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A General Markov Decision Method, II: Applications*) 

by 

G. De Leve, A. Federgruen & H.C. Tijms 

ABSTRACT 

In a preceding paper we have introduced a new approach for solving a 

wide class of Markov decision problems in which the state space may be gen­

eral and the system may be continuously controlled. The criterion is the 

average cost. This paper discusses three applications of this approach. The 

first application considers an inventory-queueing system in which the work­

load can be controlled by choosing between two constant processing rates. 

The second application concerns a house-selling problem in which a construc­

tor builds houses which may be sold at any stage of the construction and po­

tential customers make offers depending on the stage of the construction. 

The third application considers an M/M/c queueing problem in which the num­

ber of operating servers can be controlled by turning servers on or off. 

KEY WORDS & PHRASES: Max>kov decision problems, average cost, general state 

space, continuous control, applications, inventory­

queueing problem, house-selling problem, M/M/c queueing 

problem hlith variable number of servers. 

*) . . f . . . bl" . 1 h This paper is not or review; it is meant for pu ication e sew ere. 





I. INTRODUCTION 

In a preceding paper [4] we have introduced a new approach for solving 

a wide class of Markov decision problems with the average aost as criterion 

including problems in which the state space is general and the system can be 

continuously controlled. This paper discusses three applications of this 

approach. Each of these applications will be illustrated with numerical re­

sults. 

The first application considers an inventory-queueing system in which 

the workload can be controlled by choosing between two constant processing 

rates. Using a formula developed in [4] for the average cost of a policy, 

we derive for the case of fixed switch-over costs an expression for the 

average cost of a control policy characterized by two switch-over levels. 

The second application concerns a house-selling problem in which a con­

structor builds houses which may be sold at any stage of the construction and 

potential customers make offers depending on the stage of the construction. 

From the optimality equation given in [4], an integral-differential equation 

for the curve determining an optimal policy for accepting offers is derived. 

The third application considers the well-known M/M/c queueing problem 

in which the number of servers turned on is variable. Using a general policy­

iteration method developed in [4], we derive a special policy-iteration algo­

rithm which exploits the structure of this problem and calculates an optimal 

policy within a certain class of structured policies for controlling the 

number of servers turned on. 

In this paper we will follow the notation introduced in [47. 

2. A CONTROL POLICY FOR AN INVENTORY-QUEUING SYSTEM WITH TWO CONSTANT 

PROCESSING RATES AND SWITCH-OVER COSTS 

2.1. INTRODUCTION 

We consider a single-server station where jobs arrive in accordance with 
a Poisson process with rate A. Each job involves an amount of work. The a-

mounts of work of the jobs are known upon arrival and are independently 



2 

sampled from a general distribution having probability distribution function 

F with F(O) = 0 and finite first two momentsµ and µ(Z). At any time the 

server may choose between the processing rates I and 2. When the server is 

in service and uses processing rate i an amount of work 0. will be processed 
1 

per unit time, i = 1,2. It is assumed that 02 > 0 1 > 0 and Aµ/0 2 < l, Define 

the workload at time t as the total amount of work remaining to be processed 

in the system at time t, t 2 O. The server provides service when the system 

1s not empty and uses the following switch-over policy. The server switches 

from rate to rate 2 only when the workload exceeds the level y 1 and switches 

from rate 2 to rate only when the workload falls to the level y2, where 

y 1 and y2 are given numbers with O < y2 ~ y1. It is assumed that it takes 

no time to switch from one processing rate to another. 

The following costs are incurred. There is a holding cost of h > 0 per 

unit work in the system per unit time. When the server is busy and uses ser­

vice rate 1 there is a service cost at rater. 2 O, i = 1,2. There is a ser-
1. 

vice cost at rate r 0 2 0 when the system is empty. The cost of switching 

from rate 1(2) to rate 2(1) is K1(K2) where K1,K2 2 0 (we note that actually 

the analysis below permits also the holding cost to depend on the processing 

rate used and the switch-over cost to depend on the workload level at which 

the processing rate is changed). 

Denote the above policy as the (y 1,y2) policy. For the case where 

K1 = K2 = O and Aµ/0 1 < I the (y 1,y2) policy with y 1 = y2 was studied by 

THATCHER [15] who derived by busy-period analysis a formula for the average 

cost of this policy and proved that such a policy is average cost optimal 

among the class of stationary policies, cf. also DOSHI [5]. Related work 

was done by COHEN [2] who derived for the (y 1,y2) policy with y 1 = Yz several 

interesting quantities as the stationary distribution of the workload. In 

TIJMS [16] a formula for the average cost of the (y 1,y2) policy was found 

for the M/M/1 queue with Aµ/0 1 < I. 

In this paper we use the approach in [4] in order to derive a formula 

for the average cost of the (y 1,y2) policy. To do this, we consider a Markov 

decision problem with a single decision process associated with a fixed 

(y 1,y2) policy. In section 2.2 we specify the elements l-6 of section 2 of 

[4]. Next in section 2.3 we study for the (y 1,y2) policy an embedded deci­

sion process and give the formula for the average cost. Finally, in section 

2.4 we give some numerical results for the M/M/1 queue. 
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2.2. THE ELEMENTS 

The stat1e space, natural process and the feasible decisions will be of 

course specified to measure the (y 1,y2) policy. Before doing this, we make 

the following observations. The natural process and the intervention must 

be chosen in :such a way that the result of the natural process and the con­

trol by the interventions agrees with the process describing the workload 

when the (y 1,y2) policy is used. However, these choices determine the set AO• 

In its turn the set AO is determinative for the calculation of the k- and 

t-functions. It will be obvious that we shall try to choose the natural pro­

cess and the interventions in such a way that the resulting set AO allows 

for a simple calculation of the k- and t-functions. Clearly, a convenient 

choice for thE~ natural process is one where the server never switches from 

one processing rate to another. For this choice it would be pleasant when the 

state O (say) corresponding to the situation in which the system becomes 

empty while the server is adjusted to rate 1 belongs to AO. However, in this 

state the (y 1 ,y2) policy prescribes no change of the processing rate. 

Nevertheless, we can always achieve that state O is an intervention state for 

the (y 1 ,y2) policy by choosing the natural process such that state O is an 

absorbing state for this process, e.g. imagine that in the natural process 

the service station is closed down in this state. This has as a consequence 

that we have to introduce both a fictitious intervention for state O (e.g. 

imagine that this intervention immediately reopens the station) and a fic­

titous state to which the system is instantaneously transferred by this 

intervention. All of this can be done provided that the result of the na-

tural process and the control by the interventions agrees with the process 

describing thic! workload under the (y 1 ,y2) policy, cf. section 2 of [4 ]. 

This observation will be used in the specification of the elements 1-6, 

of section 2 of [4]. 

We choose as state space 

X - {u I u real, u ~ O} u {u' I u real, u ~ O} u {6}. 

State u(u') corresponds to the situation where the workload equals u and the 

server is adjusted to rate 1 (2). In addition, in state O the station is 
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closed down. State O corresponds to the situation where the workload is 

zero, the station is open and the server is adjusted to rate '1. 

The natural process is chosen such that in the natural process the 

server never switches from one processing rate to another. For any initial 

state u' we choose the natural process as the process describing the work­

load when always processing rate 2 is used. For initial state u > 0 the 

natural process is chosen as the process describing the workload under the 

use of processing rate I as long as the system is not empty. If the system 

becomes empty under rate I, the natural process assumes state 0. This state 

is taken to be an absorbing state for the natural process. When the initial 

state is O the natural process stays in this state until the next job ar­

rives. Then the natural process assumes state y when this job involves an 

amount of work y. 

