
cognitive agent programming

a semantic approach

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301662677?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SIKS Dissertation Series No. 2006-19

The research reported in this thesis has been carried out under the auspices of
SIKS, the Dutch Research School for Information and Knowledge Systems.© 2006 M. Birna van Riemsdijk
Printed by Gildeprint drukkerijen B.V., Enschede

ISBN-10: 90-393-4355-1
ISBN-13: 978-90-393-4355-5

Cognitive Agent Programming

A Semantic Approach

Programmeren van Cognitieve Agenten

Een Semantische Benadering

(met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van doctor aan de Universiteit Utrecht
op gezag van de rector magnificus, Prof. Dr. W.H. Gispen,

ingevolge het besluit van het college voor promoties
in het openbaar te verdedigen

op woensdag 25 oktober 2006 des middags te 12.45 uur door

Maria Birna van Riemsdijk

geboren op 29 oktober 1978, te Wageningen

promotoren: Prof. Dr. John-Jules Ch. Meyer
co-promotoren: Dr. Frank S. de Boer

Dr. Mehdi Dastani

Het hoogste doel in het leven is de groei van het ik, de vergroting
van het bewustzijn. Het hoogste geluk ligt in de vreugde over deze
groei, over het gevoel meer mens te worden.

The ultimate goal in life is the growth of self, the expansion of con-
sciousness. The ultimate happiness lies in the joy about this growth,
in the feeling of becoming more human. - Translated by Targetranslations,

Apeldoorn.

Bertus Mulder, Gerrit Thomas Rietveld: Leven Denken Werken

Contents

Preface xi

1 Introduction 1

1.1 Cognitive Agent Programming 2

1.2 Formal Semantics . 4

2 Setting the Stage 7

2.1 Syntax . 7

2.1.1 Beliefs, Goals, and Plans 7

2.1.2 Reasoning Rules . 8

2.1.3 An Agent . 9

2.2 Semantics . 10

2.3 Example . 14

2.3.1 Building a Tower . 15

2.3.2 Goals and Plan Revision: Programming Flexible Agents . 17

2.4 Overview of Thesis . 18

2.4.1 Part I: Goals . 19

2.4.2 Part II: Plan Revision . 19

2.4.3 Part III: Software Engineering Aspects 20

2.5 Important Issues We Do Not Address 21

I Goals 23

3 Semantics of Subgoals 25

3.1 Syntax . 26

3.2 Semantics . 28

3.3 Comparison with 3APL . 29

3.3.1 Syntax and Semantics . 29

3.3.2 3APL and Subgoals . 32

3.4 Conclusion and Related Work . 36

vii

4 Goals in Conflict 39

4.1 Preliminaries . 40
4.1.1 Cognitive Agent Programming 40
4.1.2 Default Logic . 43

4.2 Goal Base . 44
4.2.1 Semantics . 44
4.2.2 Properties . 47

4.3 Goal Base and Goal Adoption Rules 51
4.3.1 Semantics . 51
4.3.2 Properties . 56

4.4 Dynamics of Goals and Intentions 60
4.4.1 Commitment Strategies for Goals 60
4.4.2 Intention Generation . 62

4.5 Related Work . 68
4.5.1 Van Fraassen and Horty 68
4.5.2 BOID and Related Approaches 73

4.6 Conclusion . 78

5 Putting Goals in Perspective 79

5.1 What Is a Goal? . 80
5.1.1 Philosophy: Dennett and Bratman 80
5.1.2 Formalizing Motivational Attitudes 81

5.2 Why Goals in Agent Programming? 84
5.2.1 Bridging the Gap . 84
5.2.2 Programming Proactive Agents 85
5.2.3 Goals as a Modeling Concept 86

5.3 Representation . 87
5.3.1 Representing Goals Separately or Not 87
5.3.2 Logic-Based and Non-Logic-Based Approaches 89
5.3.3 Interacting Goals . 92

5.4 Behavior . 95
5.4.1 Procedural and Declarative Goals 95
5.4.2 Dropping and Adopting 99

5.5 Conclusion . 102

II Plan Revision 105

6 Semantics of Plan Revision 107

6.1 Syntax . 109
6.1.1 Object-Level . 109
6.1.2 Meta-Level . 110

6.2 Operational Semantics . 111
6.2.1 Object-Level Transition System 111

viii

6.2.2 Meta-Level Transition System 111
6.2.3 Operational Semantics . 113

6.3 Equivalence of Object- and Meta-Level Operational Semantics . 114
6.4 Denotational Semantics . 118

6.4.1 Preliminaries . 118
6.4.2 Definition of Meta-Level Denotational Semantics 120
6.4.3 Continuity of Φ . 127

6.5 Equivalence of Operational and Denotational Semantics 129
6.5.1 Equivalence Theorem . 130
6.5.2 Denotational Semantics of Object-Level 3APL 134

6.6 Related Work and Conclusion . 135

7 Dynamic Logic for Plan Revision 137

7.1 Related Work . 138
7.2 3APL . 140

7.2.1 Syntax . 140
7.2.2 Semantics . 141

7.3 Plan Revision Dynamic Logic . 143
7.3.1 Syntax . 144
7.3.2 Semantics . 144

7.4 The Axiom System . 145
7.4.1 Soundness . 147
7.4.2 Completeness . 149

7.5 Proving Properties of Non-Restricted Plans 155
7.5.1 From Restricted to Non-Restricted Plans 155
7.5.2 Examples . 156

7.6 Plan Revision Rules versus Procedures 162
7.6.1 Reasoning about Procedures 163
7.6.2 Induction . 165

7.7 Conclusion . 166

8 Compositional Semantics of Plan Revision 169

8.1 3APL . 170
8.1.1 Syntax . 170
8.1.2 Semantics . 170

8.2 3APL and Non-Compositionality 171
8.2.1 Compositionality of Procedural Languages 171
8.2.2 Non-Compositionality of 3APL 172
8.2.3 Reasoning about 3APL 172

8.3 Compositional 3APL . 173
8.3.1 Restricted Plan Revision Rules 173
8.3.2 Compositionality Theorem 176
8.3.3 Reasoning about Compositional 3APL 179

ix

III Software Engineering Aspects 181

9 Goal-Oriented Modularity 183

9.1 Goal-Oriented Modularity . 184
9.1.1 Related Work . 184
9.1.2 Our Proposal . 186
9.1.3 Discussion . 187

9.2 Goal-Oriented Modularity in 3APL 188
9.2.1 Syntax . 188
9.2.2 Semantics . 191
9.2.3 Example . 195

9.3 Future Research . 197

10 Prototyping 3APL in the Maude Term Rewriting Language 199

10.1 3APL . 200
10.1.1 Syntax . 200
10.1.2 Semantics . 202

10.2 Maude . 203
10.3 Implementation of 3APL in Maude 205

10.3.1 Object-Level . 205
10.3.2 Meta-Level . 209

10.4 Discussion and Related Work . 211
10.4.1 Advantages of Maude . 211
10.4.2 Extending the Implementation 213
10.4.3 Related Work . 214

11 Conclusion 215

11.1 Part I: Goals . 216
11.2 Part II: Plan Revision . 217
11.3 Part III: Software Engineering Aspects 217
11.4 Final Remarks . 218

Programmeren van Cognitieve Agenten 235

Curriculum Vitae 237

SIKS Dissertation Series 239

x

Preface

Simplicity is my holy grail. Only through a striving for simplicity can we make
progress.

Striving for simplicity is important in the sense of identifying an issue and
simplifying it such that its essence can be studied in isolation. This is what
the famous Dutch computer scientist Dijkstra (1930 - 2002) has referred to as
“separation of concerns”: “Let me try to explain to you, what to my taste
is characteristic for all intelligent thinking. It is, that one is willing to study
in depth an aspect of one’s subject matter in isolation for the sake of its own
consistency, all the time knowing that one is occupying oneself only with one of
the aspects. [. . .] It is what I sometimes have called “the separation of concerns”,
which, even if not perfectly possible, is yet the only available technique for
effective ordering of one’s thoughts, that I know of.” [?]

Contrary to what one might think, this is not a trivial undertaking. One
should not oversimplify matters and ignore essential aspects of the issue. That
is, it is not the case that simpler is always better. Rather, I argue that when
proposing a certain approach, one should ideally be able to argue for each aspect
of the approach why this aspect is incorporated. Through this, one can achieve
a clarity of presentation and a true understanding of the subject matter.

Unfortunately, simplicity doesn’t always sell, as illustrated by the following
quote from Dijkstra: “When you give for an academic audience a lecture that
is crystal clear from alpha to omega, your audience feels cheated and leaves the
lecture hall commenting to each other: ‘That was rather trivial, wasn’t it?’ The
sore truth is that complexity sells better.” [?]

A solution to this problem is suggested in the following poem, which is
attributed to1 the Danish artist and scientist Piet Hein (1905 - 1996).

If you want the world to hear
Write your papers crystal clear,

then add some ingenuities
to show how hard to do it is...

1I found this poem on the website of computer scientist Sophia Drossopoulou:
http://www.doc.ic.ac.uk/~scd/.

xi

Besides the scientific progress that can be achieved through a striving for sim-
plicity, a simple and clear theory can be enjoyed as a thing of beauty. This is
where science and art meet.

And this is the work of an artist. The artist, who thanks to his
limited talents is able to make some clear distinctions, he enables
us to see some elements of fundamental reality, which up until then
escaped us.

The plastic artist for example distinguishes colour, shape, space and
movement as elements of the seeing and restricts himself to one of
these four elements only to distinguish more clearly the phenomena
of reality which come flashing by. The clarification through this of
our look onto life is the perception: beauty. Our world expands itself
and we rejoice in its beauty.2

Gerrit Th. Rietveld, GR 263

Like looking at art, practicing science allows one to continually discover new
viewpoints and expand one’s horizon. It is this which makes me enjoy doing
research.

Ok, I’ll get off my soapbox now and start thanking some people. I thank,
first of all, my supervisors John-Jules Ch. Meyer, Frank S. de Boer, and Mehdi
Dastani. I thank John-Jules for his open mind and cheerful spirit. I couldn’t
have wished for a better promotor! John-Jules always took the time to listen to
me and to give advise on anything ranging from technical matters to advise on
what to do after finishing the thesis. I thank Frank for contributing his great
technical knowledge and insight, for many interesting discussions, and for his
humor which always made our meetings enjoyable. I thank Mehdi for always
making me think about why I chose a certain approach, and for inviting me
to contribute to many of his projects, whether it was writing papers or giving
tutorials. Mehdi is never short of ideas for doing research, and has been great
company on the many conferences that we attended together.

I thank Michael Fisher, Koen Hindriks, Joost Kok, Leon van der Torre, and
Jan Treur for agreeing to be a member of the reading committee and taking
the time to read my thesis. I thank my colleagues, from the Intelligent Systems
group and others, for the many ways in which they have contributed to this
thesis. I thank in particular Huib Aldewereld, Rafael Bordini, Lars Braubach,

2Translated by Targetranslations, Apeldoorn. Original text: “En dit is het werk van de
kunstenaar. De kunstenaar, die dank zij zijn beperking van aanleg, enkele heldere onderschei-
dingen maakt, laat ons enige stukjes primaire werkelijkheid zien, die ons voorheen ontgingen.

De plastische kunstenaar b.v. onderscheidt kleur, vorm, ruimte, en beweging als onderdelen
van het zien en bepaalt zich tot een van deze vier, om met des te meer aandacht de voorbij
flitsende verschijnselen der werkelijkheid te onderscheiden. De verheldering hierdoor van ons
levensbeeld is de gewaarwording: schoonheid. Onze wereld verruimt zich en wij verheugen
ons in z’n schoonheid.”

xii

Martin Bravenboer, Jan Broersen, Martin Caminada, Jurriaan van Diggelen,
Frank and Virginia Dignum, Davide Grossi, Paul Harrenstein, Koen Hindriks,
John Horty, Joris Hulstijn, Wiebe van der Hoek, Geert Jonker, Henk-Jan Leb-
bink, Viviana Mascardi, Peter Novak, Lin Padgham, Cees Pierik, Alexander
Pokahr, Henry Prakken, Carsten Riggelsen, Sebastian Sardina, Liz Sonenberg,
the PhD students from the siks research school, Leon van der Torre, Javier
Vázquez-Salceda, Bob van der Vecht, Michael Winikoff, and Cees Witteveen.
Extra special thanks go to Paul Harrenstein for letting me use his thesis style
file (and for providing the indispensable accompanying technical support), and
to Huib Aldewereld for being incredably patient in answering my numerous
(usually not so interesting) questions about computers, and for always being
willing to help out when I was (again) completely at a loss as to how to make
the computer do what I wanted.

I thank Wilke Schram and the Department of Information and Computing
Sciences of Utrecht University for giving me the opportunity to travel to many
conferences which has taken me to beautiful places such as Melbourne, New
York, Estonia, Lisbon, Covilha, Dagstuhl and Scotland. I thank AgentLink and
Mehdi Dastani for inviting me to attend Technical Forum Groups in Ljubljana
and Budapest, and the aamas organization for supporting my attendance of
aamas’03 (Melbourne), aamas’04 (New York), and aamas’06 (Japan). Also I
am grateful for having received scholarships from the organization of the clima

workshop, allowing me to attend clima’05 in London, even though I did not
have an accepted paper, and clima’06 in Japan. I thank Richard Starmans and
siks for many siks courses, and for supporting my attendance of deon’06.

I thank my roommates Huib Aldewereld, Virginia Dignum, Geert Jonker,
Cees Pierik, Wieke de Vries, and the other members of the Intelligent Systems
group for the pleasant working atmosphere. I have probably learned more about
the world through the many discussions over lunch than from watching the
evening news, and I will really miss having a “bakkie pleur” in the afternoon
with my fellow PhD students. I thank especially Geert for enduring me chatting
about being “almost finished” writing the thesis, about filling out forms, about
the next version 1.7.x of my thesis cover, etc. I will miss Geert’s humor, and
conversations about hats, cars, friendship, and the like. I thank Cees Pierik
and Paul Harrenstein for being my paranimfen. I will miss Cees’ down-to-earth
attitude to life, and the pleasant talks about anything from jogging to religion,
and I am happy not to have to miss Paul.

I thank my friends and family for being there for me over the years. I thank
especially my brother Rombout for always being willing to help, and my parents
Trudy and Willem for giving advise on anything from cover design to buying a
house, and for always being there to share experiences with.

All of you have made the past four years the enjoyable experience it has
been.

Utrecht, August 2006

xiii

Chapter 1

Introduction

The work described in this thesis draws mainly on research done in the agent sys-
tems field and on research concerning programming languages. That is, in this
thesis we are concerned with the design and investigation of dedicated program-
ming languages for programming agents. In Sections 1.1 and 1.2, respectively,
we provide some background on those aspects of the agent systems field and of
programming language research that are relevant in the context of this thesis.

An agent is commonly seen as “an encapsulated computer system that is
situated in some environment and that is capable of flexible, autonomous action
in that environment in order to meet its design objectives” [Jennings, 1999].1

An autonomous computing entity encapsulates its state and makes deci-
sions about what to do based on this state, without the direct intervention
of humans or others [Wooldridge, 1997]. Agents are situated in some envi-
ronment which can change during the execution of the agent. This requires
flexible problem solving behavior, which means that the agent should be able
to respond adequately to changes in its environment in such a way that it
achieves its objectives or goals. Such flexibly behaving computing entities that
are able to make “good” decisions about what to do, are often called intelligent
agents or rational agents [Rao and Georgeff, 1991, van der Hoek et al., 1998,
van der Hoek and Wooldridge, 2003].

Domains in which agents are viewed as providing added value, are typically
dynamic and complex, such as the domains of business process management
[Jennings et al., 1996] and disaster rescue [Visser and Burkhard, 2006].

1In [Jennings, 1999], this definition of what an agent is, is attributed to [Wooldridge, 1997].
However, the definition cannot be found literally in the paper by Wooldridge.

1

2 INTRODUCTION

1.1 Cognitive Agent Programming

Programming rational agents is not a trivial task. First, one needs to establish
what it means that an agent is rational, i.e., one has to develop a theory of
rational agents. The next step then needs to address how these theoretical
ideas of rational agency can be implemented in a concrete piece of software.
The latter can, broadly speaking, be approached in two ways. One possibility is
to develop an architecture for rational agents, specifying what general structure
a rational agent should have. Such an architecture can then be implemented
using some general purpose programming language. Another possibility is to
design a dedicated programming language for programming rational agents.

Research into agent theories, architectures, and languages has a strong tra-
dition2 in the agent systems field (see also [Wooldridge and Jennings, 1995]).
The work as presented in this thesis builds on this tradition.

The origins of much research into agent theories, architectures, and lan-
guages lie with Bratman’s so-called Belief Desire Intention (BDI) philosophy
[Bratman, 1987] (see also Section 5.1.1). BDI philosophy in turn can be viewed
as based on Dennett’s intentional stance [Dennett, 1987]. The idea of the inten-
tional stance is that the behavior of rational agents can be predicted by ascribing
beliefs and desires to the agent, and by assuming that the agent will tend to
act in pursuit of its desires, taking into account its beliefs about the world.

The idea of Bratman now is that beliefs and desires are not enough for
explaining and describing rational behavior. He argues that there is another
notion, i.e., intention, that is essential for an account of practical rationality.
His view is that an agent may have many, possibly conflicting, desires. It is
not feasible for an agent to continually weigh all its desires, in order to decide
what to do. Therefore, an agent settles at some point on achieving a certain
(non-conflicting) subset of its desires. These chosen desires - and corresponding
courses of action - are the agent’s intentions.

Intentions have a characteristic stability, in the sense that an agent will
in principle not reconsider previously formed intentions, except if a significant
problem presents itself. Also, if an agent wants to adopt new intentions, these
new intentions should not conflict with already existing intentions. Existing
intentions thus form a so-called screen of admissibility.

BDI philosophy suggests a particular view on rational agency. It is this view
that has formed the basis for the development of several BDI logics for modeling
and reasoning about rational agents [Cohen and Levesque, 1990]
[Rao and Georgeff, 1991, van der Hoek et al., 1998, Rao and Georgeff, 1998]
(see also Section 5.1.2). The notions of which these logics investigate prop-
erties are the notions of beliefs, desires, and intentions, but also related notions

2This is demonstrated by a series of successful Agent Theories, Architectures, and Lan-
guages (ATAL) workshops which were held annually from 1994 to 2001. Today, ATAL is
part of the International Joint Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS).

COGNITIVE AGENT PROGRAMMING 3

such as goals, wishes, opportunity, capability, commitments, etc. Such notions
are often referred to as mental attitudes.

Shortly after the first BDI logics were proposed, it was Shoham who first put
forward the idea to program rational agents using mental attitudes
[Shoham, 1993]. Shoham proposes the agent programming language
AGENT-0, and coins the term agent-oriented programming. While Shoham
proposes a programming language, others have proposed a specific BDI archi-
tecture for the implementation of rational agents [Georgeff and Lansky, 1987]
[Ingrand et al., 1992]. The resulting system was called the Procedural Reason-
ing System (PRS).

Based on the PRS architecture, the agent programming language
AgentSpeak(L) was proposed [Rao, 1996]. AgentSpeak(L) can be viewed as
a simplified, textual language of PRS. The proposal of AgentSpeak(L) was mo-
tivated by the question of how to relate implemented BDI systems to the BDI
logics. Rao observes that the complexity of the code of implemented BDI sys-
tems has meant that the implemented systems have lacked a strong theoretical
underpinning, i.e., the relation between these systems and BDI logics was not
clear. While the issue of the relation between implemented BDI systems and
BDI logics was not resolved in [Rao, 1996] and is still an open issue (see Section
5.2.1), the proposal of AgentSpeak(L) was followed by an increasing amount of
research into agent programming languages.

In particular, we mention the proposals for the languages 3APL
[Hindriks et al., 1999b, Hindriks, 2001] and GOAL [Hindriks et al., 2001], on
which most of the work in this thesis builds. Like AgentSpeak(L), 3APL
and GOAL are inspired by BDI theory. Other examples of such languages
and frameworks are JACK [Winikoff, 2005] and Jadex [Braubach et al., 2005,
Pokahr et al., 2005b]. JACK is an extension of Java [Gosling et al., 2000] with
agent-oriented constructs, and Jadex is a BDI reasoning engine implemented in
Java that provides an execution environment and an API. Another language that
has several agent-oriented extensions, is MetateM [Fisher, 2006]. MetateM is
a programming language based on direct execution of temporal logic statements.
An extension inspired by BDI was proposed in [Fisher, 1997].

In the early days of agent programming research, the term agent program-
ming was synonymous with agent programming inspired by BDI theory. How-
ever, as the agent systems field grew, many other approaches to agents and
agent programming emerged. For example, there is a large body of work taking
an algorithmic - rather than a programming - approach towards multi-agent
issues such as teamwork or negotiation. Also, there are agent programming
frameworks that are not based on BDI theory, such as the IMPACT framework
[Dix and Zhang, 2005]. IMPACT builds on logic programming, and focuses on
the development of a multi-agent platform that is able to deal with heterogenous
and distributed data, and that can be realized on top of arbitrary legacy code.

In order to distinguish agent programming frameworks that are based on BDI
from those that are not, many use the term BDI agent programming. However,

4 INTRODUCTION

the precise relation between such frameworks and BDI theory is generally not
clear. Also, notions that are used in such frameworks are usually not precisely
the notions of beliefs, desires and intentions. That is, related notions such
as plans, goals, events, and capabilities are frequently used instead of, or in
addition to the BDI notions. The notions in this wide spectrum have also been
referred to as cognitive notions. Therefore, we prefer to use the term cognitive
agent programming for approaches such as ours, that are inspired by BDI theory
but also use related cognitive notions.

In particular, the cognitive notions that we generally use are the notions
of beliefs, goals, and plans. The idea is that an agent should try to reach its
goals by executing appropriate plans, given its beliefs. Beliefs thus form the
informational component of the agent, goals form the motivational component,
and plans form the procedural component.

Most cognitive agent programming languages have at least an informational
and a procedural component. The term “beliefs” is used for the informational
component in most of these languages. As for the procedural component, several
languages also use the term “intentions” instead of or in addition to “plans”.
Regarding the motivational component, the term “goals” tends to appear more
often in cognitive agent programming frameworks than the term “desires”. We
refer to Section 5.1.2 for a short discussion on the difference between goals and
desires.

The aspects of cognitive agent programming on which we focus in this thesis,
are the representation of goals (Part I), and a particular aspect of the execution
of plans, i.e., plan revision (Part II). In Part III, we address some software
engineering aspects. In Chapter 2, we present a simple cognitive agent pro-
gramming language that incorporates beliefs, goals, plans, and a mechanism for
plan revision. At the end of that chapter, we present a more detailed overview
of this thesis.

1.2 Formal Semantics

Cognitive agent programming is one of the pillars on which this thesis rests.
Formal semantics of programming languages is the other.

Research on formal semantics3 of programming languages is concerned with
the rigorous mathematical study of the meaning of programming languages and
models of computation. When defining a formal semantics for a programming
language, the constructs of the language are related to objects in some domain of
interpretation. That is, formal semantics is a way to give a precise specification
of what it means to execute a program.

Formal semantics can be contrasted with the informal semantic descriptions
as can be found in reference manuals and language standards. Such informal

3In other chapters, we generally omit the adjective “formal”.

FORMAL SEMANTICS 5

descriptions are less precise by nature, and are based primarily on implementa-
tion techniques and intuitions. The use of formal semantics as a technique for
describing the meaning of programming languages has several advantages over
an informal approach.

An important advantage of using formal semantics as a tool for designing
programming languages is that semantic issues or problems are more likely to
be identified. In the foreword of [Tennent, 1991, page xvii], Reynolds puts it as
follows: “The truth of the matter is that putting languages together is a very
tricky business. When one attempts to combine language concepts, unexpected
and counterintuitive interactions arise. At this point, even the most experienced
designer’s intuition must be buttressed by a rigorous definition of what the
language means.”4 In this thesis, we will see several cases in which the fact that
formal semantics forces one to be precise, brings to the surface issues that could
otherwise have been overlooked easily.

Another benefit of using formal semantics is that it provides a basis for com-
paring different languages. Without a precise description of the meaning of a
language, it is difficult to make any claims on the exact relation between differ-
ent languages. With the emergence of more and more cognitive agent program-
ming languages, this becomes even more important if one wants to understand
whether seemingly different constructs really are different. Such understanding
can facilitate convergence towards one or a small number of cognitive agent
programming languages.

Further, formal semantics is essential if one wants to do - especially
deductive - verification. That is, if one wants to prove that a proof system for
a programming language is sound and complete, one will have to define the se-
mantics of this programming language (see also [de Bakker, 1980]). Otherwise,
it becomes problematic to define when a specification is true for a program,
which is necessary for proving soundness and completeness. In this thesis, we
will be concerned with verification mainly in Chapter 7.

In the context of cognitive agent programming, formal semantics is a nec-
essary prerequisite for establishing a formal relation between cognitive agent
programming languages and BDI logics. As noted in Section 1.1, it is pre-
cisely this which has motivated Rao to propose the programming language
AgentSpeak(L) as an alternative to the BDI architecture PRS.

Finally, we mention the following as a reason for the use of formal seman-
tics. Generally, formal semantics is regarded as an area of theoretical computer
science, and is consequently viewed as a field that does not have an immediate
connection with the everyday programming practice. In particular, in the field
of cognitive agent programming, approaches such as ours are generally regarded
as theoretical, whereas approaches that, e.g., build on Java and do not have
formal semantics, are regarded as practical.

4Note that “putting together” means “constructing” or “creating”, rather than “combin-
ing”.

6 INTRODUCTION

While this may be true to a certain extent, we like to argue that the uptake
of cognitive agent programming languages in mainstream software engineering
can be facilitated by using formal semantics in the design of these languages.
The reason for this is that the use of formal semantics generally helps in getting
a better understanding of the language. A better understanding helps to iden-
tify the essence of a language, which can contribute to the design of a simpler
language that captures these essential aspects.5 We believe that clarity and
simplicity are features that greatly increase the chances of a language being
used in practice. As formal semantics can be a tool for achieving clarity and
simplicity, formal semantics can be viewed as a tool for advancing the use of
cognitive agent programming languages in practice.

In summary, formal semantics provides a solid foundation for the develop-
ment of programming languages, and we hope that this thesis provides such
a foundation for the further development of cognitive agent programming lan-
guages.

5Note that we do not argue that simpler is always better. Rather, we argue that a language
should not be unnecessarily complicated. However, if more complicated features achieve a
certain desired level of expressiveness, the language designer should not refrain from adding
these features.

Chapter 2

Setting the Stage

The aim of this chapter is to set the stage for the rest of this thesis. We introduce
a simple cognitive agent programming language and show how we can concretize
various mental attitudes in a programming language. This language combines
elements of simplified versions of the cognitive agent programming languages
3APL [Hindriks et al., 1999b] and GOAL [Hindriks et al., 2001], and resembles
the language Dribble [van Riemsdijk et al., 2003b]. In the rest of this thesis, we
will be concerned with a further investigation of certain aspects of this language.

2.1 Syntax

2.1.1 Beliefs, Goals, and Plans

The basic components of our language are beliefs, goals, and plans. Beliefs are
represented using a so-called belief base, describing the information an agent
has about the world and internal information. In this thesis, a belief base will
consist of a set of propositional formulas. In principle, one could use other
knowledge representation languages, such as first order languages (see, e.g.,
[Hindriks et al., 1999b, Dastani et al., 2004] and [Hindriks, 2001, Chapter 2]).
We choose to use a propositional language, because its relative simplicity allows
us to focus on the essence of the aspects of cognitive agent programming lan-
guages that we are concerned with in this thesis. Goals are represented using a
goal base, which also consists of a set of propositional formulas. These formulas
represent the situations the agent wants to achieve.

Definition 2.1 (belief base and goal base) Assume a propositional language
L with typical formula φ and the connectives ∧ and ¬ with the usual meaning.
An agent’s belief base is typically denoted by σ, and is a subset of L, i.e., σ ⊆ L.
Similarly, an agent’s goal base is typically denoted by γ, where γ ⊆ L.

7

8 SETTING THE STAGE

In this thesis, we will often use Σ to denote the set of belief bases, where
Σ = ℘(L). In order to refer to the beliefs and goals of an agent, we generally
use so-called belief and goal formulas as defined below. These formulas can be
used to express that the agent has or does not have certain beliefs or goals.

Definition 2.2 (belief and goal formulas) The belief formulas LB with typical
element β and the goal formulas LG with typical element κ are defined as follows,
where φ ∈ L.

β ::= ⊤ | Bφ | ¬β | β1 ∧ β2

κ ::= ⊤ | Gφ | ¬κ | κ1 ∧ κ2

Note that the B and G operators cannot be nested, i.e., formulas of the form
BGφ or BBφ are not part of the languages.

Plans are the agent’s means for achieving its goals. A plan is a sequence of
basic actions and so-called abstract plans. As in 3APL and GOAL, basic actions
can be executed, resulting in a change of the agent’s belief base. The execution
of actions may also cause changes in the agent’s environment through some
interface (see also [Hindriks, 2001, Chapter 2]). The interaction of an agent with
its environment is however not considered in this thesis where formal semantics
is concerned (see Sections 2.2 and 2.5). An abstract plan cannot be executed
directly in the sense that it updates the belief base of an agent. Abstract
plans, on the other hand, serve as an abstraction mechanism like procedures in
imperative programming. If a plan consists of an abstract plan, this abstract
plan could be transformed into basic actions through reasoning rules, which will
be introduced below.

Definition 2.3 (plan) Assume that a set BasicAction with typical element
a is given, together with a set AbstractPlan with typical element p. Let c ∈
(BasicAction∪ AbstractPlan). Then the set of plans Plan with typical element π
is defined as follows.

π ::= a | p | c;π

The language of plans can be extended in a straightforward way to incorpo-
rate, e.g., constructs for programming conditional choice (if-then-else) or loops
(while). These extensions are however not needed for the investigations car-
ried out in this thesis. The reason for defining sequentially composed plans as
c;π, rather than as π1;π2 as was, e.g., done in [Hindriks et al., 1999b], will be
explained in Section 2.2 (Remark 2.2).

