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Contraction mappings underlying undiscounted Markov decision problems.**** 

by 

d * . ** .. *** A. Fe ergruen, P.J. Schweitzer & H.C.TiJms 

ABSTRACT 

This paper is concerned with the properties of the value-iteration 

operator which arises in undiscounted Markov decision problems. 

We give both necessary and sufficient conditions for this operator to 

reduce to a contraction operator, in which case the value-iteration method 

exhibits a uniform geometric convergence rate. 

As neaessary conditions we obtain a number of important characteriza

tions of the chain - and periodicity structure of the problem, and as 

suffiaient conditions, we give a general "scrambling-type" recurrency 

condition, which encompasses a number of important special cases. 

Next, we show that a data-transformation turns every unichained undis

counted Markov Renewal Program into an equivalent undiscounted Markov 

decision problem, in which the value-iteration operator is contracting, 

because it satisfies this "scrambling-type" condition. We exploit this 

contraction-property in order to obtain lower and upper bounds as well as 

variational characterizations for the fixed point of the optimality equation, 

as well as a test for eliminating suboptimal actions. 
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1. INTRODUCTION AND SUMMARY 

This paper considers undiscounted Markov Decision Processes (MDP's) 

with finite state- and action spaces. 

Q = {t, ... ,N} denotes the state space, K(i) the finite set of alternatives 

in state i, q~ the one-step expected reward and P~. ~ 0 the transition 
i iJ 

probability to state j, when alternative k E K(i) is chosen in state i 
k (i=l, ••• ,N), where L. P .. = 1. 

J iJ 
We are concerned with the behaviour of the value-iteration operator Q, 

which is defined by: 

( 1. 1) Qx. 
i 

i = 1 , ••• , N 

n Denote by Q then-fold application of the operator Q: 

n=2,3, .•• ; 1 
Q X = Qx 

Note that Q(x+c_!) = Qx + c! for every scalar c, where.!_ is the N-vector with 

all components unity. As a consequence, it is useful to consider the follow
N ing equivalence relation on the N-dimensional Euclidean space E : 

( I. 2) x ~ y <=> there exists a scalar c such that x = y + cl. 

~N 
Let E be the quotient space which is generated by this equivalence relation, 

and note that ~N is a (N-1 dimensional) vector space, with the conventional 

addition and scalar multiplication. Define, the llxlld by (cf.BATHER [2]): 

x - x. , where max min 

x = max. x. and x. = min. x. max i i min i i 

N ~N 
Note that llxlld is a quasi-norm on E , and let it be the norm on E. The 

operator Q appears e.g. in the value-iteration equations~ which were first 

studied by BELLMAN [3~ and HOWARD [12]. 
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( 1 • 3) v(n+l). = Q v(n). 
1. 1. 

n+l 
= Q v(O)., 

1. 
i=l, .•. ,N; n= 1 , 2, ••• 

where for all n = 1,2, .•• and i E ~. v(n). may be interpreted as the maximal 
1. 

total expected reward for a planning horizon of n epochs, when starting at 

state i and given an amount v(O). is obtained when ending 
J n co 

up at state j. 

The asymptotic behaviour of the sequence {Q x}n=l' x E EN was studied 

rn BELLMAN [3], BROWN [4], LANERY [4], WHITE [8], SCHWEITZER [9], [20] and 

others. In [3] it was shown that there exists an integer d*:::: 1 (which may 

be calculated from the periodicity and chain-structure of the problem), such 

that 

( 1 • 4) lim n-+co 
nJ+r * Q x - (nJ+r)g exists for all x E EN, 

* * if and only if J is a multiple of d, where g has to be taken as the maximal 

gain rate vector. In addition, it was shown 1.n [4] that whenever lim 
nJ+r ( ) * . . 1 N n+co Q x - nJ+r g exists for some part1.cu ar x EE, J = 1,2, ... and 

* r = O, ... ,J - 1 the approach to the limit v (x) is geometric i.e. there 

exist scalars K = K(x) and A= A(x) with Os A< 1 such that: 

( I • 5) n= 1 , 2, ••• 

where (g *, v~') satisfy the average return optimality equations: 

( I • 6) 

( I. 7) 

with 

( I . 8) 

* * v. + g. 
1. 1. 

k 
Tx. = ma~ L(i){qi 1. E 

L ( i) {kEK(i) I * = g. = 
1. 

i=l, ... ,N 

i=l, ... ,N 

k i + LP .. x.}, E St and 
J 1.J J 

k * i L p .. g.}, E St • 
J 1.J J 

The geometric convergence result 1.n (1.5) is surprising since, example 
* . I below shows that, even when d = I, the Q-operator 1.n general is not a 
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(J-step) contraction operator (for any J = 1,2, ... ) nor does it ultimately 

reduce to such a mapping. We defin~ the latter as in DENARDO [6], i.e.: 

( I • 9) Let X be a normed vector space; an operator A: X-+ Xis a J-step 

contraction operator, if and only if there exists a scalar p, 

GI < p :s; such that for all x, y E X: jAJx - AJyj :s; (1-p) jx-yj, 

where I is the norm on X. 

