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ABSTRACT

This paper is concerned with the properties of the value-iteration
operator which arises in undiscounted Markov decision problems.

We give both necessary and sufficient conditions for this operator to
reduce to a contraction operator, in which case the value-iteration method
exhibits a uniform geometric convergence rate.

As necessary conditions we obtain a number of important characteriza-
tions of the chain - and periodicity structure of the problem, and as
sufficient conditions, we give a general "scrambling-type' recurrency
condition, which encompasses a number of important special cases.

Next, we show that a data-transformation turns every unichained undis-
counted Markov Renewal Program into an equivalent undiscounted Markov
decision problem, in which the value-iteration operatsr is contracting,
because it satisfies this "scrambling-type" condition. We exploit this
contraction-property in order to obtain lower and upper bounds as well as
variational characterizations for the fixed point of the optimality equation,

as well as a test for eliminating suboptimal actions.

KEY WORDS & PHRASES: value iteration operator, contraction mapping,
geometric convergence of the successive approximation
scheme, chain - and periodicity structure, scrambling
type conditions, data-transformations, variational
characterization, test for eliminating suboptimal
actions.

*  Mathematisch Centrum, Amsterdam.

** I1.B.M. Thomas J. Watson Research Center, Yorktown leights, New York.
**% Mathematisch Centrum / Vrije Universiteit, Amsterdam.

*x+%%x This report will be submitted for publication elsewhere.






1. INTRODUCTION AND SUMMARY

This paper considers undiscounted Markov Decision Processes (MDP's)
with finite state— and action spaces.
Q@ ={1,...,N} denotes the state space, K(i) the finite set of alternatives
. . k ..
in state 1, q; the one-step expected reward and P?j > 0 the transition
probability to state j, when alternative k € K(i) is chosen in state i

. k
(i=1,...,N), where Z. P.,. = 1,
3 1] . )
We are concerned with the behaviour of the value-iteration operator Q,

which is defined by:
_ k . N
(1.1) Qx_‘.L = max, K(i){qi + Zj=1 P.

Denote by Qn the n-fold application of the operator Q:
n n-1 1
Qx =Q(Q x) n=2, 3,...3 Q x = Qx
Note that Q(x+cl) = Qx + cl for every scalar c, where 1 is the N-vector with
all components unity. As a consequence, it is useful to consider the follow-
ing equivalence relation on the N-dimensional Euclidean space EN:
(1.2) X v y <=> there exists a scalar c such that x = y + cl.
Y
Let EN be the quotient space which is generated by this equivalence relation,

N . . . . .
and note that E is a (N-1 dimensional) vector space, with the conventional

addition and scalar multiplication. Define, the Hxﬂd by (cf.BATHER [2]):

I xl x - X . , where
d min

max

X max. X. and X . = min. X.
i 71

max i7i min
. . N . N
Note that Hx“d is a quasi-norm on E, and let it be the norm on E . The
operator Q appears e.g. in the value-iteration equations, which were first

studied by BELLMAN [3] and HOWARD [12].



(1.3) v(nrl), = Q v(n), = Qn+1v(0)i, i=1,...,N;  n=1,2,...

where for all n = 1,2,... and i € Q, v(n)i may be interpreted as the maximal
total expected reward for a planning horizon of n epochs, when starting at
state 1 and given an amount V(O)j is obtained when ending up at state j.

The asymptotic behaviour of the sequence {an}:=1, X € EN was studied
in BELLMAN [37, BROWN [4], LANERY [4], WHITE [8], SCHWEITZER [9], [20] and
others. In [3] it was shown that there exists an integer d* > 1 (which may
be calculated from the periodicity and chain-structure of the problem), such
that

N

+
nJ Tx - (nJ+r)g* exists for all x € E,

(1.4) 1im Q

n->w
, . . . * * .
if and only Zf J is a multiple of d , where g has to be taken as the maximal
gain rate vector. In addition, it was shown in [4] that whenever lim
+ * . .
QnJ Tx - (nJ+r)g exists for some particular x ¢ EN, J=1,2,... and
.. * . . .
r =0,...,J — 1 the approach to the limit v (x) is geometric i.e. there

exist scalars K = K(x) and X = A(x) with O € A < 1 such that:

+ *
nJ Tx - (nJ+r)g - V*I < Kkn, n=1,2,...

(1.5) o)

* * . . . .
where (g ,v ) satisfy the average return optimality equations:

(1.6) gz = max, ¢ K(i) Zj P?jg; i=1,...,N
(1.7) v: + g: =T v;, i=1,...,N
with
(1.8) Tx, = max, s {q% + Z.Pk.x.}, ie Q and
i e L(1) 71 1133
L) = kek(D)] g} = I, Pijg;}, iecaq.

The geometric convergence result in (1.5) is surprising since, example

* .
1 below shows that, even when d = 1, the Q-operator in general is not a



(J-step) contraction operator (for any J = 1,2,...) nor does it ultimately

reduce to such a mapping. We define the latter as in DENARDO [6], i.e.:

(1.9) Let X be a normed vector space; an operator A: X >~ X is a J-step
contraction operator, if and only if there exists a scalar p,
0 < p £ 1 such that for all x, y ¢ X: IAJx - AJy] < (]—p)lx—yl,

where | | is the norm on X.

