative numbers Vi ieI such that

(a) Ic(i,a)|+T(i,a)+Zj (a)ijyi for all iel and aeA(i),

D..
€el“1]
(b) For any - iel, ZjeIpij(a)yj 18 continuous on A(i),

. AN - )
(c) llmn»m ZjeIpij(f)yj_O for all iel and fe€F,
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where, for all i,jel and aeA(i),
pij(a)=pij(a) if izs and pij(a)=0 if i=s,

and, for any feF, p?j(f) 18 the n—fold matrix product of the matrix
(ﬁij(f(i))), i,jel with itself

It was shown in chapter 12 of [4] that in case assumption A2 does holds
the condition C6 with a bounded function Vs ieI is equivalent to the
condition Cl with the set K consisting of a single state. The Liapunov
function approach given by condition C6 was further investigated in [6]

and [7] where in particular sensitive optimality criteria were studied.
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