Since we consider a fixed (y1,y2) policy, the set of feasible decisions 

in each state consists of a single decision. We take both in state u with 

0 <us y 1, state u' with u > y2 and in state O the null-decision is the 

only feasible decision. The null-decision does not disturb the natural pro­

cess. In the other states the intervention d = I is the only possible deci-

sion. The intervention d = 

switch from rate 2 to rate 

in state u' with Os us y2 prescribes to 

and causes an instantaneous transition to state 

u when u > 0 and to state O when u = O. The intervention d = I in state u 

with u > y 1 prescribes to switch from rate I to rate 2 and causes an instan­

taneous transition to state u'. _Finally the intervention d = I in state 0 

prescribes to re-open the station and causes an instantaneous transition to 

state O. 

We take the following cost structure. In the natural process there is 

a holding cost at rate hu both in the states u and u', there is a service 

cost at rate r 1(r2) in state u # O(u' # O') and a service cost at rate r 0 
in each of the states O, 0 and O'. Further, there is an immediate decision 

cost of K1 for taking intervention d = I in state u with u > y 1 and an im­

mediate decision cost of K2 for taking intervention d = I in state u' with 

u s Yz· 
Now, it will be clear that the result of this natural process and the 

control by the above decisions agrees with the process describing the work­

load under the (y 1,y2) policy. Now, by the above choices, element 4 in [4] 

applies with 



5 

To calculate the k-and t-functions introduced in element 5 of [4], we choose 

Before we calculate the k-and t-functions, we first discuss the follow­

ing "renewal-type" equation 

( 2. 1) 

yl-x 

u(x) = a(x) + f u(x+y)dH(y), 

0 

where a(x) is a given function, u(x) is unknown and His defined by 

X 

H(x) = 0~ f {1-F(y)}dy 

0 

for x 2! O. 

The solution of such an equation has been derived in COHEN [3] To give 

this solution, we define o = 0 when Aµ/o 1 ~ i and define o as the unique 

positive root to 
00 

f e-xydH(y)-1 = 0 

0 

when Aµ/o 1 > 1. Further, we define the function G by G(x) = 0 for x < 0 and 

X 

G(x) = f e-oydH(y) 

0 

for x 2! O. 

Then G is a proper(defective) probability distribution function when 

Aµ/o 1 2! 1 (Aµ/o 1<1). Next we define the renewal function M by 

00 

M(x) = l Gn(x) for x 2! 0, 
n=l 

where Gn is then-fold convolution of G with itself. Letting ~(x) ox 
= e u(x) 

- ox 
and a(x) = e a(x), we can write (2.1) in the equivalent form 
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y -x 

I 

u(x) = a(x) + I ii(x+y)dG(y)' 

0 

The solution of this renewal equation (cf. FELLER [6]) yields 

(2.2) 

y]-x 

u(x) = a(x) + I e oy a(x+y)dM(y), 

0 

From the definition of the k-and t-functions given in section 2 of [4], 

t(u;I) = t 0 (u') - t 0(u), k(u;I) = K1 + k0(u') - k0(u) for u > y 1, 

t(u';I) = t 0 (u) - t 0 (u'), k(u';I) = K2 + k0 (u) - k0 (u') for O < u ~ y2 , 

t(O;I) = to(O) and k(O;I) = ko(O). 

We now determine the functions to and k0 . By the choice of 

sidering what may happen in a small time interval of length 6u, 

0 < u < y I' 
yl-u 

to(u+6u) = 6u + A6u J· t 0 (u+y)dF(y) + 6u ( I-A-) t 0 (u) 
(11 (11 (11 

0 

so, for O < u < y 1, 

y -u 
I A 

t'(u) = - - - t (u) 
0 (11 (11 0 

A I( 
+ ~ J t 0 (u+y)dF(y) 

0 

Using the relation 

y -x 

A02 and con-

we get for 

+ 0(6u) 

(2.3) ~ IJ 
dX 

a(x+y) {1-F(y)} dy = 
y lf-x 

-a(x) + a(x+y)dF(y), X ~ 0 

0 0 

we get, for some constant a, 

u t (u) = - + 0 . (1 
I 

Together this relation, 

imply 

a+ Y1Iu to(u+y)dH(y), 

0 

(2.1)-(2.2) and the fact that lim t 0 (u) = 
u-+O 

u = - +a+ 
(11 



where 
Y1 

ye0YdM(y)./a 1{t+ f 
0 

Similarly, from 

we derive 

where 

hu2 r lu 
k0 (u) = - + -- + b + 

2a 1 a I 

y -u 

'I 
0 

Y1 

(h~2 
+ rly)e0YdM(y)/al{I + I e0YdM(y)}. 

0 

Next we find 
Y1 

- I I t (O)= - + 
0 A 

0 

Y1 

t 0 (y~dF(y) and k0 (0) = rAO + f k0 (y)dF(y). 

0 

7 

Finally, we have that t 0(u') and k0(u') are equal to the expected time un­

til the system is empty and the expected holding and service costs incurred 

until the system is empty when the initial workload is u and always process­

ing rate 2 is used. Using standard arguments from busy-period analysis, it 

is routine to derive (e.g. Theorem 4 in THATCHER [15] and Theorem I in 

TIJMS [16]) 

u t ( u' ) = -- and k0 ( u' ) 
O a2-AJJ 

u ~ o. 

2.3. THE AVERAGE COST OF THE (y 1,y2) POLICY. 

In this section we determine a formula for the average cost of the 

(y 1,y2) policy by using Theorem I of [4]. To do this, we have first to study 
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the embedded Markov chain {I} describing the state of the system at the 
n 

epochs at which the system e~ters the set AO of intervention states of the 

(y 1,y2) policy, see section 3 of [4]. Observe that for the present problem 

the class Z of policies introduced in element 7 of [4] consists only of the 

(y 1,y2) policy. Clearly, the assumptions AI-A3 in [4] are satisfied (take 

sz = y2 in A2). Denote by Q the unique stationary probability measure of the 

above embedded Markov chain and for ease of notation write Q0 = Q({O}), 

Q(v) = Q({u I u > v}) for v ~ y1 and Q2 = Q({y2}). To determine these prob­

abilities, we define for all O < u ~ y1 and v ~ y 1, 

p(u,v) = probabiltiy that the state of the first entry of the 

natural process into the set {O} u {x I x > y 1} belongs 

to the set {x Ix> v} given that the initial state is 

u, 

and we define p0 (u) = J-p(u,y1) for O < u ~ y1• Then, by the steady state 

equation (27) in [4], we have 

(2.4) 

(2.5) 

From 

(2.6) 

Y1 

Q(v) = Q0 {1-F(v) + J p(y,v)dF(y)} + Q2p(y2,v), 

0 

Y1 

Qo = Qo f Po(y)dF(y) + Q2Po<Y2) and Q2 = Q(yl). 

0 

(2.4)-(2.5) and Q0 + Q(y I) + Q2 = I, we get 

YI 
1-Q Po<Y2) Po<Y2) 

Q = I -] 0 
2 {I+ - p0 (y)dF(y)} and Q2 = - 2-. 0 2 

0 

The stationary distribution Q is now given by (2.4) and (2.6). It remains to 

determine p(u,v). Using the fact that processing rate is used in the nat­

ural process starting from state u, we have for all O < u < y 1 and v ~ y 1, 

p(u+Au,v) = AAu {I - F(v-u) + 
(11 

y -u 
I 

f p(u+y,v)dF(y)} + 

0 

AU + (1-A-)p(u,v) + O(Au) 
(1) 



from which we get for all O < u < y 1 and v ~ y 1 
y -u 

1 

ap(u,v) = l {1 - F(v-u) - p(u,v) + 
au 01 

J p(u+y,v)dF(y)}. 