2.1.2 Reasoning Rules

The idea is that agents in our language try to achieve their goals by means of ex-
ecuting plans. In order to allow the programmer to specify which plan an agent
should execute for which goals, we introduce a language construct called plan se-
lection rule. Plan selection rules are of the form κ | β ⇒ π. This rule represents

SYNTAX 9

that the agent may select plan π if the belief condition β and the goal condition
κ hold. These rules were first introduced in [van Riemsdijk et al., 2003b], and
are derivative from rules introduced in [Hindriks et al., 2001].

Besides plan selection rules, agents in our language also have so-called plan
revision rules. Plan revision rules are of the form πh | β πb. Informally, this
rule expresses that if the agent has a plan πh, and believes β to be the case, it
may replace the plan πh by the plan πb. These rules can thus be used by the
agent to revise its plan at run-time. Plan revision rules were first introduced
in [Hindriks et al., 1999b], and were termed “practical reasoning rules” in that
paper.

Definition 2.4 (reasoning rules) The sets of plan selection rules RPS and plan
revision rules RPR are defined as follows.1

RPS = {κ | β ⇒ π : κ ∈ LG, β ∈ LB, π ∈ Plan}
RPR = {πh | β πb : β ∈ LB, πh, πb ∈ Plan}

2.1.3 An Agent

To program an agent in our language means to specify its initial beliefs and
goals, and to write sets of plan selection rules and plan revision rules. Also, an
agent contains a specification of how the belief base of the agent is updated if
basic actions are executed. For reasons of technical convenience and as done in
other papers on similar languages (see, e.g., [Hindriks et al., 1999b]), we assume
for this a function T that takes a belief base and a basic action, and yields a
new belief base resulting from the execution of the action.

This function could be defined using advanced techniques from the field of
belief revision, or, if the belief base has a simple structure, simpler methods
could be used. Investigating belief revision techniques is however not the topic
of this thesis. In Chapter 10, we do present a simple method for specifying belief
update through action execution, which is also the one used in implementations
of 3APL.

Definition 2.5 (agent) An agent is a tuple 〈σ0, γ0,PS,PR, T 〉, where
σ0 ⊆ L is the initial belief base, γ0 ⊆ L is the initial goal base, PS ⊆ RPS

and PR ⊆ RPR are the plan selection and plan revision rules, respectively, and
T : (BasicAction × Σ) → Σ is a partial function where Σ = ℘(L) is the set
of belief bases, expressing how belief bases are updated through basic action
execution.

Note that the agent is not endowed with an initial plan. The idea is that
an agent should use its plan selection rules to adopt plans to reach its goals.
Further, we use the term agent here to refer to the tuple containing the initial

1We use the notation {. . . : . . .} instead of {. . . | . . .} to define sets, to prevent confusing
usage of the symbol | in this definition.

10 SETTING THE STAGE

belief base and goal base, and reasoning rules and belief update function. It
might be considered more appropriate to use the term “agent program” for this
tuple, and to use the term “agent” for the corresponding computational entity
when it is executing. However, in this thesis we will loosely use the term agent
in both cases.

2.2 Semantics

In the previous section, we have defined the components of an agent. In this
section, we specify what it means to execute such an agent, i.e., we specify
its semantics. In order to do this, we introduce the notion of a configuration.
Configurations are used to represent the (components of the) agent at each
moment during execution. The reasoning rules and the belief update function
do not change during computation. We will thus generally not include these
in configurations, for reasons of presentation. Rather, configurations consist
of a belief base, a goal base, and a plan. Configurations in the context of
cognitive agent programming languages are sometimes also called mental states
(see Chapter 6 and [Hindriks et al., 1999b, van Riemsdijk et al., 2003b]).

Below, we formally define configurations. The third component of a configu-
ration represents the plan of the agent. This may either be a plan consisting of
a sequence of basic actions and abstract plans as specified in Definition 2.3, or
it may be an empty plan, which is denoted by ǫ. The empty plan is introduced
for technical convenience, which will be further explained below (Remark 2.1).

Definition 2.6 (configuration) A configuration is a tuple 〈σ, γ, π〉 where
σ ⊆ L, γ ⊆ L, and π ∈ (Plan ∪ {ǫ}). If 〈σ0, γ0,PS,PR, T 〉 is an agent, then
〈σ0, γ0, ǫ〉 is the initial configuration of the agent.

Before defining what it means to execute an agent, we need to specify the
semantics of belief and goal formulas, since the application of reasoning rules
depends on this. Belief and goal formulas are evaluated in a configuration. The
semantics specifies that Bφ is true in a configuration if φ follows from the belief
base of the agent. A formula Gφ is true if φ follows from the goal base, and
φ does not follow from the belief base. The idea is, that an agent should not
have something as a goal which it already believes to be achieved. These kinds
of goals are generally called achievement goals, and these are the goals that we
mostly consider in this thesis. We refer to Chapter 5 for a further discussion of
various kinds of goals.

Definition 2.7 (semantics of belief and goal formulas) Let φ ∈ L and let |=
be the standard entailment relation for L. Further, let 〈σ, γ, π〉 be an agent
configuration, let β, β1, β2 ∈ LB and let κ, κ1, κ2 ∈ LG. The semantics |=LB

and

SEMANTICS 11

|=LG
of belief and goal formulas, respectively, are then as defined below.

〈σ, γ, π〉 |=LB
⊤

〈σ, γ, π〉 |=LB
Bφ ⇔ σ |= φ

〈σ, γ, π〉 |=LB
¬β ⇔ 〈σ, γ, π〉 6|=LB

β
〈σ, γ, π〉 |=LB

β1 ∧ β2 ⇔ 〈σ, γ, π〉 |=LB
β1 and 〈σ, γ, π〉 |=LB

β2

〈σ, γ, π〉 |=LG
⊤

〈σ, γ, π〉 |=LG
Gφ ⇔ γ |= φ and σ 6|= φ

〈σ, γ, π〉 |=LG
¬κ ⇔ 〈σ, γ, π〉 6|=LG

κ
〈σ, γ, π〉 |=LG

κ1 ∧ κ2 ⇔ 〈σ, γ, π〉 |=LG
κ1 and 〈σ, γ, π〉 |=LG

κ2

It is important to note that these semantics have the property that the formulas
B¬φ and ¬Bφ (and similarly for G¬φ and ¬Gφ) are not equivalent. That is,
B¬φ holds in a configuration c with belief base σ iff σ |= ¬φ, and ¬Bφ holds in
c iff c 6|=LB

Bφ, which holds iff σ 6|= φ. The formula B¬φ thus expresses that ¬φ
should follow from the belief base (in the standard propositional logic sense),
while ¬Bφ expresses that φ should not follow. In general, this is not equivalent.
Consider, e.g., a configuration c with belief base {q}. In this case, B(¬p) does
not hold in c, while ¬Bp does hold. If the belief base is consistent, we do have
that ¬Bφ holds if B¬φ holds.

Further, we make a remark with respect to the semantics of goal formulas.
From the perspective of the semantics of goal formulas, the goal bases γ1 = {p, q}
and γ2 = {p ∧ q}, for example, are equivalent. Consider, e.g., the formula
G(p ∧ q). This formula is true in configurations with goal base γ1 (assuming
that p ∧ q is not believed by the agent), and in configurations with goal base
γ2. This is because anything that follows from γ1 (in the standard propositional
logic sense) also follows from γ2, and vice versa. However, these two goal bases
are not equivalent when considering the semantics of the execution of an agent,
which will be introduced below. The idea is that γ2 represents that the agent
wants to achieve a situation in which p and q hold at the same time, while in
the case of γ1, the agent does not necessarily has to strive for a situation in
which both p and q hold. It may be the case that it first achieves p, and then q.
These ideas are reflected in the specification of when goals should be removed
from the goal base (see Definition 2.9 below).

We now move on to defining the semantics of executing an agent in our
language. This semantics is defined using a transition system [Plotkin, 1981].
A transition system for a programming language consists of a set of axioms
and transition rules for deriving transitions for this language. A transition is a
transformation of one configuration into another and it corresponds to a single
computation step. In the transition rules below, we assume an agent with a set
of plan selection rules PS, a set of plan revision rules PR, and a belief update
function T .

An agent’s configuration may change through the execution of an action
from the agent’s plan, or through the application of a reasoning rule. Corre-

12 SETTING THE STAGE

spondingly, the transition system consists of three transition rules, i.e., one for
executing an action, one for applying a plan selection rule, and one for applying
a plan revision rule.

Below, we present the transition rule for basic action execution. In that
transition rule, we use a function • : Plan

′ → (Plan
′ → Plan

′), where Plan
′ is

defined as Plan ∪ {ǫ}. This function takes two plans, that may also be empty
plans, and concatenates these.

Definition 2.8 (plan concatenation) Let π′ ∈ Plan′, π ∈ Plan, and let c ∈
(BasicAction ∪ AbstractPlan). The function • : Plan

′ → (Plan
′ → Plan

′) which
concatenates two plans, is then defined as follows, using infix notation.

ǫ • π′ = π′

π′ • ǫ = π′

c • π = c;π
c;π • π′ = c; (π • π′)

We will explain why we need this function (Remark 2.1), after presenting the
definition of the transition rule for basic action execution. Basic actions update
the belief base of an agent if they are executed, as specified through the partial
function T , where T (a, σ) returns the result of updating belief base σ by per-
forming action a. The fact that T is a partial function represents that an action
may not be executable in some belief states. Goals that are reached through
execution of an action are removed from the goal base. After execution of an
action, the action is removed from the plan.

Definition 2.9 (action execution) Let a ∈ BasicAction and let
γ′ = γ \ {φ ∈ γ | σ′ |= φ}.

T (a, σ) = σ′

〈σ, γ, a • π〉 → 〈σ′, γ′, π〉

Remark 2.1 (empty plan and plan concatenation) The reason that we have
defined configurations such that the plan component may be either a plan from
the set Plan or an empty plan, is as follows. Because π in the transition rule
above may also be the empty plan ǫ, the transition rule specifies two variants
of executing an action: the plan a • π may consist of an action a followed by a
non-empty sequence of actions and abstract plans (in which case π ∈ Plan), or
the action a may be the only action of the plan (in which case π = ǫ). If we
would not have allowed π to be the empty plan, we would have had to introduce
another transition rule, that specifies how to execute an action if the action is
the only action of the plan, i.e., if the plan component of the configuration is of
the form a.

A consequence of this is that we can, strictly speaking, not use the sequential
composition operator for specifying the configuration on the left-hand side of

SEMANTICS 13

the transition, i.e., by specifying the configuration as 〈σ, γ, a;π〉. Following
Definition 2.3, the sequential composition operator is defined on basic actions
and non-empty plans from the set Plan. The concatenation operator solves our
problem, because this operator is defined also on empty plans.

Alternatively, we could have introduced empty plans in the language of plans
of Definition 2.3. This would however have allowed us to define, e.g., a plan of
the form ǫ; ǫ; ǫ; a, from which our language would hardly benefit. Also, this
would not have provided the advantage of having to specify only one transition
for the execution of basic actions, since a plan a; ǫ would then consist of two
elements, rather than only of a, as in the case of a • ǫ. On the contrary, we
would need to specify another transition for the execution of empty plans, in
order to get rid of the empty plans in, e.g., the plan ǫ; ǫ; ǫ; a.

Having explained all this, we will not be so strict in the rest of this thesis.

A plan selection rule is applicable in a configuration if the goal condition and
belief condition of the rule are true in that configuration. Further, it can only
be applied if the plan of the agent is empty. The idea is, that an agent can
only select a new plan if it has finished executing its old plan. In the resulting
configuration, the plan becomes equal to the consequent of the plan selection
rule.

Definition 2.10 (plan selection)

κ | β ⇒ π ∈ PS 〈σ, γ, ǫ〉 |=LG
κ 〈σ, γ, ǫ〉 |=LB

β

〈σ, γ, ǫ〉 → 〈σ, γ, π〉

We could have defined configurations as containing a plan base consisting of a set
of plans, rather than of a single plan, as done in, e.g., [Hindriks et al., 1999b,
Dastani et al., 2004]. In that case, plan selection rules could be used to add
plans to the plan base. Such a choice would however introduce added complexity
to the semantics of plan execution, i.e., one would have to define how plans are
executed concurrently, and it would call for a discussion on possible interferences
between plans that are executed concurrently. Except in Chapter 4, we will
avoid these additional complications throughout this thesis by having the plan
base consist of only one plan.

A plan revision rule can be applied in a configuration if the head of the rule
is equal to a prefix of the plan in the configuration. The application of the rule
results in the revision of the plan, such that the prefix equal to the head of the
rule is replaced by the plan in the body of the rule. A rule a; b | ⊤ c can for
example be applied to the plan a; b; c, yielding the plan c; c. The belief base is
not changed through plan revision. As in the transition rule for action execution
(Definition 2.9), we use the concatenation operator.

Definition 2.11 (plan revision)

πh | β πb ∈ PR 〈σ, γ, πh • π〉 |=LB
β

〈σ, γ, πh • π〉 → 〈σ, γ, πb • π〉

14 SETTING THE STAGE

Remark 2.2 (structure of plans) We are now in a position to explain why we
have chosen to define sequentially composed plans as c;π (where c is an atomic
plan element, i.e., a basic action or an abstract plan), rather than as π1;π2.
If we would have chosen the latter option, the configuration on the left-hand
side of the transition for plan revision could have been defined as 〈σ, γ, πh;π〉
(ignoring for the moment that we might want to allow π to be the empty plan).

Given, e.g., a plan revision rule a; b | ⊤ c, one could then argue that it
is not clear whether this rule is applicable to, e.g., the plan a; b; c (where a, b,
and c are basic actions). The reason is that this plan could be viewed as the
sequential composition of a and b; c, or as the sequential composition of a; b and
c. If the plan is viewed as (a; b); c (where we introduce brackets to indicate how
the plan is composed), the rule can be applied. If, however, the plan is viewed
as a; (b; c), the rule cannot be applied, since this plan cannot be decomposed
into the plan a; b and the plan c. The idea is, however, that the rule should be
applicable to both plans, regardless of how they are composed.

Our solution to this problem is to define an unambiguous grammar of plans
by defining sequentially composed plans as c;π. The plan a; b; c can then only
be viewed as the plan a; (b; c). Now, we have to make sure that we define the
semantics such, that the rule a; b | ⊤ c is applicable to this plan. Given
this definition of plans, the desired semantics can be achieved easily by using
the concatenation operator, as done in Definition 2.11. The transition rule for
plan revision specifies that the rule a; b | ⊤ c can be applied to any plan
resulting from concatenating a; b and some plan π. In particular, the rule can
be applied to the plan resulting from the concatenation of a; b and c, i.e., to the
plan a; (b; c).

Having explained this, we will not always be so strict in this thesis.

The semantics of an agent in our language is derived directly from the transition
relation →. It can be defined in various ways. One way of defining the semantics,
is to define it as a set of so called computation runs.

Definition 2.12 (semantics) A computation run for an agent
〈σ0, γ0,PS,PR, T 〉 is a finite or infinite sequence s0, . . . , sn or s0, . . . such that
si for i ≥ 0 are configurations, s0 is the initial configuration of the agent, i.e.,
s0 = 〈σ0, γ0, ǫ〉 (see Definition 2.6), and ∀i>0 : si−1 → si is a transition in the
transition system for the agent. For finite computation runs s0, . . . , sn it should
be the case that there is no transition sn → sn+1 for some sn+1. The semantics
of the agent is then defined as the set of all computation runs for this agent.

2.3 Example

We present a simple example in order to illustrate how the components of the
language may be used, and to further clarify the semantic definitions (Section

EXAMPLE 15

2.3.1). In Section 2.3.2, we use the example to argue that goals and plan revision
can be used for programming flexibly behaving agents.

2.3.1 Building a Tower

The example is adapted from [van Riemsdijk, 2002], and was also used in
[van Riemsdijk et al., 2003b, Dastani et al., 2004]. Our example agent has to
solve the problem of building a tower of blocks. The blocks have to be stacked
in a certain order: block C has to be on the floor (Fl), B should be on C, and
block A should be on B. Initially, the blocks A and B are on the floor, while C
is on A.

The only action an agent can take, is to move a block x from some block y
to another block z (move(x, y, z)). Variables are used to ease the specification
of the example agent, and should be instantiated with the relevant arguments.
That is, the action move(x, y, z) represents the set of actions

{move(x, y, z) : x ∈ {A,B,C} and y, z ∈ {A,B,C, F l} and x 6= y 6= z}.

The move(x, y, z) action is enabled only if the block to be moved (x) and the
block to which x is moved (z) are clear. The result of the action is, that x is on z
and not on y, block y becomes clear and block z is not clear anymore (assuming
that z is not the floor, because the floor is always clear). Let the agent’s initial
belief base σ0, goal base γ0, plan selection rules PS, and plan revision rules PR,
be as defined below. The function T will be specified in the sequel.

σ0 = {on(C,A), on(A,F l), on(B,F l), clear(B), clear(C), clear(Fl)}
γ0 = {on(A,B) ∧ on(B,C) ∧ on(C,F l)}
PS = {G(on(x, z)) | B(on(x, y)) ⇒ move(x, y, z) :

x ∈ {A,B,C} and y, z ∈ {A,B,C, F l} and x 6= y 6= z}
PR = {move(x, y, z) | B(on(u, x)) move(u, x, F l);move(x, y, z) :

x, u ∈ {A,B,C} and y, z ∈ {A,B,C, F l} and x 6= y 6= z} ∪
{move(x, y, z) | B(on(u, z)) move(u, z, F l);move(x, y, z) :

x, u ∈ {A,B,C} and y, z ∈ {A,B,C, F l} and x 6= y 6= z}

The goal rules are used to derive themove(x, y, z) action that should be executed
to fulfil a goal on(x, z). The preconditions of the move action are not checked
in these rules, so it is possible that the derived action cannot be executed in a
particular configuration. The plan revision rules can then be used to create a
configuration in which this action can be executed. Note that the goal rules are
used to select an action to fulfil a single proposition of the form on(x, z). The
initial goal base however contains a conjunction of on(x, z) propositions. The
goal rule is applicable to this conjunction, because a formula Gφ is true if φ is
a logical consequence of the goal base (see Definition 2.7).

We assume that the function T , when applied to basic action move(x, y, z)
and a belief base σ has the following properties. The function is defined iff

16 SETTING THE STAGE

σ entails clear(x) ∧ clear(z) ∧ on(x, y). The result is a belief base that en-
tails on(x, z) ∧ clear(y) and that does not entail on(x, y) and clear(z) if z 6=
Fl. If z = Fl, the resulting belief base entails on(x, z) ∧ clear(y) ∧ clear(z)
and does not entail on(x, y). This describes the changes to the propositions
on(x, y), on(x, z), clear(y) and clear(z) which are caused by the actionmove(x, y, z).
Below, we specify which propositions are not changed by the actionmove(x, y, z),
assuming that the function T is defined on action move(x, y, z) and belief base
σ, i.e., let T (move(x, y, z), σ) = σ′.

σ |= on(u, v) ∧ u 6= x ⇒ σ′ |= on(u, v)
σ |= clear(w) ∧ w 6= z ⇒ σ′ |= clear(w)

In the initial configuration of the agent 〈σ0, γ0, ǫ〉, three possible plan selection
rules could be applied: x = A, y = Fl, z = B or x = B, y = Fl, z = C or x = C,
y = A, z = Fl (yielding move(A,F l, B),move(B,F l, C) or move(C,A, F l)).
Suppose the first is chosen. After application of this plan selection rule, the
plan of the agent becomes equal to the plan in the consequent of the plan
selection rule, resulting in the following configuration.

σ1 = {on(A,F l), on(B,F l), on(C,A), clear(B), clear(C), clear(Fl)}
γ1 = {on(A,B) ∧ on(B,C) ∧ on(C,F l)}
π1 = move(A,F l, B)

The plan cannot be executed because the preconditions of the action are not
satisfied in this configuration (there is a block onA). The plan selection rule can-
not be applied because the plan of the agent is not empty. The only applicable
rule is the plan revision rule move(A,F l, B) | B(on(C,A)) move(C,A, F l);
move(A,F l, B).

σ2 = {on(A,F l), on(B,F l), on(C,A), clear(B), clear(C), clear(Fl)}
γ2 = {on(A,B) ∧ on(B,C) ∧ on(C,F l)}
π2 = move(C,A, F l);move(A,F l, B)

The only option is to execute the first action of the plan, resulting in a changed
belief base that has the property as specified below.

σ3 |= on(A,F l) ∧ on(B,F l) ∧ on(C,F l) ∧ clear(A) ∧ clear(B) ∧
clear(C) ∧ clear(Fl)

γ3 = {on(A,B) ∧ on(B,C) ∧ on(C,F l)}
π3 = move(A,F l, B)

In this configuration, the action move(A,F l, B) is executed. In the resulting
configuration, the only (logical consequence of the) goal which is not satisfied,
is on(B,C). A plan is constructed to move B onto C: first A is moved onto
the floor, then B is moved onto C. The only goal which is not satisfied is
on(A,B). The action move(A,F l, B) is selected using a plan selection rule and

EXAMPLE 17

then executed. This results in the following final configuration in which the goal
is reached and thus removed from the goal base.

σF |= on(A,B) ∧ on(B,C) ∧ on(C,F l) ∧ clear(A) ∧ clear(Fl)
γF = ∅
πF = ǫ

This example execution shows that the agent can reach its initial goal. The
number of actions that the agent needs to execute before it reaches its goal, is
partly dependent on which choices are made if multiple plan selection rules are
applicable. As was shown, three plan selection rules are for instance applicable
in the initial configuration.

2.3.2 Goals and Plan Revision: Programming Flexible Agents

Goals and plan revision form two important aspects of the presented cognitive
agent programming language. While these aspects can be studied relatively
independently as we do in this thesis (see Section 2.4 for an overview), they can
nevertheless be linked by viewing them as both facilitating the programming of
flexible agents.

Agents need to have a certain level of flexibility, since they are often expected
to operate in dynamic environments. The idea that goals can provide this added
flexibility, can be explained using the tower building example (see Chapter 5 for
a more elaborate discussion of advantages of goals).

From the transition rules of Section 2.2, we know that a goal is removed from
the goal base only if the agent believes it has achieved the goal. Now consider
the example tower building agent, which we will refer to as agent A. Assume
agent A is almost finished building its tower, i.e., block C is on the floor and B
is on C, and A is on the floor. In order to finish the tower, it has to move block
A onto block B. Now assume there is another agent in the environment, which
at this point moves block B onto the floor, thereby destroying part of the tower.
Also assume agent A observes this and updates its belief base accordingly.

Due to the fact that the goal on(A,B) ∧ on(B,C) ∧ on(C,F l) has not been
removed from the goal base (because the tower has not been completed yet), the
formula G(on(B,C)) holds once more after the other agent has moved block
B (even though on(B,C) was previously believed, and therefore not a goal).
Because of this, agent A can now apply the plan selection rule in order to move
B onto C again. The fact that the agent has a goal base and that goals remain in
the goal base until they are believed to be achieved, thus provides for flexibility
in the sense that the agent will continue to try to achieve its goals, even if
the environment changes in unhelpful ways, or if plans fail. While this kind
of flexibility might also be achievable if programming in some general purpose
language, the idea is that it can be beneficial that it is a built-in characteristic
of the programming language.

18 SETTING THE STAGE

This, of course, does not mean that using goals and plan selection rules will
yield satisfactory results in every dynamic environment. For example, after the
execution of a plan that has not achieved its desired objective (either because the
programmer has not provided the right plan, or because there were changes in
the environment that prevented the agent from reaching its goal), it may be the
case that the agent finds itself in a situation in which there is no applicable plan
selection rule. The agent may need to return to some initial situation, in order
to be able to apply plan selection rules to try once more to achieve its goals. On
the other hand, one could argue that the programmer should have made sure
that the agent had the appropriate plan selection rules. That is, it is still the
job of the programmer to make appropriate use of the components provided by
the agent programming language, as is the case with any other programming
language. Always providing the agent with the right plan selection rules can
however be difficult if the environment gets “too unpredictable”.

Another issue is that the agent may be left with part of a plan that is not
executable anymore, because the environment has changed. In that case it needs
to have a mechanism for getting rid of this old plan, and perhaps for changing
the environment to allow it to start executing plans once again for achieving its
goals. For this, plan revision rules could potentially be used.

Besides for cleaning up failed plans, plan revision rules can be used to provide
for added flexibility in general. The idea is that plan revision rules can be used
to revise an agent’s plan, if the circumstances demand this. The belief condition
can be used to specify these circumstances. In the tower building example for
instance, plan revision rules are used to revise the agent’s plan if a move action
that is to be executed next, cannot be executed. The belief conditions of these
rules specify the conditions under which a move action is not executable. In
this example, the plan is revised in such a way that the desired move action can
be executed eventually.

As in the case of goals and plan selection rules, it is the job of the programmer
to specify appropriate plan revision rules. In order to be able to do this in an
effective way, the environment cannot be too unpredictable. The programmer
needs to be able to foresee up to a certain level where things might go wrong.

2.4 Overview of Thesis

In the previous sections, we have presented a cognitive agent programming
language. So are we done now? Well. . . no. Several aspects of the presented
language warrant a further investigation, parts of which will be carried out in the
rest of this thesis. In particular, we will consider aspects related to goals (Part
I), and aspects related to plan revision (Part II). Some software engineering
aspects will be addressed in Part III.

OVERVIEW OF THESIS 19

2.4.1 Part I: Goals

In Part I, we investigate various ways of representing goals and of defining their
semantics. In Chapter 3, we address, broadly speaking, the relation between
the semantics of abstract plans and of goals. Abstract plans are sometimes
viewed as the subgoals of an agent’s plan, in the sense that an abstract plan p is
sometimes interpreted as representing that the agent should achieve a state in
which he believes p to be the case. In this light, we have found it interesting to
study whether the properties of abstract plans correspond in some way to the
properties of goals, and in particular the property that goals are not dropped
until they are believed to be achieved (see Definition 2.7). Chapter 3 sheds some
light on this issue, thereby clarifying whether aspects of the behavior of goals
can be captured by a construct present in the plans of an agent.

In Chapter 4, we address issues regarding the semantics of goals, given that
we want to allow the representation of conflicting goals. The semantics for
goal formulas of Definition 2.7 is trivialized if the goal base of the agent is
inconsistent. That is, if the goal base is inconsistent, the agent can derive
G⊥, and any other formula Gφ. If one wants to allow the goal base to be
inconsistent without trivializing the semantics of goal formulas if this is the
case, this semantics will have to be adapted. In Chapter 4, we investigate such
adaptations. Further, we propose an extension to the representation of goals, by
proposing a construct for representing that goals may be conditional on beliefs
or other goals. That is, by means of this construct one can represent that if the
agent has a certain belief (or goal), it should also have a certain (other) goal.
Given such a construct, we again investigate a semantics for goal formulas that
allows the agent to have conflicting goals, without trivializing the semantics.

Concluding Part I, Chapter 5 contains a general discussion regarding liter-
ature addressing goals in the context of agent programming. We argue why we
think goals are important in agent programming. Further, we identify important
strands of research regarding the representation of goals in agent programming
frameworks, thereby also showing how our work can be positioned with respect
to other approaches.

2.4.2 Part II: Plan Revision

In Part II, we focus on plan revision. As our object of study, we take a language
without goals (and therefore also without plan selection rules), and of course
with plan revision rules. An important aspect of plan revision that calls for
further investigation, and which is the aspect on which we focus in this the-
sis, is the semantics of the execution of plans in the presence of plan revision
rules. As it turns out, this semantics is not compositional. This means, broadly
speaking, that the semantics of a composed plan cannot be defined in terms of
the semantics of the parts of which it is composed.

This is due to the presence of plan revision rules, and, in particular, to the

20 SETTING THE STAGE

fact that the head of a plan revision rule may consist of a composed plan, rather
than of an atomic plan. The issue of non-compositionality to which this gives
rise, can be explained informally as follows.

Because of the presence of plan revision rules, the semantics of an atomic
plan element cannot be considered in isolation. Put differently, the semantics
of, e.g., a basic action a, depends on the actions that surround it. There may,
e.g., be a plan revision rule with a; b as the head, and one with a; c as the head.
Given a plan with a as the first action of the plan, i.e., a plan of the form a;π,
the possible application of one of the plan revision rules depends on whether π is
of the form b;π′ or of the form c;π′ (or of yet another form). When determining
the semantics of the plan a;π, the action a can thus not be considered separately
from π. If the semantics of plans would have been compositional, it would have
been possible to consider a in isolation. The non-compositional nature of the
semantics of plans gives rise to problems if one wants to prove properties of
plan execution. If the semantics of plans is not compositional, one cannot prove
properties of a composed plan by proving properties of the parts of which it is
composed, which is what one would generally want to do.

This issue of the non-compositionality of the semantics of plans in the pres-
ence of plan revision rules is approached from three different perspectives in this
thesis. In Chapter 6, we propose a meta-language on top of the agent program-
ming language. This meta-language has constructs for specifying that an action
should be executed, or that a plan revision rule should be applied. We show
that it is possible to define a compositional semantics for this meta-language,
and show that a particular meta-program is equivalent with the object-level
semantics of the agent programming language. In Chapter 7, we take another
approach and present a specialized dynamic logic for reasoning about plans in
the presence of plan revision rules. This logic comes with a sound and complete
axiomatization, and essentially circumvents the non-compositionality issue in a
certain way. In Chapter 8, we approach the issue from again another angle, by
restricting plan revision rules in such a way that the semantics of plans becomes
compositional.

2.4.3 Part III: Software Engineering Aspects

Part III is different from the first two parts in that it does not address one
particular aspect of the agent programming language presented in this chapter.
The two chapters in this last part both address software engineering issues that
concern the agent programming language as a whole.