This contrasts with what is known to be the case (cf. DENARDO [6]) 1.n the 

substochastic case where EP~. < I (i E Q,k E K(t)). 
l. J 

The fact whether an operator A, as defined in (1.9) is J-step contract-

ing for some J = 1, 2, ... is independent of the norm chosen on X as may easily 

be verified using the fact that any two norms !xi and jxj-are equivalent in the 

sense that there exists constants Kand K-such that !xi :s; Kjxj-and 

jxj-:s; K1xl for all x E EN (cf.COLLATZ [SJ, § 9.2). 

EXAMPLE l. 

i k 

1 I 
2 I 

2 

I 0 
l 0 
0 I 

k 
q. 

l. 

0 
0 
-I 

g* = [0,0], hence K(i) = L(i) 

for all i E Q. 

Note that d* = I, in view of every policy being aperiodic (cf. th. 3.1 part 

(c) of [2]). Take x = [0,X] and y = 0. Note that, 

n = [O,max(O,X-n)] and Ty= 0 for n = 0,1,2, ... i.e. 

IITnx - Tnylld = 
llx - ylld 

lim max(O,X-n) 
x-+= X 

for au n 

(cf. also section 7 of [24]) 

1 , 2 ••• 

In this paper we give (both necessary and sufficient) conditions for 

the Q-operator to be a J-step contraction mapping for some J = I, 2, ... The 

identification of these conditions is of particular importance since with Q 

being contracting, the geometric convergence result in (4.5) is straight-
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forward (cf. theorem 1), and in addition the contraction-property may be 

exploited in order to obtain: 

(I) 

(2) 

a lower bound for the convergence rate of the value iteration method. 

upper and lower 

the fixed point 

bounds, as well as variational characterizations for 

* v of the functional equation (1.7) which in this case 

is unique up to a multiple of ( • • • • 'vN • 
i.e. its representation in E is 

unique). 

(3) a test for eliminating suboptimal actions in the value-iteration method. 

As necessary conditions we obtain some important characterizations with 

respect to the chain- and periodicity structure of the problem. In addition 

we present a general sufficient condition of a "scrambling" type (cf.[1], 

[9])whichencompasses a number of important and easily checkable conditions. 

We note that in [6] a special case of this "scrambling-type" condition was 

used to prove the convergence of the relative cost differences. 

The above results are obtained after giving the notation and prelim

inaries in section 2. 

In [21] a data-transformation was introduced which turns every undis

counted Markov Renewal Program (MRP)(cf.[7],[3]) into an undiscounted MDP 

which is equivalent in the sense that it has the same maximal gain rate 

vector, and the same set of maximal gain policies. In addition, the trans

formed problem has every policy aperiodic such that the (geometric) conver

gence of {Qnx-ng*}~=l is guaranteed for all x E EN, i.e. d* = I (cf.(1.4)). 

In section 4, we show that forunichainedMRPs, this data-transformation 

has the considerably stronger property of turning the MRP into an equivalent 

MDP, in which the Q-operator is a least N-step contracting with all of the 

nice consequence~ mentioned above. These results are obtained by showing 

that the transformed problem satisfies the above "scrambling-type" condition. 

2. NOTATIONS AND PRELIMINARIES 

A (stationary) randomized policy f is a tableau [fik] satisfying 

fik ~ 0 and IkEK(i)fik = I, where fik is the probability that the k-th 

alternative is chosen when entering state i. We let SR denote the set of 

all randomized policies, and Sp the set of all pure (non-randomized) 

policies (i.e. eachforf E Sp fik=Oorl). Associated with each f E SR are a 
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N-component reward vector q(f) and N x N matrix P(f) with 

(2. I) q(f). 
l. 

~ i, j ~ N. 

Note that P(f) is a stochastic matrix (P(f) .. ~ O; I~ 1 P(f) .. = I; I~ i, 
l.J J= l.J 

j ~ N). For each f E SR, we define the gain-rate vector g(f) by: 

(2.2) () 7 • In (),f_() g f = 1,-Z.mn--+o> n+l Il=O p f q f 

such that g(f). denotes the long run average expected return per unit time, 
l. 

when the initial state is i, and policy f is used. We next define the 

* ma.ximal gain rate vactor g by: 

(2.3) i=l, •.. ,N. 

Since we know from DERMAN [8] that there exists a pure policy which 

attains the N suprema in (2.3) simultaneously, we can define: 

(2.4) 

as the set of all pure and the set of all randomized maximal gain policies. 

For each policy fESR, let R(f) denote the set of states that are recurrent 

under P(f). Next , define R* as the set of states that are recurrent under 
some maximal gain policy. 

(2.5) R* = {iEnl iER(f) 

= { iEQ I iER(f) 

for some fESRMG} = 

for some fESPMG} 

where the second equality in (2.5) was shown in th. 3.2 part (a) of [21] . 
.... 