This contrasts with what is known to be the case (cf. DENARDO [6]) in the
substochastic case where ZP?j <1 (1€ Q,k € K(1)).

The fact whether an operator A, as defined in (1.9) is J-step contract-
ing for some J = 1,2,... is <ndependent of the norm chosen on X asmay easily
be verified using the fact that any two norms |x| and |xrareequivalentinthe
sense that there exists constants K and K”such fhat lxl < K|x|~“and

|x|“< K{x| for all x e EV (cf.COLLATZ (5], § 9.2).
EXAMPLE 1.

o g* = [0,07, hence K(i) = L(i)

12 i
for all 1 € Q.

1 1 1
1 1
2 |0

N
- O O W

Note that d* = 1, in view of every policy being aperiodic (cf. th.3.1 part

(¢) of [23]). Take x = [Q,X] and y = 0. Note that,

%% = [0,max(0,X-n) ] and Tny =0 for n=20,1,2, i.e
n n
| > SUP{LTIU_"T_VILAI u,v € EN, Jlu - v, > 0} =
[a = Ty g

1% - Tyl Lig max(0,X-n) _

> %kg Tx = yTd . = 4iB % 1 for all mn=1,2...

(cf. also section 7 of [24])

In this paper we give (both necessary and sufficient) conditions for
the Q-operator to be aJ-step contraction mapping for some J = 1,2,... The
identification of these conditions is of particular importance since with Q

being contracting, the geometric convergence result in (4.5) is straight-



forward (cf. theorem 1), and in addition the contraction-property may be
exploited in order to obtain:
(1) a lower bound for the convergence rate of the value iteration method.
(2) wupper and lower bounds, as well as variational characterizations for
the fixed point v* of the functional equation (1.7) which in this case
is unique up to a multiple of 1 (i.e. its representation in EN is
unique).
(3) a test for eliminating suboptimal actions in the value-iteration method.
As necessary conditions we obtain some important characterizations with
respect to the chain- and periodicity structure of the problem. In addition
we present a general sufficient condition of a "scrambling" type (cf.[1],
[9]) which encompasses a number of important and easily checkable conditions.
We note that in [6] a special case of this '"scrambling-type" condition was
used to prove the convergence of the relative cost differences.

The above results are obtained after giving the notation and prelim-
inaries in section 2.

In [21] a data-transformation was introduced which turns every undis-
counted Markov Renewal Program (MRP)(cf.[7],[3]) into an undiscounted MDP
which is equivalent in the sense that it has the same maximal gain rate
vector, and the same set of maximal gain policies. In addition, the trans-
formed problem has every policy aperiodic such that the (geometric) conver-
gence of {an—ngﬁ:=l is guaranteed for all x € EN, ice. d¥ =1 (cf.(1.4)).

In section 4, we show that for unichained MRPs, this data-transformation
has the considerably stronger property of turning the MRP into an equivalent
MDP, in which the Q-operator is a least N-step contracting with all of the
nice consequences, mentioned above. These results are obtained by showing

that the transformed problem satisfies the above '"scrambling-type'" condition.

2. NOTATIONS AND PRELIMINARIES

A (stationary) randomized policy f is a tableau [fik] satisfying

> =
Fie 2 0and 3 viiyFix Kk

alternative is chosen when entering state i. We let SR denote the set of

1, where fi is the probability that the k-th

all randomized policies, and SP the set of all pure (non-randomized)

policies (i.e. each forf ¢ SP fik==0 or 1). Associated with each f € S, are a

R



N-component reward vector q(f) and N x N matrix P(f) with
2.1) ). =3 £, q% P().. = 3 £ P 3154, jsN

: W) = Prer(i) Tik%i? ij  “keK(i)ik i3~ T 1%
Note that P(f) is a stochastic matrix (P(f)ij > 0; Z?=l P(f)ij =1;1<1,

j € N). For each f € SR’ we define the gain-rate vector g(f) by:

. 1 n £
(2.2) g(f) = lim_ —5 T, o P(£) q(f)
such that g(f%;denotes the long run average expected return per unit time,
when the initial state is i, and policy f is used. We next define the

maximal gain rate vactor g* by:
(2.3) Y= (£); i=1,...,N
. gi = supfeSR g 3 i=l,...,N.

Since we know from DERMAN [8] that there exists a pure policy which

attains the N suprema in (2.3) simultaneously, we can define:

* *
(2.4) Spue = {feSP[ g(f) =g’} 5 Sy = {fesy| g(f) = g’}
as the set of all pure and the set of all randomized maximal gain policies.
For each policy feSR, let R(f) denote the set of states that are recurrent

under P(f). Next , define R* as the set of states that are recurrent under
some maximal gain policy.

*

(2.5) R

{ieQ| ieR(f) for some feSRMG} =

{ieQ| ieR(f) for some feSPMG}

where the second equality in (2.5) was shown in th. 3.2 part (a) of [21].
Likewise, we define R as the set of states that are recurrent under some

(arbitrary) policy
(2.6) R = {ieq| ieR(f) for some fes,} = {ic@| ieR(f) for some feSy}

where the second equality is a special case of the second equality in (2.5)

~

by taking every q? = 0. Note that R" < R.