Chapter 9 addresses modularization in cognitive agent programming lan-
guages. Modularization is widely recognized as a central issue in software en-
gineering. A system which is composed of modules, i.e., relatively independent
units of functionality, is called modular. When it comes to cognitive agent pro-
gramming languages, one can think of various ways in which agent programs
can be modularized. We discuss existing approaches to modularity in cognitive

IMPORTANT ISSUES WE DO NOT ADDRESS 21

agent programming, and propose a new kind of modularity, i.e., goal-oriented
modularity. In goal-oriented modularity, the goals of an agent are taken as the
basis for modularization. We present a formal semantics of goal-oriented mod-
ularity in the context of an agent programming language that is similar to the
one presented in the present chapter.

In Chapter 10, we discuss a particular approach for prototyping an agent pro-
gramming language similar to the one presented in this chapter. The approach
we take is to implement the agent programming language in the Maude term
rewriting language. Maude is based on the mathematical theory of rewriting
logic. The language has been shown to be suitable both as a logical framework
in which many other logics can be represented, and as a semantic framework,
through which programming languages with semantics based on a transition
system can be implemented in a rigorous way. We explore the usage of Maude
in the context of agent programming languages, and argue that, since agent
programming languages such as the one presented in this chapter have both
a logical component (in the form of belief and goal formulas and their corre-
sponding satisfaction relations) and a semantic component (in the form of the
transition system), Maude is very well suited for prototyping such languages.

2.5 Important Issues We Do Not Address

A number of important issues related to cognitive agent programming languages
are not addressed in detail in this thesis. In particular, even though we have
argued that goals and plan revision can be linked by considering these as provid-
ing for added flexibility in the case of dynamic environments, we will in the rest
of this thesis not consider aspects related to interaction with an environment.
In particular, we will not address sensing, or issues related to the problem of
making sure that the belief base accurately represents the environment. The
main reason that we do not do this, is that it is not needed for the investigations
into semantics of goals and plan revision that we carry out in this thesis. In-
corporating the environment in the semantics of agent programming languages
could be done by incorporating a model of the environment in the configura-
tions. However, from a technical point of view this does not really differ from
using a belief base as a model of the environment. Our theory would therefore
hardly benefit from this, unless one would want to investigate issues related to
sensing and updating of beliefs, which we do not.

Further, we do not aim to investigate advanced formalisms for representing
an agent’s beliefs. Throughout this thesis, the belief base will consist of a set
of propositional formulas, and the semantics of belief formulas will be as in
Definition 2.7.

Moreover, in this thesis we do not consider planning from first principles
(see, e.g., [Fikes and Nilsson, 1971]), even though the vocabulary used in that
field (beliefs, goals, plans) is similar to ours. The relation between planning from

22 SETTING THE STAGE

first principles and plan revision (or agent programming in general) is discussed
briefly in Section 7.1.

Furthermore, in this thesis we shall not dwell on the pragmatics of the dis-
cussed approach, but concentrate on theoretical issues.2 In particular, we will
not be concerned with agent-oriented design methodologies
[Zambonelli et al., 2003, Bresciani et al., 2004].

Finally, we focus solely on aspects related to the programming of individ-
ual agents. Even though the slogan “There is no such thing as a single-agent
system” is sometimes used, the origins of research into intelligent agents lie in
research concerning single-agent issues (see [Wooldridge and Jennings, 1995] for
an overview). In our view, research into single-agent aspects is an important
part of agent systems research. In fact, we would like to propose the slogan
“There is no multi-agent system without single agents”.

2This sentence is adapted from a sentence in [de Bakker, 1980, page 127].

PART I

GOALS

23

Chapter 3

Semantics of Subgoals

This chapter is based on [van Riemsdijk et al., 2005c]. In order to be able to
explain what we investigate in this chapter, we first need to make a distinction
between two kinds of goals: procedural goals and declarative goals. Broadly
speaking, a procedural goal is the goal to execute an action or sequence of
actions, and a declarative goal is the goal to reach a certain state of affairs.1 A
declarative goal thus describes a desired situation.

Goals as introduced in Chapter 2 are generally viewed as declarative goals
(see, e.g., [Hindriks et al., 2001, van Riemsdijk et al., 2005a]). The fact that
these goals represent a desired situation, is used in the semantics by defining
that a goal is removed from the goal base, once the agent believes the goal to be
reached. It is generally accepted that an agent should at least be endowed with
procedural goals. However, declarative goals also have a number of advantages,
such as the added flexibility that they provide, as discussed in Section 2.3.2. We
elaborate on advantages of declarative goals in Section 5.4.1.

We can now start explaining the issue investigated in this chapter. Goals
as introduced in Chapter 2 are represented using a goal base (Definition 2.1).
In this chapter, we are concerned with a different way of representing goals in
an agent programming language.2 That is, we are concerned with subgoals3 as
occurring often in the plans of an agent.

Plans are frequently built from basic actions which can be executed directly,
and subgoals which can be viewed as representing a course of action in a more
abstract way. An agent can for example have the plan to go to the bus stop,
to take the bus into town,4 and then to achieve the goal of buying a birthday

1We elaborate on the difference between procedural and declarative goals in Chapter 5.
2We refer to Chapter 5 for an overview of various approaches to the representation of goals

in agent programming frameworks.
3A usage of the term subgoal that we do not consider in this chapter is usage in

the logical sense, where for example p is considered to be a subgoal of the goal p ∧ q

[van Riemsdijk et al., 2005a].
4Assuming that both going to the bus stop and taking the bus into town are actions that

25

26 SEMANTICS OF SUBGOALS

cake. This goal of buying a birthday cake will have to be fulfilled by selecting a
more concrete plan of for example which shop to go to, etc.

Just as goals in general, subgoals of plans can also be categorized as either
procedural or declarative. In the procedural interpretation, subgoals are linked
directly to plans. Their only role is the abstract representation of a more con-
crete plan. In the declarative interpretation, the fact that the subgoal represents
a desired state is somehow taken into account. In particular, the behavior of
the agent depends in the case of declarative subgoals on whether the state rep-
resented by the subgoal is achieved (through the execution of a corresponding
concrete plan, for example). In the birthday cake example, this means that it
is important whether the execution of the concrete plan of which shop to go to
etc., has resulted in a state in which the birthday cake is actually bought. If
it turns out that the goal of buying the cake is not reached after having gone
to the specific shop, the agent could select another plan to try a different shop,
yielding more flexible agent behavior.

In this chapter, we study a cognitive agent programming language similar
to the language of Chapter 2, without a goal base and plan selection rules.
The language under consideration is essentially a propositional and otherwise
somewhat simplified version of the first version of 3APL [Hindriks et al., 1999b],
and we will in the rest of this chapter refer to our language simply as “3APL”.

We consider it to be important to be able to express a declarative notion of
subgoals in a cognitive agent programming language, and the aim of this chapter
now is to investigate whether and if so, how, these declarative subgoals can be
expressed in the language 3APL. In order to do this, we first make precise what
we mean exactly by declarative subgoals, by defining a simple formal semantics
for subgoals that interprets these in a declarative way (Sections 3.1 and 3.2).
We then compare this semantics with the semantics of 3APL (Section 3.3). We
argue that 3APL has a notion of subgoal, i.e., the abstract plans of 3APL can
be viewed as subgoals, but this kind of subgoal is defined as a procedural kind of
subgoal. It turns out, however, that although subgoals of 3APL are defined to
have a procedural semantics, a 3APL agent can nevertheless be programmed to
have these subgoals behave as declarative goals. This observation about 3APL
(and a formal proof that it is correct) is the main contribution of this chapter.

3.1 Syntax

In this section and the next, we present the syntax and semantics of a simple
programming language with plans containing subgoals that have a declarative
interpretation. Throughout this chapter, and as in Chapter 2 (Definition 2.1),
we assume a language of propositional logic L with negation and conjunction.
We assume the language is based on a set of atoms Atom. In this chapter, we
need to make the set of atoms on which L is based explicit, as it is used when

can be executed directly.

SYNTAX 27

defining the language of plans (Definition 3.1). The symbol |= will be used to
denote the standard entailment relation for L.

Below, we define the language of plans. This language of plans is similar to
the plan language of Chapter 2 (Definition 2.3). That is, a plan is a sequence of
basic actions and statements of the form achieve(p) (subgoals), where p ∈ Atom.
Informally, basic actions can change the beliefs of an agent if executed, and a
statement of the form achieve(p) means that p should be achieved, before the
agent can continue the execution of the rest of the plan.

Definition 3.1 (plans) Let BasicAction with typical element a be the set of
basic actions and let p ∈ Atom. The set of plans Plan with typical element π is
then defined as follows.

π ::= a | achieve(p) | π1;π2

We use ǫ to denote the empty plan and identify ǫ;π and π; ǫ with π.

We use a simple plan language, focused on subgoals. The language could how-
ever be extended to include, e.g., test and non-deterministic choice. Also, the
subgoals could be extended to arbitrary formulas, rather than just atoms. For
atomic subgoals however, a correspondence with the procedural goals of 3APL
can be established in a relatively simple way.

In order to be able to specify which plans can be used for achieving the
subgoals, we use so-called plan generation rules. Informally, a plan generation
rule p⇒ π specifies that the plan π can be selected to try to achieve the subgoal
p. One could add a condition on the beliefs of the agent to the rule, specifying
that the rule can only be applied if the agent has a certain belief. We however
leave this out for reasons of simplicity.

Definition 3.2 (plan generation rule) The set of plan generation rules RPG

is defined as follows: RPG = {p⇒ π | p ∈ Atom, π ∈ Plan}.

Plan generation rules can be compared with the plan selection rules of Chapter
2 (Definition 2.4) in the sense that both kinds of rules are used for specifying
which plan can be used for achieving which (sub)goal. As will become clear in
the sequel, however, their usage differs, since plan generation rules are used for
selecting plans for subgoals as occurring in the plans of the agent, while plan
selection rules are used for selecting plans for the goals in the goal base.

An agent in this chapter is a tuple, consisting of an initial belief base (a
consistent set of formulas from L representing what the agent believes about
the world), an initial plan, a set of plan generation rules and a belief update
function T , as also used in Chapter 2 (Definition 2.5).

Definition 3.3 (subgoal achievement agent) Let Σ = {σ | σ ⊆ L, σ 6|= ⊥} be
the set of belief bases. A subgoal achievement agent, typically denoted by A, is

28 SEMANTICS OF SUBGOALS

a tuple 〈σ, π,PG, T 〉 where σ ∈ Σ is the belief base, π ∈ Plan is the initial plan,
and PG ⊆ RPG is a set of plan generation rules. T is a partial function of type
(BasicAction × Σ) → Σ.

Configurations in this chapter consist of a belief base and a plan.

Definition 3.4 (configuration) A configuration is a pair 〈σ, π〉 where σ ∈ Σ
and π ∈ Plan.

3.2 Semantics

In this section, we provide a semantics for the execution of plans containing
subgoals. This semantics interprets these subgoals declaratively. We define
the semantics using a transition system [Plotkin, 1981], as done in Chapter 2.
Let A = 〈σ, π,PG, T 〉 be a subgoal achievement agent. The transition system
TransA for this agent is then given by the definitions below.

The transition rule for basic action execution is as in Chapter 2 (Definition
2.9), except that we do not need to take into account updates on the goal base
here.

Definition 3.5 (action execution) Let a ∈ BasicAction.

T (a, σ) = σ′

〈σ, a;π〉 → 〈σ′, π〉

The following two definitions specify the possible transitions in case a statement
of the form achieve(p) is the first “action” of the plan. Both transitions rely
upon a declarative interpretation of p, as it is checked whether p is believed
to be reached. Definition 3.6 gives the transition in case p is achieved. The
statement achieve(p) is then removed from the plan.

Definition 3.6 (subgoal achievement)

σ |= p

〈σ, achieve(p);π〉 → 〈σ, π〉

The next transition rule specifies the transition for an achieve(p) statement in
case p is not achieved. In this case, a plan should be generated in order to
achieve p. This can be done if there is a plan generation rule of the form p⇒ π′

in the rule base of the agent. The transition that can then be derived, specifies
that the plan π′ is placed at the head of the plan.

Definition 3.7 (plan generation) Let p⇒ π′ ∈ PG.

σ 6|= p

〈σ, achieve(p);π〉 → 〈σ, π′; achieve(p);π〉

COMPARISON WITH 3APL 29

It is important to note that the statement achieve(p) is not removed from the
plan if a plan generation rule is applied. If π′ is executed and p is still not
derivable from the agent’s beliefs (p is not reached), a different rule with p as
the head could be applied (if it exists), to achieve p by other means. In any case,
a statement achieve(p) will not be removed from the plan if p is not reached.

Given the transition system TransA for subgoal achievement agent A as
specified above, one can construct computation runs for A. A computation
run is a sequence of configurations, such that each consecutive configuration
can be obtained from the previous through the application of a transition rule.
The initial configuration of the computation run is formed by the initial belief
base and plan of A. A successful computation run is a run of which the final
configuration has an empty plan. The semantics of A is then defined as the set
of successful computation runs of A.

Definition 3.8 (semantics of a subgoal achievement agent) Let
A = 〈σ0, π0,PG, T 〉 be a subgoal achievement agent. Let a computation run
be a sequence of configurations. A successful computation run of agent A is a
computation run 〈σ0, π0〉, . . . , 〈σn, ǫ〉, such that ∀1≤i≤n : 〈σi−1, πi−1〉 → 〈σi, πi〉
is a transition that can be derived in TransA. The semantics of A is the set
{θ | θ is a successful computation run of A}.

A property of the semantics that reflects that subgoals are interpreted declara-
tively, is the following: if a plan of the form achieve(p) is the initial plan of the
agent, then it holds for any successful computation run of this agent ending in
some belief base σn, that p follows from σn.

Proposition 3.1 Let A = 〈σ0, π0,PG, T 〉 be a subgoal achievement agent,
and let θ = 〈σ0, π0〉, . . . , 〈σn, ǫ〉 be a successful computation run of A. If π0 is
of the form achieve(p), we have that σn |= p.

At this point we remark that the semantics of our achieve statement is closely
related to the “bringing it about” operator as introduced in [Segerberg, 1989]
in the area of philosophical logic. Segerberg’s operator δ satisfies the property
[δp]p (expressed in a kind of dynamic logic), which would in our notation be
the property [achieve(p)]p, stating that p always holds after the “execution” of
achieve(p). This is a reformulation of the above proposition in dynamic logic.
A formal study of the relation of our work with that of Segerberg is left for
future research.

3.3 Comparison with 3APL

3.3.1 Syntax and Semantics

In this section, we present the language 3APL as used in this chapter. A 3APL
agent has a belief base (set of formulas from L), a plan, a set of plan revision
rules for manipulating its plan, and a belief update function T .

30 SEMANTICS OF SUBGOALS

The language of plans of 3APL agents is an extension of the plan language
of Chapter 2 (Definition 2.3). It is also comparable with the plan language of
Definition 3.1. A 3APL plan, however, does not contain achieve statements.
The 3APL counterpart of these subgoals is the abstract plan. In the first paper
on 3APL, abstract plans were called achievement goals [Hindriks et al., 1999b].
An abstract plan is basically a string, just as a basic action is a string (but
as we will see, abstract plans have a different semantics). For the comparison
with subgoal achievement agents however, we take the set of abstract plans
as consisting not of an arbitrary set of strings, but of exactly the atoms of L.
Further, we add the possibility to test whether an atom follows from the belief
base or not, and we add non-deterministic choice.

Definition 3.9 (3APL plans) Let BasicAction with typical element a be the set
of basic actions and let AbstractPlan with typical element p be the set of abstract
plans, such that AbstractPlan = Atom and AbstractPlan ∩ BasicAction = ∅. The
set of 3APL plans Plan′ with typical element π is then defined as follows.

π ::= a | p | p? | ¬p? | π1;π2 | π1 + π2

We use ǫ to denote the empty plan and identify ǫ;π and π; ǫ with π.

Abstract plans obtain their meaning through the plan revision rules of the 3APL
agent. In this chapter, we, however, do not use the general kind of plan revision
rules as introduced in Chapter 2 (Definition 2.4). That is, the head of a plan
revision rule in this chapter consists of an abstract plan, rather than of an
arbitrary composed plan. This restriction is needed in order to be able to
compare 3APL agents with subgoal achievement agents. Also, plan revision
rules do not have a belief condition.

Definition 3.10 (plan revision rule) The set of plan revision rules RPR is
defined as follows: RPR = {p⇒ π | p ∈ AbstractPlan, π ∈ Plan

′}.

Plan revision rules in this form thus very much resemble the plan generation
rules of Definition 3.2 (syntactically, that is), but the body is a 3APL plan, i.e.,
a plan from Plan′. As we will explain shortly, the semantics of plan revision
rules differs from that of plan generation rules in important ways.

The semantics of 3APL agents is defined by means of a transition system,
as given below. The first transition rule is used to derive a transition for action
execution, and is similar to the transition rule of this kind for subgoal achieve-
ment agents (Definition 3.5). The second transition specifies the application of
a plan revision rule of the form p ⇒ π′ to a plan of the form p;π. If the rule
is applied, the abstract plan p is replaced by the body of the rule, yielding the
plan π′;π. It is important to note that it is not tested whether p holds, and
further that p is replaced by π′, rather than yielding the plan π′; p;π.

The transition rules for test and non-deterministic choice are fairly standard.
Note, however, that a test for ¬p succeeds if it is not the case that p follows

COMPARISON WITH 3APL 31

from the belief base, rather than having this test succeed if ¬p does follow.
The reason for this choice should become clear in the sequel. Further, some
transitions are labeled with i, which we will also need in the sequel.

Definition 3.11 (3APL transition system) A 3APL agent A′ is a tuple
〈σ, π,PR, T 〉, where σ ∈ Σ, π ∈ Plan′, PR ⊆ RPR and T as in Definition 3.3.
The transition system TransA′ for this 3APL agent is then defined as follows,
where a ∈ BasicAction and p⇒ π′ ∈ PR.

1)
T (a, σ) = σ′

〈σ, a;π〉 → 〈σ′, π〉
2)

〈σ, p;π〉 →i 〈σ, π′;π〉

3)
σ |= p

〈σ, p?;π〉 →i 〈σ, π〉
4)

σ 6|= p

〈σ,¬p?;π〉 →i 〈σ, π〉

5)
〈σ, π1〉 → 〈σ′, π′

1〉

〈σ, (π1 + π2);π〉 → 〈σ′, π′
1;π〉

6)
〈σ, π2〉 → 〈σ′, π′

2〉

〈σ, (π1 + π2);π〉 → 〈σ′, π′
2;π〉

Before we move on to formally investigating the relation between 3APL and
subgoal achievement agents, we elaborate on the notion of an abstract plan or
achievement goal as used in 3APL. Hindriks et al. remark the following with
respect to achievement goals:

Achievement goals are atomic propositions from the logical language
L. The use of atoms as achievement goals, however, is very different
from the use of atoms as beliefs. Whereas in the latter case atoms
are used to represent and therefore are of a declarative nature, in
the former case they serve as an abstraction mechanism like pro-
cedures in imperative programming and have a procedural meaning.
[Hindriks et al., 1999b, page 363]

Hindriks et al. thus take the set of achievement goals/abstract plans to be the
atoms from L (a first order language in their case). Then they remark that
although achievement goals are atoms, they do not have a declarative interpre-
tation. The fact that an achievement goal is an atom and could thus in principle
be tested for example against the belief base, is not used in defining its semantics.
The language of achievement goals could thus have been any language of strings
(which is in fact the approach of later papers
[van Riemsdijk et al., 2003b, Dastani et al., 2004]). Hindriks et al. however do
remark the following with respect to a possible assertional reading of achieve-
ment goals:5

5As a first order language is used in [Hindriks et al., 1999b], the original text states p(
→

t)
instead of p. This is a predicate name parameterized with a sequence of terms.

32 SEMANTICS OF SUBGOALS

Apart from the procedural reading of these goals, however, an asser-
tional reading is also possible. An achievement goal p would then be
interpreted as specifying a goal to achieve a state of affairs such that
p. We think such a reading is valid in case the plans for achieving an
achievement goal p actually do establish p. [Hindriks et al., 1999b,
page 363]

The “plans for achieving an achievement goal p” are the plans as specified
through the plan revision rules, i.e., a plan revision rule p ⇒ π specifies that
π is a plan for achieving p. According to Hindriks et al., this assertional or
declarative reading of achievement goals is thus only valid under the strong
requirement that π actually reaches p. This is thus in contrast with the se-
mantics for subgoals as we have introduced, as these subgoals are by definition
interpreted in a declarative manner.

3.3.2 3APL and Subgoals

We will show in this section that, although the semantics of plan generation
rules and plan revision rules differ in important ways, it is possible to define a
mapping from an arbitrary subgoal achievement agent to a 3APL agent, such
that the 3APL agent “simulates” the behavior of the subgoal achievement agent.
In the sequel, the plan πs denotes π in which all occurrences of statement of the
form achieve(p) are replaced with p.

We first remark that the naive translation, in which a plan generation rule
p ⇒ π is translated to a plan revision rule p ⇒ πs, does not do the trick.
The reason that this translation does not work, is precisely the difference of
interpretation between achieve statements and abstract plans, i.e., declarative
versus procedural. If an abstract plan p occurs at the head of a plan p;π, the
plan revision rule p ⇒ π′ can be applied, yielding π′;π. After the execution of
π′, the plan π will be executed, regardless of whether p is actually achieved at
that point. In the case of a plan achieve(p);π of a subgoal achievement agent,
the plan generation rule can be applied (if p is not believed), yielding the plan
π′; achieve(p);π. After the execution of π′, the agent will test whether p is
achieved. If it is achieved, it will continue with the execution of π. If however
p is not achieved, it will apply a rule once more to generate a plan to achieve
p. It is nevertheless important to mention that if it is the case that π′ actually
establishes p (and this holds for all plan generation rules), it can be proven
that the 3APL agent as obtained through this naive translation, simulates the
subgoal achievement agent. For reasons of space, we however omit this proof.

Translation

We now turn to the translation of a subgoal achievement agent into a 3APL
agent, for which it holds that the 3APL agent as obtained in this way, simulates

COMPARISON WITH 3APL 33

the subgoal achievement agent. As would be expected, the important part of
the translation is the mapping of plan generation rules onto plan revision rules.

Definition 3.12 (transformation of subgoal achievement agent into 3APL agent)
Let s : Plan → Plan′ be a function that takes a plan π of a subgoal achievement
agent (Definition 3.1), and yields this plan in which all statements of the form
achieve(p) are replaced by p, thus yielding a plan in Plan

′ (Definition 3.9). We
will in the sequel use the notation πs for s(π).

The function t : RPG → RPR, taking a plan generation rule and yielding a
corresponding plan revision rule, is then defined as follows.

t(p⇒ π) = p⇒ ((¬p?;πs; p) + p?)

The function t is lifted to sets of plan generation rules in the obvious way.
Let A = 〈σ, π,PG, T 〉 be a subgoal achievement agent. The 3APL agent

corresponding with A is then 〈σ, πs, t(PG), T 〉. Finally, we define a function τ
that takes a configuration from the transition system of A of the form 〈σ, π〉,
and yields the configuration 〈σ, πs〉.

Informally, this mapping can be used to obtain a 3APL agent that simulates a
subgoal achievement agent, because of the following. Consider a 3APL agent
with the plan p;π, and the plan revision rule p⇒ ((¬p?;π′

s; p)+p?) as obtained
from the plan generation rule p ⇒ π′. This plan revision rule can then be
applied to this plan (regardless of whether p is believed or not), yielding the
plan ((¬p?;π′

s; p) + p?);π.
Now assume that p is believed. In that case, the test p? succeeds and ¬p?

fails, which means that the plan in the next configuration will have to be π. This
thus implements that p is skipped if believed to be achieved, which corresponds
with the semantics of the statement achieve(p).

Now assume that p is not believed. In that case, the plan in the next
configuration will have to be π′

s; p;π. This corresponds with the semantics of
achieve(p) in case p is not believed: the plan π′ is placed at the head of the plan,
not replacing the achieve(p) statement. After the execution of π′

s, we are left
with the plan p;π. The plan revision rule p⇒ ((¬p?;π′

s; p) + p?) (or a different
rule with p as the head) will then be applied again. If p is achieved, the agent
will continue with the execution of π as explained. If p is not achieved, the
mechanism as just described will be set in motion. All this thus corresponds
with the behavior of achieve statements in the subgoal achievement agent.

Bisimulation Theorem

We now move on to formally establishing this correspondence. For this, we
introduce the notion of a translation bisimulation as used in [Hindriks, 2001,
Chapter 8] (slightly adapted). Informally, a translation bisimulation translates
an agent from a so-called source language to an agent from the target language

34 SEMANTICS OF SUBGOALS

that “can do the same things”. In our case, we translate subgoal achievement
agents to 3APL agents.

We have to show that for each transition in the transition system for a sub-
goal achievement agent A, there is a corresponding transition in the transition
system for the corresponding 3APL agent A′. This “transition” in TransA′ , ac-
tually does not have to be a single transition, but may consist of a number of
so-called idle transitions, and one non-idle transition. The idle transitions in
TransA′ are those labelled with i. Intuitively, these idle transitions form imple-
mentation details of A′, and do not have to be matched by a transition of A.6

In the sequel, the transition relations of A and A′ will respectively be denoted
by →A and →A′

, and →A′

i denotes the restriction of A′ to idle transitions.
The new transition relation that abstracts from idle steps is denoted by

→A′

∗ . It only exists for TransA′ , as TransA does not contain idle steps. It is
defined as follows, where dj with 1 ≤ j ≤ n are configurations derivable in

TransA′ : d1 →A′

∗ dn iff there is a (possibly empty) series of idle transitions
d1 →A′

i d2 →A′

i . . .→A′

i dn−1 and a single non-idle transition dn−1 →A′

dn.
If we can show that for each transition in the transition system for a subgoal

achievement agent A, there is a corresponding transition in the transition system
for the corresponding 3APL agent A′, we will have established that A′ generates
at least the behavior of A. In order to establish that A′ does not generate any
(alternative) behavior not having a counterpart in A, we also have to show that
any non-idle transition of A′ corresponds with a transition of A. A transition
c1 →A c2 corresponds with a transition d1 →A′

d2 or d1 →∗ d2 iff d1 = τ(c1)
and d2 = τ(c2).

The result can only be proven if we assume that at least one plan generation
rule of the form p⇒ π exists for every p ∈ Atom. If this would not be the case,
there would be a mismatch: a statement achieve(p) could be removed from a
plan if p holds (without there being a plan generation rule for p), but an abstract
plan p can only be “removed” if first a plan revision rule is applied.

Theorem 3.1 (translation bisimulation) Let A = 〈σ, π,PG, T 〉 be a subgoal
achievement agent such that for each p ∈ Atom there is at least one rule of the
form p ⇒ π in PG, and let A′ = 〈σ, πs, t(PG), T 〉 be the corresponding 3APL
agent. We then have that for every configuration c1 of A, d1 = τ(c1) implies
the following:

1. If c1 →A c2, then d1 →A′

∗ d2, such that d2 = τ(c2).

2. If d1 →A′

d2, then for some c2, c1 →A c2, such that d2 = τ(c2).

6The choice of idle transitions for 3APL might seem strange, as the application of a plan
revision rule is an idle transition, whereas the non-deterministic choice is not, although the
latter might seem an implementation detail, rather than the former. The reason is, that
the application of a plan revision rule cannot be matched directly with a transition of a
goal achievement agent, whereas the particular usage of non-deterministic choice, as specified
through the translation, can.

COMPARISON WITH 3APL 35

Proof: 1. We have to show that for every transition c1 →A c2 in TransA, there
is a corresponding (sequence of) transition(s) d1 →A′

∗ d2 in TransA′ such that
d2 = τ(c2).

Let 〈σ, a;π〉 →A 〈σ′, π〉 be a transition as derived through the transition rule
of Definition 3.5. We then have that the transition 〈σ, a;πs〉 →A′

〈σ′, πs〉 can
be derived in TransA′ , by means of the first transition rule. We also have that
〈σ′, πs〉 = τ(〈σ′, π〉), yielding the desired result for action execution transitions.

Let 〈σ, achieve(p);π〉 →A 〈σ, π〉 be a transition as derived through the tran-
sition rule of Definition 3.6, which means that σ |= p has to hold. Let p⇒ π′ be
a plan generation rule of A (a rule of this form has to exist by assumption). We
then have, because t(p⇒ π′) is a plan revision rule of A′, that the transitions

〈σ, p;πs〉 →
A′

i 〈σ, ((¬p?;π′
s; p) + p?);πs)〉 →

A′

〈σ, πs〉

can be derived in TransA′ , by means of the transition rule for plan revision
and those for test and non-deterministic choice. We also have that 〈σ, πs〉 =
τ(〈σ, π〉), yielding the desired result for subgoal achievement transitions.

Let 〈σ, achieve(p);π〉 →A 〈σ, π′; achieve(p);π〉 be a transition as derived
through the transition rule of Definition 3.7, which means that σ 6|= p has to
hold, and p ⇒ π′ has to be a plan generation rule in PG. We then have that
the transitions

〈σ, p;πs〉 →
A′

i 〈σ, ((¬p?;π′
s; p) + p?);πs)〉 →

A′

〈σ, π′
s; p;πs〉

can be derived in TransA′ , by means of the transition rule for plan revi-
sion and those for test and non-deterministic choice. We also have that
〈σ, π′

s; p;πs〉 = τ(〈σ, π′; achieve(p);π〉), yielding the desired result for plan
generation transitions. We have shown the desired result for every transition
c1 →A c2, thereby proving 1.

2. We have to show that for every non-idle transition d1 →A′

d2 with
d1 = τ(c1) for some c1 in TransA′ , there is a corresponding transition c1 →A c2
in TransA such that d2 = τ(c2).

The only configurations d1 of A′ for which it holds that there is a c1 such
that d2 = τ(c1), are configurations of the form 〈σ, a;π〉 or 〈σ, p;π〉, where π
does not contain tests or non-deterministic choice. We thus have to show that
if there is a non-idle transition from one of these configurations to another, that
there is a matching transition in A. The case for the action execution transition
(with d1 = 〈σ, a;π〉) is analogous to the proof as given in part 1. As for the
configuration of the form 〈σ, p;π〉, we have that there is no possible non-idle
transition from this configuration. The result thus follows immediately.