Likewise, we define Ras the set of states that are recurrent under some 

(arbitrary) policy 

(2. 6) 

where the second equality is a special case of the second equality in (2.5) 
k * by taking every q. = 0. Note that R c R. 
l. 
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We next observe that there always exists a solution pair (g,v) to the 

optimality equations (1.6) and (1.7). In addition each pair (g,v) has 

g = g* -so that the sets L(i), idl, are unique-, whereas the v-part of the 

solution pair is not uniquely determined (note e.g. that if v satisfies 

(1.7) then so does v + cl, for any scalar c). We therefore define: 

V = {vEEN I (g*,v) satisfy (1.6) and (1.7)}. 

We finally recall the following basic properties of the Q-operator: 

(2. 7) (x-y) . 5 (Qx-Qy) . ~ (Qx-Qy) 5 (x-y) min min max max 

II Qx-Qyll d 5 II x-yll d 

The proof of (2.7) is easy and may be found in lemma 2.1 of [2]. The 

T-operator, being a special case of the Q-operator, has the same properties, 

and in addition: 

(2.8) * * T(x+cg) = Tx +cg, for all scalars c; x E EN 

which is inunediate from the definition of the sets L(i). 

3. NECESSARY AND SUFFICIENT CONDITIONS FOR Q BEING A (J-STEP) CONTRACTION 

MAPPING, AND SOME OF ITS IMPLICATIONS 

Before studying necessary and sufficient conditions for Q to be a 

J-step contraction mapping for some J = 1,2, ... , we first show that the 
n * 00 N geometric convergence of the sequence {Q x - ng }n=I for all x EE, is 

straightforward when QJ is a contraction mapping. We first formulate and 

prove this result with respect to the T-operator (cf. (1.8)). The corres

ponding property for the Q-operator then follows from corollary 3 below. 

THEOREM I. (Geometric convergence of value-iteration) 

'\.,N 
Let T be a J-step contraction operator on E , for some J = 1,2, ... 

and some contraction factor O < p 5 I (cf. (l.9)). Then, for all x E EN, 
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* * there exists av = v (x) EV such that for all iEQ, 

(3. 1) n= 1 , 2, ••• ; r=O, ... J- I • 

N k k * PROOF. Fix x EE, and v EV. Let b(v). = q. - g. + 
k i_ i i 

from (1. 7) that maxkEL(i)b(v)i = 0. Define e(n,x) = 

k I:. P .. v. - v., and note 
rt iJ J* i n n 

T x - ng - v = T x - T v, 

where the second equality follows from a repeated application of (I. 7) and 

(2.8). Observe next that 

(3. 2) 

for all n = 1,2, ••. ; and r=O, .•. ,J-1 

where the first inequality follows from (2.7) and the second one from (1.9). 

Conclude that 

(3. 3) Um 
n400 lle(n,x)lld = O 

* Next substract (n+l)g - v from both sides of the equality: 

n+l k k n 
T xi= maxkEL(i){qi + I:jPij(T x)j}, 

a~d use (2.9) in order to get: 

e(n+l,x)i = maxkEL(i){b(v)~ + 1:/~je(n,x)j} = 

In view of (3.3) it follows that for n sufficiently large only alternatives 

k E L(i) with b(v/ = 0 can attain the above maxima, i.e. for all n 
i 

sufficiently large we have 

(3. 4) 

e(n+l,x). 
i 

k 
max{I:.P .. e(n,x). J kEL(i) 

J iJ J 
with k b(v). = O}. Hence, 

i 

e(n,x) . $ e(n+l,x) . $ e(n+l,x) $ e(n,x) . 
min min max max 
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00 00 

We conclude that {e(n,x) } 1[{e(n,x) . } 1J decreases [increases] 
max n= min n= 

monotonously to a limit A+(x)[A-(x)J. However in view of (3.2), we have that 

+ -A (x) A ( x) = lim e(n,x) - Zim e(n,x) . = Zimll e(n,x) lld = 0 n-+<x> max n-+<x> min n-+<x> 

Hence 

or 

+ A (x) = A (x) = A(x) 

lim Tnx - ng* 
n-+<x> 

* = V 

and 

where 

Zim e(n,x) = A(x)_l, n-+<x> 

* V = v + A(x).!_ EV, 

which proves the first assertion. This together with (3.4) lead to: 

~ e(nJ+r,x) - A(x) = [TnJ+rx (nJ+r)g* v*J max - - max' 

so that in view of (3.2): 

ITnJ+rx. - (nJ+r)g*. *I II ( J )II (I )nll *11 i , i - vi ~ en +r,x d ~ -p x-v d' 

for all n = 1,2, .•• ; r = o, ... ,J - ] and i E Q. 

□. 

We next introduce two conditions with respect to the chain- and 

periodicity structure, both of which appear as necessary conditions for QJ 

J b . (f I 2 ) or T to ea contraction operator or some J = , •••• 

There exists a randomized aperiodic policy which * Al : f E 5RMG' has R as 

its single subchain. 

A2: There exists a randomized aperiodic policy f E SR, which has R as its 

single subchain. 