We next observe that there always exists a solution pair (g,v) to the
optimality equations (1.6) and (1.7). In addition each pair (g,v) has
g = g*-—sothat the sets L(i), ieQ, are unique-, whereas the v-part of the
solution pair is not uniquely determined (nmote e.g. that if v satisfies

(1.7) then so does v + cl, for any scalar c). We therefore define:
N * .
V = {veE (g ,v) satisfy (1.6) and (1.7)}.

We finally recall the following basic properties of the Q-operator:

IN

(2.7) (x=y) o (QX-Q}')min < (Qx-Qy)max < (x-y)max

A

lqx-qyl , < Ix=yl X,y € EV,

The proof of (2.7) is easy and may be found in lemma 2.1 of [2]. The
T-operator, being a special case of the Q-operator, has the same properties,

and in addition:

* *
(2.8) T(x+cg ) = Tx + cg , for all scalars c; x € E
which is immediate from the definition of the sets L(i).

3. NECESSARY AND SUFFICIENT CONDITIONS FOR Q BEING A (J-STEP) CONTRACTION
MAPPING, AND SOME OF ITS IMPLICATIONS

Before studying necessary and sufficient conditions for Q to be a
J-step contraction mapping for some J = 1,2,..., we first show that the

. * .
geometric convergence of the sequence {an - ng }n= for all x ¢ EN, 1s

1
. J . . . .

straightforward when Q 1is a contraction mapping. We first formulate and

prove this result with respect to the T-operator (cf. (1.8)). The corres-

ponding property for the Q-operatér then follows from corollary 3 below.

THEOREM 1. (Geometric convergence of value-iteration)

. N
Let T be a J-step contraction operator on E , for some J = 1,2,...

and some contraction factor 0 < p < 1 (cf.(1.9)). Then, for all x ¢ EN,



. * * .
there exists a v = v (x) € V such that for all ieQ,

* *
(3.1) TnJ+rxi-—(nJ+r)gi - vil < (l-p)n“x-v*“d; n=1,2,...; r=0,...J-1.

PROOF. Fix x € EN, and v € V. Let b(v)? = q? - g; + I, P?jv. - V., and note
*

from (1.7) that max b(v)? = 0. Define e(n,x) =T x -ng -V = Tnx - Tnv,

keL (1)
where the second equality follows from a repeated application of (1.7) and
(2.8). Observe next that

nJ+r _ TnJ+rV“

(3.2) le(musr, 0l = 1T 7% ol

J n
< It - < - —vll
d T “x = T (1-p) “xvd,

la

for all n = 1,2,...; and r =0,...,J-1

where the first inequality follows from (2.7) and the second one from (1.9).

Conclude that
(3.3) DM eaml, =0
: n>o ’ d

Next substract (n+1)gk— v from both sides of the equality:

n+1 _ k k ,.n .
T x, = maxkd(i){qi + ZjPij(T x)j},
azd use (2.9) in order to get:
_ , k k _
e(n+1,x)i = maxkéL(i){b(v)i + ZjPije(n,x)j} =

= e(n,x)min + max {b(v)? + ZJ.Pli{j[e(n,x)j - e(n,x)min]}.

keL(i)
In view of (3.3) it follows that for n sufficiently large only alternatives
k € L(1) with b(v)? = 0 can attain the above maxima, i.e. for all n

sufficiently large we have

e(n+1,x)i max{ZjPlzje(n,x)j | keL (1) with b(v)? = 0}. Hence,

IA

(3.4) e(n,x)mi e(n+1,x)min < e(n+l,x)max < e(n,x)ma .

n X



(o]

We conclude that {e(n,x) }°° [{e(n,x) . } ] decreases [increases]
max n=1 min n=1

monotonously to a limit A (x)[A-(x)]. However in view of (3.2), we have that

+ - . . .

A ()X (x) = %gg e(n,x)max - %3@ e(n,x)min = %kgﬂe(n,x)ﬂd= 0
Hence

V@) =A@ =A@ and  Lim e(n,x) = A1,
or

\ where viev o+ A(x)1 eV,

lim Tk - ng*
n—>o
which proves the first assertion. This together with (3.4) lead to:

[TnJ+rx - (nJ+r)g* - V*]min - e(nJ+r’X)min " Ax) <0<

+ * *
nJ rx - (nJ+r)g - v 1] .

< e(nJ+r,x)max - xx) = [T max

so that in view of (3.2):

nJ+r
X

* * *
|T .- (g - vil < le(n+r,x)l < (1-0) " x-v Iy

for all n = 1,2,...; r =0,...,0 -1 and i € Q.

We next introduce two conditions with respect to the chain- and
. e s . .. J
periodicity structure, both of which appear as necessary conditions for Q
1,2...).

