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The optimality of (s,S) inventory policies for the average cost criterion 

Summary. The infinite period stationary inventory model is considered. 

There is a constant lead time, a nonnegative set-up cost, a linear 

purchase cost, a holding and shortage cost function and total backlogging 

of unfilled demand. The optimality criterion is the average expected 

cost per period. Under the assumption that the negatives of the one 
.ii,) 

period expected holding and shortage costs are unimodal, the existence 

of an optimal ( s ,S) policy is proved. As a by-product of the proof, 

upper and lower bounds on the optimal values of both sand Sare found.. 

1. Introduction. 

We consider the infinite period stationary inventory model in which 

demands for a single product in periods 1 ,2, ... are independent, iden

tically distributed random variables. At the beginning of each period 

an order may be placed for any nonnegative quantity of stock. There is 

a constant lead time, a fixed set-up cost, a linear purchase cost, a 

holding and shortage cost function and total backlogging of unfilled 

demand. 

For the finite period model Scarf [j] has shown that if the one 

period e~~ected holding and shortage costs are convex, then an (s,S) 

policy exists which minimizes the total expected cost (as noted in [1 oJ, 
the proof' carries over to the nonstationary model). Under Scarf's as

sumptiom: Iglehart [3 ,4] has examined the infinite period stationary 

model. In [3] it is proved that an (s,S) policy exists which minimizes 

the total expected discounted cost and in [4] the existence of an ( s ,S) 

policy minimizing the average expected cost per period is shown. 

Veinott [j2} has proved the existence of an optimal ( s ,S) policy 

in the finite period nonstationary model under assumptions which do 

not imply and are not implied by Scarf's hypotheses. However for the 

infinite period stationary model Veinott's assumptions are weaker than 

Scarf's. Veinott has replaced Scarf's hypothesis that the one period 

expected holding and shortage costs are convex by the weaker assumption 

that the negatives of these costs are unimodal. 

*) This assumption can be weakened slightly (see remark 5,4, pp. 16). 



-2-

In this paper we shall consider the infinite period stationary 

model and our optimality criterion is the average expected cost per 

period. Under Veinott's assumption that the negatives of the one period 

expected holding and shortage costs are unimodal, we shall prove the 

existence of an optimal (s,S) policy. The existence proof is based on 

the ingenious idea of Iglehart [4] to construct a solution of a functional 

equation known from Markov programming. We give the proof for the dis

crete demand case. However the proof carries over directly to the conti

nuous demand case. We note that in [5] another way is indicated to prove 

the existence of an optimal (s,S) policy. However the approach suggested 

in [5] : seems typically for the discrete demand case. 

As a by-product of the existence proof we shall find bounds on the 

optimal values of sand S, which are already established in a quite 

different way in [11] for the case in which the one period expected 

holding and shortage costs are convex. 

2. Model formulation. 

We consider the infinite period stationary inventory model in which 

the demands f,,~,··· for a single item in periods 1,2, ••• are indepen

dent, nonnegative, discrete random variables with the common probability 

distribution pj = P{~ = j}, (j=0,1, ••. ; t=1,2, ••. ). It is assumed that 

µ = t ~ is finite and positive. At the beginning of each period the 

stock on hand plus on order is reviewed. An order may be placed for 

any nonnegative, integral quantity of stock. An order placed in period 

tis delivered at the beginning of period t+A, where A is a known 

nonnegative integer. The demand is assumed to take place at the end of 

each period. All unsatisfied demand is backlogged and there is no 

obsolescence of stock. 

The following costs are considered. In any period the cost of 

ordering z units is Ko(z)+cz, where K ;:_ O, o(O) = O, and o(z) = for 

z > O. Let g(i) be the holding and shortage cost in a period when i is 

the amount of stock on hand at the beginning of that period just after an 

eventual delivery. 