The following statements are equivalent formulations for both Al and 

A2, which are expressed in terms of the structure of the finite set of 



pure 

part 

gain 

A l• 
I • 

A '. 2· 

(maximal gain) policies only (cf. corollary 3.3 in [22] and th. 3.1 · 

(c) in [23], and observe that ·SR appears as the set of all maximal 

policies, when taking q~ = 0): 
1 

9 

* Let C = 

Then (a) 

{Cs QI C is a subchain for P(f), for some f E SPM} 

for any pair C, C' E c*, there exists {C(I) = c, c~2), ... , 

C(n) = C'} with C{i) E c* and C(i) n C(i+I) ~ 0 (i=I, •.. ,n-1) 

(b) the integers which appear as the period of some subchain of 

some policy in SPMG' are relatively prime. 

Let C ={Cs QI C is a subchain for P(f), for some f E Sp} 

Then (a) for any pair C, C' EC, there exists {C(l) = C, c< 2) , .•• ,c<n)= 

= c'} with c(i) EC and c(i) n c(i+I) ~ 0 (i=l, ..• ,n) 

(b) the integers which appear as the period of some subchain of 

some policy in Sp, are relatively prime. 

We note that whereas part (b) of Aj implies p~rt (b) of A2 the parts 

(a) of Ai and A2 are mutually independent. In addition, we remark that more 

efficient procedures have been established to verify A1 and A2 (or alterna-

tively Ai and A2). ·(cf. [22] and [23]). 

THEOREM 2. (Necessary conditions for T to be a contraction mapping). 

Let T be a J-step contraction mapping on EN for some J = 1,2, ..• (cf.(1.8)). 

Then., 

(1) 

(2) 

v E V is: unique up to a multiple of.!_ 
* * g. = g for all i E Q; hence L(i) = K(i), for all 1 En, and Qx = Tx 
1 

for all x E EN 

(3) A 1 and A2 hold. 

* ** PROOF. Let v, v EV. By a repeated application of (1.7), we obtain, using 

(2.9): 

J * * * 
TV = V + Jg and 

Hence, 

J ** T V ** * V +Jg• 

* ** ( I -p) II V -v II d. 



· · · D * **11 0 d. . ( ) which implies v -v d = , or con ition I . 

Condition (I) in turn, is equivalent with the existence of a policy 

f E SRMG' which has R* as its single subchain (cf. remark 3 and th. 3.2 part 

(c) in [22]). 

Condition A1, i.e. the fact that even aperiodic policies can be found 
n * oo with this property, then follows from the convergence of {T x - ng }n=I 

N for all x EE (cf. theorem I), using th. 5.4 part (b) and th. 3.1 part (f) 

of [23]. The existence of a unichained maximal gain policy in turn implies 

condition (2). 

Next, assume to the contrary that A2 does not hold. State i is said 

to reach state j, if there exists a policy f E Sp, and some integer r 2 O, 

r * * such that P(f) .. > 0. Let f be any randomized policy which has f.k > 0 
iJ i 

for all i E Q, k E K(i). We claim 

.... 
(3.5) there exists a pair of states J 1, j 2 ER such that j 2 does not 

reach j 1• 

.... 
For assuming the contrary, would imply that all states in R connnunicate 

with 

(I) 

* each other under P(f ), i.e .. either 
.... * R ~ n\R(f ), or 

(2) Risa strict subset of R(f*), or 

(3) P(l) has R as a single .subchain, 

with each of these three possibilities leading to a contradiction in view of 

the definition of R, and our assumption that A2 does not hold. 

Fix a policy f 1· E Sp with j 1 E R(f 1) and let C be the subchain of P(f 1) 

-which contains j 1• Obviously j 2 does not reach any one of the states in C. 

Next choose x E EN such that x. = A>>I for i EC and x. = 0(1) otherwise 
l * i 

where 0(1) denotes any bounded term in A. Let v satisfy (1.7). Since 

J J J-1 ,e_ 
T x. 2 [P(f 1) x\ + '[, (} [P(fi) q(fl)Ji, 

j_ "--=O 

and since C is a subchain of P(f 1), we have 

J 
A+ 0(1), (Tx). = for i E C 

l 
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J Since j 2 cannot reach C, we have (T x)j = 0(1). Finally observing that 
J * 2 T v = 0(1), we have 

J J * IIT x - T v lld =A+ 0(1), 

whereas 

* llx - v lld =A+ 0(1) 

as well. Conclude that 

llu - vii d > O} ~ 

thus contradicting the fact that Tis a contraction mapping. This proves A2 

by contradiction. D 

COROLLARY 3. Fix J = 1,2, ... 

(I) Q is a J-step contraction operator "'N on E ·, for some contraction factor 

p > 0 (cf.(1.9)) if and only if 

(2) T is a J-step contraction operator "'N on E , for some contraction factor 

p > 0. 

In addition both (I) and (2) imply that the Q- and T-operator coincide. 

PROOF. 

(2) => (I): follows from theorem 2 since condition (2) implies Q = T. 

(I)=> (2): we recall that the Q operator reduces to the T operator as 

follows: 

N for each x EE there exists a scalar t 0 (x), such that 
n * n * Q (x+tg) = T (x+tg) for n = 1,2, .•• and t ~ t 0 (x) 

BlBLIOTHEEK W.;:..T;--r:::1/'/,T,:,ci: ca HR UM 
-AMSTERDAM--
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the proof of which is easy and may be found in lenuna 2.2, part (g) of [24]. 

