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A note on the optimality of a switch-over policy for the M/G/1 queue 
with variable service rate 

by 

H.C. Tijms 

ABSTRACT 

This note considers the M/G/1 queue in which a finite number of 

service types are available. There is a linear holding cost rate, and a 

fixed reward for each customer served. The purpose of this note is to point 

out that under the assumption of stochastically ordered service times there 

is an average cost optimal stationary policy having the property that 

the service type used is a non-decreasing function of the queue size. 

KEY WORDS & PHRASES: M/G/1 queue with variable service rate, switch-over 

policy, average cost optimal. 
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I • INTRODUCTION 

Consider a single-server station where customers arrive in accordance 

with a Poisson process with rate A, For each new service to be started 

the server must choose one of a finite number of different service types 

k=I, ••. ,M. For service type k the service time is a positive random vari-

able Sk with probability distribution function Fk(t). It is assumed that 

Skis stochastically smaller than Sj for all k and j with k > j, that is, 

Fk(t) ~ Fj(t) fort~ 0 when k > j, so type k is 11 faster 11 than type j for k>j. 

2 3 Further we assume ESk < 00 for all k, AESM < l and ESM < 00 • The following 

costs are considered. There is a holding cost of h > 0 per customer per 

unit time, a service cost at rate rk when the server is busy and uses ser

vice type k, a service cost at rate r 0 when the server is idle, and a fixed 

reward~ for each customer served by using service type k. 

Define the state of the system as the number of customers present. 

The system is only observed at the epochs where a new service must be start-

ed and the epochs where the server becomes idle. When the system is observed 

in state i ~ I, then one of the actions k=l, ... ,M must be chosen where 

the choice of action k means that service type k is used for the new ser-

vice to be started. For notational purposes, we say that action O is chosen 

when state O is observed. Let C(i,k) be the expected cost incurred until the next 

review when in state i action k is chosen. Then, C ( i, k) = hiESk + 

hAES~/2 + rkESk - ~ for all i ~ l and 1 ::,; k ::,; M, and C(O,O) = r 0/L Since 

we will consider the average cost criterion, it is no restriction to assume 

that itmnediate costs C(i,k) are incurred when action k is taken in state i. 

A policy n is any rule for choosing actions, where a policy f is said to be 

stationary if it chooses a single action f(i) whenever the system is in 
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state i. A stationary policy f is called a switch-over policy when f(i) is 

.non-decreasing in i ~ I. 

Let V(n,i,t) be the total expected cost incurred in [O,t) when policy n 

is used and the initial state is i, and, for any i and n, let 

00 

V(n ,i) = I -a.t 
e dV{n,i,t) 

0 

for a.> O, so, for initial state i and policy n, V(n,i) is the long-run 

average cost and V (n,i) is the expected total discounted cost when the 
a. 

* discount factor is a.. A policy n is called average cost optimal when 

V(n*,i) ~ V(n,i) -for all i and n, and a policy n* is called a-optimal when 

V (n*,i) ~ V (n,i) for all i and n. Let V (i) = inf V (n,i), i ~ 0. 
a. a. a. n a. 

The existence of an average cost optimal switch-over policy was shown 

in CRABILL[I] and in LIPPMAN[4,S] for the case where the service times are 

exponential and the service rate can also be chosen at arrival epochs. 

SCHASSBERGER[8] considered the case of stochastically ordered service times 

and, assuming a finite waiting room and no holding cost, he proved that 

there is an average cost optimal switch-over policy. His proof, however, 

fails for the model of this paper. The purpose of this note is to point out 

that using recent work of LIPPMAN[4,6] the average cost optimality of a 

switch-over policy can be readily shown. 

2. PROOF 

We first give some preliminaries. The notation X c Y means that the 

random variable Xis stochastically smaller than the random variable Y. 

We have (see[9]). ,. 



LEMMA 1. Let X c Y. Then, for any non-decreasing function f, Ef(X) s Ef(Y) 

provided the ex-pectations exist. 

Let¾ be distributed as the number of arrivals during a service time 

Sk. Since P{¾ > n} = f'0 

P{¾ > n I ~k = t} dFk (t), lennna I implies 

0 

LEMMA 2. ¾ c Aj for all k and j with k >.j. 

Let T be the epoch of the first return of the system to state O, and 

let Z(t) be the total costs incurred during [O,t), t ~ 0. Denote by E . 
1T, 1 

the expectation when policy 1r is used and the initial state is i. 

LEMMA 3. Let f be a stationary policy such that f(i) = M for all i suffi-

ciently large. Then, Ei,f(T) s a 1i + a 2 and Ei,f(IZ(T)I) 

s3 for all i ~ 0 where the aj and Skare constants. 

D • 2 D • s µ11 + µ21 + 

3 

PROOF. Consider the M/G/1 queue in which the traffic intensity is less than 

and the service time has a finite second moment. Suppose that at epoch 0 

a service starts whens~ I customers are present. From queueing theory it 

is wellknown that the expectation of the first epoch at which the system 

becomes empty is a linear function of sand that the expected total time 

spent by the customers in the system up to that epoch is a quadratic func

tion of s. Since AESM < I and ES~ <00 , the lennna now follows easily. 0 

To prove that there is an average cost optimal switch-over policy, we 

first consider the discounted model. For the semi-Markov decision model 

with unbounded costs HARRISON[2,3] and LIPPMAN[4,6] have given conditions 

under which for each a> 0 an a-optimal stationary policy exists and the 

optimality equation applies. It is straightforward to verify that for this ,. 
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problem both the conditions in [2] and those in [6] hold. This implies that 