Lt T O and let T = ~,+ ••• +~ , n > 1. Define p~n) = e ~ = --n - """tl == J 
( j .::_ O; n ~ 0) • Assume that for each integer k 

( 2. 1 ) 
00 

L(k) = I 
j=O 

g(k-j)p~X) 
J 

P{T =j}, 
-n 
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exists and is finite. If at the beginning of the present period t the 

stock on hand plus on order, just after ordering in that period, is k, 

then at the beginning of period t+A, just after delivery for period t+A, 

the stock on hand is k-!A• Hence L(k) is the expected holding and 

shortage cost in period t+A when k is the stock on hand plus on order 

just after orderi~g in period t. The following conditions are imposed 

on L(k). 

(i) A finite integer s0 exists, such that L(i) ~ L(j) for j < i < S 
- 0 

and L(i) ~L(S) for i ~j ~s0 • 

(ii) lim L(k) > L(So)+K. 
lkl-+co 

Because of (ii) we may assume that s0 is the largest integer for which 

property (i) holds. Let s 1 be the smallest integer for which 

(2.2) 

and let s1 be the largest integer for which 

(2.3) 

The existence of the finite integers s 1( ~ s0 ) and s1( ~ s0 ) is ensured 

by (ii). 

Let us define the state of the system in a period as the stock on 

hand plus on order just before ordering in that period. We take the 

set I of all integers as the set of all possible states. An order can 

be placed only at the beginning of each period and every ordering 

decision is based on the stock on hand plus on order. Every ordering 

decision can be represented by the stock on hand plus on order just 

after that decision. Let us say that in state i decision k(k ~ i) is 

made when k-i units are ordered, An order, placed at the beginning 

of period t, cannot influence the holding and shortage cost incurred 

between the beginnings of period t and period t+A. Therefore we assign 

to decision kin state i the cost 
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(2.4) w(i,k) = Ko(k-i) + (k-i)c + L(k) , i~I,k,;,i, 

We impose: the following mild restrictions on the choice of an ordering 

decision. There are finite integers M1 .::_ s 1 and M2 > s1, such that 

nothing is ordered if the stock on hand plus on order i > M2 , at most 

M2-i units are ordered of M1 ;;, i;;, M2 and at least M1-i units are ordered 

if i < M1. Let K(i) be the set of feasible ordering decisions in state i. 

We have K(i) = {i} for i > M2 , K(i) = {kl i ~ k ~ M2} for M1 ~ i ~ M2 
and K(i) = {klM1 ~ k ~ M2} for i < M1. 

A policy R for controlling the system is a set of functions 

{Dk(ht_ 1,it)}, keK(it), satisfying 

for evecy· "history" ht_ 1 = (i 1,k1, ... ,it_1,kt_ 1) and all itt:I, t=1,2, ... , 

where i resp. k is the observed state resp, the observed decision in 
n n 

period n. 

The interpretation being: if at the beginning of period t the 

history ht_ 1 has been observed and the system is in state it, then k-it 

units are ordered with probability Dk(ht_ 1,it). 

Let C(M1,M2 ) denote the class of all possible policies. A policy 

R is said. to be stationary deterministic if Dk (ht_ 1 ,it =i) = Dk ( i), 

independent of ht_ 1 and t, and if in addition Dk(i) = 1, or O. 

Suppose that a policy R~C(M1,M2 ) is followed. Let it, resp.~ be the 

state resp. the ordering decision in period t. We take as optimality 

criterion. 

( 2. 5) 

We note that the expectations exist, The quantity g(i,R) can be inter

preted as the average expected cost per period when the initial state 

is i and policy R is followed. 

Using the fact that it+ 1 = ~ - 5..t, we have ( see also [ 1 1]) 

n n 
L tR(w(4,1s,) li1=i) = L °£R{Ko(~-4)+(~-4)c+L(1s,) li:.1:i} = 

t=1 t=1 
n 

= l ~R(Ko(~-4,)+L(~) li1=i)+nµc-ic+c £'R(~+ 1 li1=i) 
t=1 
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where w(i,k) = Ko(k-i) + L(k). We find it convenient to redefine 

w(i,k) by setting w(i,k) = Ko(k-i) + L(k). This reduces each g(i,R) with 

the same finite amount µc. 