Next, assume to the contrary, that there exist two vectors x,y E EN, such 

that 

J J 
Ur x - r yUd > (1-p)Ux-yUd. 

Lett~ max{t0 (x),t0 (y)} and observe, using (2.9), that 

J * J * HQ (x+tg) ~ Q (y+tg )Ud = J * J * Ur (x+tg) - r (y+tg )Ud = 

J J * * = HT x - T yUd > (1-p) U (x+tg) - (y+tg )Ud, 

thus contradicting (I). 

REMARK I. 
N If Q (or T) is a J-step contraction operator on E, with 

contraction factor p, then in the geometric convergence result obtained in 

theorem I, an upperbound may be obtained for the number of steps J needed 

for contraction, i.e. there exists an integer M ~ N2 - 2N + 2 and a number 
M/J , N . 

A, with O ~A~ (1-p) such that for all x EE, there exists av EV 

with: 

I QnM+rx. - (nM+r)g~ - v -1 < :\ nll x-vll · 
i 1 i d' 

n = 1,2, ... ; r=O, ... ,M-1; i E fl. 

The upperbound on M holds whenever condition Al is satisfied, as has been 

shown in [24], th. 5.2, and we know from th. 2 that Al holds whenever Q is 

a (J-step) contraction operator. 

In addition the upperbound on Mis at least sharp up to a term of 

the order O(N) as has been demonstrated by example 2 in [24]. One may 

verify that in this example, the Q-operator is a contraction operator. 
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We next introduce a general "scrambling-type" recurrency condition 

under which the Q-operator will be' shown to be a contraction operator (cf. 

also [I], [9]): 

(S): there exists an integer J ~ I, such that for every pair of J-tuples 

of pure policies (f 1, ••• ,fJ) and (h 1, ••• ,hJ): 

(3.6) P (hJ) ••• P (h l) . . J > 0 
i2J 

for all i 1 ~ i 2 En 

Theorem 4 below shows that this condition (S), encompasses a number 

of important and easily checkable conditions. 

THEOREM 4. The following conditions are special cases of condition (S): 

(1) 

(2) 

(3) 

(4) 

. (pkt E. min .. , 
J 11 J 

k2 E K(i2) 

There exists a state sand an integer v ~ 1, such that 
1 \) 

P(f ) ••• P(f ). > 0 
1S 

1 2 v 
for all f ,f , ••• ,f ESP; i En 

(cf. White [28]). 

Every policy is unichained; there exists a states En which 

is recurrent under.every policy, and Pk > 0 for all k E K(s) 
ss 

Every policy is unichained and P~. > 0 for all i En, k E K(i). 
11 

PROOF. (1) => (S) with J = 1; (2) => (S) with J = v, was shown in [28]; 

(3) => (2) with v = N - I, was shown in [1], th. 2. 

(4) => (S): Fix two sequences of policies (fN, ••. ,f 1) and (hN, ••. ,h1) and 

i 1, i 2 En with i 1 I i 2 • Let 

S(n) = {jl P(f ) •.• P(f 1) .• > 0} 
n 1 1J 

and W(n) 
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k 
Note that, in view of P .. > 0 for all i En, k E K(i): 

l.l. 

(3. 7) S(n+l) 2 S(n), W(n+l) ~ W(n) n=l,2, ..• 

· Thus assuming to the contrary that S(N) n W(N) = 0, it follows that S(m) n W(m) = 

= 0, for all O ~ m ~ N. This in turn implies that the sequence {S(O) u W(O); 

; ••• ;S(N) u W(N)} is strictly increasing, thus leading to a contradiction: 

for assuming that for some m < N, S(m+l) = S(m) and W(m+l) = W(m) would 

imply the existence of a policy for which both S(m) and W(m) are closed 

sets of states, thus contradicting its unichainedness. 

REMARK 2. Observe that condition (1) requires each P(f), f E Sp, to be 

scrambling (cf. e.g.[9]). In addition we note that conditions (1), (2) and 

(4) are mutually independent. To verify that (2) =/=> (I), and (2) =/=> (4), 

consider an example in which Sp= {f}, with 

0 * 0 
P(f) = 0 0 * 

0 0 * 

which satisfies (2) with v = 2 (where a * indicates a positive entry). Next, 

the example in which Sp= {f 1,f2} with 

* 
= * 

* 

0 * 
0 * 
0 0 

and 
* 0 * 

= * 0 * 
0 0 * 

satisfies (I) but not White's condition, nor (4). Finally, the example with 

Sp = {£} and 

* * 0 
P(f) = 0 * * 

0 0 * 

shows (4) +> (1), whereas (4) =/=> (2) follows from the fact that (4) 

includes cases where no state is recurrent under every policy. Finally 

observe that condition (S) requires each policy to have a unichained and· 

aperiodic tpm. 
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Theorem 5 below shows that condition (S) is sufficient for Q to be a 

(J-step) contraction operator: 

THEOREM 5. Assume condition (S) holds for some integer J ~I.Then Q is a 

(J-step) contraction operator on ~N. 