A;: There exists a randomized aperiodic policy f ¢ SRMG’ which has R* as

I

J .
or T to be a contraction operator (for some J

its single subchain.
A,: There exists a randomized aperiodic policy f « SR’ which has R as its
single subchain.
The following statements are equivalent formulations for both Al and

Ay, which are expressed in terms of the structure of the finite set of



pure (maximal gain) policies only (cf. corollary 3.3 in [22] and th. 3.1

part (c) in [23], and observe that 'S_ appears as the set of all maximal

R
gain policies, when taking q? = 0):
A': Let C" = {c ¢ QI C is a subchain for P(f), for some f € S }
' (1 _ , M2
: . . =C, C s seey
C(n) = C'} with C(l) e ¢ and C(l) n C(l+l) # 0 (i=1,...,n-1)

(b) the integers which appear as the period of some subchain of

Then (a) for any pair C, C' ¢ C*, there exists {C

some policy in SPMG’ are relatively prime.

Aé: Let C = {C c QI C is a subchain for P(f), for some f € S_}

~ P
Then (a) for any pair C, C' ¢ C, there exists {C(l) (2) (n)

_ _ . =c, c'?,...,c'™.
¢} with ¢ ¢ € ana ¢ o D g G,

(b) the integers which appear as the period of some subchain of
some policy in $p, are relatively orime.
We note that whereas part (b) of A; implies part (b) of A! the parts

2

(a) of A; and Aé are mutually independent. In addition, we remark that more

efficient procedures have been established to verify A

tively A; and Aé). ‘(¢f. [22] and [23]).

. and A2 (or alterna-

THEOREM 2. (Necessary conditions for T to be a contraction mapping).
Let T be a J-step contraction mapping on EN'fbr some J = 1,2,... (ef.(1.8)).
Then,

(1) v € V is unique up to a multiple of 1
*

(2) g; = g* for all i € Q; hence L(1i) = K(i), for all i € Q, and Qx = Tx

for all x € EN.
(3) A and A, hold.

PROOF. Let v*, v e V. By a repeated application of (1.7), we obtain, using
(2.9):

Tv =v +Jg and Tv =v + Jg .

Hence,

* * **

J J
ud=uTv*—Tv

v =v™ "d < (l—p)"v*—v**“d,
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which implies Ilv*--v**lld = 0, or condition (1).

Condition (1) in turn, is equivalent with the existence of a policy
f e SRMG’ which has R* as its single subchain (cf. remark 3 and th. 3.2 part
(c¢) in [22]).

Condition A,, i.e. the fact that even aperiodic policies can be found

1’
with this property, then follows from the convergence of {t"x - ng*}

o
N n=1
for all x ¢ E° (cf. theorem 1), using th. 5.4 part (b) and th. 3.1 part (f)
of [23]. The existence of a unichained maximal gain policy in turn implies
condition (2).

Next, assume to the contrary that A, does not hold. State i is said

2

to reach state j, if there exists a policy f € S_, and some integer r 2 0,

P
such that P(f)ij > 0. Let £ be any randomized policy which has f: > 0

k
for all i € Q, k € K(i). We claim

(3.5) there exists a pair of states j], j2 ¢ R such that j2 does not

reach j].

For assuming the contrary, would imply that all states in R communicate
with each other under P(f*), i.e. either
(1) Reg Q\R(f*), or
(2) R is a strict subset of R(f*), or
(3) P(f*) has ﬁ as a single subchain,
with each of these three possibilities leading to a contradiction in view of
the definition of ﬁ, and our assumption that A, does not hold.

2
Fix a policy f, e S_ with j] € R(fl) and let C be the subchain of P(f])

1 P

“whichcontains jl' Obviously j2 does not reach any one of the states in C.

Next choose x ¢ EN such that X = A>>1 for i € C and x. = 0(1) otherwise
i

where 0(1) denotes any bounded term in A. Let v* satisfy (1.7). Since

J J J-1 £
T x, 2 [P(fl) x]i + Z£=O [P(fi) q(fl)]i’

and since C is a subchain of P(f]), we have

J
(Tx)i =X + 0(1), for 1 ¢ C
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Since j2 cannot reach C, we have (TJx)J-2 = 0(1). Finally observing that

TJV* = 0(1), we have

IT9% - TJv*nd =+ 0(1),
whereas
Ix - v*ud =+ 0Q)

as well. Conclude that

J J
I - .
1 > sup{ IW%TTT%ﬂ?!d | u,v e EN with Iy - v"d > 0} 2
J J *
It =T I
> lim Tx = V*"d d =1,
)\-Mn

thus contradicting the fact that T is a contraction mapping. This proves A2

by contradiction. g

COROLLARY 3. Fix J = 1,2,...

(1) Q Z8 a J-step contraction operator on %N, or some contraction factor
P P
p >0 (c£.(1.9)) Zf and only <if
(2) T Zs a J-step contraction operator on EN, for some contraction factor

p > 0.

In addition both (1) and (2) imply that the Q- and T-operator coincide.

PROOF. %

(2) => (l): follows from theorem 2 since condition (2) implies Q = T.
(1) => (2): we recall that the Q operator reduces to the T operator as

follows:

for each x € EN there exists a scalar to(x), such that

Qn(x+tg*) = Tn(x+tg*) forn=1,2,... and t 2> to(x)

BIBLIOTHEEK NATHIN AL COLNTRUM

ANSTERDAM-
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the proof of which is easy and may be found in lemma 2.2, part (g) of [24].
Next, assume to the contrary, that there exist two vectors X,y € EN, such

that

IT% - TJy“d > (1=p)hx-yl .