We now have to prove the result for the non-deterministic choice. In general,
this cannot be proven, as there is no non-deterministic choice in subgoal achieve-
ment agents. From the transformation of A into A′, we however know that the
non-deterministic choice operator can only occur in plan revision rules in a very

36 SEMANTICS OF SUBGOALS

specific format: the plans of A (the initial plan and the bodies of plan generation
rules) do not contain the non-deterministic choice operator, and therefore the
plans of A′ do neither (except for the non-deterministic choice in plan revision
rules, as introduced through the translation). We thus have to prove the result
for tuples of the form 〈σ, ((¬p?;π′; p) + p?);π〉, where p⇒ ((¬p?;π′; p) + p?) is
a plan revision rule of A′.

Let 〈σ, ((¬p?;π′; p) + p?);π〉 → 〈σ, π〉 be a transition as derived through
the second transition rule for non-deterministic choice of Definition 3.11, which
means that σ |= p has to hold. We have that π′ and π do not contain tests
of the non-deterministic choice operator. Let the function s′ be the inverse of
s, i.e., taking a plan from Plan′ without test and non-deterministic choice, and
yielding a plan from Plan, by replacing all occurrences of abstract plans of the
form p with achieve(p). We then have that 〈σ, achieve(p);πs′〉 → 〈σ, πs′ 〉 is
a transition of A. We also have that 〈σ, π〉 = τ(〈σ, πs′ 〉), yielding the desired
result in case σ |= p.

The case for σ 6|= p is analogous. Let 〈σ, ((¬p?;π′; p) + p?);π〉 → 〈σ, π′; p;π〉
be a transition as derived through the first transition rule for non-deterministic
choice of Definition 3.11, which means that σ 6|= p has to hold. We then have
that 〈σ, achieve(p);πs′〉 → 〈σ, π′

s′ ; achieve(p);πs′〉 is a transition of A (as p ⇒
((¬p?;π′; p) + p?) is a plan revision rule of A′, which means that p ⇒ π′

s′

will have to be a plan generation rule of A). We also have that 〈σ, π′; p;π〉 =
τ(〈σ, π′

s′ ; achieve(p);πs′〉), yielding the desired result in case σ 6|= p.
Covering all cases, we have proven 2. 2

3.4 Conclusion and Related Work

In this chapter, we have studied the relation between declarative and procedural
interpretations of subgoals as occurring in the plans of cognitive agents. In
particular, we have compared our definition of declaratively interpreted subgoals
with the semantics of the procedurally interpreted achievement goals in the
language 3APL. As we have shown, it is possible to obtain a 3APL agent that
simulates the behavior of the subgoal achievement agent, by translating plan
generation rules to plan revision rules in a specific way.

The 3APL family of languages [Hindriks et al., 1999b]
[van Riemsdijk et al., 2003b, Dastani et al., 2004] is an example of a set of lan-
guages in which subgoals are interpreted procedurally. Languages and plat-
forms from the AgentSpeak family [Ingrand et al., 1992, d’Inverno et al., 1998,
Rao, 1996, Moreira and Bordini, 2002, Evertsz et al., 2004] also have a proce-
dural view on subgoals, although the mechanism differs from that of 3APL (see
also [Hindriks et al., 1998] for an embedding of AgentSpeak(L) in 3APL).

Research similar to that described in this chapter has been done in the
context of Jason [Hübner et al., 2006]. Jason [Bordini et al., 2005b] is an im-
plementation of an interpreter for an extended version of AgentSpeak(L). In

CONCLUSION AND RELATED WORK 37

[Hübner et al., 2006], several transformations on the plans of Jason agents are
proposed, such that the subgoals of the resulting agent behave as declarative
goals. However, it is, in contrast with this chapter, not shown formally that the
resulting agent behaves according to a certain specification.

To the best of our knowledge, this is the first time that a correspondence
between declarative and procedural subgoals is investigated and established for-
mally. We believe that the investigations as described in this chapter shed some
light on the expressiveness of languages with procedural goals, and that this
is one piece of the puzzle of the incorporation of declarative goals in cognitive
agent programming languages.

Chapter 4

Goals in Conflict

This chapter is based on [van Riemsdijk et al., 2005b]. The title of this chapter
was inspired by the title of the PhD thesis of Harrenstein: Logic in Conflict:
Logical Explorations in Strategic Equilibrium [Harrenstein, 2004].

In Chapter 3, we have investigated semantics of subgoals as occurring in
the plans of agents. In this chapter, we focus on representations of goals that
are not directly linked to the representation of plans. An example of such a
representation is the goal base as used in Chapter 2 (Definition 2.1). In this
chapter, we investigate the representation of goals using a goal base, and propose
a new kind of representation. Based on such representations, we investigate
how the semantics of goal formulas can be defined. One such semantics of goal
formulas was proposed in Chapter 2 (Definition 2.7).

The focus of the researches in this chapter will be on the representation of
conflicting goals. As others have argued [Hindriks et al., 2001], we maintain
that it is natural for an agent to have conflicting objectives. As will become
clear in the sequel, the representation of conflicting goals gives rise to interesting
issues when it comes to defining the semantics of goal formulas.

As an addition to representing goals by means of a goal base, we propose in
this chapter a representation by means of so-called goal adoption rules. These
goal adoption rules can be used to specify that goals can be conditional on
beliefs and other goals. The definition of the semantics of goal formulas on the
basis of goal adoption rules makes use of default logic. In order to get a better
understanding of the semantics we propose, we establish relations between these
semantics and investigate their properties.

One of the reasons for wanting to specify what an agent’s goals are, is that
the agent should generate plans on the basis of its goals, in order to achieve
them. In this chapter, the goal for which a plan was generated is recorded with
the plan. These structures are termed intentions here. Although it is not the
main focus of this chapter, we discuss ways of generating these intentions, as
intention generation is closely related to the specification of an agent’s goals.

39

40 GOALS IN CONFLICT

This chapter is organized as follows. First, we present some preliminaries
(Section 4.1). Section 4.2 discusses semantics of goals, based on the goal base
of the agent. In Section 4.3, we propose a semantics of goals based on the
goal base and the goal adoption rules of the agent, and investigate properties of
this semantics. In Section 4.4, we address intention generation and other issues
related to the dynamic behavior of the agent. Section 4.5 discusses related work.
In particular, we discuss the relation between our work and the work of Horty
[Horty, 1993, Horty, 1994, Horty, 1997] in the context of deontic logic in detail.
As it turns out, his work is closely related to our work. Concluding, we remark
that although consideration of issues of computational complexity is important,
this is not addressed in this chapter and remains for future research.

4.1 Preliminaries

4.1.1 Cognitive Agent Programming

In this section, we present the cognitive agent programming framework that we
take as the starting point for our investigations in this chapter. Throughout
this chapter, we assume a language of propositional logic L with negation and
conjunction, with typical element φ. ⊤ ∈ L will be used to denote a tautology,
⊥ ∈ L to denote falsum and |= will be used to denote the standard entailment
relation for L. Further, we assume a language of plans Plan with typical element
π. This could for example be the language of plans of Chapter 2 (Definition
2.3). An exact specification is not needed for the purpose of this chapter and
therefore we will not provide one.

Agent configurations in this chapter consist of a belief base, a goal base, an
intention base, and a rule base. The intention base is a set of pairs from Plan×L.
The idea is, that a pair 〈π, φ〉 represents a selected plan with an associated goal
that the plan is to achieve (see also [Dastani et al., 2004]). At this point, we
are not yet specific about which types of rules constitute the rule base. We will
gradually define this component in the sequel.

Definition 4.1 (agent configuration) An agent configuration, typically de-
noted by c, is a tuple 〈σ, γ, ι,R〉 where σ ⊆ L is the belief base, γ ⊆ L is the
goal base, ι ⊆ (Plan × L) is the intention base and R is a tuple of sets of rules.
All sets σ, γ, ι and sets in R are finite.

In this chapter, configurations thus contain a set of intentions, rather than a
single plan, as in the rest of this thesis. Considering a set of intentions or
plans is common in many agent programming frameworks (see, e.g., [Rao, 1996,
Hindriks et al., 1999b, Dastani et al., 2004, Pokahr et al., 2005b]). In this chap-
ter, it is especially interesting to consider a set of intentions, since this allows
us to investigate issues related to conflicts among intentions. In contrast with
other chapters in this thesis, we incorporate the rule base in configurations in

PRELIMINARIES 41

this chapter. This is done because the semantics of goal formulas to be intro-
duced in Section 4.3 is defined using the rule base. Incorporating the rule base
in configurations will increase the readability of the definitions.

Belief and goal formulas are as defined in Chapter 2 (Definition 2.2). We
repeat that definition here.

Definition 4.2 (belief and goal formulas) The belief formulas LB with typical
element β and the goal formulas LG with typical element κ are defined as follows,
where φ ∈ L.

β ::= ⊤ | Bφ | ¬β | β1 ∧ β2

κ ::= ⊤ | Gφ | ¬κ | κ1 ∧ κ2

The semantics of belief formulas is also as in Chapter 2 (Definition 2.7), except
that the structure of the configurations on the basis of which the semantics is
defined, differs.

Definition 4.3 (semantics of belief formulas) Let φ ∈ L and let 〈σ, γ, ι,R〉
be an agent configuration. Let β ∈ LB. The semantics |=LB

of belief formulas
is then as defined below.

〈σ, γ, ι,R〉 |=LB
⊤

〈σ, γ, ι,R〉 |=LB
Bφ ⇔ σ |= φ

〈σ, γ, ι,R〉 |=LB
¬β ⇔ 〈σ, γ, ι,R〉 6|=LB

β
〈σ, γ, ι,R〉 |=LB

β1 ∧ β2 ⇔ 〈σ, γ, ι,R〉 |=LB
β1 and 〈σ, γ, ι,R〉 |=LB

β2

Investigating ways to define the semantics of goal formulas is the main research
objective of this chapter and these analyses will be carried out in Sections 4.2
and 4.3.

Although the focus of this chapter is on the semantics of goals and we do
not strive to provide a complete agent programming framework, we do present
a way to generate intentions on the basis of certain beliefs and goals. In an
agent programming setting, it is common to introduce rules to generate plans
or intentions. In Chapter 2, for example, this was done using plan selection rules
(Definition 2.4). We will elaborate on why it is interesting to consider intention
generation rules in this chapter after defining their semantics.

Definition 4.4 (intention generation rule) The set of intention generation
rules RIG is defined as follows:

{β, κ⇒I 〈π, φ〉 | β ∈ LB, κ ∈ LG, π ∈ Plan, φ ∈ L}.

An intention generation rule β, κ⇒I 〈π, φ〉 can be applied in a configuration, if
the belief and goal conditions β and κ of the rule hold in that configuration. If

42 GOALS IN CONFLICT

this rule is applied, the intention 〈π, φ〉 consisting of a plan π and a goal φ that
is to be achieved by the plan, is added to the existing set of intentions.1

The applicability of an intention generation rule, however, not only depends
on the belief and goal conditions of the rule. That is, the existing intentions
should be taken into account, since newly adopted intentions should not conflict
with already existing ones. An intention generation rule can only be applied if
the intention in its consequent is not conflicting with already existing ones. This
idea was put forward by the philosopher Bratman [Bratman, 1987], who used the
term “screen of admissibility” for this role played by existing intentions. It can
be incorporated into our framework by requiring that the goal of the intention
that is to be adopted is consistent with goals of already existing intentions.2

These ideas are formalized below in the definition of the semantics of ap-
plication of an intention generation rule. The semantics is defined by giving a
transition rule [Plotkin, 1981].

Definition 4.5 (semantics of intention generation) Let IG ⊆ RIG be a finite
set of intention generation rules, let R = 〈IG〉 and let β, κ⇒I 〈π, φ〉 ∈ IG be an
intention generation rule. Further, let c = 〈σ, γ, ι,R〉 be an agent configuration
and let |=LG

be a satisfiability relation for goal formulas. The semantics of
applying this rule is then as follows, where ι′ = ι ∪ {〈π, φ〉} and δ = {φι |
〈πι, φι〉 ∈ ι}.

c |=LB
β c |=LG

κ {φ} ∪ δ 6|= ⊥

〈σ, γ, ι,R〉 → 〈σ, γ, ι′,R〉

Note that an intention generation rule of the form β, κ⇒I 〈π, φ〉 for which φ is
inconsistent, i.e., φ |= ⊥, will never be applicable.

We introduce intention generation rules in this chapter for three reasons.
First, intention generation rules will be used to partly explain the introduction
of a new semantics for goals in Section 4.2.1. The applicability of an intention
generation rule depends on the truth of the goal formula in its antecedent and
different choices in defining the semantics for goal formulas will thus influence
the applicability of the rule. Second, we will argue in Section 4.2.1 that the
goal base of an agent does not have to be consistent, partly because agents in

1The formula κ denotes a condition on the goals of the agent, which should be satisfied for
the rule to be applicable, and φ denotes the goal which the plan π should achieve. Generally,
these rules will be of the form β,Gφ ⇒I 〈π, φ〉, in which case we could automatically add
φ to the intention, instead of having the programmer specify the intention as a pair 〈π, φ〉.
We however also allow composed goal formulas such as Gφ ∧ ¬Gφ′ as the goal condition of
intention generation rules, in which case it is less clear what the goal of the plan π should be.
Therefore, the programmer has to specify which goal the plan is to achieve.

2We do not claim that intentions in our framework capture all aspects of intention
as put forward by Bratman, and as later formalized in, e.g., [Cohen and Levesque, 1990,
Rao and Georgeff, 1991]. Nevertheless, since intentions in our proposal provide some form
of screen of admissibility, which is an important aspect of Bratman’s theory, we do feel it is
justified to use the term “intentions” here. Also, other agent programming frameworks often
use this term for the plans of the agent (see, e.g., [Rao, 1996]).

PRELIMINARIES 43

our framework have an intention base that is consistent. If the initial intention
base of the agent is consistent, our semantics of intention generation rules will
maintain this property throughout the execution of the agent. Third, rules
such as intention generation rules are commonly used in agent programming
languages. As it turns out, there are interesting aspects to the relation between
the semantics of goals we propose in this chapter, and the process of intention
generation through the use of intention generation rules. Although intention
generation is not the main focus of this chapter, we will elaborate on this in
Section 4.4.2.

Concluding, we make the following remark. The check of whether the new
intention is not conflicting with existing intentions, is implemented by checking
logical consistency of the goal of the new intention, with the goals of existing
ones. In general, one could consider other conditions for a new intention to be
compatible with existing ones, such as conditions on resources like energy or
money that are used by the plans (see, for example, [Thangarajah et al., 2002]
for a more elaborate treatment of this topic) or conditions on subgoals that
should be reached by the plans. Investigating more elaborate definitions of
intention compatibility is however not within the scope of this chapter and the
simple definition as given above will suffice for our purposes.

4.1.2 Default Logic

In Section 4.3, we will use default logic [Reiter, 1980] to define the semantics
of declarative goals. In this section, we briefly sketch the ideas of default logic.
For more elaborate treatments of this topic, the reader can for example con-
sult [Antoniou, 1997, Brewka et al., 1997]. Default logic is generally based on
predicate logic, but for this chapter it suffices to consider propositional default
logic.

Default logic distinguishes facts, representing certain but incomplete infor-
mation about the world, and default rules or defaults, representing rules of
thumb, by means of which conclusions can be drawn that are plausible, but not
necessarily true. This means that some conclusions may have to be revised when
more information becomes available. Given the propositional language L which
we introduced in Section 4.1.1, a default rule has the form φ : ψ1, . . . , ψn/χ,
where φ, ψ1, . . . , ψn, χ ∈ L and n > 0. The intuitive reading of a default rule
of this form is the following: if φ is provable and for all 1 ≤ i ≤ n, ¬ψi is not
provable, i.e., if it is consistent to assume ψi, then derive χ. The formula φ is
called the prerequisite and the formulas ψ1, . . . , ψn are called the justifications
of the default rule.

A default theory [Brewka et al., 1997] is a pair 〈W,D〉, where W ⊆ L is the
set of facts and D is a set of default rules. The semantics of a default theory
〈W,D〉 can be defined through so-called extensions of the theory. If E ⊆ L is
a set of propositional formulas, then a sequence of sets of formulas E0, E1, . . .
is defined as follows, where |= is the standard entailment relation for L and

44 GOALS IN CONFLICT

Th(Ei) is the closure under classical logical consequence of Ei.

E0 = W
Ei+1 = Th(Ei) ∪ {χ | φ : ψ1, . . . , ψn/χ ∈ D, Ei |= φ, E 6|= ¬ψi}

A set E ⊆ L is then an extension of 〈W,D〉 iff E =
⋃∞

i=0 Ei. In the sequel,
we will sometimes be somewhat sloppy and say that, e.g., {p} is an extension,
where we should, strictly speaking, say that Th({p}) is an extension.

It is important to note that extensions are always consistent sets3 that are
closed under the application of default rules. A rule φ : ψ1, . . . , ψn/χ is appli-
cable to an extension E iff E |= φ and E 6|= ¬ψi for 1 ≤ i ≤ n. An extension E
of a default theory 〈W,D〉 is closed under the application of default rules, iff it
holds for all rules φ : ψ1, . . . , ψn/χ ∈ D, that if the rule is applicable to E, then
E |= χ.

Example 4.1 Let W = {a}, let d1 = a : ¬b/d and d2 = ⊤ : c/b and
let D = {d1, d2}. The default theory 〈W,D〉 then has one extension: {a, b}.
This extension can be generated by applying d2 to W . The set {a, d, b}, which
might seem to be possible to generate by applying d1 and then d2, is not an
extension: b is derivable from this set, whereas b should not be derivable because
the default rule d1 with justification ¬b was applied. The set {a, d} is neither an
extension, because it is not closed under the application of defaults. The rule
d2 is applicable, although application will yield a set that is not an extension.

△

In the so-called credulous semantics for default logic a formula φ is said to fol-
low from a default theory iff φ is in one of the extensions of this theory. The
sceptical semantics defines that φ follows from a default theory iff φ is in all of
the extensions of this theory.

4.2 Goal Base

In Section 4.2.1, we present a number of semantics of goal formulas, defined using
the goal base of an agent configuration. Then, in Section 4.2.2, we investigate
properties of these semantics, and we show how they are related to each other.
In Section 4.3, we will consider a semantics for goals based on the goal base and
the rule base, containing a set of goal adoption rules.

4.2.1 Semantics

In this section, we consider three semantics for goals. The first, which we call
the basic semantics, assumes that the goal base of the agent is consistent. The

3That is, if W is consistent.

GOAL BASE 45

second is a proposal by Hindriks et al. [Hindriks et al., 2001], which allows the
goal base to be inconsistent. The third semantics is a new proposal, which is a
generalization of Hindriks’ semantics.

The issue of consistency of goals is central with respect to semantics of goals.
In agent theories as well as in agent programming frameworks, goals are often
assumed or required to be consistent. The rationale is, that an agent should
not simultaneously pursue situations that are mutually logically impossible.

In our framework, this can be modeled by requiring that the goal base of
an agent configuration is consistent. Given this requirement, the semantics
of goal formulas can be defined in a simple way as below, where Gφ is true
in a configuration iff φ follows from the goal base in this configuration. The
semantics of ⊤, negation and conjunction are defined analogously to the way
this was done for belief formulas (Definition 4.3), but we omit this here and in
definitions in the sequel for reasons of presentation.

Definition 4.6 (basic (|=b)) Let γ 6|= ⊥.

〈σ, γ, ι,R〉 |=b Gφ⇔ γ |= φ

This semantics is similar to the semantics of goal formulas of Chapter 2 (Defi-
nition 2.7), except for two aspects. First, the semantics of Chapter 2 specifies
that Gφ holds in a configuration if φ does not follow from the belief base in
that configuration. This corresponds with a common perspective towards goals
[Cohen and Levesque, 1990, van der Hoek et al., 1998, Hindriks et al., 2001]
[van Riemsdijk et al., 2003b, Winikoff et al., 2002], which is that an agent
should not have something as a goal that it already believes to be the case.
In this chapter, we however omit this condition on beliefs from the semantics
of goal formulas for reasons of simplicity. Second, we require in this definition
that the goal base is consistent, which is in line with what is often required in
agent theories and agent programming frameworks.

While we thus require the goal base to be consistent in the definition above,
Hindriks argues in [Hindriks et al., 2001] that the goal base of the agent does
not need to be consistent. Goals in the goal base do not have to be pursued
simultaneously and could be achieved at different times. A goal base {p,¬p}
should therefore be allowed in agent configurations. The semantics of goal for-
mulas of Definitions 4.6 and 2.7 would in this case however have the undesirable
characteristic that the inconsistent goal, i.e., the formula G⊥, can be derived
given an inconsistent goal base such as {p,¬p}. Moreover, given that G⊥ can
be derived, any formula Gφ can be derived.

To avoid these undesired properties, Hindriks requires that individual goals
in the goal base are consistent, rather than the goal base as a whole. He then
defines the semantics of goal formulas as follows, specifying that Gφ holds in a
configuration, iff there is a goal in the goal base of this configuration from which
φ logically follows.

46 GOALS IN CONFLICT

Definition 4.7 (Hindriks (|=h)) Let ∀φ ∈ γ : φ 6|= ⊥.

〈σ, γ, ι,R〉 |=h Gφ⇔ ∃φ′ ∈ γ : φ′ |= φ

As an aside, we remark that this argument by Hindriks that goals in the goal
base should be allowed to be inconsistent, without the agent being able to
derive everything as a goal, can be viewed as related to research in the area
of paraconsistent logics. Besnard and Hunter [Besnard and Hunter, 1995], e.g.,
observe that the need to reason with inconsistent information without the logic
being trivialized, i.e., being able to derive anything on the basis of inconsistent
information, is central to practical reasoning. In [Gabbay and Hunter, 1991],
Gabbay and Hunter also argue that inconsistency should be viewed as a “good”
thing, rather than as a “bad” thing. Allowing the representation of conflicting
goals without trivializing the logic, will be an important concern throughout
this chapter.

Returning to the semantics for goals as proposed by Hindriks, we observe
that although this semantics allows for inconsistent goal bases without the pos-
sibility to derive the inconsistent goal, it can be considered too restrictive. Sup-
pose for example that an agent has the (consistent) goal base {p, q}. In this
case, one would most likely want the agent to derive that p ∧ q is also a goal,
i.e., that G(p ∧ q) holds. In particular, if the agent has an intention generation
rule G(p∧q) ⇒I 〈π, p∧q〉, which represents the idea that the plan π is supposed
to achieve a situation in which p ∧ q holds, this rule should be applicable. If
execution of the plan π is successful, both goals p and q of the agent would be
achieved.

Moreover, if the agent has the inconsistent goal base {p, q,¬p}, the given
intention generation rule should also be applicable. If the plan π would achieve
a situation in which p ∧ q holds, part of the goals in the goal base would be
achieved. The agent could then pursue the goal ¬p consecutively.

Given these considerations, we propose the following semantic definition,
which specifies that Gφ holds iff there is a consistent subset of the goal base
from which φ follows.

Definition 4.8 (consistent subset (|=s))

〈σ, γ, ι,R〉 |=s Gφ⇔ ∃γ′ ⊆ γ : (γ′ 6|= ⊥ and γ′ |= φ)

Note that, in contrast with Hindriks’ semantics, we do not need to require that
individual goals in the goal base are consistent. Inconsistent goals in the goal
base are “ignored” by this definition, because we only consider subsets γ′ of γ
which are consistent (γ′ 6|= ⊥).4 An inconsistent goal such as p∧¬p, for example,
cannot be used to derive G⊥, or any other goal for that matter. Further, note

4The requirement could also be omitted from Definition 4.7 if the condition φ′ 6|= ⊥ would
be added to the righthand side of the definition, yielding a close resemblance with Definition
4.8. Definition 4.7 is however the one provided by Hindriks in [Hindriks et al., 2001].

GOAL BASE 47

that a formula Gp∧G¬p is satisfiable under this semantics, without the formula
G⊥ being satisfiable (see also the explanation below Proposition 4.1).

This semantics can be viewed as related to a proposal by Poole [Poole, 1988]
in the area of non-monotonic reasoning. He proposes to reason on the basis of
a theory consisting of a set of facts, and a set of hypotheses (both being sets of
first order formulas). A formula is then explainable on the basis of this theory,
if it follows from the set of facts, and a consistent subset of the hypotheses.

Concluding this section, we make two remarks. First, we revisit the position
that we addressed at the beginning of this section, which is that goals are often
required to be consistent. For the proposed semantics of Definition 4.8, this
is not required and the question now is, whether this can be justified.5 We
believe it can, for the following reason. As explained, the rationale behind
the requirement of goal consistency is, that an agent should not simultaneously
pursue goals that conflict. In our framework however, the intention base contains
the plans of the agent, together with goals that are pursued by those plans. It
is suggested by the semantics of intention generation of Definition 4.5, that
intentions, i.e., the situations that are actively pursued by the agent, are not
conflicting. An inconsistent goal base thus does not necessarily imply that
inconsistent goals are simultaneously pursued. In a framework which allows all
goals in the goal base to be pursued simultaneously, the consistency requirement
for goals would indeed have to be adopted and the semantics of goal formulas
of Definition 4.6 could then be used.

Secondly, we remark that this chapter considers representations of goals
without any temporal information on the order in which the goals should be
pursued. A representation of goals with a temporal component could be a way
of reducing inconsistency, or, more accurately, of reducing what might appear
to be an inconsistency without the temporal representation. Explorations along
these lines are however not within the scope of this chapter.

4.2.2 Properties

In this section, we investigate properties of the semantics of Section 4.2.1, and
compare these semantics to one another. In the proposition below, we use the
notation |=b,h,s to indicate that a property holds under |=b, |=h, and |=s.

5In the literature [Cohen and Levesque, 1990, Rao and Georgeff, 1991], desires, rather
than goals, are often assumed or allowed to be inconsistent. One could thus argue that,
since we allow goals to be inconsistent, we are actually formalizing desires, rather than goals.
Motivational attitudes in cognitive agent programming languages are however often called
goals, rather than desires. In order to stay in line with the common terminology, we will thus
continue to use the term “goals”, even if they are allowed to be inconsistent.

48 GOALS IN CONFLICT

Proposition 4.1

〈σ, γ, ι,R〉 |=b G(φ→ ψ) → (Gφ→ Gψ) (4.1)

〈σ, γ, ι,R〉 |=b,h,s G(φ ∧ ψ) → (Gφ ∧ Gψ) (4.2)

〈σ, γ, ι,R〉 |=b (Gφ ∧ Gψ) → G(φ ∧ ψ) (4.3)

〈σ, γ, ι,R〉 |=b,h,s ¬G⊥ (4.4)

〈σ, γ, ι,R〉 |=b ¬(Gφ ∧ G¬φ) (4.5)

Proof: Let c = 〈σ, γ, ι,R〉.
(4.1) We have to show that c |=b G(φ → ψ) → (Gφ → Gψ). This means we
have to show that c |=b G(φ → ψ) ⇒ (c |=b Gφ ⇒ c |=b Gψ). Assume that
c |=b G(φ → ψ) and c |=b Gφ. This means that γ |= φ → ψ and γ |= φ. From
this we can conclude that γ |= ψ, as which c |=b Gψ is defined, yielding the
desired result.
(4.2) We have to show that c |=b G(φ ∧ ψ) ⇒ c |=b Gφ ∧ Gψ. This means we
have to show that c |=b G(φ ∧ ψ) ⇒ (c |=b Gφ and c |=b Gψ), which is defined
as γ |= φ ∧ ψ ⇒ (γ |= φ and γ |= ψ). The latter is obviously the case.

We have to show that c |=h G(φ ∧ ψ) ⇒ (c |=h Gφ and c |=h Gψ). Assume
that c |=h G(φ ∧ ψ), which is defined as: ∃φ′ ∈ γ : φ′ |= φ ∧ ψ. From the latter
we can conclude that ∃φ′ ∈ γ : φ′ |= φ and ∃φ′ ∈ γ : φ′ |= ψ, as which c |=h Gφ
and c |=h Gψ is defined.

The proof for |=s is analogous.
(4.3) The proof is analogous to the proof of (4.2), for |=b.
(4.4) We have to show that c |=b ¬G⊥, i.e., that c 6|=b G⊥, i.e., that γ 6|= ⊥.
This follows immediately, since γ is consistent.

We have to show that c 6|=h G⊥, i.e., that ¬∃φ ∈ γ : φ |= ⊥. Since each
φ ∈ γ is consistent, this follows immediately.

We have to show that c 6|=s G⊥, i.e., that ¬∃γ′ ⊆ γ : γ′ 6|= ⊥ and γ′ |= ⊥.
This is obviously the case.
(4.5) We have to show that c |=b ¬(Gφ ∧G¬φ), i.e., that c 6|=b Gφ∧G¬φ, i.e.,
that it is not the case that c |=b Gφ and c |=b G¬φ, i.e., that it is not the case
that γ |= φ and γ |= ¬φ. This is the case, since γ is consistent. 2

Property (4.1) corresponds with the K axiom of standard modal logics with pos-
sible worlds semantics (see, e.g., [Meyer and van der Hoek, 1995]). It expresses
that goals are closed under classical logical consequence. The property is satis-
fied by the basic semantics, but not by Hindriks’ semantics and the consistent
subset semantics (contrary to what was claimed in [van Riemsdijk et al., 2005b],
in which we stated that it is satisfied by the subset semantics). It is easy to see
that Hindriks’ semantics does not satisfy K. Take, e.g., a goal base {p, p→ q}.
The formulas Gp and G(p → q) then hold, but Gq does not hold. Under
the consistent subset semantics, q would be a goal, since q follows from the

GOAL BASE 49

consistent set {p, p → q}. An example explaining that the K axiom does not
hold for the consistent subset semantics, is the following. Take a goal base
{p ∧ r, (p → q) ∧ ¬r}. In this case, Gp and G(p → q) hold, since they follow
from the consistent sets {p ∧ r} and {(p→ q) ∧ ¬r}, respectively. The formula
Gq however does not hold, since the set {p ∧ r, (p→ q) ∧ ¬r} is not consistent,
and can thus not be used to derive q.