PROOF. The proof of this theorem is related to the one of th. I in [I]. 

First, define 

(3.8) 

where a> 0 follows from (3.6) and the fact that in (3.8) the minimum is 

over a finite number of combinations. We shall prove that: 

(3.9) J J J 
(Q X - Q y) • - (Q :. 

1. 
for all i, i En. 

The theorem clearly follows from (3.9). The inequality in (3.9) 

trivially holds when i = L Fix now i =I i, and let 

and 

Next introduce the shorthand notation, 

(3. = P(fJ) .•• P(f 1) .. 
J 1.J 

and 

+ + + Defining a = max(a,O) and a = min(a,O), (with a ~ O, a $ O and a + a = 
= a) and using the fact that 

+ 
E.a. = -E.a., 

J J J J 
if E.a. = O, 

J J 
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+ as well as the fact that (a-b) = a - min(a,b), we obtain: 

. J J J J 
(Q x - Q y) 1. - (Q X - ,q y) 0 $ L.S.(x-y). - t.y.(x-y). = 

~ J J J J J J 

+ = I:.[f3. - y.J 
J J J 

(x.-y.) + E.[S. - y.J (x-y). 
J; J J J J J 

+ (x-y) . t.[S. - y.] 
min J J J 

= [1-Lmin(S.,y.)J llx-ylld $ (1-~cx) llx-ylld. □. 
J J J 

4. ON TRANSFORMING UNICHAINED MARKOV RENEWAL PROGRAMS INTO EQUIVALENT AND 

CONTRACTING MARKOV DECISION PROBLEMS 

In this section, we consider the more general class of Markov Renewal 

Programs in which the times between two successive transitions of state are 

random variables, whose distributions depend both on the current state and 

the action chosen. Let T~j ~ O.for i,j E Q; k E K(i) denote the conditional 

expected holding'time in state i, given the action k E K(i) is chosen 

and that state j is the next state to be observed. We assume that the 

unconditional expected holding times: 

T~ = t.P~.T~. > 0 (i E Q; k E K(i)) 
l. J l.J l.J 

For each policy f E SR, q(f) and P(f) are defined as in section 2, 

whereas g(f). denotes again the long run average return per unit time, 
l. 

when starting in state i. We finally recall that in this model the optimality 

equations (I. 6) and (I. 7) have to be altered as follows: 

( 4. I) 
k ; i E Q g. = maxk E K(i) LP .. g. 

1. J l.J J 

(4.2) 
k k k k ;i v. = maxk E {q. LP .. T. .g. + LP .. v.} E Q 

l. L(i) 1. J 1.J 1.J J J 1.J J 
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* The vector g and the sets SPMG and SRMG are defined as in section 2, 

where the non-emptyness of these sets in the MRP-model was shown in [13]. 

The properties mentioned in section 2, with respect to the set of solutions 

to (1.6) and (1.7) hold unaltered for (4.1) and (4.2), with the set V 

redefined as: V = {v E ENI v satisfies (4.2)}. We define two undiscounted 

MRPs to be equivalent if they have the same state- and action spaces, as 

well as the same maximal gain rate vector and the same set of maximal gain 

policies. 

k 
'[ .. 

1.J 

We first recall that the gain rate vectors g(f) depend on the quantities 

only through the unconditional holding times T~. As a consequence, we 
1. 

conclude that every MRP is transformed into an equivalent one, by replacing 

T~. = T~ (i,j E Q; k E K(i)). We thus obtain the following pair of optimality 
l.J 1. 

equations: 

(4.3) 

(4. 4) k T.g. + 
1. 1. 

k 
i: .P .. v.} 

J l.J J 

; i E Q 

;i E Q 

Next, in [21] the following-data-transformation was introduced which 

turns every MRP, with (4.3) and (4.4) as the associated pair of optimality 

equations into an equivalent MDP. 

(4.5) ""k k k o .. ) P •• = (, /T. )(P .. + o .. ; 
l.J 1. 1.J l.J l.J 

.... k k k q. = q. /T.; 
1. 1. 1. 

where, > 0 has to be chosen such that 

(4.6) 0 <,~min. k 
1.' 

k k 
T. / ( 1-P .. ) 

1. 1.1. 

i,j E Q; k E K(i) 

1. E Q; k E K(i) 

-k 
s0 as to ensure that all P .. ~ 0 (i,j E Q; k K(i)). Note that (4.6) is 

1.J k 
satisfied for all O <,<min. kT .. Let V be the set of solutions to the 

1. , 1. 

optimality equation (4.4) and let V be the set of fixed points of the 
.... N 

corresponding optimality equation in hte transformed !IDP. Then V = {v (- E I 
,v E V}, see [ 21]. Let Q be the value-interation opera tor in the transformed 

HDP. 
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Observe finally that, by taking T strictly smaller than the upperbound in 
""k (4.6), we have all P .. > O, which ·implies that every policy has an aperiodic 

l.l. 

tpm, such that for all x E EN, the geometric convergence result (1.5) holds 

for the Q operator, with J = I, i.e. for all x E EN, there exists a vector 

v EV, and numbers K = K(x), and A= A(x) with O ~A< 1, such that: 

(4. 7) n = 0,1,2, ... 