Let t = max{to(x),to(y)} and observe, using (2.9), that
Q7 (x+tg™) - QJ(y+tg*)nd = 17 (x+eg™) - TJ(y+tg*)ud -
= 9% - TJy"d > (1-p) 1 Gertg”) = (yregly,

thus contradicting (1).

REMARK 1. If Q (or T) is a J-step contraction operator on EN, with
contraction factor p, then in the'geometric convergence result obtained in
theorem 1, an upperbound may be obtained for the number of steps J needed
for contraction, i.e. there exists an integer M < N2 - 2N + 2 and a number
A, with 0 < A < (l—p)M/J

with:

such that for all x ¢ EN, there exists a v e V

nM+r
X

* n
. - . - V. I x=vll
|Q i (nM+r)gl vll < )\ lIx-v PE

n=1,2,...3 r=0,...,M - 13 ie Q.

The upperbound on M holds whenever condition Al is satisfied, as has been
shown in [24], th. 5.2, and we know from th. 2 that Al holds whenever Q is
a (J-step) contraction operator.

In addition the upperbound on M is at least sharp up to a term of
the order O(N) as has been demonstrated by example 2 in [24]. One may

verify that in this example, the Q-operator is a contraction operator.
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We next introduce a general "scrambling-type" recurrency condition

under which the Q-operator will be shown to be a contraction operator (cf.

also [1], [9]):

(S): there exists an integer J 2 1, such that for every pair of J-tuples

of pure policies (f],...,fJ) and (h],...,hJ):

N . ]
(3.6) zj=l m1n[P(fj)...P(f1)i]j, P(hJ)...P(hl)izj] >0

for all i # i, e Q

Theorem 4 below shows that this condition (S), encompasses a number

of important and easily checkable conditions.

THEOREM 4. The following conditions are special cases of condition (S):

. kj ko . . .
(1) Zj m1n(Pi]j, Pizj) >0 for all i # i, and k1 € K(11),
k2 € K(12)
(2) There exists a state s and an integer v 2 1, such that

P(f‘)...P(f“)iS > 0 for all £,£2,...,£" ¢ Sp5 i€ 0

(cf. White [28]).
3) Every policy is unichained; there exists a state s € Q which
is recurrent under every policy, and Pgs > 0 for all k ¢ K(s)

(4) Every policy is unichained and P?i >0 for all i ¢ Q, k € K(i).

PROOF. (1) => (S) with J = 1; (2) => (S) with J = v, was shown in [28];
(3) => (2) with v =N - 1, was shown in [1], th. 2.

(4) => (S): Fix two sequences of policies (fN""’fl) and (hN""’h]) and
i

v iz € O with il # i2. Let

S(n) = {j] P(fn)...P(fl)i]j > 0} and W(n) = {j] P(hn)...P(hl)izj > 0}.
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Note that, in view of P?i >0 for all i € Q, k € K(i):
(3.7) S(n+1) 2 S(n), W(n+1) 2 W(n) n=1,2,...

" Thus assuming to the contrary thatS(N) n W(N) = @, it follows that S(m) n W(m) =
= @, for all 0 < m < N. This in turn implies that the sequence {S(0) u W(0);
3...3S(N) u W(N)} is strictly increasing, thus leading to a contradiction:
for assuming that for some m < N, S(m+1) = S(m) and W(m+1) = W(m) would
imply the existence of a policy for which both S(m) and W(m) are closed
sets of states, thus contradicting its unichainedness.

REMARK 2. Observe that condition (1) requires each P(f), f ¢ SP’ to be
scrambling (cf. e.g.[9]). In addition we note that conditions (1), (2) and
(4) are mutually independent. To verify that (2) s=> (1), and (2) =+=> (4),

consider an example in which SP = {f}, with

P(f) =

o OO
O O *®
* % O

which satisfies (2) with v = 2 (where a x indicates a positive entry). Next,

the example in which S_ = {f],fz} with

P
* 0 * * O *
P(f]) =% (0 * and P(f2) =|*x Q0 *
* 0 0 0 0 *

satisfies (1) but not White's condition, nor (4). Finally, the example with

SP = {f} and

P(f) =

oo *
o * *
* ok O

shows (4) s> (1), whereas (4) ==> (2) follows from the fact that (4)
includes cases where ro state is recurrent under every policy. Finally
observe that condition (S) requires each policy to have a unichained and

aperiodic tpm.



15

Theorem 5 below shows that condition (S) is sufficient for Q to be a

(J-step) contraction operator:

THEOREM 5. Assume condition (S) holds for some integer J = 1. Then Q is a

. yN
(J-step) contraction operator on E .

PROOF. The proof of this theorem is related to the one of th. 1 in [1].

First, define

(3.8) o = min{zj minlP(f ) ... P(E); o3 P(hp) ... P(h)), <] |

13 2

i i, with 1l # i, fk, hk(] <k <0},
where o > 0 follows from (3.6) and the fact that in (3.8) the minimum is

over a finite number of combinations. We shall prove that:
(3.9) @’x - o'y, - @% - QJy)R < (=)lx-yl,  for all i, & ¢ Q.