A policy R* is called optimal if 

(2.6) 

We formulate now a theorem, which will play a fundamental role 

in our considerations. 

Theorem 2. 1 

Suppose there exists a set of numbers {g,v(i)}, iEI, such that 

(2.7) v(i) = min 
ki::X(i) 

{Ko(k-i) + L(k) - g + I v(k-j)p.}, iEI, 
j=O J 

(2.8) liml ~R(v(i )li1 = i) = o. n -n -n-+<x> 
ii:=:'I •. 

* Let R be a policy which, for each i, prescribes a decision which 

minimizes the right side of (2.7). The stationary deterministic policy 
*. . R is theil optimal and 

for. all iE I. 

This theorem is a direct consequence of the elegant proof of theorem 

1 in [8] (see also [1]). 

Remark 1.1 The condition (2.7) has its origin in Howard's discrete finite 

state and finite action Markow programming model with an infinite planning 

horizon [2] • In that model so-called "relative values" v. are associated 
J. 
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with every stationary deterministic policy. Under certain conditions 

it can be shown that the relative values v. of a stationary deterministic J. 
policy can be interpreted as follows. For any two states i and j the 

difference v.-v. is equal to the decrease 
J. J 

in total expected cost caused 

by starting in state i rather than in state j ( 1 ,2 ,6]. 

3, Some results from renewal theory. 

We have defined p~n) = P{T =j}, 
J (1) -n 

where~= 0 and T = ~1+ ... +~ , 
V ""'"!l - "'"1'J. 

n > = 1. We write often p. = p .. We 
J J 

note that p0 < 1, because µ =l.~ > 0, 

The convolutionformula 

( 3. 1 ) ¥ (n-1) 
l pk . p. 

j=O -J J 

is well-known. The renewal quantities m(k) and M(k) are defined by 

CX) k 
(3,2) m(k) = I p~n) and M(k) = 

n=1 
I m(j), 

j=O 
k=0,1, ... 

The renewal quantity m(k) is the unique bounded solution of [7] 

(3,3) 
k 

m(k) =pk+ l pk . m(j) , 
j=O -J 

k=0,1, .... 

The renewal function M(k) is finite and furthermore [7] 

(3.4) lim M(k)/k = 1/µ . 
k+oo 

Suppose t1 (n=0,1, ... ) are given finite numbers. Consider the discrete 
n 

renewal equation, 

n 
( 3. 5) u = b + I u . p. ' n n n-J J j=O 

n=0,1, •... 

The numbers u can be computed successively from (3,5), so that no problem 
n 

about the: existence of a unique solution { u } 
n 

(3, 5) anal using (3, 1) and the fact that for k 

yields the well-known result 

n 
(3.6) u = b + I b . m( j) , 

n n j=O n-J 

arises. Iterating equation 

fJ.·xed (n) 0 f pk + or n + 00 , 

n=0,1, .... 



-7-

Define N(k) = max { n I Zi ~ k }, k = O, 1, •••• Then 'tN(k) = 

M(k) [7]. Hence 1+M(k) can be interpreted as the expected number of 

periods needed for a cumulative demand exceeding k. The excess random 

variable~ is defined by~= .!N(k)+ 1 - k. Using a standard pro

babilistic argument it follows [7T 

k 

= j} = Pk+j + L Pit-h+j m(h), 
h=O 

j = 1 , 2, ••• 

4. The ( s .2S) polic;r. 

An (B,S) policy, s,SEI ands; S, has the following simple form: 

When the stock on hand plus on order i < s, order s-i units; for i > s, 

order nothing. 

( 4. 1 ) 

The function 

S-s 
a(s,S) = {L(S) + L L(S-j )m(j )+K}/{1+M(S-s)}, 

j=O 
s ,SEI ,s ,;;, s., 

will play an important part in our considerations. It can be shown that 

the right side of (4.1), which is well-known from literature Q+,6,10,11J, 

represents for each initial state the average expected cost per period 

when the (s,s) policy is followed. However this result will not be needed 

in our considerations, only the function a(s,S) itself will be used. 