(To verify (4.7), cf.th. 3.1 and th. 5.1 of [23], as well as [24]). 

This shows that, by applying the above data-transformation, and by 

subsequently doing value-iteration with respect to the transformed MDP, 

we find sequences which approach g* and some v EV; moreover, it follows 

from a generalization of Odoni [17] and from the fact that the original MRP 

and the transformed MDP are equivalent, that any policy which is generated 

by the value-iteration scheme (cf. (1.3)), for large enough n, is maximal 

gain. 

We henceforth assume condition (H) to hold. 

(H): every pure policy in the MRP is unichained. 

We next make the important obsewation that, with T chosen strictly 

smaller than the upperbound in (4.6), the Q-operator satisfies condition 

(4) of th. 4 , and as a consequence has the considerably stronger property of 

being J-step contracting with J ~ N (cf.th.5). 

Note that since the Q-operator is contracting under condition (H), 

v EV is unique up to an multiple of_!_ (cf. th. 2), i.e. its representation 

v* in ~N is unique. In the remainder of this paper, we will show that for 

unichained MR.P's the above data-transformation and the resulting contraction 

property of the operator Qin the transformed MDP may be exploited, in 

order to 

(a) 

(b) 

find lower and upper bounds for v* 

* derive variational characterizations (extremal principles) for v 

(c) derive a test for eliminating nonoptimal actions. 

We will use the following representation of EN (cf. section I): 

~N = {xEENI xN = 0} such that the representation of a vector x E EN in EN 
'\, '\, '\, 

is given by~. with x. = x. - xN, i E ~- Note that since x . ~ 0 ~ x , i 1 min max 
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(4.8) I ii. I 
l. 

'\, 

:s; II xii d = U xU d, i e: n 

THEOREM 6. Consider the MOP value-iteration operator Q. Let Q be a (J-step) 

aontraation operator ( for some J ~ 1) on ~N, with aontraation faator p > 0 
. '\, h d . h 'vN . (af.(1.9)). Def~ne Q as t ere uat~on oft e operator Q to E, ~.e. 

Q: EN ➔ ~N: x ➔ Qx = Qx - [Qx]N • .!_, and let v* be the 6A.nique) f?.'.xed point of 

Q (or Q) on ~N. Then for all x E EN, n ~ 0 and O :s; r :s; J - 1. 

(a) 
'vnJ+r 
Q x. 

l. 

-1 n J 
p (1-p) IIQ x-xlld * 'vQnJ+r :s; v. :s; x. + 

l. l. 

-1 n J 
p (1-p) IIQ x-xlld 

Hence, 

-1 n J 
:s; p (1-p) HQ x-xlld, 

(b) (Alternative elimination) 
If for some x E EN, some state i e: n, and some aation k e: K(i) 

(4.9) k k 
q. + LP .. x. 

l. J l.J J 
J J-1 -1 J - x. < (Q x - Q x) . - p HQ x-xUd. 

1. m1.n 

Then k does not satisfy the maximum in the optimality equation (1.7), i.e. 

k is nonoptimal 

PROOF. 

(a) 
N 

Using the continuity of the II II d -norm on E , as well as (4. 8) we 

obtain: 
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(b) 

R.J+r II 00 ( )t II J+r r II Q x d ~ Et=n 1-p Q x - Q x d ~ 

-I n J 
~ p (1-p) IIQ x-xlld 

where the last inequality follows from (2.8). 
~ * J J-1 It follows from the proof of theorem I of [17] that g ~ (Q x-Q x) . min. 

Suppose alternative k E K(i) which satisfies (4.9), attains the maximum 

in the optimality equation (1.7). Note from corollary 3 that the 

Q-operator and T-operator coincide. Then, using part (a) and the fact 

* that v EV, we have 

k k 
q. + LP .. x.-x. 

1 J 1J J 1 
k * k * ~ q. - g + E.P .. v. 
1 J 1J J 

* k * - v. + LP .. (x.-v.) 
1 J 1J J J 

* * * (x.-v.) + g ~ (x-v) . * * (x-v) + g * * = -llx-v lld + g ~ 
1 1 min 

-I J -I 
~ -p IIQx-xffd + (Q x-Q x) .. min 

max 

REMARK 3. The reduction of the Q-operator to EN, was first used in White 

[28], in order to ensure the boundedness of his value-iteration scheme. The 
* . . . lower- and upper bounds for v are in fact generalizations of the lower-

and upper bounds obtained by MAC QUEEN [15] and PORTEUS [18] for 

MDP's. Note that our bounds with n = 0 coincide with the analogon of Mac 

Queen's bounds, whereas the analogon of Porteus' bounds is obtained by taking 

n = 1. 

By using the above data-transformation, and by applying th. 6 to the 

transformed MDP, we obtain upper- and lower bounds as well as variational 

characterizations for each of the components of v*, and in addition a test 

for eliminating non-optimal actions. 

COROLLARY 7 . 
.... 