0 

It follows from this relation and 
yl-u 

p(u,v) = <l>(u,v) + J 
0 

(2.1)-(2.3) that for all v ~ yl 

e0Y~(u+y,v)dM(y), 

9 

where ~(u,v) = c + H(v) - H(v-u) for some constant c. Since p(u,v) ➔ 0 as 
V V 

u ➔ O, we get for all v ~ y 1 

Y1 Y1 

CV= - I e 0Y{H(v) - H(v-y)}dM(y)/{1 + I e 0YdM(y)}. 

0 0 

We can now give a formula for the average cost of the (y1,y2) policy. 

By Theorem 1 of [4] this average cost equals 

g(y 1 ,y 2) = f k(x; 1 )Q(dx) / f t(x; 1 )Q(dx). 

Ao Ao 
All quantities appearing in the right side of this formula have been explic-

itly determined above, but they involve the number o and the renewal func­

tion M. 

2.4 NUMERICAL RESULTS 

In this section we give some numerical results for the case where Fis 

an exponential distribution function with mean 1/y. We then find for the 

case of A/o 1y s 1, 

for x > 0 

and for the case of A/o 1y>l, 

0 
A 

y and 
dM(x) A for x > O. = - - =-

01 dx o 
1 

in both ox 
is We next obtain after el-Observe that cases e dM(.x) /dx the same. 

ementary but lengthy calculations 
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aor(y1,Y2) + al(yl-y2) + a2(yl-y2) + a3yl + (a2+al)/y + K 

BOR(yl,y2) + Bl(yl-y2) + Bl/y 

where 

h>.. + r2y 

(crly->..)2 (cr2y->..) 

hy(cr 1-cr2) 
= -,-----,--,-.--e-

(al y->..)(a 2 y->..) ' 

2 
Y (crl-cr2) crly 

Bo= >..(crly->..)' Bl= (crly->..)(cr2y->..)· 

The formula for g(y 1,y2) applies for any value of >../cr 1y except for the value 

I for which the expression for g(y 1,y2) is obtained from the above one by 

letting). ➔ cr 1y. To save space, we omit the formula for the case of 

>../cr 1y = I. It should be noted that for any (y 1,y2) policy the average cost 

g(y1,y2) may be larger than the average of the policy that always uses rate 

2. The average cost of the latter policy is given by 

Using a computer program based on a unconstrained minimization algorithm of 

FLETCHER [1], we have computed the values y1* and y2* for which the function 

g(y1,y2) is minimal for O < y2 ~ y1• In table I we give some numerical re­

sults. 
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TABLE I.µ= 1.25, cr 1 = 3, o2 = 5, h = I, r 0 = O, r 1 = 5 and r 2 = 25 

A 3 3.5 4 4.5 

0 * 7.038 5.304 4.06] 3. 127 K = Y1 

* 7.038 5.304 4.061 3. l 27 Y2 

* * g(yl ,Y2 ) 6. 776 9.322 12.483 16.184 

IO * 11.870 9.516 7.930 6.739 K = Y1 

* 5.347 3.482 2.321 I. 56 7 Y2 

* * g(yl ,y2) 6.925 9.842 13.479 17.567 

K = 25 * Y1 14.213 11.407 9.660 8.425 

* 4.928 2.925 I. 765 1.062 Y2 

* * g(yl ,y2) 7.007 10.226 14.289 18. 726 

g2 12.738 15.018 17,422 20.057 

3. A HOUSE SELLING PROBLEM 

3.1 INTRODUCTION 

Consider a building-contractor constructing identical houses which may 

be sold in any stage of the construction. The construction time that is 

needed to perform a fraction y of the total building of a house has a gannna 

probability distribution fuction with density 

g(tly) = I acytcy-1 -ay 
r(cy) e ' t 2'. O, 

where a, c > O. Observe that this distribution has mean cy/a and that the 

distribution of the sum of the construction time of a fraction y 1 and that 

of a fraction y2 has the same distribution as the construction time of a 

fraction y 1 + y2 , cf. p.46 in FELLER [6]. 

Potential customers for the houses arrive in accordance with a Poisson 

process with rate A, Each potential customer makes an offer where the amount 

of money offered has a probability distribution function F(OJy) with finite 
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mean when a fraction y of the total construction has been completed. If the 

offer is accepted, the house ,is sold and the contractor innnediately starts 

with the construction of a new house. In case the building of a house is 

completed without any offer having been accepted in the mean time, the house 

will always be sold for an amount of K. Finally, there are building costs at 

rate b(y) when a fraction y of the total construction of the house has been 

completed. 

Using the optimality equation (16) of [4] we shall characterize the 

structure of an average cost optimal policy and show that this policy is in 

fact determined by an integral-differential equation. This will be done in 

section 3.3 after in section 3.2 we have specified the elements 1-6 of [4]. 

Finally, in section 3.4 we give some numerical results. 

3.2 THE ELEMENTS 

We first note that the state space, the natural process and the feasi­

ble decisions must be chosen such that element 4 of [4] applies. To achieve 

this, a convenient choice of the natural process is one in which the con­

structor accepts every offer and no new construction is started once a house 

is sold. This choice involves the introduction of an absorbing state E(say) 

for the natural process. We now choose as state space 

State y corresponds to the situation where a house is under construction 

and a fraction y of the total construction has been completed, while no 

offer is currently made. State (y1,y2) corresponds to the situation where 

a offer of size y2 is made for a house of which a fraction y 1 of the total 

construction has been completed. State E corresponds to the situation where 

no house is under construction. The natural process is chosen as follows. 
0 Starting from state y the natural process moves along the states y with 

0 y ~ y < until either a offer is made or the construction of the house is 

completed. In case of a offer of size y2 in state¥ the natural process 

jumps to state (y,y2) (i.e. any offer is accepted in the natural process), 

while in case of completion of the construction the natural process jumps 

to state E. The natural process starting from state (y 1,y2) jumps innnedi-
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ately to state E. We take state E as an absorbing state for the natural pro­

cess (e.g. imagine that in th~ natural process the contractor closes down 

his work in state E). We next choose the feasible decisions. For each state 

y the only feiasible decision is the null-decision which leaves the natural 

process untouched. For any state (y 1,y2) the feasible decisions consists of 

the null-decision which prescribes to accept the offer and causes an instan­

taneous transition to state E and the intervention d = l which prescribes to 

refuse the offer and causes an instantaneous transition to state y 1. The on­

ly feasible decision is state Eis the intervention d = I which prescribes 

to start with a new construction and causes an instantaneous change to state 

O. The following costs are associated to the natural process and the inter­

ventions. In the natural process there is incurred a cost at rate b(y) when 

the natural process is in state y. Further, when the natural process makes a 

transition to state (y 1 ,y2) there is incurred a cost of -y2 and when the 

natural proceiss makes a transition to state E after completion of a con­

struction theire is incurred a cost of -K. Finally, by the above choices, 

there is no cost associated with any intervention. 

Now, for any policy the superimposition of the natural process and the 

interventions prescribed by that policy agrees with the evolution of the sys­

tem resulting from the specific control as executed by the decisionmaker. 

Clearly, element 4 of [4] applies with 

We choose A01 = A02 = A0 in order to determine the k-and t-functions, 

see [4]. Clearly, for all (y 1,y2) e X, 

and 

t ( ( y I 'y 2) ; I ) = t O ( y I ) - t O (( y I 'y 2) and k (( y I 'y 2) ; I ) = 

= ko(yl) - ko(<Y1,Y2)) 

Since the natural process starting from state (y 1,y2) immediately jumps to 

state E, we have for all (y 1 ,y2), 
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Further, t O(y) = E min[A,T(y)] for all Os y < I where A and T(y) are inde­

pendent random variables such that A is exponentially distributed with mean 

I/A and the construction time T(y) has a gamma distribution with density 

g(•rl-y). We find for Os y < I, 

To determine the function kO(y), we first make the following observation. 

The building costs incurred between stages yO and y 1 of the construction are 

given by, for all Os yO < y 1 < I, 

b(v)dv. 