Briefly, the right side of (4.1) can be obtained as follows. When an 

(s,S) policy is followed the stochastic process (it' t; 1) is a denumerable 

Markov-cha.in. It can be proved that this Markov-chain has a unique stationary 

probability distribution, which can be determined explicitly [1 ,4,6, 10, 11] • 

By averaging the one period expected cost w(i,k) with respect to the 

stationarY probability distribution, the right side of (4.1) is obtained. 

Lemma 4 .1 

~ ~ ~ ~ 

There exist finite integers s and S , s .::._ S, such that 

( 4. 2) 
~ ~ 

a(s ,s·) < a(s,S) for all s,SEI, s < S, 
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* * * * 5. The optimality of the (s .s) policy and bounds on s and S. 

* In this section we shall define a function v (i), i€I and·verify 
* * that the set of numbers {a, v (i)}, i£I, satisfies the conditions (2,7) 

and (2.8). This proves the existence of an optimal policy. In addition 
* * * we shall find the optimality of the (s ,S) policy and bounds on s and 

* s • 

( 5. 1) 

* The function v (i), i€I, is defined as follows 

* V (i) = 

0 

. * i-s 
* \ *(· ·) L(i)-a -+ l v_ 1.-J p. 

j=O J 

* for i < s , 

* for 1. ~ s • 

* Remark 5.1. In this remark we motivate the definition of v (i). Suppose 

that {g,v(i)}, i€IJis a set of numbers satisfying (2,7) and suppose 
* further that the right side of (2,7) is minimized by k = S for 

* .;,;. i < s and by k=i for i ~ s • Then 

v(i) = 

00 

L(i)-g+ I 
j=O 

* K+v(S ) , 

v(i-j )p. , 
J 

* i < s • 

When c is a constant, then the set of numbers {g,v(i)+c}, i€I, satis
* fies also (2,7). Hence normalizing v(i) to be zero at i = s -1, 

explains definition (5.1). 
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* The function v (i), i€I, is uniquely determined by the renewal 

equation ( 5. 1 ) • Iterating the equation ( 5. 1 ) ', yields ( c. f. ( 3. 6) ) 

. * 
(5.2) v*(i) = L(i) + 

J.-S 

I * * L(i-j)m(j) - a {1+M(i-s )}, 
j=O 

. * J. > s • 

The functional equation (2.7) suggests to introduce the function 

J(k) = L(k) 

From (5.1) and (5.3) it follows 

(5.4) 

and 

Theorem 5.1 

(a) J(k) J.S 

J(k) = L(k) * - a ' 

* J(k) = v (k), 

nonincreasing on (-co' 

(b) ~ * K + J(S) = O, J(s -1) > O, 

(c) J(k) > J( s*) for all k€'I, 

(d) J(k) * < O for s < k < S , = = 0 

(e) J(k) * is nonincreasing on [s , 

* s -1J' 

SO]' 

(f) J(k.) - J(i) > L(k) - L(i) - K fork 

Proof 

> i > s • = = 0 

kd. 

* k < s , 

* k ~ s • 

(a) Since L{j) is nonincreasing on (-00 ,s0 J and by lemma 4.2(b) we have 

s* ~ s 0 , it follows directly from (5.4) that (a) holds. 

(b) Inserting i = s* in (5.2) and using (5.5), (4.3) and (4.1), yields 

J(s*) = -K. From (5.4) and lemma 4.2(a) it follows that 
* * * J(s -1) = L(s -1) - a ~ O. 
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* * (c) Sinc:e K ~ O, we have by (a) and (b) that J(k) ~ J(s -1) ~ J(S ) 
* * * for k < s: • Hence it remains to show J(k) ~ J(S ) for k ~ s • Suppose 