Consider a unichained MRP. Fix T < min. k 
1, 

Q be the value-iteration operator in the transformed MDP 

k k 
T . I ( I - P .. ) and let 

1 11 

(cf.(4.5) and (4.6)). 

Next, let Q be the reduction of Q to ~N, 
I\, ... 

i.e. Qx = Qx - [Qx]~ for aU 



x E EN. Finally, :"let p be the (N-step) contraction factor of the operator Q 
(cf(1.9) and th. 4). Then, 
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(a) 
'vnN+r 
Q x. 

1. 

* 'vQnN+r 
$ v. $ x. + 

1. 1. 
-1 n N 

p (1-p) UQ x-xlld 

for all x E EN, and n = 0,1, ... ; r = O, ... ,N-1 

(b) * = {'vnN+r v. max EN Q x. 1. XE 1. 
-1 n -N 

p (1-p) II Q x-xll d} 

= {'\,QnN+r -1 n 11 -N II } min EN x. + p (1-p) Q x-x d XE 1. 

1.Ef."l;n=0,1, ..... ; r = 0, .... , n-1 . 

(c) .If for some x E some state 1. E f."l, and some action k E K(i) 

then k is nonoptimal. 

The variational characterizations in part (b) follow from part (a) by taking 

* x = v EV. Variational characterizations for g were recently obtained 1.n 

* [25]. One might use both lower and upper bounds for v, and the test 

for eliminating suboptimal actions (cf. part (a)), in the course of the 

* * following value-iteration scheme for finding g, v and some maximal gain 

policy. 

(4.10) 

1. E f;l 

with y(O) E EN chosen arbitrarily. 

Let f be a policy which achieves the N maxima in (4. 10). Define n 

= [Qy(n-1) - y(n-1)] . ; 8 (n) 
m1.n U 

[Qy(n-1) - y(n-1] . 
max 
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00 

The sequence {y(n)}n=l has the following, easily verified and previously 

discussed properties. 

(a) y(n) * -+ V 

(b) (cf. HASTINGS [6] and ODONI [17]) with 

lim e1 (n) 
n~ 

* = g = lim eu(n) n~ 

(c) f is maximal gain, for all n sufficiently large (cf. ODONI [17]) 
n 

E.g. whenever at some stage n, i.e. for x = y(n}, the test in part (c) of 

cor. 7 is met for some i E Q, and k E K(i), k may be deleted permanently 

from K(i) thus reducing the number of calculations in the following iterations. 

However, both the application for the bounds for v* as the use of the elimin

ation test require the computation of at least some lower bound of the 

contraction factor p, i.e. of the scrambling coefficient a, as defined in 

the right hand side of (3.6). Note that, 

(4.11) 

where the last inequality follows form the proof of th. 5, and where the 

second one may be verified as follows: Let the minimum in (4.11) be attained 

for s,t En; fk, bk E SP(l ~ k ~ N) and fix y such that 

Then, a~ S ~ p. p may be computed as follows. Let x0 be defined by 

Then, p 

x? = min{P~. > oj j En, k E K(i)}, 
l. l.J 

N o 
= [U x] . , where the operator U is defined by: 

min 

i E Q. 



(4.11) 
k 

K( .)LP •. x., 
E 1 J 1J J 

N i E Q; X E E 

Observe from the analogon of (2.7) that 

such that 

0 
~ X 

min 

~ = min{P~. > 01 i,j E Q, k E K(i)} 
1J 

23 

is a lower bound of p (it may however be worthwhile to do a number of 
0 

iterations with the U-operator on x, in order to obtain a better approxi-

mation of p). 

If the employed approximation for p << I, then the bounds of cor.7 

part (a) will not be sharp, and the test of part (c) will not be met unless 

llx-vlld is very close to zero, namely when x = y(n) and n >> I. Hence, if 

p << I, the bounds and the test will only be important near the very end of 

the calculations. In addition one should observe that N represents the 

worst case behaviour for the number of steps needed for contraction, which 

is enormously high, compared with the empirical fact that in most cases 

J = I or 2 (cf. e.g. [26] and [27]). 

Alternatively, one might,want to use the test part of (c) in combina

tion with a device, given recently by Hastings [11] in order to eliminate 

actions on a provisional rather than on a permanent basis. 

REMARK 4. Hastings' test works as follows. Let 

g(n,i,k) 
A Ak \ Ak 

= Qy(n-1) - q. - l.P .. v(n-1). ~ 
1 J 1J " J 

and H(m,n,i,k) = g(n,i,k) - tm=I ¢(c), m > n. lc=n 
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Then, action k E K(i) is non-optimal at value iteration stage m, if 

H(m,n,i,k) > 0 (for some n < m). 

We observe thaL theorem 2 of [II] holds unconditionally, for every 

(multichain) MDP, i.e. there is a stage after which no nonoptimal action 

will pass the above test. This is an innnediate consequence of the geometric 

convergence result in (I.5)(cf. also [24]). However, whereas the identifica

tion of non-optimal actions is possible in the unichain case, using the above 

value-iteration scheme and cor. 7 part (c). this is (so far) infeasible for 

the general multichain case. 
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