for any a> 0, 

00 

(1) Va(i) = min
1 

:s; k :s; M {C(i,k) + j e-at Va(i-l+k) e-At(Atlk dFk(t)}; i ~ I, 

0 
00 

f e-at V (!) A e-Atdt. Also, for any a >O, let f be 
a a 

0 
a stationary policy such that f (i) minimizes the right side of (I) for all i, 

a 

then f is a-optimal. Using the lemmas I and 2 and making a minor modifi
a 

cation of the first part of the proof of Theorem 6 in [4], we get that 

there is an a*> 0 and a bound B < 00 such that f (i) = M for all O <a< a* 
a 

and i > B. This implies 

LEMMA 4. ThePe is a stationa;r,y p6liay f* with f*(i) = M foP aii i >Band a 

The next theorem can be readily obtained from a close examination 

of the analysis of the average cost criterion in [4,6]. However, since this 

analysis is rather complicated by its generality and needs some minor modi

fications, it might be helpful to outline a simple proof that suffices for 

the present problem. 

THEOREM I. The poliay f* is avePage aost optimal, and V(f*,i) = g foP aii i 

foP some aonstant g. There is a funation h with h(O) = 0 and. 

(2) foP i ~ O, 

foP some aonstants a, a and y, suah that h(O) = r 0/A - g/A + h(l) and 

(3) h(i) = min1 :s; k :s; M {C(i,k) - gESk + lj=O h(i-I+j)pj (k)} for i ~ 1, 
(i, 
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where ~~) = P{A = j} = Jco e-At{(At)j/j!} dFk(t). Moreover, f*(i) 
J k . 

0 
minimizes the right side of (3) for aZZ i. 

PROOF Let g = E0 ,l {Z(T)) /Eo,f* (T). Then, by Lennna 3 and Theorem 3. 16 in 

-1 * ROSS[7], we have that t V(f ,i,t) has the finite limit gas t-+ co for all i. 

Now, from Lemma 4 and a standard Tauberian theorem (see pp. 181-182 in [10]) 

it follows that, for all i and rr, 

v(rr,i) 
-1 

= lim sup t V(rr,i,t) ~ lim sup O aV (rr,i) ~ t-+co a-+ a 

This proves the first part of the theorem. As a byproduct we find 

(4) for all i ~ 0 

Following the proof of Theorem 4 in [4] (cf. also p. 148 in [7])and using (4), 

we find that, for some constant o, 

(5) for all k and all i, 

so, for each i, {V (i) - V (O)} is a bounded sequence. Now, by Cauchy's 
ak ak 

diagonalization method, there is a subsequence {ak} of {ak} and a function 

h such that 

(6) h(i) = lim. {V ,(i) - V ,(O)} 
k-+ co ak ak 

for all 1. .:: O. 

By (5), (6) and Lemma 3 we have that h satisfies (2). Next we observe that, 

2 by (2) and ESk < co, 

(7) 
co 

l lh(i-l+j)I p\k) < co 

j=O J 
for all i ~ 1 and 1 ~ k ~ M. 



Finally, subtracting Va(O) from both sides of (1) with a= ak, letting 

k + ro; and using (4), (6), (7) and the construction off*, we find the 

other assertions of the theorem (we note that (7) is needed for applying 

the bounded convergence theorem). 0 
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A repetition of the second part of the proof of Theorem 6 in [4] shows 

LEMMA 5. h(i+l) - h(i) ~ h(i) - h(i-1) for all i ~- 1, i.e. the function h 

is convex. 

Denote by h(i,k) che expression between brackets in (3). Then 

i ~ 1. 

PROOF. Fix k
1

,k2 with kl > k2 and fix i ~I.Using (7), we have 

ro 

+ I 
j=O 

ro 

{h(i+j) - h(i-l+j)} P· (kl) - l {h(i+j) - h(i-l+j)} p.<k2). 
J j=O J 

By lemma S, h(i+j) - h(i-I+j) is non-decreasing in j ~ 0. Now, the lemma 

follows from the Lemmas 1 and 2 and the fact that ESk 
I 

We are now in a position to state our main result. 

THEOREM 2. For any i ~ 1, let f
0
(i) be the largest value of k far which the 

right side of (3) is minimal. Then, f
0 

is an average cost optimal switch-over 

policy whieh uses service type M for all i sufficiently large. 

PROOF. It easily follows from Lemma 6 that f 0 (i+l) ~ f 0 (i) for all i ~ 1, 

and, by Lemma 4 and Theorem 1, f
0

(i) = M for all i sufficiently large. 
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Since g is the minimal average cost, the switch-over policy f
0 

is optimal 

when V(f
0
,i) = g for all i. To prove this, we first observe that Lennna 3 

and the proof of Theorem 7.5 in [7] imply that, for all i, 

(8) lim n~ 

n n 

( I z.)/Eo f (IT.), 
j=I J ' 0 j=I J 

where _zk aenotes the cost incurred at the (k-I)th review and Tk denotes 

the time between the (k-l)th and the kth review. Let~ be the state at the 

3 kth review. Since AESM < I and ESM < 00 , it follows from queueing theory 

that E
0 

f (xa) has a finite limit ask+ 00 for J = 1,2. Hence, by (2), 
, 0 

-I 
k E

0 
f (h(~) goes to zero ask+ 00 • Now, the proof of Theorem 7.6 in 

' 0 . 
[7] implies that the right side of (8) equals g(cf. p. 727 in [4]). This 

completes the proof. D 
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