* * there exists an integer k ~ s , say k = r, such that J(r) < J(S ) • 
~-

From J(S ) =-Kand the formulas (5.2) and (5,5) it follows then 

* a > 

* r-s 
{L(r) + l L(r-j)m(j) + K}/{1+M(r-s*)} 

j=O 

* Since by (4.1) the right side of the inequality is a(r,s ), we have 

obtained a contradiction. Thus (c) holds, 

(d) Sinc:e L(k) is nonincreasing on Gi*,sJ, it follows from (5,5), 
* * * (5,2) anal lemma 4.2(a) that J(k) ~ {L(s )-a }{1+M(k-s )} ~ 0 for 

* s < k < S • = = 0 

( e) From ( 5. 1) and ( 5. 5) it follows that 

* k-s 
(5.6) J(k) = L(k) * - a + l J(k-j)p. ' k > 

j=O J = 

* . By (d) and (5,6) we have for s .;;. i < k.;;. s 0 , 

. * 1-S 

J(i) - J(k) ~ L(i) - L(k) + l {J(i-j)-J(k-j)}p. 
j=O J 

* Iterating this inequality, yields for s ~ i ~ k ~ s 0 , 

. * 1-S 

* s . 

J(i) - J(k) ~ L(i) - L(k) + l {L(i-j)-L(k-j)}m(j) , 
j=O 

The assertion (e) follows from this inequality and the fact that L(k) 

is noninc:reasing on [s*,soJ_. 

(f) By (b) and (c) we have J(k) ~ -K, kEI, From (5.6) it follows now 
* that fork> i > s = = 

. * i-s 
J(k) - J(i) ~ L(k) - L(i) + l {J(k-j)-J(i-j)}p. + 

j=O J 

* . * - K{F(k-s )-F(i~s )}, 
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where F(n) = p0 + ••• + pn, n > O. Iterating this inequality, yields for 
k > i >'>s* 

= = 

. * 1-s 
J(k) - J(i) ~ L(k) - L(i) + I 

j=O 
{L(k-j) - L(i-j)}m{j) + 

. * 1-s 
-K[F(k-s*) - F(i-s*) + l {F(k-s'""-j) 

j=O 
* - F(i-s -j)}m(j)J. 

The assertion {f) follows now from the observation that L(k) is non

decreasing on [s0 ,00 ) and the fact that the coefficient of -K is the 

Probability that the excess variable v_. * < k-i ( see ( 3. 7) ) and hence ..1.1-s -
is less than or equal to 1. 

Theorem 5.2 

(a) * * The set of numbers {a, v (i)}, i£I, satisfies 

00 

'""(.) . v 1 = min 
~ 

{Ko{k-i) + L(k) * - a + l V '""(k-j )p.}, 
j=O J 

The right side of (5.7) is minimized by k * . * = S for 1 < s and by k = i 
. * for 1 > s • 

(b) 

Proof 

(a) By (5.3) we have for each i€I, 
00 

Ko(k-i) + L(k) - a*+ I v'""(k-j)p. = Ko(k-i) + J(k), 
j=O J 

k > i. 

Recall o(O) = O, and o{j) = 1 for j > o. Let us consider Ko{k-i) + J(k) 

for i fixed and k > i. We distinguish three cases. 

Case 1 i < s'"", By theorem 5.1(a), 5.1(b) and 5.1(c) we have 

J(i) > J(s'""-1) ~K + J(s'"") = min {Ko(k-i) + J(k)}. 
k>i 



-14-

Hence the right side of (5.7) is minimized by k = s* for i < * By . 
theorem 5.1 (b) and (5.1) we have K + J(s*) = O = v*(i), i < 

. ( ) . * proves assertion a for i < s • 

* s • This 

Case 2 s* < i ~ s O• By theorem 5.1 (c), 5.1 (b), 5.1 (d) and (5.5) we 

have K + J(k) > K + J(s*) = 0 ~ J(i) = v*(i) fork> i. This proves 

( a) for s * <. i < S • = = 0 
Case 3 i > s 0 • Since L(k) is nondecreasing on [S~,m), it follows from 

theorem 5.1 (f) and (5.5) that K + J(k) ~ J(i) = v (i) fork> i. This 

proves (a) for i > s0 • 

(b) In lemma 4.2 (b) we have already shown that s 1 < s* < s 0 . Since 

s* !. s*it follows from theorem 5.1 (c) and 5.1 (e) thats*~ s O• By 
* * theorem 5.1 (c) and 5.1 (f) we have O ~ J(S) - J(SO) ~ L(S ) - L(SO) - K. 