Further, for any initial state y with Os y < I, let the random variable X 
y 

be equal to I when the total construction is completed before a first offer 

occurs, and let X be equal to the stage. of the construction at the epoch 
y 

of the first offer, otherwise. It is routine to verify that, for all 

0 s y < I, 

Pr{X =I}= (.....!_)c(l-y) and Pr{X Su}= 
y a+A y 

1 _ 1 ~) c(u-y) 
'a+A 

for y s u < I. 

Let h(ujy) be the derivative of Pr{X s u} with respect to u. Then for all 
y 

h(ujy) for y < u < I. 

Now, we have by the choice of the natural process that, for all Os y < I, 

X y 

= E[~ I 
y 

b(v)dv] -

y 0 

vdF(vju)} h(ujy)du - KPr{X = J} 
y 



from which we get after some algebra 

where 

(3. 1) a(y) 

y 

A = cln( ]-f-'-C-) . a 

3.3 CHARACTERIZATION OF AN OPTIMAL POLICY 

15 

O~y< 1. 

In this section we shall derive from the optimality equation (16) of 

[4] the existence and the structure of an average cost optimal policy. More­

over, we shall find that in fact such a policy is determined by an integral­

differential equation. 

Now, let z* be any policy of Z. Denote by {g(z*), v(z*;x) I x EX} the 

* unique solution to the equations (8)-(9) with z = z of [4] such that 

(3.2) * v(z ;E) = O. 

Since the intervention d = I in state (y 1,y2) causes an instantaneous tran­

sition to state yI, it follows from relation (II) of [4] and the above for­

mulas for the functions k and t that 

(3.3) 

where 

(3. 4) * R(z ;y) _ (~)c(l-y)K + 
a+>.. 

for O ~ y < 1. 

By relation (9) of [4] and the fact that the natural process starting from 

state (yI,y2) jumps to the intervention state E, we have 

(3.5) 
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Finally, by relation (11) of [4], 

(3.6) * * * * * v(z ;E) = k(E;I) - g(z )t(E;I) + v(z ;O) = R(z ;O) + v(z ;O). 

Now, let z E Z. Then, by virtue of the fact that the only possible inter­

vention is d = I, it follows from the relations (11) and (13)-(14) of [4] 

that 

(3.7) * * * * v([z]z ;E) = k(E;I) - g(z )t(E;I) + v(z ;O) = v(z ;E) 

and 

(3.8) 

Further, by definition (14) of [4] and the relations (3.2) and (3.7), 

(3.9) 

* We shall now prove that a policy z E Z satisfies the optimality equation 

(see (16) of [4]) 

(3.10) v(z*;x) = min v([z]z*;x) 
ZEZ 

* if and only if for policy z holds 

(3.11) 

(3.12) 

for all x € x0 

To prove this, we first observe that, by relation (15) of [4] and (3.7), the 

optimality equation (3.10) is equivalent to 

(3.13) * * v([z]z ;(y1,y2)) ~ v(z ;(y1,y2)) 

for all (y1,y2) € X and all z E Z. 
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Suppose first that (3.13) holds. To establish (3.11), we observe that for 

any state (y 1 ,y2) E Az* we c~n find a policy z E Z such that '(y 1 ,y2) I Az, 

so, by (3.3), (3.9) and (3.13), we get (3.11). Also, for any state 

(y 1,y2) / Az we can find a policy z E Z such that (y 1,y2) E Az' so, by 

(3.5), (3.8) and (3.13), we get (3.12). Next assume that (3.11)-(3.12) hold. 

To verify (3 .. 13), fix z E Z. For (y1 ,y2) / Az, we get (3.13) from (3.9), 

(3.5), (3.3) and (3.11). For (y 1,y2) E AZ, we get (3.13) from (3.8), (3.3), 

( 3 • 5 ) and ( 3 .. I 2 ) • 

We now have proved that a policy z* E Z for which (3.11)-(3.12) hold is 

optimal. MorEwver, we can conclude that such a policy z * is determined by a 

function s(yll), 0 s y 1 < 1 such that 

(3.14) 

Furthermore, 

(3.15) 

* Since we know the structure of Az* we can express v(z ;y 1) in the function 

s(•). To do this, we first observe that, by (3.3), (3.5), and (3.14)-(3.15), 

for all (yl,y2) 

for Y2 s s (y l), 

(3.16) 
{Yz - s(y1) 

v(z*;(yl,y2)) = 0. 
for Y2 2: s(yl). 

Using relation (11) of [4] with V = {(y1 ,y2)} u {E}, (3.2) and (3.16), we 

get 

(3. 1 7) v(z*;y) 

From this relation 

, ·k 

s(y1) = -R(z ;y1) + 

I oo 

= I { I v(z*;(u,v))dF(vlu)} h(uJy)du + v(z*;E)Pr{X = 
y 

y 0 

1 

= cln(I+ ~) f { 
y 

and (3.15), we 

I 
A I { cln(I +-) 
a 

Y1 

s(u) 

f (v - s(u))dF(vlu)} (~)c(u-y)du 
a+A ' 

0 
0Sy<l. 

get for 0 s Y1 < I. 

s(u) 

f (v-s(u))dF(vju)} (~) c(u-y I) du. 
a+ 

0 

1}= 



Differentiating this formula and using (3.1) and (3.4), we get after some 

algebra 
Q) 

(3.18) 
* (s(y1)-v)dF(vly 1) - g(~ )}, 

0 ~ YI < I. 

* Using the fact that limy+I v(z ;y) = 0 (see (3.17)) and the relations (3.2) 

and (3.6), we have the boundary conditions 

(3.19) s(O) = 0 and s(I) = K. 

The integral-differential equation (3.18) and the boundary conditions (3.19) 

determine both the curves(•) giving the optimal policy z* and the minimal 

* average cost g(z ). 

3.4. NUMERICAL RESULTS. 

In this section we give some numerical results for the case where 

f(•ly 1) is a gamma distribution with density 

{nA(yl)}n n-1 -nA(y )v 
(n- I)! v e I , V ~ 0, 

where n is a positive integer and A(y 1) is a given function. Observe that 

the mean and the variance of this distribution are equal to I/A(y 1) and 
2 J/n{A(y1)} • By a well-known relation between the Poisson distribution and 

the gamma distribution, we have 
Q) 

n-2 
(s(y 1)-v)dF(vly 1) = e-nA(yl)s(yl) {s(y1) l [nA(y1)s(y1)JJ/j! + 

j=O 

I n-1 
( ) L [nA(yl)s(yl)]J/j!}. 

A y I j=O 

Hence the relation (3.18) reduces to a differential equations with unknown 

* parameter g(z ). To solve this differential equations with the boundary con-

ditions (3.19), we have used a computer program developed [17] for para­

meter estimation in differential equations. In table 2 we give some numeri­

cal results. 
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TABLE 2. A= 2, a= 1, c = 1, K = 2, b(y) = 1 and A(y) = 1/(3y+O.Ol) 

n = 1 n = 5 n = 10 

y s(y) y s(y) y s(y) 

o.oo 0.000 o.oo 0.000 o.oo o.ooc 
0.05 o. 137 0.05 o. 126 0.05 o. 124 

o. 10 0.271 o. 10 0.250 o. 10 0.245 

o. 15 0.401 0. 15 0.371 o. 15 0.365 

0.20 0.528 0.20 0.490 0.20 0.483 

0.25 0.651 0.25 0.607 0.25 0.598 

0.30 0.770 0.30 o. 721 0.30 0.712 

0.35 0.886 0.35 0.833 0.35 0.823 

0.40 0.998 0.40 0.942 0.40 0.931 

0.45 1.106 0.45 1 .048 0.45 1 .037 

0.50 1. 210 0.50 1 • 152 0.50 1 • 141 

0.55 1. 309 0.55 1.252 0.55 1.241 

0.60 1. 405 0.60 I. 350 0.60 l. 33S 

0.65 1. 496 0.65 1. 444 0.65 1. 43~ 

0.70 1. 583 0.70 1 .535 0.70 1. 526 

0.75 1. 665 0.75 1 .622 0.75 1 • 61 Li 

0.80 1.742 0.80 1. 705 0.80 1. 699 

0.85 1. 814 0.85 1. 785 0.85 l. 78C 

0.90 1.881 0.90 1. 861 0.90 I. 85E 

0.95 1 .944 0.95 1. 933 0.95 1 • 931 

1.00 2.000 1.00 2.000 1.00 2.00C 

* g(z) = -3.243 * g(z) = -2.816 * g(z) = -2.729 
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4. AN M/M/c QUEUEING PROBLEM WITH A VARIABLE NUMBER OF SERVERS 