Property (4.2) corresponds with the so-called M axiom, and can be used to
axiomatize weaker modal logics (see, e.g., [Chellas, 1980]). It holds for all logics
discussed in this section. Property (4.3) is the reverse of (4.2), and corresponds
with the C axiom, which can also be used to characterize weaker modal logics
[Chellas, 1980]. It expresses that separate goals can be combined into one. It
does not hold in general for |=h and |=s, since inconsistent formulas in the goal
base may not be combined into one, in order to prevent the derivation of the
inconsistent goal. The M and C axiom together are equivalent with the K

axiom, i.e., instead of using K to axiomatize a modal logic, M and C can be
used instead. It is thus perhaps not surprising to see that since C is not satisfied
by |=h and |=s, K is neither.

Property (4.4) corresponds with the D axiom of modal logics (see, e.g.,
[Meyer and van der Hoek, 1995]). It is satisfied by all semantics discussed in
this section, and expresses that the inconsistent goal cannot be derived. This
is an important property with respect to the representation of conflicting goals.
Even though goals in the goal base may be inconsistent, we do not want to
allow the derivation of the inconsistent goal, since this would trivialize the logic.
The various semantics for goals as discussed in this chapter, which allow the
representation of conflicting goals, have been designed to satisfy this property.

In standard modal logics, property (4.5) is equivalent with the D axiom,
and is often also called D. In our logics, we can see that (4.4) and (4.5) cannot
be used interchangeably, since (4.5) is not satisfied by Hindriks’ semantics and
the consistent subset semantics. A formula Gp ∧G¬p, e.g., is satisfiable under
these semantics (take, e.g., a goal base {p,¬p}).

The next proposition expresses how the semantics of the previous section
are related, if the goal base is consistent.

Proposition 4.2 Let γ 6|= ⊥. Then the following holds.

〈σ, γ, ι,R〉 |=b Gφ⇔ 〈σ, γ, ι,R〉 |=s Gφ (4.6)

〈σ, γ, ι,R〉 |=h Gφ⇒ 〈σ, γ, ι,R〉 |=b Gφ (4.7)

〈σ, γ, ι,R〉 |=h Gφ⇒ 〈σ, γ, ι,R〉 |=s Gφ (4.8)

〈σ, γ, ι,R〉 |=b ¬Gφ⇒ 〈σ, γ, ι,R〉 |=h ¬Gφ (4.9)

Proof: (4.6) If γ 6|= ⊥, we have that ∃γ′ ⊆ γ : (γ′ 6|= ⊥ and γ′ |= φ) is equivalent
with ∃γ′ ⊆ γ : γ′ |= φ, which is equivalent with γ |= φ. (4.7) If ∃φ′ ∈ γ : φ′ |= φ,
then γ |= φ. (4.8) Follows immediately from (4.6) and (4.7). (4.9) If γ 6|= φ,
then ¬∃φ′ ∈ γ : φ′ |= φ. 2

50 GOALS IN CONFLICT

Property (4.6) states that under the assumption of consistency of the goal base,
the basic semantics and the consistent subset semantics are equivalent. The set
of goals, i.e., formulas φ for which Gφ holds in a configuration, is the same for
the consistent subset semantics as for the basic semantics. If the goal base is
consistent, we thus have that the K axiom and the various incarnations of the
D axiom also hold for the consistent subset semantics. This is in line with work
on BDI logics by Cohen and Levesque [Cohen and Levesque, 1990] and Rao and
Georgeff [Rao and Georgeff, 1991], in which goals are assumed to be consistent,
and also obey the K and D axioms.

Comparing the basic semantics with Hindriks’ semantics, we see that the
set of goals derivable under Hindriks’ semantics is a subset of those derivable
under the basic semantics (4.7). The opposite of (4.7) does not hold in general.
Take, e.g., a goal base {p, q}. In that case, G(p ∧ q) holds under the basic
semantics, but does not hold under Hindriks’ semantics. We thus have that
the basic semantics is properly stronger than Hindriks’ semantics, if the goal
base is consistent. Property (4.8) expresses that the set of goals derivable under
Hindriks’ semantics is a subset of those derivable under the consistent subset
semantics. Since the consistent subset semantics is equivalent with the basic
semantics, we can conclude that the consistent subset semantics is properly
stronger than Hindriks’ semantics.

The formulas φ such that ¬Gφ is true in a configuration, is the complement
of the formulas for which Gφ holds. We thus have implication (4.9).

If we assume that each goal in the goal base is consistent, rather than de-
manding that the entire goal base is consistent, we also have that the consistent
subset semantics is properly stronger than Hindriks’ semantics. This can be con-
cluded from the following proposition, and using the example where γ = {p, q}
to show that the proposition does not hold in the opposite direction.

Proposition 4.3 Let ∀φ ∈ γ : φ 6|= ⊥. Then the following holds.

〈σ, γ, ι,R〉 |=h Gφ⇒ 〈σ, γ, ι,R〉 |=s Gφ

Proof: If ∃φ′ ∈ γ : φ′ |= φ, then ∃γ′ ⊆ γ : γ′ |= φ (let γ′ = {φ′}). 2

Reflecting on Propositions 4.1 and 4.3, we can observe that the consistent subset
semantics is properly stronger than Hindriks’ semantics, but the properties con-
sidered in Proposition 4.1 do not distinguish the two. Finding a discriminating
property is not a trivial task. It seems that a weaker version of (4.3) might be
what we are looking for, since two goals may sometimes be combined into one,
but not always. For example, given a goal base {p, q}, we have that Gp and Gq
hold under |=s, and G(p∧ q) also holds (but G(p∧ q) does not hold under |=h).
Given a goal base {p ∧ r, q ∧ ¬r}, we have that Gp and Gq hold, but G(p ∧ q)
does not hold under |=s, i.e., in this case, p and q may not be combined.

Since p and q may be combined in some but not all cases, it is not very
likely that we can use a version of (4.3) in which we put conditions on φ and ψ

GOAL BASE AND GOAL ADOPTION RULES 51

only. We might end up concluding that the strongest property we can come up
with, is that (4.3) holds iff there is a consistent subset of γ from which both φ
and ψ follow. This property is however not very informative, since it essentially
repeats the semantic definition. Also, it is a property which is not very general,
since it does not depend on general properties of γ or of φ and ψ. Further
investigations along these lines are left for future research.

4.3 Goal Base and Goal Adoption Rules

In Section 4.2, we presented a number of semantics for goal formulas, based
on the goal base of an agent configuration. In that setting, goals are thus not
conditional. One cannot express, e.g., that the agent should adopt the goal
to have a drink, if he is thirsty, i.e., one cannot express that goals sometimes
depend on beliefs. Also, one cannot express that goals might depend on other
goals. For example, one might want to express that if the agent believes he is
at home, and has the goal to be in New York (assuming that he does not live
in New York), should adopt the goal to be at the airport.

In order to provide for this kind of expressivity, we introduce so-called goal
adoption rules in this section. In Section 4.3.1, we present a semantics for
goal formulas, based on the goal base and these rules. As in the case of the
goal base, goal adoption rules may also represent conflicting goals, and our
semantics is designed to handle these conflicts without trivializing the logic. At
the end of this section, we work out some simple examples. In Section 4.3.2,
we investigate properties of our proposed semantics, and compare the semantics
with the consistent subset semantics of Section 4.2.

4.3.1 Semantics

Below, we define the set of goal adoption rules. A goal adoption rule has a
belief and goal condition as the antecedent and a propositional formula as the
consequent. Intuitively, it means that if the belief and goal condition in the
antecedent hold, the formula in the consequent can be adopted as a goal. As is
argued in philosophical logic [Hansson, 1969], mental attitudes are conditional
by nature.

Definition 4.9 (goal adoption rule) The set of goal adoption rules RGA is
defined as follows:

{β, κ⇒+
G
φ | β ∈ LB, κ ∈ LG, φ ∈ L}.

These goal adoption rules were also proposed in [van Riemsdijk et al., 2005a].
In that paper, two kinds of semantics of these rules were given. One was based
on the application of a goal adoption rule over a transition, comparable with
the semantics of intention generation rules of Definition 4.5. The second kind,

52 GOALS IN CONFLICT

and the one we focus on in this chapter, defined the semantics of goal formulas,
given an agent configuration with a goal base and a set of goal adoption rules.
This semantics was however defined for simple forms of goal adoption rules with
only a belief condition. Further, it was very restrictive. Basically, a formula Gφ
was specified to be true, if there was a goal adoption rule with true antecedent
and a consequent equivalent to φ. The semantics for rules with a belief and goal
condition was not specified. In this section, we propose a semantics for goal
formulas that is based on goal adoption rules with belief and goal condition,
which is less restrictive than the one provided in [van Riemsdijk et al., 2005a],
and takes into account potential conflicts among goals.

The semantics we propose is based on default logic. The general idea is as
follows. Goal adoption rules and the goals in the goal base are transformed into
propositional default rules. This set of default rules has a number of (consistent)
extensions, which represent the sets of compatible goals that an agent could
derive on the basis of its rules and goal base. Given an agent configuration and
an extension of the default rules generated from the goal adoption rules and
goal base in this configuration, we define the semantics of goal formulas.

Default logic is designed to handle possibly conflicting defeasible rules. Goal
adoption rules could be conflicting and default logic is therefore a natural way
to interpret these rules. This can be illustrated by considering an agent with
the following rules for deriving goals: if the agent believes that it’s raining, it
can derive the goal to take the bus, and if it has the goal to be on time, it can
derive the goal not to take the bus (but to take a taxi instead, for example).
Suppose the agent believes it is raining and wants to be on time, then it has a
reason to derive the goal to take the bus and it has a reason to derive the goal
not to take the bus. Rather than deriving both conflicting goals, default logic
gives rise to two extensions or compatible goal sets: one containing the goal to
take the bus and one not to take the bus.

Below, we define the function f that takes a set of goal adoption rules with
only a goal condition and yields a set of propositional default rules. It will
become clear later on why we define this function for rules without a belief
condition. In the definition, we use CL to denote the set of conjunctions of
goal literals. A goal literal is a formula of the form Gφ or ¬Gφ, where φ ∈ L.
Formulas of the former kind are called positive goal literals and formulas of
the latter type negative goal literals. The formula ⊤ is treated as a positive
goal literal. We use a function pl that takes a conjunction of goal literals and
yields a set containing the propositional parts of the positive goal literals of this
conjunction6. The function nl similarly yields the set of propositional parts of
negative goal literals of a conjunction. Further, we use a function dnf that
takes a set of goal adoption rules of the form κ ⇒+

G
φ and yields these rules

with the antecedent transformed into disjunctive normal form. We map goal

6The propositional part of the positive goal literal ⊤ is the propositional formula ⊤. Also,
if the number of positive goal literals is 0, the function pl yields the set {⊤}.

GOAL BASE AND GOAL ADOPTION RULES 53

adoption rules to disjunctive normal form, because rules of this form can be
intuitively mapped to default rules. RGADNF

is the set of goal adoption rules
with the antecedent in disjunctive normal form, i.e., RGADNF

= {
∨

1≤i≤n cli ⇒
+
G

χ | n > 0, cli ∈ CL, χ ∈ L}. Finally, the number of elements in a set S is
denoted by |S|.

Definition 4.10 (goal adoption rules to default rules) Let DR denote the set of
propositional default rules. Let cl, cl1, . . . , clk ∈ CL. The function t : RGADNF

→
℘(DR), taking a goal adoption rule and yielding a set of default rules, is then
defined as follows, where φi ∈ pl(cl) for 1 ≤ i ≤ m and ψj ∈ nl(cl) for 1 ≤ j ≤ n
with |pl(cl)| = m and |nl(cl)| = n, with n ≥ 0. If n = 0, the sequence ψ1, . . . , ψn

is empty.

t(cl ⇒+
G
χ) = {φ1 ∧ . . . ∧ φm : ¬ψ1, . . . ,¬ψn, χ/χ}

t(cl1 ∨ . . . ∨ clk ⇒+
G
χ) =

⋃
1≤i≤k t(cli ⇒

+
G
χ)

The function f : ℘(RGA) → ℘(DR) taking a set of goal adoption rules of the
form κ⇒+

G
φ and yielding a set of default rules, is then defined as follows.

f(GA) =
⋃

r∈dnf(GA)

t(r)

We explain this definition using an example. Consider the goal adoption rules
g1 = Gp ∧ ¬Gq ⇒+

G
r, g2 = ⊤ ⇒+

G
p and g3 = Gr ⇒+

G
q, corresponding with

the default rules d1 = p : ¬q, r/r, d2 = ⊤ : p/p and d3 = r : q/q, respectively.
When transforming a goal adoption rule with a conjunction as the an-

tecedent, the propositional parts of positive goal literals are mapped onto the
prerequisite of a default rule, whereas the propositional parts of negative goal
literals are negated and mapped onto the justification of the default rule. This
reflects the difference between for example the formulas G¬q and ¬Gq: the
former represents the presence of a goal ¬q, whereas the latter represents the
absence of the goal q. Considering goal adoption rules g1 and g2, the set {p, r}
is an extension of the default rules d1 and d2. This reflects our intuition about
goal adoption rules: p can be derived on the basis of the second rule and if p is
a goal and q is not, we can derive goal r.

If we consider the default rules d1, d2 and d3, we have that the set {p, r, q}
is not an extension of these rules. This is due to the fact that q, which was
derived using rule d3, is inconsistent with the justification ¬q of rule d1. This
corresponds with our intuition about goal adoption rules: given rule g1, r can
only be a goal if q is not. The goals r and q thus cannot be part of the same
extension.

Negative goal literals are mapped to a sequence of justifications, rather than
to one conjunctive justification. The reason is, that we want to allow goal
adoption rules such as ¬Gp∧¬G¬p ⇒+

G
q, specifying that goal q can be adopted

if neither p nor ¬p is a goal. If we would map this rule to the default rule

54 GOALS IN CONFLICT

⊤ : p ∧ ¬p ∧ q/q, we would get an inconsistent justification and the rule would
never be applicable. The rule ⊤ : p,¬p, q/q on the other hand does the job.

The consequent χ of a goal adoption rule is added to the justification, because
we only want to derive a new goal if it is consistent with the already derived
ones. Further, goal adoption rules without negative goal literals then yield so-
called normal default rules, i.e., rules of the form φ : χ/χ. Normal default rules
have a number of desirable characteristics, such as the fact that normal default
theories always have extensions [Brewka et al., 1997].

Moreover, a goal adoption rule such as Gp ∨ Gq ⇒+
G
r with a disjunctive

goal formula in the antecedent is transformed into the set of multiple defaults
{p : r/r, q : r/r}. The rationale is, that the goal r can be derived if either p or
q is a goal. This is established through this set of default rules, because if p has
been derived as a goal, the first rule can be applied to derive r. Alternatively,
r can also be derived using the second rule if q has been derived as a goal.

The following function transforms goal bases to goal adoption rules and will
be used in Definition 4.12. The reason for transforming the goal base into goal
adoption rules in this way will be explained after Definition 4.12.

Definition 4.11 (goal base to goal adoption rules) The function g : ℘(L) →
℘(RGA), taking a goal base and yielding a set of goal adoption rules, is defined
as follows: g(γ) = {⊤ ⇒+

G
φ | φ ∈ γ}.

Note that the default rules corresponding with these goal adoption rules of
the form ⊤ ⇒+

G
φ, have the form ⊤ : φ/φ. Default rules of this form are

often called Poole-type defaults, or supernormal defaults (see, e.g., [Poole, 1988,
Brewka, 1991]).

In the definition of the semantics of goals below, we transform the goal adop-
tion rules generated from the goal base, as well as the goal adoption rules in the
rule base of the configuration, to default rules. That is, we only take those goal
adoption rules for which the belief condition holds in the given configuration.
These rules can be transformed into default rules by means of the function of
Definition 4.10, if we remove the (true) belief condition. Given an extension
of the generated default rules, we define that Gφ holds iff φ follows from this
extension.

Definition 4.12 (semantics of goals) Let R = 〈IG,GA〉, where GA ⊆ RGA is
a finite set of goal adoption rules. Let GA′ be defined as

{κ⇒+
G
φ | ∃(β, κ ⇒+

G
φ) ∈ GA : 〈σ, γ, ι,R〉 |=LB

β}.

Let E be an extension of 〈∅, f(g(γ)) ∪ f(GA′)〉. The default semantics |=E
d for

goal formulas in the presence of these goal adoption rules, given the extension
E, is then as follows.

〈σ, γ, ι,R〉 |=E
d Gφ ⇔ E |= φ

〈σ, γ, ι,R〉 |=E
d ¬κ ⇔ 〈σ, γ, ι,R〉 6|=E

d κ

〈σ, γ, ι,R〉 |=E
d κ ∧ κ′ ⇔ 〈σ, γ, ι,R〉 |=E

d κ and 〈σ, γ, ι,R〉 |=E
d κ′

GOAL BASE AND GOAL ADOPTION RULES 55

Note that the set of facts, i.e., the first component of a default theory, is empty
in our case. In the sequel, we will therefore omit the set of facts and speak
of extensions of a set of default rules. We chose to transform the goal base
into default rules, rather than taking these as facts and considering extensions
of 〈γ, f(GA′)〉. The reason is, that we want to allow γ to be inconsistent. A
default theory with an inconsistent set of facts only has one extension, i.e.,
the inconsistent extension. This is undesirable, since we want to allow the
representation of inconsistent goals, without trivializing the logic (see Section
4.2.1).

An alternative way of defining the default semantics could be the following:
c |=d Gφ ⇔ ∃E : E |= φ, where E is an extension of configuration c. Rather
than parameterizing the semantics with an extension of c as in Definition 4.12,
this definition incorporates an existential quantification over the extensions in
the definition of the semantics. This definition is analogous to the consistent
subset semantics, in the sense that both definitions use existential quantification
over a consistent set of formulas. We, however, chose to define the default
semantics as in Definition 4.12, in order to obtain the validity of Theorem 4.1,
which will be presented in Section 4.3.2.

We conclude this section by presenting two simple examples, in order to
give some idea about the kinds of situations which can be modeled using goal
adoption rules. The first example is about an agent which has to carry cargo
from a source location to a target location.

Example 4.2 (carrying cargo) Consider that one wants to express that if the
agent is at the location of the source, it should have the goal to have cargo, and
if it is at the target, it should have the goal not to have cargo. Further, if the
agent believes he is at the source and he has cargo, he should have the goal to
be at the target. Finally, if he believes he is at the source, and has the goal to
be at the target, he should have the goal to be at some waypoint7 in-between
the source and the target. This can be useful if the agent only has plans to
get from the source to the waypoint, and from the waypoint to the target (see
Example 4.6). This could be modeled using the following goal adoption rules.

B(source ∧ ¬haveCargo) ⇒+
G

haveCargo
B(target ∧ haveCargo) ⇒+

G
¬haveCargo

B(source ∧ haveCargo) ⇒+
G

target
B(source),G(target) ⇒+

G
waypoint

△

This example illustrates that goals might be conditional on beliefs, and also on
other goals. The fourth rule is an example of the specification of the adoption

7According to The American Heritage: Dictionary of the English Language, a waypoint
is a point between major points on a route, as along a track.

56 GOALS IN CONFLICT

of landmarks, as it was called in [van Riemsdijk et al., 2005a]. A landmark is a
goal which the agent has to achieve, on its way to achieving another goal. In
this example, the waypoint can be viewed as a landmark, which the agent has
to achieve in order to achieve the goal of being at the target.

The next example is about an agent wanting either tea or coffee.

Example 4.3 (tea or coffee) Consider that one wants to express that if an
agent is thirsty, he should either have the goal to have coffee or to have tea, but
not both, i.e., if the agent does not already have the goal to have tea, it can
adopt the goal to have coffee, and vice versa. This could be modelled using the
following goal adoption rules.

B(thirsty),¬G(tea) ⇒+
G

coffee
B(thirsty),¬G(coffee) ⇒+

G
tea

Assuming the agent indeed believes he is thirsty, the default rules corresponding
with these goal adoption rules are ⊤ : ¬tea, coffee/coffee and ⊤ : ¬coffee, tea/tea.
There are two extensions of these default rules, i.e., {coffee} and {tea}. △

This example illustrates the use of negative goal literals in goal adoption rules,
i.e., they can be used to express that certain goals are incompatible, which means
they should not be part of the same extension. Using negative goal literals thus
provides a way to express that certain goals are incompatible, even though
they are logically consistent. The idea is that incompatible goals should not be
pursued simultaneously. This is discussed further in Section 4.4.

4.3.2 Properties

In this section, we investigate some properties of the default semantics of goals.
In the sequel, we will use the following definition of extension of a configuration.

Definition 4.13 (extension of a configuration) Let R = 〈IG,GA〉 and let c =
〈σ, γ, ι,R〉 be an agent configuration. Let GA′ be {κ ⇒+

G
φ | ∃(β, κ ⇒+

G
φ) ∈

GA : c |=LB
β}. E is then said to be an extension of the configuration c, iff E is

an extension of f(g(γ)) ∪ f(GA′).

The first theorem specifies the following: if a configuration contains a goal
adoption rule of which the antecedent is true given an extension of the defaults
generated on the basis of this configuration, and the consequent of this rule is
consistent with this extension, then the consequent is a goal in this configuration.
This theorem formalizes an important desired characteristic of the semantics of
goals, being that if the antecedent of a goal adoption rule holds, the consequent
is a goal.

Theorem 4.1 Let c = 〈σ, γ, ι,R〉 be a configuration, let R = 〈IG,GA〉 and let
E be an extension of c. Then the following holds.

If ∃(β, κ⇒+
G
φ) ∈ GA :

(
c |=LB

β and c |=E
d κ and E 6|= ¬φ

)
then c |=E

d Gφ.

GOAL BASE AND GOAL ADOPTION RULES 57

Proof: Let κ =
∨

1≤k≤o clk with o > 0, clk ∈ CL. Since c |=E
d κ by assumption,

it must be the case by Definition 4.12 that c |=E
d clk, for some 1 ≤ k ≤ o.

Assume that c |=E
d clk and let φi ∈ pl(clk) for 1 ≤ i ≤ m and ψj ∈ nl(clk) for

1 ≤ j ≤ n with |pl(clk)| = m and |nl(clk)| = n. If c |=E
d clk, it must be the

case by Definition 4.12, that E |=
∧

1≤i≤m φi and E 6|= ψj for 1 ≤ j ≤ n. We
also have that E 6|= ¬φ. The default φ1 ∧ . . . ∧ φm : ¬ψ1, . . . ,¬ψn, φ/φ is thus
applicable to E. As E is closed under the application of applicable defaults, it
must be the case that E |= φ and thus by Definition 4.12, we can conclude that
c |=E

d Gφ. 2

As stated below Definition 4.12, this theorem would not hold if we would have
defined the default semantics analogously to the consistent subset semantics,
i.e., as c |=d Gφ ⇔ ∃E : E |= φ. Consider, for example, a set of goal adoption
rules {¬Gp⇒+

G
q, ¬Gq ⇒+

G
p, Gp ∧ Gq ⇒+

G
r} with the set of corresponding

default rules {⊤ : ¬p, q/q, ⊤ : ¬q, p/p, p∧ q : r/r}. This set of default rules has
two extensions, i.e., {q} and {p}. The first extension results from the application
of the first default rule, after which the second cannot be applied, and vice versa
for the second extension. The third default rule cannot be applied, since p ∧ q
does not follow from either of these extensions.

Under the suggested alternative semantics, we would thus have that
Gp ∧ Gq holds, but that Gr does not hold. This can be considered counterin-
tuitive, considering the third goal adoption rule. If we evaluate goal formulas
always with respect to a single extension, as done in the semantics of Definition
4.12, the formula Gp ∧ Gq would not hold, since p and q are goals in differ-
ent extensions. Our proposed semantics thus prevents this kind of unintuitive
behavior from occurring.

The following proposition expresses whether the properties as established in
Proposition 4.1 for (some of) the semantics of Section 4.2.1, also hold for the
default semantics.

Proposition 4.4

〈σ, γ, ι,R〉 |=E
d G(φ→ ψ) → (Gφ→ Gψ) (4.10)

〈σ, γ, ι,R〉 |=E
d (Gφ ∧Gψ) ↔ G(φ ∧ ψ) (4.11)

〈σ, γ, ι,R〉 |=E
d ¬G⊥ (4.12)

〈σ, γ, ι,R〉 |=E
d ¬(Gφ ∧ G¬φ) (4.13)

Proof: Let c = 〈σ, γ, ι,R〉.
(4.10) We have to show that c |=E

d G(φ → ψ) → (Gφ → Gψ). This means we
have to show that c |=E

d G(φ → ψ) ⇒ (c |=E
d Gφ ⇒ c |=E

d Gψ). Assume that
c |=E

d G(φ→ ψ) and c |=E
d Gφ. This means that E |= φ→ ψ and E |= φ (Defi-

nition 4.12). From this we can conclude that E |= ψ, which is equivalent with
c |=E

d Gψ, yielding the desired result.

58 GOALS IN CONFLICT

(4.11) We have to show that c |=E
d Gφ∧Gψ ⇔ c |=E

d G(φ∧ψ). This means we
have to show that (c |=E

d Gφ and c |=E
d Gψ) ⇔ c |=E

d G(φ∧ψ), which is defined
as (E |= φ and E |= ψ) ⇔ E |= φ ∧ ψ (Definition 4.12). This is obviously the
case.
(4.12) We have to show that c |=E

d ¬G⊥, i.e., that c 6|=E
d G⊥, i.e., that E 6|= ⊥.

This follows immediately from the fact that E is consistent.
(4.13) We have to show that c |=E

d ¬(Gφ∧G¬φ), i.e., that c 6|=E
d Gφ∧G¬φ. This

means we have to show that it is not the case that c |=E
d Gφ and c |=E

d G¬φ,
which is defined as E |= φ and E |= ¬φ. We have that E is consistent (Sec-
tion 4.1.2), which means that this is a contradiction, yielding the desired result.

2

As we can see, all properties of Proposition 4.1, and thus those holding for the
basic semantics, also hold for the default semantics. This is perhaps not sur-
prising, since goal formulas evaluated under the default semantics are evaluated
with respect to a single extension, and extensions are consistent. Formulas eval-
uated under the basic semantics are also evaluated with respect to a consistent
set of formulas, i.e., the goal base.

The fact that goal formulas evaluated under the default semantics and under
the basic semantics obey the same logical properties, does not imply that these
semantics are equivalent: the extension considered under the default semantics
does not have to be equal to the goal base. It is thus not the case that if φ is a
goal under the default semantics, that φ is also a goal under the basic semantics.
Nevertheless, if the goal base is consistent, and the set of goal adoption rules
is empty, we do have that the basic semantics and the default semantics are
equivalent, as expressed by the proposition below. This is intuitive, since if
the goal base is consistent, there is precisely one extension of the default rules
corresponding with the goal base. This extension is equivalent with the goal
base, i.e., the same sets of propositional formulas are derivable from these sets.
By Proposition 4.2, we have that the default semantics is also equivalent with
the consistent subset semantics in this case, and is stronger than Hindriks’
semantics.

Proposition 4.5 Let γ 6|= ⊥, let R = 〈IG, ∅〉, and let E be an extension of
〈σ, γ, ι,R〉. We then have the following.

〈σ, γ, ι,R〉 |=b Gφ⇔ 〈σ, γ, ι,R〉 |=E
d Gφ

Proof: Let c = 〈σ, γ, ι,R〉. We have that c |=b Gφ is defined as γ |= φ. If γ is
consistent, there is only one extension of 〈∅, f(g(γ))〉, and it is equivalent with
γ. Since c |=E

d Gφ is defined as E |= φ, we have that c |=E
d Gφ⇔ γ |= φ, which

is equivalent with the definition of c |=b Gφ. 2

If we drop the requirement that the goal base is consistent, but keep the require-
ment that the set of goal adoption rules is empty, we can relate the consistent

GOAL BASE AND GOAL ADOPTION RULES 59

subset semantics and the default semantics as expressed in the following theo-
rem.

Theorem 4.2 Let R = 〈IG, ∅〉. Then the following holds.

〈σ, γ, ι,R〉 |=s Gφ⇔ ∃E : 〈σ, γ, ι,R〉 |=E
d Gφ

In the proof of this theorem we use the following lemma, in which the notion
of a maximal consistent subset is used. A set of propositional formulas γ′ is
a maximal consistent subset of a set of formulas γ iff γ′ ⊆ γ, γ′ 6|= ⊥ and
¬∃φ ∈ γ : φ 6∈ γ′ and {φ} ∪ γ′ 6|= ⊥.

Lemma 4.1 There is a consistent subset γ′ of γ such that γ′ |= φ iff there
is a maximal consistent subset γ′ of γ such that γ′ |= φ. Further, γ′ is a
maximal consistent subset of γ iff γ′ is an extension of {⊤ : φ/φ | φ ∈ γ}
[Brewka et al., 1997].

Proof of Theorem 4.2: By Definition 4.12 and the fact that GA = ∅, E must
be an extension of f(g(γ)). 〈σ, γ, ι,R〉 |=s Gφ means that there is a consistent
subset γ′ of γ such that γ′ |= φ. By Lemma 4.1, this is equivalent to there being
a maximal consistent subset γ′ of γ such that γ′ |= φ. We thus have to show
that there is a maximal consistent subset γ′ of γ such that γ′ |= φ iff there is
an extension E of f(g(γ)) such that E |= φ.8 By Definition 4.11, we have that
g(γ) = {⊤ ⇒+

G
φ | φ ∈ γ} and therefore f(g(γ)) = {⊤ : φ/φ | φ ∈ γ}. By

Lemma 4.1, we then have that γ′ is a maximal consistent subset of γ iff γ′ is an
extension of f(g(γ)), yielding the desired result. 2

The default semantics and consistent subset semantics are thus “equivalent” in
some sense. The difference between the two is that the existential quantifier
is incorporated in the semantics in case of the consistent subset semantics. As
explained above, the existential quantifier was not incorporated in the default
semantics, to yield the validity of Theorem 4.1. In order to relate the two
semantics, we thus have to add the existential quantification, as done in Theorem
4.2. If we would have defined the default semantics with the existential quantifier
incorporated, the default semantics and consistent subset semantics would have
been truly equivalent. That is, if the set of goal adoption rules is empty.