From the definition (2.3) of s 1 it follows nows*~ s 1• 

Theorem 5.3 

Proof 

*·* The (s ,S) policy is optimal among the class C(M1 ,M2 ) of policies. 

* Since M1 ~ s 1 and M2 ~ s 1 we have by theorem 5.2 (b) that M1~ s and 

* M2 > S. It follows now from theorem 5.2 (a) that 

v*(i) = min 
ke:K( i) 

m 

{Ko(k-i) + L(k) - a*+ I v*(k-j)p.}, 
j=O J 

ie:I, 

and that.the right side of (5.8) is minimized by k = s* for i < s* and 
. . * . *(·) . * by k = i for i ~ s • Since v i = 0 for i < s , we have for every 

Re:C(M 1 ,M2 ), 

ma.x(i ,M2 ) * 
1£R(v(~)li1 =i)I~)~ lv(j)I, ie:I. 

J=s 

Since by the finiteness of the function v*(j) we have v*(j)/n ~ 0 for 

n ~ m, j.e:'I, above inequality implies that condition (2.8) from theorem 

2.1 is satisfied. Theorem 5.3 follows by applying theorem 2.1. 



-15-

Remark 5.2. The theorems 2.1 and 5.3 have as an additional consequence 
* * * that for each initial state a = a(s ,s) represents the average expected 

cost per period when the (s*,s*) policy is followed. 

Remark 5.3. By the introduction of the natural bounds M1 and M2 on the 

inventory level, it was possible to treat the infinite period stationary 

model independent of the finite one. Assume now c ~ 0 and consider the 

class of policies consisting of that policies R from the class C(-00 ,+00 ) 

for which ~R(.!n+ 11i1=i}/n + 0 as n+oo for each ie.I (roughly speaking, 

only that policies are considered for which in the long run the average 

expected order quantity per period equals the expected demand per period). 

Among the policies from that sub-class there is an optimal (s,S) and 

every optimal sand S satisfy the bounds given in theorem 5,2. This can 

be proved by combining theorem 5.2 with the discrete version of the 

results from the section 2 in [12] and the section 5 in [4]. 

Remark 5.4: In this remark we shall show that an optimal (s,S) policy 

also exists under the following weaker assumptions about L(k): (i) there 

exists a finite integer s0 for which L(k) assume: its absolute minimum; 

(ii) there exist finite integers v1 ~ s0 and v1 ~ s0 such that L(k) is 

nonincreasing on [v 1 ,sJ, L(k) is nondecreasing on [j30 , V 1] and both 

z 1 = inf L(k) and z 1 = inf L(k) is larger than L(S0 )+K. We may assume 
k<v1 k>V1 

that s0 is the largest integer for which (i) holds. Clearly, s 1 ~ v 1 

and s 1 ~ v1 , where s 1 and s 1 are as in section 2. Write for convenience 

L1(k) = L(k). Define L2(k) as follows: L2(k) = min(z 1 ,L1(k)) fork< S0 
and L2(k~ = min~z 1 ,L1 (k)) for _k > s0 . Denote g(i ,R) and a(s ,S) 

(see (2.6) and (4~1j) by g1(i,R) arid a 1(s,S) resp. by g2 (i,R) and a2(s,S) 

when L(k) = L1(k) resp. L(k) = L2(k). Obviously we have g1(i,R) ~ g2 (i,R) 

for all i,R. The function L2(k) satisfies the conditions (i) and (ii) 

from section 2. Lets* and s*be any integers for which a2(s,S) assumes 

its absolute minimum. By theorem 5.2 we have g2(i,R) ~ a2(s*,s•i+') for 

all i,R and further s 1 ~ s* ~ s* ~ s 1 • Since L1 (k) = L2(k) on [; 1 ,s;1, 

s 1 ~ s~ and s 1 > s*, we have by the structure of formula (4.1) that 

g1(i,R) .a:., g2(i,R).;;.. a2(s•,s•) = a 1(s*,s*) for all i,R. For the inventory 

model with L(k) = L1 (k) we have for each initial state that ~~(s*,s~) 
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. . (* *) represents the average expected cost per period when the policy s ,S 