4.1. INTRODUCTION 

We consider the M/M/c queueing problem studied by McGILL [11], where 

the number of servers operating can be adjusted at arrival and service com­

pletion epochs. The customers arrive in accordance with a Poisson process 

with rate A and there are c independent servers available each having an ex­

ponentially distributed service time with mean 1/µ. It is assumed that the 

lowest possible traffic intensity A/cµ is less than 1. The cost structure 

includes a holding cost of h > 0 per customer in the system per unit time, 

an operating ,cost of w > 0 per server turned on per unit time and a switch­

over cost of K(a,b) when the number of servers turned on is adjusted from 

a to b. We assume that 

K(a,b) = k+.(b-a) when a< band K(a,b) = k-.(a-b) when a~ b, 

+ -where k ,k ~ O. This problem has been treated amongst others by BELL [I], 

LIPPMAN [9], McGILL [JO], ROBIN [12] and SOBEL [13], cf. also SOBEL [14]. 

It was shown by LIPPMAN [9] that there is an integer M such that an average 

cost optimal policy has all c servers turned on or left on when Mor more 

customers are present. We henceforth only consider the following finite 

class C of stationary policies with this property. A policy in C is charac­

terized by integers s(i), S(i)~ t(i) and T(i) for i = 0,1, ... such that 

(a) -Is s(i)i < S(i) s T(i) < t(i) s c + I for all 1 ~ O, where s(i) = 

= c - I, S(i) = T(i) = c and t(i) = c + for all i ~ M, 

(b) s(i) s s(i+I) and t(i) s t(i+J) for all i ~ O. 

Under this policy the number of servers operating is adjusted both at arriv­

al and service completion epochs. If there are i customers present and k 

servers turned[ on, the number of servers on is adjusted upward to S(i) when 

ks s(i), is kept unaltered when s(i) < k < t(i) and is adjusted downward to 

T(i) when k ~ t(i). 

It is a famous conjecture that there is an average cost optimal policy 

which belongs to the class C and has the additional property that 

S(i) = s(i) + I and T(i) = t(i) - I for all i. 

In this paper a special policy iteration algorithm will be developed 

which locates an average cost optimal policy. This algorithm generates with-
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in the class Ca sequence of improved policies, and in all examples tested 

the algorithm converged to a~ optimal policy with S(i) = s(i) + I and 

T(i) = t(i) - I for all i (we note that the algorithm may also be used for 

locating an average cost optimal policy within the class C for the case of 

general switch-over costs). The algorithm exploits the structure of the par­

ticular queueing problem. This appears especially in the value-determination 

part of the algorithm in which the size of the system of linear equations to 

be solved is of the order 2M, independent of c. In addition the algorithm 

does not require any truncation of the state space, i.e. no approximation of 

the infinite capacity problem to a finite one is needed. These facts compare 

favourably with the policy iteration algorithm of HOWARD [8] in which Ne 

linear equations must be solved in the value-determination part, where the 

integer N arises from the truncation of the state space and denotes the max­

imum number of customers allowed in the system. We may expect that N>>M, es­

pecially when Aleµ is close to I in which case a large choice of N is re­

quired in order to obtain a fair approximation of the infinite capacity 

problem whereas the estimate of M tends to be small since in this case an 

optimal policy tends to have all c servers on with relatively few customers 

in the system. 

In section 4.2 we specify the basic elements 1-6 of [4] which are cru­

cial for the algorithm and we determine some absorption probabilities which 

underly the transition probabilities of the embedded decision processes. In 

section 4.3 we derive the system of linear equations to be solved in the 

value-determination operation. Finally, in section 4.4 we present the algo­

rithm and give some numerical results. 

4.2. THE ELEMENTS 

In choosing the state space, the natural process and the feasible de­

cisions, similar considerations as in the first two applications will play 

a role. In order to obtain a set A0 which has the desired properties and 

further allows for computationally tractable k-and t-functions, we will 

choose the elements 1-3 in such a way that in the natural process always c 

servers will be turned on when the number of customers is larger than Mand, 

moreover, the states in which no customers are present are intervention 

states for any policy. The latter can always be achieved by choosing these 

states absorbing for the natural process, e.g. imagine that in the natural 

process the system is closed down forever when the system becomes empty. 
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This choice involves the introduction of interventions for these states and 

(fictitious) states to whicq the system is transferred by these interven­

tions. 

After these introductory remarks, we now choose as state space 

X = {(i,s) I i = 0,1, ..• ; s = 0,1, ••• ,c}u {(0,;) Is= 0,1, ••• ,c}, 

where state (i,s) with i ~ I corresponds to the situation where i customers 

are present and there ares servers turned on of which min(i,s) servers pro­

vide service. The state (O,s) corresponds to the situation where no customers 

are present, there ares servers turned on and the servers are not available 

for any future service, while state (O,s) corresponds to the same situation 

except that the servers are now available for future service. We choose the 

natural process as follows. For both initial state (i,s) with 1 sis Mand 

initial state (i,s) with i # 0 ands= c the natural process stays in state 

(i,s) until the next epoch at which an arrival or service completion occurs 

after which the natural process assumes either state (i+l,s) or (i-1,s) de­

pending upon whether an arrival or service completion occurs first, so for 

these initial states the number of servers on is left unaltered in the na­

tural process. For initial state (i,s) with i >Mand s # c the natural pro­

cess jumps immediately to state (i,c), i.e. for this initial state the num­

ber of servers is adjusted upward to c in the natural process. The states 

(O,m), m = O, ••. ,c are chosen as absorbing states for the natural process, 

whereas the natural process starting from state (O,s) stays in this state 

until the next arrival epoch at which the natural process assumes state (l,s). 

We next choose the sets of feasible decisions. For state (i,s) with 

1 sis M-1 ands# c the set of feasible decisions consists of the deci­

sions d = 0,1, .•. ,c where decision d prescribes to adjust the number of 

servers turned on from s to d and causes an instantaneous transition to 

state (i,d). Observe that for this state (i,s) the decision d =sis the 

null-decision and any decision d #sis an intervention. In state (M,s) with 

s # c we choose as only possible decision the intervention d = c which pre­

scribes an upward adjustment of the number of servers to c and causes an in­

stantaneous transition to s.tate (M,c). In each of the states (O,s), 

0 s s s c the set of feasible decisions consists of the interventions 

d = O, ... ,c where the intervention d prescribes to "reactivate" the servers 

and to adjust the numbers of servers on from s to d and causes an instanta-
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neous transition to state (O,d). Finally, in the states (M,c) and (O,;) for 

0 ~ s ~ c we take the null-d~cision as the only possible decision. The cost 

structure is as follows. In the natural process a holding cost at rate h.i 

and an operating cost at rate w.s are incurred when there are i customers 

present ands servers turned on. There is incurred an intervention cost of 

K(s,d) when the intervention dis made in any state in which s servers are 

on. 

Now, for any policy the superimposition of the natural process and the 

interventions prescribed by that policy agrees with the evolution of the 

system resulting from the specific control as executed by the decisionmaker. 