Theorem 4.2 does not hold for arbitrarily composed goal formulas, for similar
reasons. A formula Gφ ∧ G¬φ is satisfiable under |=s, but not under |=E

d

(Propositions 4.1 and 4.4). Goal formulas evaluated under |=E
d are evaluated

under one extension, whereas each conjunct of a conjunction evaluated under
|=s, can be evaluated with respect to a different consistent subset. It can thus
be the case that a formula such as Gφ ∧ G¬φ holds under |=s, but does not
hold under |=E

d for some E.

8A similar proposition was used, although not proven, by Reiter in [Reiter, 1987].

60 GOALS IN CONFLICT

The last proposition of this section specifies a property of the translation of
goal adoption rules into default rules, with respect to conjunctions of positive
goal literals in the antecedent.

Proposition 4.6 A goal adoption rule r of the form
∧

1≤i≤m Gφi ⇒+
G
χ is

equivalent with the rule r′ of the form G(
∧

1≤i≤m φi) ⇒+
G

χ, i.e.,
f({r}) = f({r′}).

Proof: Immediate from Definition 4.10. 2

4.4 Dynamics of Goals and Intentions

So far, we have discussed goal adoption and intention generation in a static way.
That is, we have addressed how, given some configuration, we can define the
goals of an agent (Sections 4.2 and 4.3), and what intentions might be generated
in this configuration on the basis of these goals (Section 4.1.1). However, when
considering the dynamic behavior of an agent over time, i.e., the agent’s con-
figuration changing from one to another continuously, a number of issues arise
which we have not addressed so far.

We divide these issues into two (not completely disjoint) categories, i.e.,
issues related to commitment strategies for goals (Section 4.4.1), and issues
related to intention generation (Section 4.4.2). It turns out that both kinds of
issues become more intricate when it comes to agents with goal adoption rules,
compared with agents with only a goal base.

4.4.1 Commitment Strategies for Goals

A commitment strategy for goals expresses when an agent may drop a goal it has
formed previously [Rao and Georgeff, 1991, Winikoff et al., 2002]
[van Riemsdijk et al., 2005a]. One type of commitment strategy is called blind
commitment [Rao and Georgeff, 1991]9. A blindly committed agent maintains
its goals until it believes it has achieved them. Goals like this which should
be dropped once they are achieved, are generally called achievement goals.
One can also distinguish so-called maintenance goals, which express a situ-
ation that the agent should maintain, i.e., the agent should make sure that
the situation expressed by the maintenance goal holds continuously (see, e.g.,
[Pokahr et al., 2005b] for an implementation).

In [Hindriks et al., 2001], and following that paper in
[van Riemsdijk et al., 2003b, Dastani et al., 2004], blindly committed agents are

9The cited paper on BDI logic actually proposes commitment strategies for intentions,
rather than for goals. In agent programming, commitment strategies have however also been
used in the context of goals (see, e.g., [Winikoff et al., 2002, van Riemsdijk et al., 2005a]).

DYNAMICS OF GOALS AND INTENTIONS 61

implemented as follows. The goals are implemented using a goal base, as in Sec-
tion 4.2. On the basis of these goals, plans or actions are selected and executed.
After the execution of an action, it is checked whether goals in the goal base
are (believed to be) reached. If so, they are removed from the goal base. For
example, consider a goal base {p, p ∧ q}. If p is believed to be reached (and q
is not), p is removed from the goal base. The goal p ∧ q is not removed (nor
updated), since this goal expresses that the agent should achieve both p and q
at the same time.

This mechanism is a simple and intuitive implementation of blind commit-
ment: a goal is dropped, only if believed to be achieved. When it comes to
agents with goal adoption rules however, the implementation of blind commit-
ment is less straightforward. In principle, one could remove a goal adoption rule
of the form β, κ ⇒+

G
φ, if φ is believed to be achieved. Intuitively, one could

however argue that rules express some kind of general “knowledge” of the agent
about which goals it should adopt, and that rules should thus not be removed.

On the other hand, if rules are maintained, one could argue that these rules
actually model maintenance goals, rather than achievement goals. However,
since goal adoption rules have a condition on beliefs and goals, maintaining
rules does not necessarily mean that φ is always a goal of the agent. That is, it
can be the case that φ is a goal in a certain configuration and not in the next,
because, e.g., the beliefs of the agent have changed. Consequently, maintaining
rules does not mean that we are modeling maintenance goals.

The question now is, whether we are modeling achievement goals, i.e., goals
that are dropped once they are achieved, through maintaining the goal adoption
rules. This is neither the case, since φ might be a goal in one configuration
and not in the next (in which case we could say that φ has been dropped
[van Riemsdijk et al., 2005a]), because the belief condition of the goal adoption
rule with φ in its consequent has become false. Another way to put this, is that
the modeling of goals using goal adoption rules results in the level of persistency
of goals possibly being low, or at least lower than for blindly committed agents
(see also [Winikoff et al., 2002]). This can be considered undesirable. However,
we suggest to embed our modeling of goals in a framework in which the agent
also has an intention base. The semantics of intentions could then be defined
such that the persistency of intentions is higher, i.e., one could implement an
agent that is blindly committed towards his intentions.10

A final issue we mention with respect to commitment strategies for goals, is
concerned with the case in which goal adoption rules are removed once the goal
in the consequent is achieved. In order to explain this, we revisit Example 4.4.
This example aims to express a situation in which the agent should get either
tea or coffee. If the agent chooses to get coffee, the goal adoption rule for coffee
can be removed (assuming the plan for getting coffee has succeeded). The agent
could then however go for tea the next point in time. This does not do justice

10This would actually be more in line with the proposal in [Rao and Georgeff, 1991].

62 GOALS IN CONFLICT

to the idea that the agent should get either tea or coffee. This problem could
be solved by modeling the situation using a more complex goal, as suggested
below Example 4.3. That approach however also has its disadvantages, as will
be discussed in Section 4.4.2. On the other hand, one could argue that rules
should not be removed in this example in the first place, since the rules aim
to express that if the agent is thirsty, he should always get either tea or coffee.
That is, the belief condition guards the adoption of the goals, and rules may
thus be maintained.

This discussion illustrates that it is not immediately obvious how to im-
plement appropriate commitment strategies for an agent with goal adoption
rules. It will probably depend on the context, which is the most appropriate
implementation. Nevertheless, we conjecture that in most cases it will be most
intuitive to maintain the goal adoption rules, and to implement an appropriate
commitment strategy for the intentions.

4.4.2 Intention Generation

Once the goals of an agent have been defined, the agent should act towards
achieving these goals. That is, the agent should form plans, by means of which
its goals can be achieved. In this chapter, we do consider the generation of
plans only, but we attach the goal for which a plan was generated to the plan.
This is done in order to be able to implement a screen of admissibility (Section
4.1.1). The resulting plan-goal pair is what we refer to as intentions.11 There
are various ways in which the agent can generate intentions on the basis of its
goals. One possibility is to use a planning algorithm. Considering our proposal
of Section 4.3, the agent could, e.g., choose one extension and use this as input
to a planner.

Another approach, which is more in line with current work on agent pro-
gramming languages, is to let the programmer specify which intentions the agent
can adopt for which goals. This can be done using intention generation rules, as
were introduced in Section 4.1.1. An advantage of this approach is, compared
with planning, the lower computational complexity. It does however put a heav-
ier burden on the programmer, who has to design effective intention generation
rules.

Given our intuitions for a construct of intention generation rules, i.e., rules
which specify which intention may be selected for which goal, it is important
to investigate the precise semantics of these rules. A first suggestion that ab-
stracts from a particular semantics of goals, was already done in Section 4.1.1
(Definition 4.5). That definition can be used in the context of the semantics of

11In agent programming, plans are often referred to as intentions (see, e.g., [Rao, 1996]),
while in logics in which intentions are formalized, intentions are usually declarative
[Rao and Georgeff, 1991]. We combine both aspects, and refer to the combination as “in-
tention”.

DYNAMICS OF GOALS AND INTENTIONS 63

goals of Section 4.2, by simply plugging one of these semantics of goals into the
definition for intention generation.

As will be discussed below, the same strategy however does not yield satis-
factory results for intention generation in the case of the default semantics for
goals. In the sequel, we propose an alternative that solves an important problem
with respect to this semantics for intention generation. Nevertheless, there are
a number of issues that the alternative semantics still does not address. These
will also be discussed briefly below, but investigating ways of taking these into
account in the semantics is left for future research.

Semantics of Intention Generation

A first attempt at defining the semantics of intention generation, that straight-
forwardly adapts the semantics of Definition 4.5 and that was also suggested in
[van Riemsdijk et al., 2005b], is the following.

Definition 4.14 (semantics of intention generation) Let c = 〈σ, γ, ι,R〉 be
a configuration, let R = 〈IG,GA〉 and let β, κ ⇒I 〈π, φ〉 ∈ IG be an intention
generation rule. The semantics of applying this rule is then as follows, where
ι′ = ι ∪ {〈π, φ〉} and δ = {φ | 〈π, φ〉 ∈ ι}.

c |=LB
β ∃E : c |=E

d κ {φ} ∪ δ 6|= ⊥

〈σ, γ, ι,R〉 → 〈σ, γ, ι′,R〉

This semantics of intention generation specifies that an intention generation rule
is applicable if an extension of the relevant configuration exists under which the
goal condition holds. The definition is a variant of Definition 4.5, where the
goal condition of an intention generation rule is evaluated under the default
semantics.

In this definition, we choose to specify that an intention generation rule
can be applied if an extension exists under which the goal condition holds,
rather than defining that a rule can be applied if the goal condition holds under
all extensions of the configuration. Our proposal thus corresponds with the
credulous semantics of default logic. This is based on the intuition that the
agent can choose to try to reach any of the goals it has, even if it conflicts with
another goal of his. It can just not fulfill these conflicting goals at the same time.
In principle, one could also define a skeptical version of intention generation in
a similar way, if this is desirable in a certain context.

An advantage of this definition of intention generation, which comes with
our definition of the semantics of goals, is that intentions are generated on the
basis of a compatible set of goals. The goal condition of an intention generation
rule is evaluated with respect to a single extension. An intention generation
rule Gp ∧ Gq ⇒I 〈π, φ〉, for example, can thus not be applied if p is a goal in
one extension, and q is a goal in another (and not in the first). This is desirable,
since the fact that the specification of goal adoption rules has resulted in p and

64 GOALS IN CONFLICT

q being in different extensions, represents that these goals are incompatible,
and should not be pursued simultaneously (see Example 4.3). In particular, an
intention generation rule such as Gp ∧ G¬p⇒I 〈π, φ〉 will never be applicable,
since p and ¬p cannot be part of the same extension.

Continuing this line of reasoning, one could argue that it should not only be
the case that a single intention is selected on the basis of compatible goals, but
also that the intentions in the intention base should be mutually compatible.
This could be realized by defining that a newly generated intention should be
compatible with existing ones, thereby having the existing intentions behave as
a screen of admissibility, as discussed in Section 4.1.1. This screen of admissi-
bility function is provided in part by the third condition in the antecedent of
the transition rule of Definition 4.14, since mutually inconsistent intentions are
clearly incompatible. This condition, however, does not always prevent goals
from different extensions, which are thus incompatible, from being pursued si-
multaneously. We illustrate this using the following example.

Example 4.4 (coffee and tea (continued)) Consider the situation of Example
4.3, in which the agent should get either coffee or tea, if it is thirsty. We repeat
the goal adoption rules of that example here. Further, assume the agent has two
intention generation rules, i.e., one for getting coffee and one for getting tea,
where getCoffee and getTea are plans for getting coffee and tea, respectively.

B(thirsty),¬G(tea) ⇒+
G

coffee
B(thirsty),¬G(coffee) ⇒+

G
tea

G(coffee) ⇒I 〈getCoffee, coffee〉
G(tea) ⇒I 〈getTea, tea〉

Assume the agent is thirsty, and assume it decides to apply the first intention
generation rule, yielding intention base {〈getCoffee, coffee〉}. In this situation,
the agent is still thirsty, and both the goal to have coffee and the goal to have
tea can thus be derived. This means in particular, that the second intention
generation rule is applicable in this situation, and an application of this rule
will yield the intention base {〈getCoffee, coffee〉, 〈getTea, tea〉}. The semantics
of intention generation rules thus undermines the implementation of the idea of
incompatible goals, as modeled using goal adoption rules. △

Note that the requirement of consistency as used in Definitions 4.5 and 4.14
is sufficient when considering the semantics of Section 4.2. The only way in
which goals or intentions may be incompatible in those semantics, is by being
inconsistent. The third condition of the transition rule for intention generation
properly prevents the adoption of intentions which are inconsistent with existing
ones.

Before we come to our solution of the problem as discussed in Example
4.4, we make a side remark about the modeling of the “tea or coffee” scenario.
In principle, one could also model it using the following goal adoption rule:

DYNAMICS OF GOALS AND INTENTIONS 65

B(thirsty) ⇒+
G

(coffee ∨ tea)∧¬(coffee ∧ tea), giving rise to the single extension
{(coffee∨tea)∧¬(coffee∧tea)}. One could however argue that it is more involved
to design intention generation rules for complex goals like this. One would then
need to define a plan which results in the agent either getting coffee or tea,12

and which could be selected if it has the goal (coffee ∨ tea) ∧ ¬(coffee ∧ tea). It
could be considered more transparent to have two intention generation rules,
i.e., one for getting coffee and one for getting tea, and having the semantics of
goal adoption rules take care of the agent not getting tea and coffee. Also, these
intention generation rules would be more reusable, since they could, e.g., also be
used if the agent has, in a different setting, the goal to have tea and coffee. Both
rules could then be applied sequentially, resulting in the agent getting both tea
and coffee (provided the programmer has specified appropriate plans).

We now return to the problem as explained in Example 4.4 above. This
problem can be overcome by slightly adapting the semantics of goal formulas.
The idea is that existing intentions should provide a screen of admissibility, i.e.,
a new intention should be compatible with already existing intentions. This
can be realized by taking the goals of the existing intentions, i.e., the second
element of each intention tuple, as “facts” of the default theory resulting from
the goal adoption rules.

Definition 4.15 (semantics of goals (alternative)) Let 〈σ, γ, ι,R〉 be a con-
figuration, let R = 〈IG,GA〉, and let δ = {φ | 〈π, φ〉 ∈ ι}. Let GA′ also be as in
Definition 4.12, i.e., as follows:

{κ⇒+
G
φ | ∃(β, κ⇒+

G
φ) ∈ GA : 〈σ, γ, ι,R〉 |=LB

β}.

The alternative semantics of goals is then as in Definition 4.12, except that E
is an extension of 〈δ, f(g(γ)) ∪ f(GA′)〉.

Instead of taking an empty set as the first element of the default theory, we thus
use δ. This results in the goals of an agent configuration always being a superset
of the intentions of a configuration.13 This is in line with work on BDI logic
[Rao and Georgeff, 1991], which could be considered an additional advantage.
The semantics of intention generation can then be defined as follows, where |=E

d

is the semantics of goals of Definition 4.15.

Definition 4.16 (semantics of intention generation (alternative)) Let
c = 〈σ, γ, ι,R〉 be a configuration, let R = 〈IG,GA〉 and let β, κ ⇒I 〈π, φ〉 ∈ IG

be an intention generation rule. The semantics of applying this rule is then as

12Admittedly, a very simple plan to achieve this goal is a plan to get tea. It is however
questionable whether a plan for getting tea would do justice to the idea that the agent should
get either tea or coffee. Alternatively, one could design a plan which chooses randomly to get
either tea or coffee. Such a plan would however have to be adapted if one wants to specify
that, e.g., the agent should get tea, coffee, or lemonade.

13That is, of the declarative parts of the intentions of a configuration.

66 GOALS IN CONFLICT

follows, where ι′ = ι ∪ {〈π, φ〉}.

c |=LB
β ∃E : c |=E

d κ

〈σ, γ, ι,R〉 → 〈σ, γ, ι′,R〉

The third condition of the antecedent of the transition rule of Definition 4.14 has
thus been removed, since the function of screen of admissibility of the intentions
is now embedded in the semantics of goals. Revisiting Example 4.4, we can
see that if the agent has coffee as an intention, the default rule corresponding
with the goal of having tea is not applicable, since coffee is now part of every
extension. The goal of having tea can thus no longer be derived, and therefore
the second intention generation rule cannot be applied.

In the case of the tea and coffee example, negative goal literals are used to
express that the goals tea and coffee are incompatible. Given the semantics of
intention generation as defined above, tea and coffee are consequently not pur-
sued simultaneously (which is as desired). Negative goal literals can, however,
also be used to prevent two goals from being pursued simultaneously, because
the plans for achieving these goals interfere with each other, for example be-
cause they need the same resource. The goal adoption rules will then have to
be designed together with the intention generation rules, and it is up to the
programmer to identify possible resource conflicts in the plans for certain goals.
This could be considered an alternative to explicitly specifying the resources
needed by a plan, and having the agent reason about possible resource conflicts,
as proposed by Thangarajah et al. [Thangarajah et al., 2002]. Nevertheless, if
conflicts among plans are modeled by specifying that the goals of these plans
conflict, one does not take into account the fact that a certain plan for a goal
φ might conflict with a plan for goal φ′, while another plan for goal φ does not
conflict with the plans for φ′.

Discussion and Future Research

Although the above semantics of intention generation is reasonably satisfactory,
there are a number of issues related to the dynamics of goals and intentions
which it does not address. The first issue we discuss is related to goals which
are derived on the basis of other goals, and how this is related to intention
generation.

Example 4.5 (chaining) Consider an agent with the following goal adoption
rules and intention generation rules.

⊤ ⇒+
G

p1

Gp1 ⇒+
G

p2

Gp1 ⇒I 〈π1, p1〉
Gp2 ⇒I 〈π2, p2〉

The default rules corresponding with the goal adoption rules have one extension,
i.e., {p1, p2}. △

DYNAMICS OF GOALS AND INTENTIONS 67

Assume the agent of Example 4.5 applies the second intention generation rule,
yielding the intention base {〈π2, p2〉}. The intention to achieve p2 is thus gen-
erated, because the agent has a goal p1. The question is now whether the agent
should also try to achieve p1, i.e., adopt p1 as intention, since p2 could be de-
rived as a goal only because p1 was derived as a goal. One way to view this
issue, can be illustrated using the cargo example.

Example 4.6 (carrying cargo (continued)) Consider the agent of Example 4.2.
We repeat the goal adoption rules that are relevant to the current example, and
we add two intention generation rules, i.e., one for getting from the waypoint
to the target, and one for getting from the source to the waypoint.

B(source ∧ haveCargo) ⇒+
G

target
B(source),G(target) ⇒+

G
waypoint

B(waypoint),G(target) ⇒I 〈goToTarget, target〉
B(source),G(waypoint) ⇒I 〈goToWaypoint,waypoint〉

Assume the agent believes he is at the source, and has cargo. The exten-
sion of the default rules corresponding with the goal adoption rules with a
true belief condition, is then {target,waypoint}. The first intention genera-
tion rule cannot be applied, since the belief condition is false. The inten-
tion base resulting from application of the second intention generation rule is
{〈goToWaypoint,waypoint〉}. △

These rules have the same structure as the rules of Example 4.5 (with the
addition of some belief conditions), i.e., p1 = target, and p2 = waypoint. In
Example 4.6, the goal to go to the waypoint, which was selected as intention,
was derived as a goal because the agent had the goal of getting to the target. We
now ask again the question of whether the agent should also try to achieve to
be at the target. In this example, the answer seems to be yes, since it does not
make sense to go to the waypoint, without trying to get to the target afterwards.
The effort of going to the waypoint would in that case have been in vain.

This example thus seems to suggest that in case goal adoption rules model
the adoption of landmarks, it should be the case that if the agent selects a
goal as an intention which was derived on the basis of another goal, then the
latter goal should also become an intention as soon as possible. The semantics
of intention generation of Definition 4.16, however, does not incorporate this.
Addressing this issue is left for future research.14 Nevertheless, there might still
be other situations in which case it is not necessary to have such a mechanism.

Another issue is the dual of the issue we just discussed. Consider again
Example 4.5, and assume that the agent applies the first intention generation
rule, instead of the second, i.e., p1 becomes an intention. One can now ask the

14One way of addressing it could be to make sure that the agent always applies intention
generation rules, if they are applicable. A more in-depth analysis is however needed to analyze
the exact properties of such a mechanism.

68 GOALS IN CONFLICT

question of whether the agent should also try to achieve p2, i.e., a goal which
can be derived on the basis of p1.

One situation in which this can be desirable, is if the rules model some kind
of obligation. For example, assume that p1 represents the goal of obtaining an
item in a store, and that p2 represents paying for the item. One would then
want the rules to express that if p1 is pursued (and achieved), p2 also has to
be pursued. In other cases, one might want to interpret the rules differently, in
the sense that if p1 is pursued, p2 may also be pursued. One could say that the
latter case is realized by the semantics of Definition 4.16. The former case is
however not addressed, and is left for future research.

Finally, we remark that Definition 4.16 does not prevent the derivation of
two intentions for the same goal. This is partly prevented by the fact that the
intention base is a set, which thus does not contain duplicates. Once a part
of the plan of an intention is executed, however, the agent might generate the
original intention again by applying the relevant intention generation rule again.
Since the plan component of the former intention has now changed, duplicates
like this are not filtered out. This problem can be remedied in a relatively simple
way, i.e., by requiring that an intention generation rule with consequent 〈π, φ〉
can only be applied if the intention base does not already contain an intention
for goal φ. More involved definitions might also prevent the adoption of, e.g.,
an intention for p ∧ q, if the intention base already contains an intention for p
and an intention for q.

4.5 Related Work

The idea of using default logic to define the semantics of goal adoption rules was
inspired by the BOID framework [Broersen et al., 2002]
[Dastani and van der Torre, 2004], which uses default logic for generating goals
and other mental attitudes. This framework was in turn inspired by Thoma-
son [Thomason, 2000], who uses default logic to develop a formalism to in-
tegrate reasoning about desires with planning, and Horty [Horty, 1994], who
showed how obligations can be formalized using default logic, and how this
formalization is related with the work on deontic reasoning by Van Fraassen
[van Fraassen, 1973]. In this section, we compare these approaches to our work.

First, we discuss the work of Horty (Section 4.5.1), and then we address the
BOID framework, and the work of Thomason, and of Governatori and Rotolo
[Governatori and Rotolo, 2004], which are related to BOID (Section 4.5.2).

4.5.1 Van Fraassen and Horty

In this section, we discuss the relation of our work with work on deontic logic
by Horty [Horty, 1993, Horty, 1994, Horty, 1997], and with the work of Van
Fraassen [van Fraassen, 1973], which Horty addresses in his work. Our work as

RELATED WORK 69

presented in this chapter has been developed independently from the work of
Horty. It however turns out that some of it is closely related with his work.

Deontic logics are logics for describing normative reasoning. Since its in-
ception in the work of Von Wright [von Wright, 1951], deontic logic has been
developed primarily as a species of modal logic. In [Horty, 1993], Horty how-
ever argues that these modal deontic logics do not allow normative conflicts.
He argues that normative conflicts occur often in everyday life, and that it is
thus important that deontic logics are designed that can be used to represent
and reason with these conflicts.

A situation gives rise to a normative conflict, if two conflicting proposi-
tions can both be said to be obligatory in that situation, i.e., if both ©φ
and ©¬φ hold for some proposition φ. In a basic modal logic K (see, e.g.,
[Meyer and van der Hoek, 1995]), this would imply ©(φ ∧ ¬φ) and therefore
©⊥. In standard deontic logic, besides the axiom K, also the axiom D, i.e.,
¬(©φ∧©¬φ), is adopted. By adopting this axiom, standard deontic logic thus
rules out normative conflicts [Horty, 1993].

In [Horty, 1993] and the follow-up papers [Horty, 1994, Horty, 1997], Horty
discusses an approach to reasoning in the presence of normative conflicts which
was first proposed by Van Fraassen [van Fraassen, 1973]. The latter paper con-
tains two suggestions, where the second is a refinement of the first. Departing
from modal logic and its possible world semantics, Van Fraassen defines obli-
gations on the basis of a set of so-called background imperatives. These back-
ground imperatives are essentially propositional formulas, and are supposed to
represent the (possibly conflicting) obligations as arising from various sources.

Van Fraassen’s initial suggestion is to define the obligations that can be
derived from a set of background imperatives γ, as follows:

γ |=F1 ©φ⇔def ∃φ′ ∈ γ : φ′ |= φ.15

Comparing this definition to Hindriks’ definition for the semantics of goals (Def-
inition 4.7), we can see that it is completely analogous. That is, with the ex-
ception that Hindriks requires each individual goal in γ to be consistent. Van
Fraassen’s definition will allow the derivation of any obligation if there is an
inconsistent obligation in the set of background imperatives, while Hindriks
prevents this by requiring that each goal in the goal base is consistent. The
motivations provided by both authors for their definitions are also very similar:
φ is a goal or obligation if it is a necessary condition for fulfilling a goal or
obligation in the goal base or set of background imperatives, respectively.

As noted by Horty [Horty, 1994], this initial suggestion runs into difficulties,
however, when it comes to logical interconnections among imperatives. The ex-
ample provided by Van Fraassen and Horty to illustrate these difficulties, is the
following. Suppose that γ = {p ∨ q,¬p} is the set of background imperatives.

15We rephrase the definition as given in [Horty, 1994] for reasons of comparison, which in
turn rephrases the definition given in [van Fraassen, 1973].

70 GOALS IN CONFLICT

Intuitively, one would want to conclude from this that ©q. This however does
not follow under Van Fraassen’s initial definition, as there is no single imper-
ative from which q follows. To remedy this problem, Van Fraassen provides
another and somewhat involved model theoretic definition, which we will refer
to using |=F2. We do not repeat that definition here, since this would require
the introduction of a number of auxiliary notions, and the definition itself is not
important for the current discussion.

What is important, is that Horty provides an equivalent definition by trans-
lating the set of background imperatives of Van Fraassen into default rules
[Horty, 1993]. To be more specific, each formula φ in the set of background
imperatives γ is translated into a default rule ⊤ : φ/φ. Horty then shows the
following, where Dγ is the resulting set of default rules:

γ |=F2 ©φ⇔ ∃E : E is an extension of 〈∅, Dγ〉 and E |= φ.

Even though Horty does not provide his own definition of the semantics of
obligation, he could have suggested the following as a definition16, which we
will use for comparing his work with ours.17

γ |=H ©φ⇔def ∃E : E is an extension of 〈∅, Dγ〉 and E |= φ

If the set of goal adoption rules of R is empty, we have that |=H is related to
our default semantics as expressed in the following proposition.

Proposition 4.7 Let R = 〈IG, ∅〉. Then the following holds.

γ |=H ©φ⇔ ∃E : 〈σ, γ, ι,R〉 |=E
d Gφ

Proof: We have that 〈σ, γ, ι,R〉 |=E
d Gφ iff E |= φ, where E is an extension of

the default theory 〈∅, f(g(γ))〉, which is equal to 〈∅, Dγ〉. 2

We thus have that the default semantics is related to |=H in the same way that
the default semantics is related to the consistent subset semantics, as expressed
in Theorem 4.2. That is, even though |=H and |=E

d are based on the same set of
default rules, i.e., Dγ = f(g(γ)), we can see that they are not equivalent in the
strict sense, because the existential quantifier is not embedded in the semantic
definition of |=E

d (see also the discussion below Theorem 4.2).

16Note that we use |=H to refer to Horty’s definition, and |=h to denote Hindriks’ definition
(see Definition 4.7). Also, Horty actually uses an entailment relation ⊢F rather than a satisfac-
tion relation when referring to Van Fraassen’s account of deontic logic. In [van Fraassen, 1973],
Van Fraassen however says to propose a truth-definition of ©φ, rather than specifying an en-
tailment relation. Since we also propose truth-definitions of goal formulas in this chapter, this
is what we use when discussing Van Fraassen’s and Horty’s work in this section.

17Note that the following defines |=H , as indicated by ⇔def, whereas above we have repeated
a proposition of Horty regarding |=F2, as indicated by ⇔. In [van Fraassen, 1973], |=F2 is
not defined in terms of default logic.

RELATED WORK 71

The fact that we have Proposition 4.7 is actually not surprising, since Horty
shows in [Horty, 1993] that |=H is equivalent with the consistent subset seman-
tics (to which he does not refer in these terms)18. That is, he proves that the
consistent subset semantics is equivalent with Van Fraassen’s second suggestion,
which he has in turn proven to be equivalent to |=H [Horty, 1993].

We summarize these results below, where ⇔ denotes equivalence, and !
denotes “equivalence” in the sense of Theorem 4.2 and Proposition 4.7.

|=s ⇔ |=F2 ⇔ |=H [Horty, 1993]
|=s ! |=E

d Theorem 4.2
|=H ! |=E

d Proposition 4.7

The result of Proposition 4.7 could thus have been obtained by combining
Horty’s results to conclude that |=H is equivalent with |=s, and then using
Theorem 4.2. Alternatively, Theorem 4.2 could have been obtained by using
Proposition 4.7 and the work of Horty.

Comparison with KD

Horty compares in his papers the second definition of Van Fraassen with the
modal logics KD and EM. The logic EM is weaker than K. Here, we repeat
Horty’s results with respect to the relation between KD and |=F2. Since |=F2

and the consistent subset semantics are equivalent, we can also relate that se-
mantics to KD. Further, we address the relation between the default semantics
for goals, and KD.

Horty shows that if the set of background imperatives is consistent, the logic
KD and Van Fraassen’s second proposal are equivalent. That is, if the set of
background imperatives γ is “modalized”, i.e., transformed into
γ′ = {©φ | φ ∈ γ}, we have that γ |=F2 ©φ iff γ′ |=KD ©φ, where φ is
a propositional formula not including any © operators. This is in line with
Propositions 4.1 and 4.2, in which we show that if the goal base is consistent,
the consistent subset semantics is equivalent with the basic semantics, which
satisfies K and D.