The theorem clearly follows from (3.9). The inequality in (3.9)
trivially holds when i = 2. Fix now i # %, and let

J

_ J-1
Q X, = q(fJ)i + Zk=l P(fJ)'"P(fJ—k+])q(fJ—k)i + P(fJ)...P(f])xi,

and

J

-1
Qy =ahp +§ji=] P(h)...Ph d)ah ), + PG)...Ph)y,

J-k+1 Jk" 2

Next introduce the shorthand notation,

Bj = P(fJ)"'P(fl)ij and Yj = P(hJ)"'P(hl)Qj

Defining at = max(a,0) and a = min(a,0), (with a+ >0, a <0 and a+ +a =

= a) and using the fact that
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+
as well as the fact that (a-b) = a - min(a,b), we obtain:

(QJX - QJY)i - (QJX - \QJY)'Q < Zij (X_Y)j - Zij (X—Y)j =

+ - +
L.LB. = Y. ~—y.) + L. T Y. -y). < - z.LB.-Y.
J[BJ YJ] (xJﬂ yJ) J[BJ yJ] (x y)J (2=¥)pax J[BJ YJ]

+

- +
(X—y)minzj[Bj 'Yj] = ZJ[BJ - 'YJ] "x—y"d =

[l—ijin(Bj,yj)] Hx—yﬂd < (1-a) "x—y"d. 0.

4. ON TRANSFORMING UNICHAINED MARKOV RENEWAL PROGRAMS INTO EQUIVALENT AND
CONTRACTING MARKOV DECISION PROBLEMS

In this section, we consider the more general class of Markov Renewal
Programs in which the times between two successive transitions of state are
random variables, whose distributions depend both on the current state and
the action chosen. Let T?j > 0 for i,j € Q; k € K(i) denote the conditional
expected holding ‘time in state i, given the action k € K(i) is chosen
and that state j is the next state to be observed. We assume that the

unconditional expected holding times:

Tk =1z Pk k

i ; ijTij >0 (1€ Q; k e K(1))

For each policy f € SR’ q(f) and P(f) are defined as in section 2,
whereas g(f)i denotes again the long run average return per unit time,

when starting in state i. We finally recall that in this model the optimality

equations (1.6) and (1.7) have to be altered as follows:

k

(4.1) g; = maxk ¢ K(i) ZjPijgj 31 € Q

k k k
+

(4.2) VT maxy gy {qi - ZjPijTijgj ZjPijvj} 31 e Q
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The vector g* and the sets SPMG and SRMG are defined as in sectiom 2,
where the non-emptyness of these sets in the MRP-model was shown in [13].
The properties mentioned in section 2, with respect to the set of solutionms
to (1.6) and (1.7) hold unaltered for (4.1) and (4.2), with the set V
redéfined as: V = {v ¢ EN v satisfies (4.2)}. We define two undiscounted
MRPs to be equivalent if they have the same state- and action spaces, as
well as the same maximal gain rate vector and the same set of maximal gain
policies. .

We first recall that the gain rate vectors g(f) depend on the quantities
T?j only through the unconditional holding times Tﬁ. As a consequence, we
conclude that every MRP is transformed into an equivalent one, by replacing

k . . . . . .
X = Ti (i, € 93 k € K(1)). We thus obtain the following pair of optimality

oy
equations:
(4.3) = ma z Pk ;i e Q
y &3 ke K(1) *j 1j8; ’
k k k .
(4.4) vi = max, _ L(i) {qi Tigi + ZjPijVj} 31 € Q

Next, in [21] the following data-transformation was introduced which
turns every MRP, with (4.3) and (4.4) as the associated pair of optimality

equations into an equivalent MDP.

ko _ ky ko . . i .
(4.5) Pij = (T/Ti)(Pij 6ij) + éij’ i,j € Q3 k e K(1)

ko k, k, : . :

q = qi/Ti’ ie Q; k e K(1)

where 1 > 0 has to be chosen such that

k
ii

(4.6) 0 < 1 < min. T?/(I—P )

i,k

~k .. . .
s0 as to ensure that all Pij 20 (i,j ¢ Q3 k K(i)). Note that (4.6) is

satisfied for all 0 < 1 < mini kT?. Let V be the set of solutions to the
optimality equation (4.4) and let V be the set of fixed points of tlie

corresponding optimality equation in hte transformed !MDP. Then V= {ve EN

v € V}, see [21]. Let alnathe value-interation operator in the transformed
MDP.
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Observe finally that, by taking t strictly smaller than the upperbound in
(4.6), we have all 5?1 > 0, ;hich‘implies that every policy has an aperiodic
tpm, such that for all x € E , the geometric convergence result (1.5) holds
for the a operator, with J = 1, i.e. for all x € EN, there exists a vector

v ¢ V, and numbers K = K(x), and A = A(x) with 0 < A < 1, such that:
(4.7) 1" - ng” - v'| <KA®,  n=0,1,2,...