is followed (strictly speaking, we have not proved this; for a proof 

see [1]). Hence under the above weaker assumptions about L(k) there 

exists also an optimal (s,S) policy. Further; it follows from 

min a 1(s,S) = min a2 (s,S) that every optimal sand S satisfy the bounds 

given in theorem 5.2. 

Remark 5.5. The continuous demand case, in which the distribution function 

F(~) of the random variables ~(t ~ 1) has a density f(~), can be treated 

in a quite similar way. The following conditions are now imposed on L(y) 

(which is defined as the expected holding and shortage cost in period 

t+A when y is the stock on hand plus on order just after ordering in 

period t): (i) there exists a finite number s0 such that L(y) is non

increasing for y ~ s 0 and nondecreasing for y ~ s0 , (ii) L(y) > L(S0 )+K 

for !YI sufficient large, (iii) L(y) is defferentiable. We may assume 

that s 0 is the largest number for which (i) holds. Let s 1 be the smallest 

number for which L(s 1) = L(S0 )+K and let s 1 be the largest number for 

which L(S1) = L(So )+K. 00 

Define F(n)(~) = P{i1+ ••• +~ ~ ~}, n ~ 1, and let M(~) = I F(n)(~). 
n=1 Denote the derivate of the renewal function M(~) by m(~). 

Analogous to the discrete demand case the following results can be 
* * * * obtained. There exist finite numbers s and S, s ~ S , for which 

S-s 

a(s,S) = {L(S) + f L(S-~)m(~)d~+K}/{1+M(s~s)} , s < s, 
0 

* * * assumes its absolute minimum. The (s ,S) policy is optimal ands and 
* . * * S satisfy s 1 < s < S < S < s 1• 

- - 0 - -
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Errata ruid addenda. to report BW 2/70. · 

page · line ·. 

·.' · .. · : · 
3 ·: . ."· 12 12.!:, • • • s0 ie the." large et ••• ~ • • • s0 ie the emal.leet ••• 

5 . for • • • minimum. Let • • • ~ • • • minimum; r:r K = 0, we take 
·. . . ... , .... . 

M- .... . · .. · :· . .. .... . • · i • . • -

s = S = s
0

• Note ~hat for the case Ka Owe ·have that 

min a{s ,s) = a{s
0 

,s
0

} = L(s
0

) < L{s
0
-1). Let_ ••• 

: ' .· .: .. . ·. ·. ·.· .· .. . · 15 . 
. ·· . . • . . f'or This inequa.lity leads ••• read By p 1 > :owe have that 

. .. . · . . 

.. ,· ·.· · 

. m{k}. > 0, k > o. The inequa.lity b(s~-1,tt"+1) ~ b(e ... ,6*)° together 

vith m(lt·+1 ). > 0 lead ••• 
. : ... . .. . -·· ·· . . 

for leads ••• read together with m(A*) > 0 lead ••• 

: .. ... . 

19 

· 22 · replace the lines 22,° 23 and 24 EZ_:· and K· > O. ;If Ka O ve have 

:. , . 

12 

·. * * . by the choice s = s
0 

that e ~ s
0

• Consider •• _. 

-19 _ . f'or ••• , kE: I. From • • • ~ ; · •• , kf:I. · By ( d) ve have that 

: · J(k) -~ O for s~ ~ k ~ ~o• From ••• . ·:. : . 1· · 
* . . . .. .. 