Using the fact that A/cµ < I, it follows that element 4 of [4] applies with 

A0 = { < o, s) I s = o, ... , cl u { (M, s) I s = o • .- .. , c- 1 l. 

To determine the k-and t-functions introduced in element 5 of [4], we 

choose A01 = A02 = A0• From the definitions of these functions, it follows 

that, for any state (i,s) with i, 0 and intervention d, 

t((i,s);d) = t 0((i,d)) - t 0((i,s)), k((i,s);d) = K(s,d) + 

+ k0((i,d)) - k0((i,s)). 

Further, for any state (O,s) and d = O, .•• ,c, 

t((O,s);d) = t 0((0,d)) - t 0((0,s)), k((O,s);d) = K(s,d) + 

+ k0((0,d)) - k0((0,s)). 

We shall now calculate the functions t 0 and k0 as far as needed. Fix s with 

s, c. Then 

( 4. I) 
= [<Hiµ)- 1[I+iµt 0((i-I ,s))+At0((i+l ,s))], I 

~A+sµ)- 1[t+sµt 0 ((i-I,s))+;.t0((i+l,s))J, s ~ i ~ M-1, 

with t 0((0,s)) = t 0((M,s)) = O. For ease of notation, denote by h0((i,s)) 

the component of k0((i,s)) in which the expected holding cost are repre­

sented, i.e. 
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We have 

(4.2) 

with h0((0,s)) = h0((M,s)) = O. We now discuss briefly the solution of 

(4.1). The solution of (4.2) proceeds in the same way. We refer to MILLER 

[12] for details. The equation for t 0((i,s)) is a second-order linear dif­

ference equation with non-constant coefficients for i S sand constant coef­

ficients for i ~ s. The solution of the equation with constant coefficients 

is standard. To solve the equation with non-constant coefficients, multiply 

both sides of this equation by A+ iµ and consider the equation for At0(i) = 

= t 0((i+l,s)) - t 0((i,s)). This equation is a first-order linear difference 

equation and a particular solution may be found by using the method of par­

ameter variation. We find for the case of A/sµ # I, 

where 

(4.3) 

(4.4) 

i-1 t 
= - l I 

t=O j=O 

+ e1b(i) + a 1 

+ o1d(i) + y1 

for O ~ i ~ s, 

for s ~ i ~ M, 

i-1 
b(i) = l (µ/A)jj! 

j=O 

c1(i) = (i-M)/(sµ-A), d(i) i M = (sµ/A) - (sµ/A) • 

By the boundary conditions t 0((0,s)) = t 0((M,s)) = 0, we have a 1 = Y1 = O. 

The constants 81 and o1 follow by considering (4.1) for i =sand substit­

uting the above explicit expressions for t 0((i,s)) with i = s-1, sand s+I 

where there are two possibilities for t 0((s,s)). To save space, we omit the 

formulas for these constants. For the same reason, we omit the expression 

for t 0((i,s)) when A/sµ = I. 

Similarly, we find for the case of A/sµ # I, 



h0 ((i ,s)) 

where 

(4.5) 

-f 2(i) + 
S2b(i) 

c2(i) + o2d(i) 

i-1 t 

I I 
t=O. j=l 

t!(µ/).)t-j 
).(j-1) ! 
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for 0 ~ i ~ s, 

for s ~ ]. ~ M, 

The constants e2 and o2 follow by the same considerations as above. 

Next we: determine the functions t 0((i,c)) and h0((i,c)) where h0 is de­

fined as abo,ve. Clearly, 

(4.6) 

with t 0 ((0,c)) = O. To give a recursive relation for t 0 ((i,c)) for i~l, we 

make the following observation. Using.the "memorylessness" property of the 

exponential distribution, it is easily seen that the time needed to reduce 

the number of customers from i~c to i-1 by using c exponential servers hav­

ing each mean service time 1/µ is distributed as the length of one busy pe­

riod in the M/M/1 queue with arrival rate A and mean service time 1/cµ. This 

implies 

(4. 7) 
I 

= cµ-). + to((i-1 ,c)) for i <:'. c. 

Using t 0 ((0,c)) = O, we get that the solution to (4.6) is given by 

for O ~ i ~ c, 

where a 1(i) and b(i) are defined in (4.3) and the constant ~1 follows by us­

ing (4.7) with i = c. Next we find 

(4.8) ~]. ~ c, 

with h0 ((0,c)) = 0. Using the fact that for the above M/M/l queue the total 

expected amount of time spent by the customers in the system durin!2 one busy 

period equals cµ/(cµ-).) 2 (observe that the ratio of this quantity and the 

expected length of one busy cycle gives the average number of customers pre­

sent), we find 
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(4.9) for, i ~ c. 

Using h0 ((0,c)) = 0, we find that the solution to (4.8) is given by 

where a2(i) and b(i) are given in (4.5) and (4.3) and the constant , 2 fol­

lows by using (4.9) with i = c. 

We end this section by determining some absorption probabilities which 

underly the one-step transition probabilities of the embedded decision pro­

cesses. For any integers i,s,L and R with O $ L $ i $ R $ M, R #Land 

0 $ s $ c, define p(i,s,L,R) as the probability that the natural process 

starting from state (i,s) will assume state (R,s) before state (L,s). Sup­

press for the moment the dependence of p on L,R ands and write 

p(i,s,L,R) = p(i). Since in the natural process the number of servers on is 

not changed as long as not more than M customers are present, we find 

(4.10) 
for i $ s, 

for i ~ s, 

with p(L) = 0 and p(R) = I. We give only the solution when A/sµ # I and we 

distinguish between three cases. 

Case I. L ~ s. Then we find the solution of the classical ruin problem, 

p(i,s,L,R) = { (sµh) 
i 

Case 2. R ~ s. Then 

i-I 
p(i,s,L,R) = { l 

j=L 

Case 3. L < s < R. Then 

p(i,s,L,R) = 

. R-1 
(µ/A)J j: }/{ l 

j=L 

i-1 
n2 l (µ/A)Jj! 

j=L 

for all i. 

for all i. 

for s $ i $ R 

for L $ i $ s, 



27 

where the constants n1 and n2 follow by the same considerations as before. 

4.3. THE SYSTEM OF EQUATIONS FOR A POLICY OF THE CLASS C. 

Fix policy z EC. In this section we shall specify for policy z the 

system of equations (8)-(9) introduced in [4]. We recall that policy z is 

characterized by integers s(i), S(i), t(i) and T(i) for i = O, ••• ,M-1 (see 

section 4.1) and we observe that its set of intervention states is given by 

A = {(i,s) I i ~ I, s s s(i) ors~ t(i)} u {(0,s) TO s s s c}. By the 
z 

structure of policy z we have that after any intervention the system assumes 

one of the states (i,S(i)), (i,T(i)) or (O,s) where I sis Mand 

s(O) < s < t(O). This fact will have as a consequence that in the value-de­

termination procedure we need only to solve 2M + t(O) - s(O) - 2 linear 

equations. Before showing this, we note that, by the monotonicity properties 

of policy z, the set A will be entered in one of the states (L(s),s) and 
z 

(R(s),s) with Os s s c where 

(4.11) L(s) = max{i sis M, t(i) s s} ifs~ t(O), and L(s) = O, 

otherwise, 

R(s) = min{i I I sis M, s(i) ~ s} ifs< c, and R(c) = m. 

That is, for s servers turned on, L(s) denotes that largest queue size for 

which policy z prescribes either a reduction of the number of servers on or 

at least their "reactivation",' whereas R(s) denotes the smallest queue size 

for which policy z prescribes an upward adjustment of the number of servers 

turned on. 