Also, Horty shows that if ©φ can be derived under Van Fraassen’s sec-
ond proposal, it can be derived under KD. As just mentioned, if the set of
background imperatives is consistent, the implication also holds in the other di-
rection. However, if the set of background imperatives is inconsistent, anything
can be derived under KD, but not under |=F2. In that case, the implication
thus does not hold in the other direction.

For our default semantics, we have that the axioms K and D are satisfied
(under a given extension), even if the goal base is inconsistent (Proposition 4.4).
This however does not mean that the default semantics and KD are equivalent,

18The “consistent subset semantics” is not provided by Horty as an independent proposal to
define the semantics of obligation, but it is used to simplify the proofs of some other theorems.

72 GOALS IN CONFLICT

in the sense that ∃E : 〈σ, γ, ι,R〉 |=E
d Gφ (where R contains an empty set of

goal adoption rules), iff γ′ |=KD ©φ (where γ′ is the modalized version of γ, as
above). If γ is consistent, this does hold. This can be concluded using Theorem
4.2, and using that in case γ is consistent, KD and |=F2 are equivalent, and
|=F2 is equivalent with |=s. If however γ is inconsistent, anything can be derived
from KD, while this is not the case for the default semantics.

The axioms K and D are thus satisfied by |=E
d , without being able to derive

anything under |=E
d if the goal base is inconsistent. This stems from the fact that

|=E
d is parameterized by a (consistent) extension, and Proposition 4.4 establishes

that K and D are satisfied for the goals within this extension. This is not
surprising, since extensions are consistent.

Discussion

While the proposals by Van Fraassen and Horty in the context of deontic logic
are thus closely related with our work, we have in the above not addressed our
proposal for goal adoption rules, and the corresponding semantics of goals in
terms of default logic. In the comparisons, we have assumed that the set of goal
adoption rules is empty. Consequently, we have only considered default rules of
the form ⊤ : φ/φ, which result from a translation of the goal base into default
rules, and which are also the only kind of default rules which Horty considers.
In our translation of goal adoption rules to default rules, we use by contrast the
full power of default rules. To the best of our knowledge, there are no proposals
that use default rules in a similar way in the agent programming and deontic
logic literature.

These considerations raise the question of how obligations and goals are
related. In this chapter, we have not discussed in detail what exactly a goal is,
other than that it describes a state that the agent wants to achieve. One way to
discriminate goals and obligations on a conceptual level, is by viewing the former
as internal motivational attitudes, while considering the latter as external. The
fact that similar proposals have been developed in the field of deontic logic to
formalize obligations and in cognitive agent programming to formalize goals,
then on the one hand seems reasonable since both obligations and goals are
motivational attitudes. Also, dealing with conflicts is an issue both in the case
of obligations and in the case of goals, so it is perhaps not surprising that similar
mechanisms can be used to handle these conflicts in both cases.

On the other hand, one could argue that the goals of an agent as internal
motivational attitudes, will have to differ from obligations as external motiva-
tional attitudes, i.e., one could argue that obligations and goals are inherently
different notions. Under this assumption, we could conclude that any proposal
for defining goals and obligations which does not distinguish between the two
mental attitudes, is an oversimplification.

One aspect on which internal and external motivational attitudes might dif-
fer, is suggested by the BOID framework, which will be discussed in Section

RELATED WORK 73

4.5.2. That framework incorporates both desires, which can be viewed as in-
ternal motivational attitudes, and obligations.19 Desires differ from obligations
with respect to prioritization, i.e., an agent might give a higher priority to the
fulfillment of obligations than to the fulfillment of his own desires, or the other
way around. Nevertheless, the structures by means of which obligations and
desires are represented is the same in that framework.

In our view, the question of how obligations and goals are related in general
is still open, and a careful and extensive study of the literature on both top-
ics might shed some light on the issue. Intuitively, we would conjecture that
there are differences between goals and obligations in general. However, we also
believe that it depends on the context which aspects of goals and obligations
one would want to model. If certain aspects of the two notions are not relevant
in some context, the notions might coincide. This seems to be the case when
considering conflicts among goals and obligations, as discussed above.

4.5.2 BOID and Related Approaches

The idea of using default logic to define the semantics of goal adoption rules was
taken from the BOID framework [Broersen et al., 2002]
[Dastani and van der Torre, 2004]. This framework was in turn inspired by
work by Thomason [Thomason, 2000]. In this section, we first briefly ad-
dress the work by Thomason, and then we discuss two variants of the BOID
framework, i.e., the version as presented in 2002 [Broersen et al., 2002] and
the version presented in 2004 [Dastani and van der Torre, 2004]. We will refer
to the first variant as BOID’02 and to the second as BOID’04. Finally, we
discuss related work in the area of defeasible logic by Governatori and Rotolo
[Governatori and Rotolo, 2004], which is also in some sense related to the BOID
framework.

Thomason

In [Thomason, 2000], Thomason proposes to model beliefs and desires using
normal default rules. He distinguishes what he calls belief-based and desire-
based default rules, for representing belief and desires, respectively. A belief-

based default rule φ : ψ/ψ is represented as φ
B
→֒ ψ, and a desire-based rule

similarly as φ
D
→֒ ψ. Intuitively, belief-based rules are used for deriving beliefs,

and desire-based rules for deriving desires or goals. The antecedent of these
rules can refer either to desires or to beliefs.

The way in which belief-based and desire-based defaults are used, is the
following. Both types of rules can be used for generating a single extension,
i.e., what is derived using a belief-based rule can be used as “input” for a

19In BOID, goals are derivative, i.e., goals are generated on the basis of desires and obliga-
tions (and beliefs and intentions).

74 GOALS IN CONFLICT

desire-based rule, and vice versa. This means, that formulas derived using
belief-based as well as those derived using desire-based defaults, become part of
one and the same extension. The formulas of an extension which were derived
using desire-based defaults, become the goals (or “wants”, in the terminology
of Thomason) of this extension. Since extensions are consistent, we know that
these goals are not conflicting. When calculating an extension, belief-based
rules take precedence over desire-based rules, in order to prevent the agent
from doing wishful thinking, i.e., adopting something as a goal which the agent
already believes to be unachievable.

We point out a number of differences between the work of Thomason and
our work. First, Thomason does not introduce a logical language of goals or
desires, like we do, and he consequently does not carry out a semantic analysis
of such a language. He does not define what it means that an agent has a goal,
or does not have a goal, given some set of belief-based and desire-based defaults.
Our logics of goals provide the means for expressing that a formula is a goal,
and also that a formula is not a goal. This kind of expressivity is exploited
in the goal adoption rules, which can be used to express that two goals are
incompatible (even though logically consistent) by using negative goal literals.
Also, our logics of goals allow us to compare properties of our goal operator with
properties of operators from modal logics, as we have done in Sections 4.2.2 and
4.3.2.

Another important difference is that he does not separate the derivation of
beliefs, from the derivation of goals. This results in beliefs and goals becoming
part of one and the same extension. This differs from our agent programming
framework, in which we have a belief base for representing beliefs, and a goal
base and goal adoption rules for representing goals. Finally, we remark that
where Horty considers supernormal defaults, and we consider defaults in general,
Thomason uses normal defaults. He does not elaborate on why he chooses to
use normal defaults.

BOID’02

In [Broersen et al., 2002], BOID’02 is presented as an architecture for goal gen-
eration based on the conditional mental attitudes of beliefs, obligations, inten-
tions, and desires. It builds on the work by Thomason as discussed in the
previous paragraph by adding obligations and intentions. As in Thomason, all
four mental attitudes are represented using conditional rules,20 which are inter-
preted as normal default rules. Also, as in the work of Thomason, some mental
attitudes may take precedence over others.

Departing from Thomason however, this prioritization is not fixed. Broersen
et al. show that different choices with respect to this prioritization, result in

20Note that Thomason uses the terms belief-based and desire-based default rules to refer to
the conditional rules, while in BOID’02 the rules are referred to as beliefs, desires, obligations,
and intentions.

RELATED WORK 75

different agent types. For example, if intentions take precedence over desires
and obligations, the authors say that the agent is stable. Also, if desires take
precedence over obligations, the agent is called selfish, and if it is the other way
around, the agent is social, etc.

The differences we pointed out between the work of Thomason and our work,
also apply to BOID’02. The distinction made in BOID’02 between obligations,
desires, and intentions, which essentially imposes a prioritization on the default
rules, could be added to our framework by introducing such an ordering on the
goal adoption rules, and the rules resulting from the goals in the goal base.
However, as we sketched in Section 4.1.1, we propose to use our goal generation
mechanism in the context of cognitive agents with a separate intention base.
Intentions in our proposal thus form a separate component of the agent, with a
different structure and semantics than goal adoption rules and the corresponding
default rules.

BOID’04

In BOID’04 [Dastani and van der Torre, 2004], an agent specification contains
belief rules, obligation rules, intention rules, and desire rules, as in BOID’02.
The difference is however, that the antecedent of these rules can be a modal
logic formula, containing an arbitrary nesting of B, O, I, and D operators.
Also, the consequent of a belief rule should be a formula of the form B(ψ),
where ψ is an arbitrary modal logic formula. The consequent of an obligation,
intention, and desire rule, should similarly be of the form O(ψ), I(ψ), and D(ψ),
respectively. This thus differs from BOID’02, in which both the antecedent and
the consequent of the rules are propositional formulas, representing beliefs or
goals of the agent.

The way in which these rules are used, is comparable with the way in which
normal default rules are used, i.e., if the antecedent follows from the set of for-
mulas generated so far, and the consequent is not inconsistent with this set,
then the formula in the consequent can be added to this set. The authors
assume some modal logic consequence relation for establishing whether the an-
tecedent follows from the set of formulas generated so far. Instead of using
standard (propositional) default logic to generate propositional formulas repre-
senting goals as in BOID’02, the framework of BOID’04 thus generates sets of
modal formulas, representing beliefs, obligations, intentions, and desires.

We point out a number of differences between our work and the work by
Dastani and Van der Torre on BOID’04. Most importantly, like Thomason and
BOID’02, BOID’04 does not aim to investigate semantics of a logical language
of goals, like we do. They do use B, O, I, and D operators in their language,
but the semantics of these operators is stated to be that of standard modal
operators.

Another difference between our work and BOID’04, is that we use standard
propositional default logic to interpret our rules, while BOID’04 defines its own

76 GOALS IN CONFLICT

procedures for generating extensions, in which a modal logic consequence re-
lation is assumed. Further, in BOID’04, the extensions which are computed
are explicitly stored in the agent configurations, including the extension which
is chosen to form the agent’s intention base. Extensions are computed anew,
if an appropriate meta-level action is executed. We do not compute a set of
extensions and store these. Rather, we take the intention generation rules as
the basis, and in order to decide whether such a rule can be applied, we have
to check whether the goal formula in its antecedent holds. In order to check
this, the extensions have to be computed. These extensions are computed when
the agent wants to apply an intention generation rule, and we do not store the
computed extensions.

An advantage of selecting a single extension and storing this as the intention
base, is that the agent will for sure pursue a compatible set of goals. It might
however be the case that the agent does not have a plan for some of the inten-
tions. This problem is avoided when taking the intention generation rules as
the basis. In that case however, one needs to take care that the intention base
keeps consisting of compatible intentions, and a number of other issues need to
be addressed, as discussed in Section 4.4.2.

Finally, we remark that due to the interpretation of rules in BOID’04, it can
be the case that a rule is applied which has, e.g., ¬D(ψ) as its antecedent, while
a rule which is applied later on in the process, adds the formula D(ψ) to the
extension which is being generated. It can thus be the case that a formula is
added to an extension because the agent does not desire ψ in that extension,
while later on precisely this desire of ψ is added to that same extension through
the application of another rule. We prevent this by translating negative goal
formulas in the antecedent of a goal generation rule to the justification of the
corresponding default rule, as explained in Section 4.3.1.

Governatori and Rotolo

Governatori and Rotolo [Governatori and Rotolo, 2004] build on work on defea-
sible logic by Nute [Nute, 1994] (see also [Dastani et al., 2005a] for a follow-up
paper). A theory in defeasible logic may contain three kinds of rules, i.e., strict
rules for deriving indisputable facts, defeasible rules for deriving defeasible con-
clusions, and defeaters, which can be used to block the derivation of certain
conclusions. Also, a defeasible theory contains a set of indisputable facts, and a
superiority relation, which expresses precedences among rules. The antecedent
of the different kinds of rules is a set of literals, and the consequent is a literal.

Governatori and Rotolo extend defeasible theories as proposed by Nute, by
distinguishing between rules for deriving knowledge, intentions, so-called agency,
i.e., intentional actions, and obligations. The idea is that, e.g., an obligation
rule can be used to derive a literal expressing an obligation, and similarly for
the other kinds of rules. Further, the literals in the antecedent of a rule can be
modalized, i.e., a defeasible obligation rule I(p) ⇒O q, for example, expresses

RELATED WORK 77

that the obligation q can be defeasibly derived, if p can be defeasibly derived
on the basis of an intention rule. As explained by Governatori and Rotolo, the
rules are thus used to devise logical conditions for introducing modalities, i.e., if
q can be derived on the basis of an obligation rule, the agent has an obligation
for q.

Our work differs from that of Governatori and Rotolo in several ways. Firstly,
our work builds on default logic, while theirs builds on defeasible logic. The
latter has a skeptical semantics, i.e., something can only be derived if there is
no information to the contrary, while the former can be used with a credulous
or a skeptical interpretation, possibly giving rise to multiple extensions of a
theory. Consequently, in our framework we have had to address how to handle
multiple extensions. Also, although default logic facilitates a skeptical as well
as a credulous interpretation, we propose to use the credulous approach in the
application of intention generation rules for checking whether the agent has a
goal. This is based on the intuition that the agent can choose to try to reach
any of the goals it has, even if it conflicts with another goal of his. It can just
not fulfill these at the same time.

Secondly, we allow negated goal formulas in the antecedent of goal adop-
tion rules, and provide an appropriate translation of these into the framework
of default logic. Governatori and Rotolo on the other hand do not allow this.
Nevertheless, it could perhaps be added to their framework by introducing a
construct in the antecedent of rules to express explicit failure as suggested in
[Maher and Governatori, 1999], comparable with negation as failure in logic pro-
gramming.

Also, since Governatori and Rotolo build on defeasible logic, the formulas
which can be derived in their logic are tagged (modalized) literals. Our approach
on the other hand provides various semantics of a logical language of goals
that includes negation and conjunction. As explained, this provides for added
expressivity in goal adoption rules, and it allows us to compare properties of
our goal operator with properties of operators from modal logics. Moreover,
Governatori and Rotolo extend defeasible logic. We do not extend default logic,
but translate goal adoption rules into default rules, and define the semantics of
goal formulas based on the extensions of the resulting default theory. Generally
speaking, it can be beneficial to work within an existing framework rather than
extending one, since in the former case one can reuse all knowledge that has
been established with respect to the framework.

Further, the focus in the work of Governatori and Rotolo is on the interplay
between the various mental attitudes, while in our approach we only consider
goals.21 In the former, a certain mental attitude can be derived on the basis
of another, and the derivation of one mental attitude can block the derivation
of others. It is not immediately clear whether, and if so, how, our work can
be extended to incorporate that kind of reasoning. Since we transform goal

21And beliefs, but beliefs play a relatively simple role in defining the semantics of goals.

78 GOALS IN CONFLICT

adoption rules to propositional default rules, we loose the explicit representation
of mental attitudes. In this sense, our work is thus more closely related to
BOID’02, since in the latter also the derivation of only goals is considered,
albeit on the basis of different kinds of rules.

4.6 Conclusion

We have explored semantics of declarative goals in an agent programming set-
ting, where goals may conflict. We have investigated semantics based on the
goal base of the agent, and examined their properties and interrelations. These
semantics turn out to be closely related to work in the area of deontic logic by
Horty and by Van Fraassen. Further, we have proposed a semantics for goals
based on the goal base and a set of goal adoption rules. This semantics was de-
fined by translating the goal adoption rules into default rules. We have argued
that the translation gives intuitive results, we have investigated properties of
this semantics, and have shown that it is closely related to the consistent subset
semantics that does not take into account goal adoption rules.

Also, we have compared our proposal with other research on the represen-
tation of goals and desires, that builds on default logic. The main difference
between our work and those proposals is that, in contrast with those, we define
and investigate various semantics of a logical language of goals, and we use the
full power of default logic to define our semantics. This gives us added expressiv-
ity, and allows us to compare properties of our goal operator with properties of
modal operators. Moreover, we have suggested how our semantics could be em-
bedded in a cognitive agent programming framework with intention generation
rules, and pointed out a number of unresolved issues with respect to this.

Besides the future work as mainly addressed in Section 4.4.2, we aim to
investigate whether we can implement our semantics of goals using answer set
programming. Answer set programming is a form of declarative programming
that is similar in syntax to traditional logic programming and which semantics
is related to non-monotonic logics, and default logic in particular.

Concluding, we maintain that a systematic analysis of semantics of declara-
tive goals in agent programming is essential, in order to be able to understand
how we can best incorporate these in agent programming languages. This chap-
ter contributes to this effort.

Acknowledgements

We would like to thank Henry Prakken for his helpful comments on a version of
the paper [van Riemsdijk et al., 2005b], on which this chapter is based. Also,
we would like to thank Jan Broersen, Joris Hulstijn, and Leon van der Torre for
discussions on the BOID framework.

Chapter 5

Putting Goals in Perspective

In Chapters 3 and 4 we have investigated certain aspects of the representation
and semantics of goals in the context of agent programming languages similar
to the one presented in Chapter 2. Work of others that is closely related to
our researches has been addressed in the former two chapters. Over the past
years, the body of research addressing the incorporation of goals in agent pro-
gramming frameworks has been growing. Different researchers have developed
different perspectives towards this issue, resulting in many different views on
what constitutes a goal, and many different ways of representing and using
goals in agent programming frameworks.

In this chapter, we aim to provide a broad overview of the various approaches
that in some form address the incorporation of goals in agent programming
frameworks. One might expect such an overview to start with a clear definition
of what a goal is (at least in the context of agent programming). It is however
difficult to provide such a definition, because of the many different usages of the
term. Nevertheless, the approaches discussed in this chapter have in common
that a goal is viewed in one way or another as a motivational attitude. In
particular, we do not consider goals as used in Prolog as motivational attitudes.

We do not aim to analyze the various approaches in order to conclude that
one approach is somehow better than another. Instead, we want to provide some
structure to the area by identifying important strands of research regarding
ways in which goals have been represented and used in agent programming
frameworks. Each approach may have its strengths and weaknesses, and may
be more suitable in one setting than in another. While comparing the merits of
various approaches is important, such a detailed analysis is beyond the scope of
this chapter. Nevertheless, we do feel that the aspects as to which approaches
differ from one another as identified in this chapter, may serve as a basis for
such comparative analyses.1

1There is some existing work investigating whether one approach really differs from another,
such as the work described in Chapter 3. Also, there is a number of papers in which it is proven

79

80 PUTTING GOALS IN PERSPECTIVE

5.1 What Is a Goal?

Although we will not provide a definition of what a goal is, the aim of this
section is nevertheless to try to get a handle on this issue to a certain extent.
We do not focus solely on research that literally uses the term “goal”, but we
also consider the related motivational attitudes of desires and intentions. The
reason is, that the distinction between these motivational attitudes is not always
clear, and sometimes these notions are used interchangeably. Also, properties
that are attributed to a certain motivational attitude in one framework, may be
attributed to another motivational attitude in another approach.

In this section, we do not discuss cognitive agent programming frameworks
themselves. Rather, we treat research that lies at the basis of many of these
frameworks. That is, we briefly discuss motivational attitudes as used by the
philosophers Dennett and Bratman (Section 5.1.1), and we discuss properties
that have been attributed to motivational attitudes in two influential logics
(Section 5.1.2).

5.1.1 Philosophy: Dennett and Bratman

Dennett is a philosopher whose approach to the problem of intentionality has
been of significant influence on the field of cognitive agent programming. “Den-
nett suggests that intentionality is not so much an intrinsic feature of agents,
rather, it is more a way of looking at agents. Dennett calls the seeing of agents
as intentional beings, or beings that act according to their beliefs and desires,
as taking the intentional stance” [Douglas and Saunders, 2003].

The idea of the intentional stance is thus that the behavior of rational agents
can be predicted by ascribing beliefs and desires to the agent, and by assuming
that the agent will tend to act in pursuit of its desires, taking into account its
beliefs about the world. Dennett himself formulates it as follows.

Here is how it works: first you decide to treat the object whose be-
havior is to be predicted as a rational agent; then you figure out what
beliefs that agent ought to have, given its place in the world and its
purpose. Then you figure out what desires it ought to have, on the
same considerations, and finally you predict that this rational agent
will act to further its goals in the light of its beliefs. A little practi-
cal reasoning from the chosen set of beliefs and desires will in most
instances yield a decision about what the agent ought to do; that is
what you predict the agent will do. [Dennett, 1987, page 17]

Dennett thus proposes to use the mental attitudes of beliefs and desires for pre-
dicting the behavior of rational agents. The idea of Bratman now is that there

that one agent programming language can be embedded in another [Hindriks et al., 1998,
Hindriks et al., 2002]. This work however does not specifically focus on goals.

WHAT IS A GOAL? 81

is another mental attitude, different from beliefs and desires, that is essential
for a theory of practical rationality. This is the mental attitude of intention
[Bratman, 1987]. The philosophy of Bratman has been termed Belief Desire
Intention (BDI) philosophy.

Like desires, but unlike beliefs, intentions are motivational attitudes, or pro-
attitudes, in Bratman’s terminology. “Pro-attitudes [. . .] play a motivational
role: in concert with our beliefs they can move us to act” [Bratman, 1987].
While both intentions and desires are pro-attitudes, their motivational role is
different. That is, where desires influence future conduct, in the sense that
an agent will be more inclined to act towards achieving its desires, intentions
control future conduct. If an agent, e.g., desires to go shopping after work, it
does not necessarily mean that if it comes home from work it will actually go
shopping. It might, e.g., have a stronger desire to watch television. If, however,
the agent intends to go shopping after work, one would normally expect the
agent to go shopping indeed. As a conduct-controlling pro-attitude, intentions
thus involve a special commitment to action that desires do not.

Intentions thus bring forth a commitment to action, when the time comes
to act. Besides this kind of commitment that comes into play at the time of
action, there is another dimension of commitment in Bratman’s philosophy.
This second dimension of commitment is concerned with the role of intentions
in the period between their initial formation and their eventual execution. The
idea here is that once an intention is formed, an agent is committed to this
intention in the sense that having an intention will involve a strong disposition
not to reconsider it, except if a significant problem presents itself. Intentions
thus have a characteristic stability.

5.1.2 Formalizing Motivational Attitudes

One way to go about trying to find out what a goal is, is to study properties that
people have attributed to goals. These properties can be attributed through a
philosophical analysis, like those put forward by Dennett and Bratman. If one
wants to be more precise, however, one can try to formalize goals and their
properties, e.g., by designing a logic.

Goals, Desires and Intentions

These logics that formalize properties of goals and related motivational attitudes
is what we will focus on in this section. We will mainly be concerned with two
logics that have been highly influential in the agent systems field, i.e., the log-
ics presented in [Cohen and Levesque, 1990] and in [Rao and Georgeff, 1991].
Both papers propose modal logics to formalize the BDI philosophy of Bratman,
thereby formalizing (various kinds of) goals and related notions. These logics are
often referred to as BDI logics, although some use this term only for the logic pre-
sented in [Rao and Georgeff, 1991]. We assume the reader has some familiarity

82 PUTTING GOALS IN PERSPECTIVE

with modal logic (see [Blackburn et al., 2001, Meyer and van der Hoek, 1995]
for background on modal logic).

Both logics formalize various mental attitudes of agents, including goals.
Since the logics are aimed at formalizing BDI philosophy, intention is an im-
portant notion in both of them. In [Cohen and Levesque, 1990], intentions are
defined in terms of beliefs and goals, which are both primitive in the logic. In
[Rao and Georgeff, 1991], beliefs, goals, and intentions are primitive. Somewhat
surprisingly perhaps, since the logics aim to formalize BDI philosophy, they do
not formalize desires. The following is stated in [Cohen and Levesque, 1990]
and [Rao and Georgeff, 1991] about this.

Importantly, we do not include an operator for wanting, since desires
need not be consistent. Although desires certainly play an important
role in determining goals and intentions, we assume that once an
agent has sorted out his possibly inconsistent desires in deciding what
he wishes to achieve, the worlds he will be striving for are consistent.
[Cohen and Levesque, 1990, page 231]

The role played by attitudes such as beliefs (B), desires (D) (or goals
(G)), and intentions (I) in the design of rational agents has been well
recognized in the philosophical and AI literature [...].
[Rao and Georgeff, 1991, page 473]

Although, in the general case, desires can be inconsistent with one
another, we require that goals be consistent. In other words, goals are
chosen desires of the agent that are consistent.
[Rao and Georgeff, 1991, page 474]

In both papers, goals are thus viewed as a consistent set of chosen desires, with-
out modeling these underlying desires in the logic. Presumably, the authors
thus chose not to model desires, since a modal desire operator that allows in-
consistencies among desires does not have very interesting logical properties.
That is, in normal modal logics, one can derive anything as a desire from an
inconsistent set of desires. From Dp and D¬p, for example, one can derive Dq
and even D⊥, the desire to establish the impossible. Nevertheless, while the
logic in [Rao and Georgeff, 1991] considers goals and not desires, the goal oper-
ator is replaced with a desire operator in a later paper from the same authors
[Rao and Georgeff, 1998] (while consistency of desires is still assumed). The
authors, however, do not comment on the reason why.

Properties of Motivational Attitudes

When it comes to properties of motivational attitudes, we distinguish two kinds
of properties, i.e., static and dynamic properties. Static properties are properties
of mental attitudes in a single state or world, and dynamic properties describe

WHAT IS A GOAL? 83

how an agent’s current mental attitudes relate to its future mental attitudes.
Static properties can again be distinguished into properties of a single mental
attitude, and properties relating different mental attitudes.

With respect to properties of a single mental attitude, both papers stipulate
that goals, and in [Rao and Georgeff, 1991] also intentions, obey the axioms K

and D of modal logic. The axiom K expresses that goals are closed under classi-
cal logical consequence, which can be formalized as
G(φ → ψ) → (Gφ → Gψ). The axiom D expresses that the agent can-
not have inconsistent goals, which can be formulated as ¬G⊥. Regarding the
relation between goals and intentions, [Rao and Georgeff, 1991] specifies that
intentions are a subset of an agent’s goals, expressed by the axiom Iφ → Gφ2.
In [Cohen and Levesque, 1990], intentions are defined as a certain kind of goal.

While these axioms do provide us some information as to the properties of
goals and intentions, they do not address an important aspect of these mental
attitudes, i.e., their dynamics or behavior over time. In line with Bratman,
both papers aim to have agents be committed in some way to achieving their
intentions. This means that an agent cannot give up its intentions, unless
some specific conditions hold. Intentions should thus have a certain level of
persistency as time goes by. In [Cohen and Levesque, 1990], the appropriate
level of persistency of intentions is realized using the definition of certain kinds of
goals.3 In [Rao and Georgeff, 1991], it is realized by providing axioms expressing
properties of the dynamic behavior of intentions, i.e., without considering goals.
Nevertheless, the properties attributed to intentions in [Rao and Georgeff, 1991]
have been taken up in agent programming frameworks in the context of goals
(see Section 5.4.2). We discuss below in more detail how the two logics address
commitment towards motivational attitudes.

In [Cohen and Levesque, 1990], establishing the appropriate level of persis-
tency of intentions is realized using the definition of a so-called achievement
goal. An achievement goal in that paper is a goal to achieve a certain state of
affairs sometime in the future, and the agent should believe this situation is not
realized already. On the basis of achievement goals, the notion of a persistent
goal is then defined. A persistent goal is a goal that “the agent will not give
up until he thinks it has been satisfied, or until he thinks it will never be true”
[Cohen and Levesque, 1990].4 This notion of a persistent goal thus captures a
certain level of commitment towards goals, which is called fanatical commitment
in [Cohen and Levesque, 1990]. On the basis of persistent goals, intentions are
defined with the same level of commitment as persistent goals.

2That is, where φ is a so-called O-formula, i.e., a formula containing no positive occurrences
of inevitable outside the scope of the modal operators B, G, and I.

3Recall that in that paper, only beliefs and goals are primitive in the logic.
4Achievement goals and persistent goals do not necessarily obey the K axiom, since these

goals depend on the agent’s beliefs [Cohen and Levesque, 1990]. An agent might, e.g., have
achievement goals or persistent goals to realize p and to realize p → q, but this does not mean
it also has the goal to achieve q, since q might already be believed to be achieved.

84 PUTTING GOALS IN PERSPECTIVE

Another type of commitment is captured by what is called a persistent rela-
tivized goal in [Cohen and Levesque, 1990]. An agent that has a goal to achieve
φ, relativized to ψ, should maintain this goal until it believes it has achieved
the goal, or believes it is unachievable, or believes ¬ψ is the case. Intuitively, ψ
constitutes the agent’s reasons for adopting the goal φ. The idea is then that if
the reason for adopting the goal becomes false, the agent may drop the goal.

In [Rao and Georgeff, 1991], various levels of commitment which an agent
might have towards its intentions are introduced by stipulating axioms express-
ing how current intentions relate to future intentions. The ways in which an
agent might behave with respect to commitment towards its intentions, are
termed commitment strategies in [Rao and Georgeff, 1991]. The paper intro-
duces three commitment strategies: blind, single minded, and open minded.
An agent behaving according to the single minded commitment strategy, corre-
sponds with the fanatically committed agent of [Cohen and Levesque, 1990], i.e.,
such an agent maintains its intentions until it believes it has achieved them, or
believes it is impossible to achieve them. A blindly committed agent maintains
its intentions until it believes it has achieved them. This type of commitment
is thus even stronger than single minded commitment. An open minded agent
maintains its intentions until it believes they are achieved or they are no longer
its goals.