·· . 20 • £2!: k > i .;:. s read k ~ i ~ s0 ·_ , . .. : • 
.. . · ·· . i-s* i-S .. · .. -:• . ·- · · : 

·21 ; . f9l: 1 ~ I-0 .. : ::_ : , _. ,. ·-·· 
j=O. j =O _ -·:· .. .• 

· 22 for _ F(i".""s,...) read F(i-s
0

) 

* 13 · ._ ·_ 2 for k > i > s· read k > i > S· 
- E::::2 -=- · -- - - 0 . * . · . 1.-s l.-S 

.·_ 3,4 · f'or I ~ l O I 
j=O j=O 

.;, __ ·,-:: 4 .· : __ for F(i-s*) read F(i-s
0

) :f~r F(i-s *-j) read"F(i-s
0
-j) 

. ,· . * 7-· · for y < k-i read v < k-i+S -s . . . -- --- .... = -- ..L. s - 0 

: . 

. .. · ., · 1-s 1.- o 
· ;: _._-_- ._:-14 : ._:' 10 repla ce _l.ine 10, 11, 12 and 13 ~:. (b} By lemma 4.2(b} end the 

· . . 

. ·- ·~. _,__ . . * * 
.. _ _ choice a = s

0 
vhen K = 0 we have that e 1 ~ e ~ s 0 • Assume to 

·. ·: __ .. . •·.:-._ :-~- -'.the· contrary that _s,,,,,. < so. _Then L(So} < L(s'""}. By using theorem 
. . . * 

-.. • ... : :. , 5 .1 (d), 5 .1 (e) o.nd (5.6) it is now easy to verify that, 8 < 80 
.. ·•. _._ -: •. _:· "·: .. ~lies J(s

0
) < J(Stt-). This contradicts th~orem 5.1(c). Thus 

· · ' . .- : ·· :: S > S • By theor em 5. 1 {f) e.nd .5.1 (c) ve have next that . 
- 0 . ' . 

. ·_·· .. ··r;cs~) - t(s) - K < o.· Thuss~< st-.:· :_ , .:-·Ii ·.· . . 

: :, > .• :~-,>.)t' ;- ._ -; :, : ;,, ., 
I~• ,' . • _. .\ · • •_. : • • • • • • • • 
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21 for s0 is the largest ••• read s
0 

.is the smallest ••• 

29 for By theorem 5 .2 ••• read If K = 0 we take s"tt:' = s* = s
0

• _By 

theorem 5.2 ••• 

16 15 for s0 is the largest read s 0 is the smallest••• 

23 for optimal and s * • • • read optimal and, if K > 0, then s * 

Add to page 16: 

Remark 5,6. The .condition p
1 

> O, used in the proof of lemma 4.2(a), is now 

dropped. We shall prove the following lemma: 

Lemma. There exist integers sand S such that a(s,S) = 

L(s-1) ~a*~L(s). 

* a a,nd 
I 

Proof. * By lemma 4.1 there exist integers s' and. S' such that a(s',S') =a. 

* When m(S'-s'+1) = O, we have by (4.1) that also a(s'-1,S') =a. By 

* the proof of lemma 4.1 we have that a(s,S') > a for s sufficient 

small. This proves now that there exist int.egers s and S such that
"'-a(s,S) = a and m(S-s+1) > O. By the proof of lemma 4.2(a) we have 

now shown that the set T = {(s,s)la.(s,S) =a*~ L(s-1)} i _s non-empty. 
* * . * ·* ( ) Let (s ,S ) be a policy from T such that S -s ~ S-s for all s,S €T. 

, * <*> * * .. We shall show that a ~Ls • Whens = S we have trivially 

* * * * a ~ L(s ). Consider now the cases < S. Suppose to the contrary 

that L(s*) > a*. By the proof of lemma 4.2(a) we have th~n 
~ K- * M- * m(S -s) = 0. Hence by · (4.1) we have that a(s +1,S) =a. By 

L(s*) > a..,.we have now the contradiction (s*~1,s*)€T. This ends the 

proof. 

4 . * Lemma .2 and the theorems 5.1, 5.2 and 5,3 are valid when we choose. s and 
M- M- ,to * * s as follows. If K = O, we takes = S = s 0 • Ir K > O, we takes and S 

such that a(t,s) .= a* and L(s*-1) ~a*,?. L{s*). 

' 

.. 