We now specify the equations for the average cost g and the relative 

values v((i,s)) with (i,s) E Az. By relation (II) in [4], we have for 

I s i s M 

(4. 12) v((i,s)) = k((i,s);S(i)) - gt((i,s);S(i)) + v((i,S(i)), s s s(i), 

v((i,s)) = k((i,s);T(i)) - gt((i,s);T(i)) + v((i,T(i)), s ~ t(i), 

whereas for the intervention states (O,s), Os s s c, we find 

(4.13) v((O,s)) = k((O,s);S(O)) - gt((O,s);S(O)) + v((O,S(O)), s s s(O), 

v((O,s)) = k((O,s);T(O)) - gt((O,s);T(O)) + v((O,T(O)), s ~ t(O), 

v((O,s)) = k((O,s);s) - gt((O,s);s) + v((O,s)), otherwise. 
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Letting p(i,s,L(s),R(s)) for s < c be defined as in section 4.2 and letting 

p(i,c,L(c),R(c)) = 0, it fol~ows from relation (9) in [4] that, for state 

(i,s) t A , z 

(4.14) v((i,s)) = p(i,s,L(s),R(s))v((R(s),s)) + 

+ {I - p(i,s,L(s),R(s))} v((L(s),s)). 

Further, using the fact that L(s) = 0 for s(O) < s < t(O), we find 

(4.15) v((O,;)) = p(l,s,O,R(s))v((R(s),s)) + 

+ {I - p(I ,s;O,R(s))} v((O,s)) for s(O) < s < t(O). 

The equations for the remaining relative values will not be needed and are 

omitted. 

It now follows that we get 2M + t(O) - s(O) - 3 linear equations in the 

2M + t(O) - s(O) - 2 unknowns g, v((i,S(i)), v(i,T(i)) and v((O,s)) with 

I ~ i ~ M-1 and s(O) < s < t(O) by taking the equations (4.15) and the equa­

tions (4.14) with both s = S(i) ands= T(i) and by substituting in the 

right-hand sides of these equations the corresponding equations for 

v((R(s),s) and v((L(s),s)), cf. (4.12)-(4.13). To determine these unknowns 

uniquely, we put one of the relative values equal to zero (see Theorem 2 in 

[4]), e.g. put v((M-1), T(M-1)) = 0. Once the above 2M + t(O) - s(O) - 2 

linear equations have been solved, we can next compute any of the required 

v(x) from (4.12)-(4.14). 

4.4. THE ALGORITHM 

We shall now present a policy-iteration algorithm which generates a 

sequence of policies belonging to the class C of structured policies. Before 

specifying the details of this algorithm, we first give a general outline of 

the algorithm which is based on the modified policy iteration method given 

in section 5 of [4]. 

Algorithm 

(a) Value-detePmination procedure. Solve for the current policy z EC with 

parameters s(i), S(i), t(i) and T(i) the above described system of 

2M + t (0) ·- s (0) - 2 linear equations. 
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(b) Policy-improvement procedure. Determine a policy z' € C with parameters 

s'(i), S'(i), t'(i) and t'(i) where s'(i) ~ s(i) and t'(i) s t(i). 

(c) Cutting-procedure. Determine a policy z" € C with parameters s"(i), 

S"(i), t"(i) and T"(i) where S"(i) = S'(i), T"(i) = T'(i), s"(i) s s'(i) 

and t"(i) ~ t'(i). 

(d) If z" = z, stop, otherwise, go to (a). 

We now give in detail the policy-improvement and the cutting procedure. 

Policy-improvement procedure 

Suppose that we have solved for policy z the system of 

2M + t(O) - s(O) - 2 linear equations as described in section 4.3. For the 

obtained solution, denote by g(z) the average cost of policy z and denote by 

v(z;x) the relative value for state x (as already noted, once we have solved 

the embedded system of equations described in section 4.3 any required v(z;x) 

follows innnediately from one of the relations (4.12)-(4.14)). Since we want to 

obtain a policy z '· € C, we have to apply the policy-improvement procedure of 

the modified policy-iteration algorithm given in section 5 of [4]. Before 

doing this, we note that for any state (i,s) with Os is M-1 and any deci­

sion d € D((i,s)) (cf. definition (13) in [4] and section 4.2), 

where 

for i ~ I, 

for i = O. 

Further, we recall that in the policy-improvement procedure any intervention 

prescribed by policy z cannot be replaced by the null-decision but only by 

another intervention. Since in the states (O,s), 0 s s s c the null-decision 

is not feasible as opposed to the states (i,s) with i ~ I, the two cases 

have to be considered in a slightly different way. 

Fix first 1 sis M-1. Defined~ and d~* as the smallest and the largest 
1 1 

integer for which K(O,d) + ~-(d) and K(c,d) + ~.(d) are minimal on the in-
1 1 

terval [s(i) + I, t(i) - I]. Observe that d~ and d~* minimize v(d.z;(i,O)) 
1 1 . 

and v(d.z;(i,c)) for s(i) < d < t(i). It is straightforward to verify that 
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d*. ** . 258' SOBEL [13] f' d h f s d .• By the same reasoning as on p. in , we in tat, or 
l. 1 

all Os s s d~, the number d~ minimizes K(s,d) + ~.(d) and hence v(d.z;(i,s)) 
1 t. * 1 

for s(i) < d < t(i). Hence, for all Os s s d., 
1 

(4.16) v(d~.z;(i,s)) = (')min(') v(d.z;(i,s)) s v(z;(i,s)), 
1 S 1 <d<t 1 

where the latter inequality follows from the fact that v(d.z;x) = v(z;x) for 

( ) . . f 11 d*.* d = z x. Similarly, we have or a . s s s c, 
1 

(4.17) v(d~*.z;(i,s)) = (')min(') v(d.z;(i,s)) s v(z;(i,s)). 
l. s 1 <d<t 1 

. * ** . b For i = 0 we determine the numbers d0 and d0 in the same way as a ove ex-

cept that we now take [O,c] as the minimization interval instead of 

[s(i) + 1, t(i) - 1]. Similar properties hold ford~ and d~* as ford: and 
** d ..• 
11 

It now follows that we obtain policy z' e: C by taking s'(i) = d~ - 1, 
1 

S"(i) = d~, t'(i) = d~* + 1 and T'(i) = d~* for Os is M-1. 
1 1 1 

The autting proaedur-e 

Suppose we have performed part (b) of the algorithm and obtained policy 

z'. In addition we have obtained the function v(z'(x).z;x) for x e: A,. For 
z 

ease of notation, we write v(x) = v(z'(x)~z;x) for x e: Az~. 

For the natural process w!th a cost of v(y) for stopping at state 

ye: Az' we shall now determine a set A with A0 5. Ac Az, such that (a) the 

set A is as stoppine set at least as good as the set A, for each initial 
z 

state x e: A, (in fact this is trivially met for x e: A, so that verification 
z 

is only needed for x e: A, \A), (b) A= A II for some z" e: C. This will be 
z z 

done according to the principle outlined in remarks of [4]. For a properly 

chosen sequence of states x e: Az' with x l A0 , we shall verify whether 

A, \{x} is a better stopping set than A, or not for the natural process z z 
starting from state x. Next the intersection of all those sets which are 

better stopping sets will give the desired set A. Before we demonstrate how 

this principle can be developed into a simple procedure in our queueing 

problem, we first evaluate for x = (i,s) e: A, the quantity Q! = EvES ), 
Z . 1S X 

where S is the first entrance state of the natural process into the set 
X 

A, \{x} when the initial state is x, cf. definition (18) in [4]. Consider z 
first the case where x = (i,s) withs s s'(i). Then the possible realizations 
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of S are the states (i+l,s) and (i-1,s) ifs s s'(i-1) and the states 
X 

(i+l,s) and (L'(s),s) ifs> ,s'(i-1) where L'(s) is defined by (4.11) with 

z replaced by z'. Using the definition of the absorption probability p given 

in section 4.2, we find for state (i,s) withs s s'(i), 

{
[A+µmin(i,s)J- 1[A-;'((i+l,s)+µmin(i,s)-;'((i-1,s))J, s s s'(i-1), 

Qis = p(i,s,L'(s),i+I)i((i+l,s))+{l-p(i,s,L'(s),i+l)}-;'((L'(s),s)), 

s > s'(i-1). 