(To verify (4.7), cf.th. 3.1 and th. 5.1 of [23], as well as [24]).

This shows that, by applying the above data-transformation, and by
subsequently doing value-iteration with respect to the transformed MDP,
we find sequences which approach g* and some v ¢ V; moreover, it follows
from a generalization of Odoni [17] and from the fact that the original MRP
and the transformed MDP are equivalent, that ahy policy which is generated
by the value-iteration scheme (cf. (1.3)), for large enough n, is maximal
gain.

We henceforth assume condition (H) to hold.
(H): every pure policy in the MRP is unichained.

We next make the important bbservation that, with t chosen strictly
smaller than the upperbound in (4.6), the Qéoperator satisfies condition
(4) of th.4 , and as a consequence has the considerably stronger property of
being J-step contracting with J < N (ef.th.5).

Note that since the a—operator is contracting under condition (H),
v € V is unique up to an multiple of 1 (cf. th. 2), i.e. its representation
v in EN is unique. In the remainder of this paper, we will show that for
unichained MRP's the above data-transformation and the resulting contraction
property of the operator a in the transformed MDP may be exploited, in
order to
(a) find lower and upper bounds for v*
(b) derive variational characterizations (extremal principles) for v
(c) derive a test for eliminating nonoptimal actions.

We will use the following representation of EN (cf. section 1):

VN

N
E = {xeE | x N

. N .
N 0} such that the representation of a vector x ¢ E in E

. . . v . . v
is given by %, with x. = x. - x_, 1 € Q. Note that since x . < 0 < x R
1 1 N min max
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for all x ¢ EN.

N N )
(4.8) ERIENE R T i cQ

THEOREM 6. Consider the MDP value-iteration operator Q. Let Q be a (J-step)
contraction operator ( for some J 2 1) on %N, with contraction factor p > 0
(ef.(1.9)). Define 6 as the reduction of the operator Q to EN, z.e.

8: BN > x> ax =Qx - [Qx]N.l, and let v be the unique) fixed point of
Q (or a) on %N. Then for all x ¢ EN, n=20and 0 <r<J-1. '

* wnJ+r

r\an.'.rX - p—l(l-p)n"QJx—x"d < v, < Q X, + p—l(]—p)n“QJx—x"d

(a) Q

i
Hence,

1M x - v, < 07 (=) MIQ ks

(b) (Alternative elimination)
If for some x € EN, some state i € 9, and some action k e K(i)

k k J J-1 -1, J
. . PULx. - X, - .- Q" x-xI ..
(4.9) q; + ZJPleJ X, < (Q°x Q x)mln o) Q x-x d
Then k does not satisfy the maximum in the optimality equation (1.7), Z.e.

k Zs nonoptimal

PROOF.
(a) Using the continuity of the I I 4 -norm on EN, as well as (4.8) we
obtain:

mJ+r
X

x., - V;I < Iq - %ig{q - (mJ+r)g*}Hd =



20

. mJ+r _ nJ+r o m=1, (2+1)J+r NESS

=1lim IQ ~ 'x - Q xud lim 12~ (Q x-Q T Tl <
® (2+1)J+r LI+r_ o RS PCAz] r

< Z£=n qQ x - Q xl < 2£=n(] p)  IIQ" "x - Q x"d <

IA

o 1-p)® HQJx—de

where the last inequality follows from (2.8).

(b) It follows from the proof of theorem 1 of [17] that g* > (QJx-QJ—lx)min
Suppose alternative k ¢ K(i) which satisfies (4.9), attains the maximum.
in the optimality equation (1.7). Note from corollary 3 that the
Q-operator and T-operator coincide. Then, using part (a) and the fact

*
that v ¢ V, we have

q% + Z.Pk.x.—x. > q% - g* + Z.P?.vf - v+ Z.P%.(x.—vf) -
1 J1i3131 1 1 J 13 1] 1 J 1 1 13

* * * * * * *
- (xi—vi) +g 2 (x-v )min - (x-v )maX +g = -lx-v "d +g 2

> —p—lﬂQx—x"d + (QJX—Q—]x)min.

REMARK 3. The reduction of the Q-operator to EN, was first used in White
[28], in order to ensure the boundedness of his value-iteration scheme. The
lower- and upper bounds for v* are in fact generalizations of the lower-
and upper bounds obtained by MAC QUEEN [15] and PORTEUS [18] for
MDP's. Note that our bounds with m = 0 coincide with the analogon of Mac
Queen's bounds, whereas the analogon of Porteus' bounds is obtained by taking
n=1.

By using the above data-transformation, and by applying th. 6 to the
transformed MDP, we obtain upper- and lower bounds as well as variational
characterizations for each of the components of v*, and in addition a test

for eliminating non—optimal actions.

COROLLARY 7. Comsider a unichained MRP. Fix T < mini K T?/(]—P?i) and let
3

a be the value—iteration operator in the transformed MDP (cfi(4.5) and (4.6)).

-~

Next, let 5 be the reduction of a to EN, Z.e. 6x =Qx - [Qx]Nl for all
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-~

N, , '
x € E. Finally, let p be the (N-step) contraction factor of theoperator Q
(ef(1.9) and th. 4). Then,

- ~ - N
(a) 6nN+rx. -p l(l—p)n"QNx—xH <vr o< anN+rX- + p ](]—p)n“Q x-xl
i d i 1 d
N
for all x e E, and n = 0,1,...3 r = 0,...,N-1
* AnN+r -1 n, ~N
= - -0) 1 —xll
(b) ] maxerN {qQ X, o  (1-p) 1Q x-x d}
. AanN+r -1 n, ~N
= mlnerN { X, +p (1-p) IQ x—x“d}
1eQyn=0,l,..00.% r=0,....,n"1.
(e) If for some x € EN, some state 1 € Q, and some action k e K(i)
Kk ak AN aN-] -1 aN
+ -— — — —
a; ZjPinj x, < (Qx - Q X in ~ P QXX 4

then k is nonoptimal.

The variational characterizations in part (b) follow from part (a) by taking
x = v € V. Variational characterizations for g* were recently obtained in
[25]. One might use both lower and upper bounds for v*, and the test

for eliminating suboptimal actions (cf. part (a)), in the course of the
following value-iteration scheme for finding g*, v and some maximal gain

policy.
(4.10) y(n). = ay(n—l). = max . {ﬁ% + Z.fk.y(n—l).} +
i i keK(i) i i ij ]
~k =k .
- + -
maxkeK(N){qN ZjPNjy(n l)j}, ieq
. . N . .

with y(0) € E° chosen arbitrarily.

Let fn be a policy which achieves the N maxima in (4.10). Define

GL(n) = [Qy(n-1) - y(n—l)]min; GU(n) = [Qy(n-1) - y(n—]]max.
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has the following, easily verified and previously

The sequence {y(n)}:=!

discussed properties.

(a) y) > v

(b) 8 (n) < g(£) < g* < 0,(n) (cf. HASTINGS [6] and ODONI [171) with

. — * = .
lim 6, (n) = g lim 8, ()

(e) fn is maximal gain, for all n sufficiently large (cf. ODONI [17])

E.g. whenever at some stage n, i.e. for x = y(n), the test in part (c) of

cor. 7 is met for some i € Q, and k € K(i), k may be deleted permanently

from K(i) thus reducing the number of calculations in the following iterations.
However, both the application fotr the bounds for v* as the use of the elimin-
ation test require the computation of at least some lower bound of the
contraction factor p, i.e. of the scrambling coefficient o, as defined in

the right hand side of (3.6). Note that,

5 = mi 1,7 : .o <a<
(4.11) 0<5p m1n{P(fN)...P(fl)ij > Ol i,j € Q,fl, ,f_ € SP} a<p

N

where the last inequality follows form the proof of th. 5, and where the

second one may be verified as follows: Let the minimum in (4.11) be attained

for s,t € QF hk € SP(I < k < N) and fix y such that

fk’
' . * * * *
B = mln[P(fN)"'P(f])sy’ P(hN)"'P(h])ty] > 0.
Then, o 2 B 2 p. p may be computed as follows. Let xo be defined by
o) . k . . .
X; = mln{Pij > 0] j e, ke K(D}, ie Q.

N o
X

Then, ¢ = [U ]min’ where the operator U is defined by:
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k

4, . = mi .\Z.P..x, i :
(4.11) le win, K(l)ZJPIJXJ’ ie Q; xeE

Observe from the analogon of (2.7) that

N N-1
=wxl1. =20 x%1. =2...2>%".
min min min

©)
I

such that

o»
[

min{PEj > 0| i,j € 2, k e K(i))

is a lower bound of p (it may however be worthwhile to do a number of
iterations with the U-operator on xo, in order to obtain a better approxi-
mation of p).

If the employed approximation for p << 1, then the bounds of cor.7
part (a) will not be sharp, and the test of part (c) will not be met unless
ﬂx—vﬂd is very close to zero, namely when x = y(n) and n >> 1. Hence, if
p << 1, the bounds and the test will only be important near the very end of
the calculations. In addition one should observe that N represents the
. worst case behaviour for the number of steps needed for contraction, which
is enormously high, compared with the empirical fact that in most cases
J=1or 2 (cf. e.g. [26] and [27]).

Alternatively, one might want to use the test part of (¢) in combina-

tion with a device, given recently by Hastings [11] in order to eliminate

actions on a provisional rather than on a permanent basis.

REMARK 4. Hastings' test works as follows. Let

g(n,i,k) = Qy(n-1) - q - zj?;j y(a=1), > 05 §uy 6,(n) - 6 (n),

and H(m,n,i,k) = g(n,i,k) - ZS:; $(c), m > n.
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Then, action k ¢ K(i) is non-optimal at value iteration stage m, if
H(m,n,i,k) > 0 (for some n < m).

We observe that theorem 2 of [11] holds unconditionally, for every
(multichain) MDP, i.e. there is a stage after which no nonoptimal action
will pass the above test. This is an immediate consequence of the geometric
convergence result in (1.5)(cf. also [24]). However, whereas the Zdentifica-
tion of non-optimal actionsis possible in the unichain case, using the above
value-iteration scheme and cor. 7 part (c). this is (so far) infeasible for

the general multichain case.
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