Similarly, for state (i,s) withs~ t'(i) we find 

= {[A+µmin(i,s)J- 1[:-;'((i+l,s))+µmin(i,s);((i+l,s))J,~ ~ t'(i+l), 

p(i,s,i~J,R'(s))v((R'(s),s))+{l-p(i,s,i-1,R'(s))}v((i-1,s)), 

s < t'(i+l), 

where R'(s) is defined by (4.11) with z replaced by z' and p(•,c,•,•) = O. 

We can now describe the determination of the parameters s"(i), S"(i), 

t"(i) and T"(i) of policy z" e: C. Recall that in the cutting procedure any 

intervention prescribed by policy z' cannot be replaced by a different in­

tervention but only by the null-decision. Consequently the states (O,s) for 

Os s s c need not to be considered in this procedure. Further, we have 

S"(i) = S'(i), T"(i) = T'(i), s"(i) s s'(i) and t"(i) ~ t'(i) for all i with 

s"(O) = s'(O) and t"(O) = t'(O). We determine the numbers s"(i) for i ~ 1 by 

calculating successively s"(l), ••• ,s"(M-1) in the following way. For 

i = l, ••• ,M-1, let s"(i) be the largest value of s with 

max(O,s"(i-1)) s s s s'(i) such that Q! ~ :;:;((i,s)) if such a value of s ex-
1s 

ists, otherwise let s"(i) = s"(i-1). The numbers t"(i) for i ~ are deter-

mined by calculating successively t"(M-1), ••• ,t"(l). Let t"(M) = c+l. For 

i = M-1, ••• ,1, let t"(i) be the smallest value of s with 

t'(i) s s s min(c,t"(i+l)) such that Q! ~ :;:;((i,s)) if such a value of s 
lS 

exists, otherwise let t"(i) = t"(i+l). In this way we obtain a policy z" e: C. 

REMARK 1. In any iteration step the above policy-improvement procedure yields 

a policy z' e: C having the additional property that S'(i) = s'(i) + I and 

T'(i) = t'(i) - I for all i. However, except for the final iteration step, 

the cutting procedure by its very design may generate policies in C without 

this property. 
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REMARK 2. The above algorithm needs only a minor modification in order to 

locate an optimal policy amo~g the class C of policies in case of general 
+ + switch-over costs with the separability property K(a,b) = k (b) + b (a) for 

b > a, K(a,b) = k-(b} + b-(a} for b < a and K(a,b) = 0 for b = a, where 
+ - + - + k (·}, k (·), b (•) and b (•) are non-negative, k (•) is non-decreasing and 

k is non-increasing. Observe that this function K(a,b) includes the case 

where the switch-over costs consist of a fixed adjustment cost plus linear 

costs as above. In order to apply the algorithm, only the policy-improvement 

* part needs a slight modification. For all i ~ 0 we determine the numbers d. 
1 

and d~* as before. We again find d~ 
1 1 

s d~* for all i. However, we now find 
1 

for i ~ I that the relations (4.16) and (4.17) only hold for Os s s s(i) 

and t(i) s s s c, respectively. The parameters of the new policy z' are now 

obtained as follows. We choose S'(i) = d~ and T'(i} = d~* for all i ~ 0 as 
1 1 

before. The numbers s'(i) are determined by calculating successively 

s'(M-1), ••• ,s'(O). For i = M-1, ••• ,0, let s'(i) + l be the smallest value of 

s with 

{
s(i) + I s s s min(S'(i) - I, s(i+I}) if i ~ I 

0 s s s min(S'(O) - I, s(I)) if i = 0 

such that v(S'(i).z;(i,s)) ~ v(z;(i,s)) if such a value of sexists, other­

wise let s'(i) = min(S'(i) w I, s(i+I)). The numbers t'(i) are determined by 

calculating successively t'(O), ••• ,t'(M-1). Let t'(-1) = O. For i = 0, ..• , 

M-1, let t'(i) - I be the largest value of s with 

{
max(t'(-1), T'(O} + I) S s Sc 

max(t'(i-1), T'(i) + I) ~ s s t(i) 

if i = 0 

- I if i ~ 

such that v(T'(i).z;(i,s)) ~ v(z;(i,s)) if such a value of sexists, other­

wise let t'(i) = max(t'(i-1), T'(i) + I). 
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TABLE 3. C = 15, A 
+ -

= 14.25, µ = 1, h = IO, k = k = 100. 

w = 100 w = 250 w = 400 w = I 000 

i s(i) t(i) i s(i) t(i) i s(i) t(i) ]. s(i) t(i) 

0 -I 13 0 -1 8 0 -1 6 0 -1 3 

l 0 13 1 0 9 I -I 7 1 -1 4 

2 1 13 2 0 9 2 0 7 2 0 5 

3 2 13 3 1 10 3 I 8 3 1 5 

4 2 14 4 2 10 4 2 8 4 1 6 

5 3 14 5 3 10 5 2 9 5 2 7 

6 4 14 6 3 I 1 6 3 IO 6 3 8 

7 5 14 7 4 I l 7 4 IO 7 3 9 

8 6 14 8 5 I 2 8 5 I 1 8 4 IO 

9 6 15 9 6 12 9 5 12 9 5 JO 

IO 7 15 10 6 13 10 6 12 IO 5 1 I 

1 I 8 15 1 1 7 14 I 1 6 13 l I 6 12 

12 9 16 I 2 7 14 12 7 14 12 6 13 

13 9 16 13 8 15 13 8 14 13 7 14 

14 10 16 14 9 15 14 8 15 14 8 15 

15 IO 16 15 9 16 15 9 16 15 8 16 

16 l 1 16 16 10 16 16 9 16 16 9 16 

I 7 l 1 16 17 10 16 17 10 16 17 9 16 

18 12 16 18 10 16 18 10 16 18 10 16 

19 12 16 19 I 1 16 19 I l 16 19 10 16 

20 12 16 20 I I 16 20 I 1 16 20 I I 16 

21 13 16 21 12 16 21 I I 16 21 I 1 16 

22 13 16 22 12 16 22 l 2 16 22 12 16 

23 13 16 23 13 16 23 12 16 23 12 16 

24 14 16 24 13 16 24 13 16 24 12 16 

25 13 16 25 13 16 25 13 16 

26 14 16 26 14 16 26 13 16 

27 14 16 

* 1782~46- g(z*) * * g(z) = = 3944.60 g(z) = 6088.63 g(z) = 14644.29 
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We were not able to show that the algorithm converges in a finite num­

ber of iteration steps to an.optimal policy, although any step yields an im­

proved policy. However, convergence appeared in all examples tested. After 

convergence of the algorithm to a policy z* (say) we checked a criterion 

guaranteeing that policy z* is optimal among the class of all stationary 

policies when this criterion is satisfied. This criterion is based on The­

orem 8 in [4] and requires the verification that (a) v(d.z*;(i,s)) ~ 
~ v(z*;(i,s)) for all (i,s) and all d € D((i,s)), and (b) Q~ ~ v(z*;(i,s)) 

1S 
* for all (i,s) €A* with I~ i ~ M-1 where Q1.s is defined as Q! above with 

*z 1S 
z' replaced by z. 

In all examples tested this criterion was satisfied and, consequently, 

an optimal policy was found. 

In table 3 we give for a number of numerical examples the minimal aver­

age cost g(z*) and optimal values for s(i), S(i), t(i) and T(i) where S(i) 

and T(i) are given by S(i) = s(i) + 1 and T(i) = t(i) -1. 
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