5.2 Why Goals in Agent Programming?

In this section, we discuss why we think goals are important in (cognitive) agent
programming. We will not go into detail with respect to ways in which goals
have been implemented in agent programming frameworks. The latter will be
addressed in Sections 5.3 and 5.4.

5.2.1 Bridging the Gap

One way to motivate the importance of goals, is by revisiting the idea of agent-
oriented programming, as first put forward in [Shoham, 1993]. Shoham proposes
to use mental attitudes not only to explain and describe the behavior of rational
agents, but also to use mental attitudes as components of the programming
language itself.

While Shoham proposes a set of mental attitudes differing somewhat from,
although presumably inspired by, those of BDI theory,5 the idea of agent-
oriented programming has been taken up by others as the effort to design
programming languages that in some sense implement the ideas of BDI log-
ics (and herewith of BDI philosophy). Most notably, the proposal by Rao of the
influential cognitive agent programming language AgentSpeak(L) [Rao, 1996] is
motivated by the question of how to relate implemented BDI systems to the BDI

5Shoham finds his choice of mental attitudes more basic.

WHY GOALS IN AGENT PROGRAMMING? 85

logics. It is important that implemented BDI systems have a strong relation
with the BDI logics, since the solid theoretical underpinning that these logics
provide will make such systems less likely to suffer from ad-hoc solutions. Also,
if such a relation can be established, these logics can be used for specification
and verification of implemented BDI agents.

The issue of relating cognitive agent programming languages and BDI log-
ics has come to be known as the issue of bridging the gap between theory
and practice [Rao, 1996, Hindriks et al., 2001, van Riemsdijk et al., 2003b], and
was also briefly mentioned in [Wooldridge and Jennings, 1995], and discussed in
[van der Hoek and Wooldridge, 2003]. Rao states that the “holy grail of BDI
agent research is to show such a one-to-one correspondence [between the model
theory, proof theory, and the abstract interpreter] with a reasonably useful and
expressive language”.6

Returning to the issue of the importance of goals in cognitive agent pro-
gramming, we argue as follows. Since an important aim of cognitive agent
programming languages is to “implement” somehow the ideas of BDI logics,
and since goals are important in these logics, goals should be considered an
important aspect of cognitive agent programming languages as well. Providing
an appropriate implementation of goals is a necessary prerequisite for bridging
the gap between logics and programming languages. Nevertheless, it might also
be necessary to tune the BDI logics to “match” agent programming languages,
in order to be able to bridge the gap.

5.2.2 Programming Proactive Agents

Besides from the perspective of bridging the gap, the issue of the importance of
goals in agent programming can also be addressed by considering the agent char-
acteristics as suggested in [Wooldridge and Jennings, 1995]. One of these char-
acteristics is proactiveness. Proactive agents are “able to exhibit goal-directed
behavior by taking the initiative in order to satisfy their design objectives”
[Wooldridge, 2002]. The fact that goal-directedness is considered an important
property of intelligent agents, seems to suggest that goals are inherently impor-
tant when considering programming agents.

The implications of this desired characteristic of goal-directedness for the
practice of programming agents, are however not immediately clear. One could,
for example, argue that a standard procedural or object-oriented program al-
ready exhibits goal-directed behavior. Such a program is written with a certain
desired effect in mind, and this effect could be seen as the goal of the program

6While the work of Rao on AgentSpeak(L) was motivated by the issue of showing a one-
to-one correspondence between an implemented BDI system and BDI logics, he does not
actually provide such a correspondence. In the conclusion of [Rao, 1996], he states that
“Bridging the gap between theory and practice [...] has proved elusive”. Instead, he suggests
an alternative approach, in which he proposes the language AgentSpeak(L) with its semantics
as an alternative characterization of BDI agents.

86 PUTTING GOALS IN PERSPECTIVE

(see also [Wooldridge, 2002]). In this case, the goal is implicit, i.e., it is not
represented and used explicitly in the program. The fact that a procedural pro-
gram can be viewed as being proactive, might suggest that we do not need new
tools and techniques for programming proactive agents.

In the context of intelligent agents which operate in dynamic and uncertain
environments, however, this simple model of goal-directed programming is often
not enough. The model assumes, in particular, that the environment does not
change while some procedure is executing [Wooldridge, 2002]. If problems or
unexpected events occur during the execution of a procedure, the program might
throw an exception and terminate (see also [Wooldridge and Ciancarini, 2001]).
This works well for many applications, but we need something more if change
is the norm and not the exception.

One way of tackling the programming of flexible, proactive agents, is by
using an explicit representation of goals in the agent program. The explicit
representation of goals in agent programs is what we focus on in this chapter.
By using an explicit representation, goals can, e.g., be maintained until they are
achieved. If a plan to achieve a certain goal fails, the agent can select another
plan to try again, thereby increasing its flexibility. In this way, plan failure is de-
coupled from goal failure [Winikoff et al., 2002]. In [Georgeff et al., 1999], this
is stated as follows: “Conventional computer software is “task oriented” rather
than “goal oriented”; that is, each task (or subroutine) is executed without any
memory of why it is being executed. This means that the system cannot auto-
matically recover from failures [...].” This added flexibility is thus an important
practical advantage that can be obtained by using an explicit representation of
goals.

5.2.3 Goals as a Modeling Concept

Another way to argue why goals are important in agent programming, is by
viewing goals as a useful modeling concept when analyzing and designing a
system. If a system is analyzed in terms of goals (and other notions), it will
generally be easier to go from design to implementation if the programming
language with which the system is implemented, contains explicit constructs for
representing goals.

An example of a methodology that uses goals as a modeling concept, is the
KAOS methodology [van Lamsweerde and Letier, 2004]. KAOS is a method for
requirements engineering. It is argued that “goals are an essential abstraction for
eliciting, elaborating, modeling, specifying, analyzing, verifying, negotiating and
documenting robust and conflict-free requirements”
[van Lamsweerde and Letier, 2004]. By using goals in the modeling process,
one can, e.g., properly capture and manage positive and negative interactions
among system goals.

Tropos [Bresciani et al., 2004] is another example of a software development
methodology that incorporates goals as a modeling concept. Tropos is geared

REPRESENTATION 87

towards cognitive agent programming languages, and intends to support all
analysis and design activities in the software development process. Besides
the notion of goal, other concepts relevant in the context of cognitive agent
programming are used in the methodology.

Finally, we mention work by Norling concerning human modeling. Norling
uses BDI philosophy to develop models of human behavior, and then uses a
cognitive agent programming framework for implementing the model. We men-
tion in particular research in which expert human players of the computer game
Quake were modeled [Norling, 2003]. The model was developed on the basis
of knowledge obtained from expert players. Norling claims that when people
are “asked about how they think about a problem, people already have a ten-
dency to explain their actions in terms of what their intentions were, which
in turn are explained in terms of their goals and beliefs” [Norling, 2003]. The
model was implemented using JACK. The translation into JACK was relatively
easy, although the lack of explicit representation of goals in JACK needed a
work-around.

5.3 Representation

We can conclude from the discussion in Section 5.2, that the importance of the
explicit use of goals in agent programs can be motivated in different ways. This
is part of the reason for the emergence of various different ways of representing
goals in agent programming frameworks. In this section, we compare these
approaches for representing goals with respect to three aspects. These aspects
have been chosen because, in our view, these identify important strands of
research regarding the representation of goals.

While the representation of goals cannot be considered completely indepen-
dently from the behavior of goals at run-time, we nevertheless try to focus in
this section on representational aspects. In Section 5.4, we address the dynamic
behavior of goals over time.

5.3.1 Representing Goals Separately or Not

An important aspect as to which approaches for the representation of goals
differ, is whether the agent has a separate component for the representation of
goals. Such a component is generally called a goal base. An alternative for using
a goal base, is using an event base. Events can be generated, e.g., because the
beliefs of an agent have changed, because a message has been sent to the agent,
and also because a goal has been generated. These various kinds of events,
including the events related to the generation of a goal, are all stored in the
event base.

88 PUTTING GOALS IN PERSPECTIVE

Event Base

The earliest example of a cognitive agent programming language that is based
on the generation and processing of events, is AgentSpeak(L). AgentSpeak(L) is
a “textual and simplified version of the language used to program the Procedural
Reasoning System” (PRS) [Georgeff and Lansky, 1987, Ingrand et al., 1992].
PRS is one of the first BDI agent architectures, and the system as discussed
in [Ingrand et al., 1992] also proposes the use of events. An AgentSpeak(L)
agent consists of a belief base and a plan library consisting of a set of predefined
plans. At run-time, an event base and an intention base are created. The event
base is used for storing the generated events, and the intention base is used for
storing the plans that are currently being executed. Intentions are adopted in
response to the occurrence of a certain event.

A plan in AgentSpeak(L) consists of a triggering condition, which specifies
the event for which the plan may be selected, a context, which is a condition on
the beliefs of the agent, and a body. The body of a plan consists of a sequence
of goals which need to be achieved, and actions which should be executed.
The body a1;a2;!p;a3, e.g., represents that the agent should first execute the
actions a1 and a2, then achieve the goal p (represented using an exclamation
mark), and then execute the action a3. The goal p can be viewed as the subgoal
of this plan. If the agent encounters a subgoal such as p in a plan, it generates
a goal addition event for this subgoal, which is placed in the event base. The
agent then, broadly speaking, suspends the execution of the plan, and tries to
find a plan in the plan library that has !p as its triggering condition. If such
a plan is found, it is executed. Then, the agent continues the execution of the
plan from which the goal addition event for !p was generated, i.e., it executes
a3.

In the specification of an AgentSpeak(L) agent, (sub)goals are thus present
in the plans of the agent. At run-time, these goals generate goal events, which
are added to the event base of the agent. The event base not only contains goal
events, but may also contain events generated because of a change in beliefs.
Nevertheless, one could view the set of goal events in the event base as the cur-
rent goals of the agent, which is also the approach taken in
[Bordini and Moreira, 2004] (in which the term “desires” is used, rather than
“goals”).

A language that has an event-based execution model comparable with that of
AgentSpeak(L), is the language that comes with the JACK platform
[Winikoff, 2005]. JACK is an industrial strength agent platform, that includes
a programming language that extends Java [Gosling et al., 2000] by adding lan-
guage constructs for the specification of agent concepts such as beliefs, events,
plans, etc. As in the case of AgentSpeak(L), JACK does not have a separate
component for the representation of an agent’s goals.

REPRESENTATION 89

Goal Base

An example of a framework that does incorporate such a component for rep-
resenting an agent’s goals, is the language of Chapter 2. Further examples are
JAM [Huber, 1999], GOAL [Hindriks et al., 2001], Dribble
[van Riemsdijk et al., 2003b], the latest version of 3APL [Dastani et al., 2004,
Dastani et al., 2005c], the approach presented in [Dastani et al., 2006], and
Jadex [Pokahr et al., 2005b]. JAM is a BDI agent architecture inspired by,
among others, the work on PRS. GOAL, Dribble, and 3APL are cognitive agent
programming language that come with a formal semantics. In
[Dastani et al., 2006], a formalization of various kinds of goals is presented, in
the context of cognitive agent programming languages (see Section 5.4.2 for
further explanation). Jadex is a reasoning engine implemented in Java that
provides an execution environment and an API for developing cognitive agents.
Each of these frameworks provide the agent programmer with the possibility to
endow the agent with a set of goals at start-up. These goals thus form a sepa-
rate component of the agent at the time of specification, but also at run-time.
The agent selects plans on the basis of its goals (and beliefs).

It has been suggested that it is an advantage of AgentSpeak(L) that the
language does not introduce an extra component for the representation of goals
[Hübner et al., 2006]. However, using a goal base for representing goals pro-
vides several potential advantages. In particular, it enables logical reason-
ing with goals in the case of a logic-based representation of goals (see Sec-
tions 5.3.2 and 5.4.1 for a further discussion). Moreover, the separate rep-
resentation of goals can facilitate experimenting with more involved ways of
representing goals, such as representations taking into account possible inter-
actions among goals (see Section 5.3.3). Also, several approaches that use a
goal base do not make use of an event base [Huber, 1999, Hindriks et al., 2001,
van Riemsdijk et al., 2003b, Dastani et al., 2004, Dastani et al., 2006]. More-
over, it has been shown that AgentSpeak(L) can be embedded in the first ver-
sion of 3APL [Hindriks et al., 1998, Hindriks et al., 1999b], and 3APL does not
make use of an event base.

5.3.2 Logic-Based and Non-Logic-Based Approaches

In the previous section, we have discussed the incorporation of a separate compo-
nent for the representation of goals as a criterion for distinguishing frameworks
for the representation of goals. Another such criterion is whether logic is used
in the representation and processing of an agent’s goals, or not.

In logic-based frameworks, goals are represented as logical formulas that rep-
resent the situations an agent wants to achieve. In most of these approaches,
logical reasoning is used for checking whether a goal is achieved, and/or for de-
riving new goals on the basis of existing goals. Traditionally, many frameworks
in which the representation of goals is considered important, are logic-based.

90 PUTTING GOALS IN PERSPECTIVE

Nevertheless, there are also approaches that do not require logical inference
mechanisms for processing goals.

Logic-Based

An example of a logic-based framework for representing goals is the language of
Chapter 2. Another example is the latest version of 3APL [Dastani et al., 2004,
Dastani et al., 2005c]. In these languages, goals are represented by means of a
goal base, which consists of a set of logical formulas representing the situations
the agent should try to achieve. The idea of representing goals in this way was
taken from [van Riemsdijk et al., 2003b], the authors of which took this idea in
turn from [Hindriks et al., 2001]. An agent in these languages has rules that
specify which plan an agent may execute if it has a certain goal (and certain
beliefs). New goals can be derived on the basis of the formulas in the goal base
by means of logical reasoning. That is, an agent can, e.g., derive the goal to
achieve p from the goal p ∧ q.

In [Winikoff et al., 2002], another language is presented that incorporates a
logic-based representation of goals. Winikoff et al. define a goal as a logical
formula representing a desired situation, together with a set of plans by means
of which the agent can try to achieve this situation. A goal also contains a
logical formula specifying the condition under which it should be dropped (see
Section 5.4.2).

Another proposal that takes a logic-based approach towards the represen-
tation of goals, was presented in [Sardina and Shapiro, 2003]. In that paper,
the focus is on prioritized goals, i.e., being able to represent that one goal
has a higher priority than another. The authors extend the language IndiGolog
[Giacomo and Levesque, 1999], which is a language from the
Golog family [Giacomo et al., 2000]. Goals are represented as a set of formulas
endowed with a total order. These goals, together with their ordering, are used
for selecting the most appropriate plan, by reasoning about the results of plan
execution.

AgentSpeak(L) could also be categorized as a language that has a logic-based
representation of goals, since subgoals as occurring in the plans of
AgentSpeak(L) agents are logical formulas, although these formulas are very
simple. That is, these formulas are simply atoms and thus do not incorporate
logical connectives.7 In a similar way, the first version of 3APL
[Hindriks et al., 1999b] could be categorized as a language having a logic-based
representation of goals (see Chapter 3).

As another example of a logic-based approach, we mention
[Simon et al., 2006], in which a hierarchical representation for the goals and
subgoals of an agent is proposed. They propose a so-called Goal Decompo-
sition Tree (GDT), in which the nodes represent goals and subgoals, and the

7In [Bordini et al., 2005a], Jason [Bordini et al., 2005b], which is an implementation of an
interpreter for an extended version of AgentSpeak(L), is categorized as a logic-based language.

REPRESENTATION 91

leaf nodes may also contain plans. The root forms an agent’s top-level goal,
while the other goal nodes represent subgoals that need be achieved in order
to achieve the top-level goal, or other subgoals. Each goal node contains the
name of the goal, and a logical formula specifying the desired situation. The
aim of the authors is to use a GDT for modelling an agent, and for verifying
whether the agent will achieve its top-level goal. A number of other logic-based
approaches for the representation of goals will be discussed in Section 5.3.3, in
which we discuss the representation of goals that may interact.

Compared with non-logic-based approaches, logic-based approaches are more
likely to bridge the gap between BDI logics and agent programming frameworks.
However, it remains difficult to establish an exact relation between an agent
programming language and a BDI logic. One of the reasons is that the semantics
of the latter is based on a Kripke-style possible worlds semantics, while the
representation of beliefs and goals in agent programming languages is done
differently, for practical purposes.

One way of tackling this issue, is by investigating properties of goals in agent
programming frameworks, and comparing these with properties of goals in BDI
logics. This can be done by introducing a logical language of goals in an agent
programming language, as was done in [Hindriks et al., 2001], and, following
that paper, in Chapters 2 and 4. By means of such a language, one can express,
e.g., that p is a goal (Gp) or that p is not a goal (¬Gp). In [Hindriks et al., 2001],
it is shown, e.g., that this G operator does not obey the K axiom, but it does
satisfy ¬G⊥. The former is thus in contrast with BDI logics, in which goals
do obey this axiom (see Section 5.1.2). We refer to Chapter 4 for a further
discussion of such issues.

Besides introducing a logical language of goals in the programming language
itself, one can also define a specification language including constructs for ex-
pressing that an agent has a certain goal or desire, that is not used in the pro-
gramming language. When using such a language, it needs to be defined when,
e.g., Gp is true, given the agent program. The semantics of the specification
language thus needs to be defined on the basis of the components of the agent
program, in order to link the specification language to the agent programming
language. This approach is taken in [Bordini and Moreira, 2004], in which a
BDI logic for AgentSpeak(L) is defined. The properties that are investigated are
mainly properties regarding the relation between the different mental attitudes.
In [Hindriks et al., 2001], a temporal logic is proposed for proving properties of
agents written in the cognitive agent programming language GOAL (see Section
5.4.1). This temporal logic is not used in the programming language itself, but
it does build on the logical language of goals that is used in the programming
language.

Properties as just discussed are static properties, as explained in Section
5.1.2. Dynamic properties of goals in agent programming frameworks will be
treated in Section 5.4.2.

92 PUTTING GOALS IN PERSPECTIVE

Non-Logic-Based

As an important example of a framework not using a logic-based representa-
tion of goals, we discuss Jadex. In Jadex, goals are represented using XML
[Braubach et al., 2005]. Jadex is designed to be used “not only by AI experts,
but also by the normally skilled software developer” [Pokahr et al., 2005b], which
is why Jadex is based on established techniques such as XML.

Jadex supports various types of goals (see Section 5.4.2), which can be spec-
ified using the corresponding XML tags. Depending on the type of goal, it
may contain various elements, such as a creation condition specifying when a
new goal instance is created, a context condition that describes when a goal’s
execution should be suspended, and a drop condition that defines when a goal
instance is removed. If a goal’s creation condition becomes true, a goal ob-
ject is created on the basis of the XML specification. The language for testing
whether the agent has a certain belief, supports OQL (Object Query Language)
constructs. OQL is a query language that is simpler than SQL, and it can be
used for querying an object-oriented database. Goals can also be created by
executing an appropriate statement in the plans of the agent.

Another example of a framework incorporating goals that is not based on
logic, is JAM. When specifying a JAM agent, one can provide a simple tex-
tual specification of the agent’s goals. As in Jadex, various types of goals can
be specified. The specification of a goal consists of a goal’s type, its name,
possibly several parameters, among which a number expressing the utility of
achieving the goal. Goals are used by the reasoning engine of the system to
select appropriate plans. Goals can also be created through the execution of
plans, comparable with the creation of subgoals in AgentSpeak(L). The behav-
ior of subgoals however differs from that of top-level goals, i.e., the goals an
agent is endowed with at start-up. This is further explained in Section 5.4.2. In
[Huber, 1999], the authors do not elaborate on how the system checks whether
a goal is achieved. However, given the simple representation of goals and be-
liefs (called “world model” in the cited paper), this check presumably does not
involve logical reasoning.

5.3.3 Interacting Goals

An important issue related to the representation of goals, is the fact that goals
may interact in various ways. Generally, an agent might have multiple goals.
Some of these goals may be incompatible, in the sense that they interact in
negative ways if being pursued simultaneously. For example, pursuing a goal p
and a goal ¬p at the same time is not very likely to yield satisfactory results. On
the other hand, goals may interact in positive ways, in the sense that plans for
different goals may have common subgoals. This can be exploited by scheduling
the actions of the agent in order to take advantage of this. Research addressing
these issues has resulted in new ways of representing goals. In this section, we

REPRESENTATION 93

will discuss this research.

Hierarchies

In [Thangarajah et al., 2003b, Thangarajah et al., 2003a], Thangarajah et al.
propose a hierarchical representation for enabling reasoning about goal inter-
actions. Goals are represented as nodes in a so-called goal-plan tree. Besides
nodes representing goals, a goal-plan tree also contains nodes representing plans.
The root of the tree is a goal. The children of a goal node are plans (this is thus
in contrast with the hierarchical representation of Simon et al. as discussed in
Section 5.3.2), representing the alternative plans that can be used for achieving
the goal. The children of a plan node are goals, representing the subgoals of the
plan. The root thus forms an agent’s top-level goal, while the other goal nodes
represent subgoals of the plans that can be used to achieve the top-level goal,
or subgoals.

Each node contains information that can be used for reasoning about goal
interaction. Among other things, plan nodes contain a pre-condition which
should be true before the agent can start execution of the plan, an in-condition
which should be true during execution of the plan, and a set of effects represent-
ing the result of the execution of the actions in the plan. Goal nodes contain,
among other things, an in-condition which should be true as long as the agent
is pursuing the goal, and a condition expressing the situation the agent wants
to achieve.

This information can be used for detecting and avoiding interference between
goals [Thangarajah et al., 2003a]. Interference can occur because the execution
of a plan to achieve one goal, causes the in-condition of another goal or plan
to be false, or because a previously achieved effect is made false through the
execution of another plan, before a plan or goal that relies on it begins executing.
Using the information contained in the nodes of the goal-plan trees, these kinds
of potential interferences can be detected. The execution of plans for achieving
goals can then be scheduled such, that goals that have possibly interfering plans,
are not pursued in parallel.

The information contained in the nodes of the goal-plan trees can also be
used for detecting and exploiting positive interactions among
goals [Thangarajah et al., 2003b]. Positive interactions occur if the plans of
two goals bring about the same effect. In that case, the plans of these goals can
be merged, hence reducing the overall cost of the pursuit of goals.

Default Logic

Besides the work by Thangarajah et al. in which a hierarchical representation of
goals and plans is used, there is a line of research addressing the representation
and handling of conflicting goals that builds on default logic. Our research in
this direction has been discussed in Chapter 4, in which we also address work of

94 PUTTING GOALS IN PERSPECTIVE

others along these lines. In this research, positive interactions among goals are
not addressed. Also, no information about plans is used for deriving whether
goals are conflicting or not.

The representation of and reasoning with logically inconsistent goals has also
been addressed in [Hindriks et al., 2001] and Chapter 4 without using default
logic.

Inhibition Relation

Concluding this section, we discuss an approach for representing that goals are
conflicting, which has been proposed in the context of the Jadex framework
[Pokahr et al., 2005a]. It is similar to approaches based on default logic, in the
sense that it does not involve reasoning about the results of plan execution.
Instead, it is up to the programmer to represent explicitly that a certain goal
may be conflicting with another.

This is achieved by introducing so-called inhibition arcs between goals. These
inhibition arcs are required to form a directed acyclic graph, in order to avoid in-
finite deliberation loops. Essentially, the reasoning engine makes sure that only
the maximal goals with respect to this inhibition relation, i.e., those goals that
are not inhibited by any other goal, are pursued. If a new goal is created that
inhibits goals that the agent is currently trying to achieve, the reasoning engine
makes sure that those goals are suspended. These goals can be pursued again if
the inhibiting goal is dropped. The specification of the inhibition relation can
be done in XML, as part of the specification of goals.

This approach differs from the approaches based on default logic (besides
the fact that it is not based on logic), in that it does not allow to specify that
two goals inhibit each other. If two goals inhibit each other, it requires the
programmer to make a choice with respect to which goal should be pursued,
if both are generated. In the approach of [van Riemsdijk et al., 2005b], it is
possible to express that two goals should not be pursued simultaneously, without
expressing that one is more important than another.

Besides the specification of an inhibition relation, the programmer can in
Jadex also specify the cardinality of goals. The cardinality of a goal is a number
that can be used to constrain the number of instances of this goal that can be
pursued at the same time. The reasoning engine makes sure that the number
of instances of a goal that the agent is trying to achieve at a certain point in
time, does not exceed the goal’s cardinality. This can be useful if one wants to
prevent an agent from pursuing several goal instances concurrently, because the
plans for achieving these goals are interfering.

BEHAVIOR 95

5.4 Behavior

In Section 5.3, we have discussed ways in which goals have been represented in
agent programming frameworks. In this section, we focus on issues with respect
to the dynamic behavior of goals at run-time. We address in particular two
aspects of this issue, i.e., the distinction between procedural and declarative
goals (Section 5.4.1), and the dropping and adopting of goals during execution
of the agent (Section 5.4.2). While the distinction between procedural and
declarative goals is also closely related to, in particular, the dropping of goals,
we have decided to treat the former issue in a separate section, because it has
been very important in research on goals in agent programming.

5.4.1 Procedural and Declarative Goals

Roughly speaking, a procedural goal is the goal to execute an action or sequence
of actions, and a declarative goal is the goal to reach a certain state of affairs. A
declarative goal thus describes a desired situation. Procedural goals have also
been called goals-to-do or plans, while declarative goals have been called goals-
to-be [Hindriks et al., 1999b, van Riemsdijk et al., 2003b]. The importance of
distinguishing actions and propositions has also been recognized early on in the
philosophical literature, such as, e.g., in work on deontic logic [Castañeda, 1981].
Also, Cohen and Levesque make a distinction between the intention to do an
action, and the intention to realize a certain state [Cohen and Levesque, 1990].

In the area of cognitive agent programming, it is generally accepted that an
agent, being an acting entity, should at least be endowed with procedural goals.
There is, however, a growing body of work in which it is argued from various
perspectives that declarative goals are also important. The motivations that
have been given for why the incorporation of declarative goals in agent pro-
gramming frameworks is important, can roughly be divided into two categories,
i.e., theoretical and practical motivations.

From a theoretical perspective, it is argued that the incorporation of a
declarative perspective on goals in agent programming languages is important
in order to bridge the gap between agent logics and these programming lan-
guages [Hindriks et al., 2001, Winikoff et al., 2002, van Riemsdijk et al., 2003b,
Dastani et al., 2004]. Since in agent logics a goal is a declarative concept, the
incorporation of declarative goals in agent languages is viewed as a necessary
prerequisite for bridging this gap. It is perhaps not surprising that such research
uses a logic-based representation of goals.

From a practical perspective, it is argued that declarative goals allow a de-
coupling of plan execution and goal achievement
[Winikoff et al., 2002, van Riemsdijk et al., 2005a, Braubach et al., 2005]. The
fact that declarative goals represent a state that is to be reached, can be
used for deciding whether a plan was successful in achieving a certain goal,
or not. If the goal has not been reached, the agent should continue to try

96 PUTTING GOALS IN PERSPECTIVE

to reach the goal, e.g., by executing a different plan.8 Also, declarative goals
facilitate reasoning about interferences among goals (see [Winikoff et al., 2002,
Thangarajah et al., 2003a] and Chapter 4). Further, in the case of a logic-
based representation of goals, declarative goals allow the derivation of new
goals from explicitly represented existing goals by means of logical reasoning
[van Riemsdijk et al., 2003b, Dastani et al., 2006]. This can be advantageous
from a modeling perspective when specifying which plan should be executed if
the agent has a certain goal (consider the plan selection rule in the example of
Section 2.3).

While there is thus quite some research addressing declarative goals in agent
programming, a clear analysis of what exactly constitutes a declarative goal has
not been carried out. There is no precise specification of when a goal may be
considered a declarative goal, and when it should be termed a procedural goal.
Different researchers seem to have different viewpoints with respect to this. In
this section, we aim to provide a starting point for an analysis of what con-
stitutes a declarative goal, by distinguishing various kinds of declarative goals.
Generally, a goal that is not classified as a declarative goal, can be considered a
procedural goal. As will become clear, most of the kinds of declarative goals are
described in terms of their dynamic behavior, which is why we treat this issue
in this section.

We do not aim to argue that one approach to declarative goals is always
better than another. We do feel it is important that researchers recognize that
there are different perspectives on this issue, and that it is acknowledged that
one kind of declarative goal might not be equivalent with another (e.g., in terms
of behavior or expressivity). In particular, we would encourage researchers,
when addressing declarative goals, to be specific as to what this term means to
them. We do think a thorough comparison of the various approaches against one
another is important in order to establish the theoretical and practical benefits
of one approach over another. However, such detailed comparisons are beyond
the scope of this chapter.

Describing a Desired State

A requirement that all approaches considering declarative goals seem to agree
upon, is that declarative goals describe a state that the agent desires to reach.
In this sense, subgoals as occurring in the plans of 3APL agents (see Chapter
3) can be considered declarative goals, if they are interpreted as representing a
desired state. In the same way, the construct !p as used in AgentSpeak(L) (see
Section 5.3.1) and PRS can be considered a declarative goal, since it is generally
interpreted as representing that the agent should achieve a state in which p is
the case.

8This point is also related to the issue of bridging the gap, since it is concerned with
commitment strategies that express when an agent may drop its goal [Winikoff et al., 2002]
(see Sections 5.1.2 and 5.4.2).

BEHAVIOR 97

Behaving as a Declarative Goal

While specifying a declarative goal as a goal to reach a certain state gives some
indication of what a declarative goal should be, it does not say anything about
the behavior of such a goal during execution of the agent. That is, it does
not say whether the fact that the goal represents a state, is used somehow for
specifying the behavior of the agent. Given that we want to be more specific
about how a declarative goal should behave, the question is, of course, what
kind of behavior this should be.

In most research on declarative goals, the fact that the goal represents a state
is used for deciding when to drop the goal. That is, a goal may not be dropped
until it is achieved, i.e., until the state expressed by the goal is reached.9 This is,
for example, the approach taken in [Hindriks et al., 2001], and, following that
paper, in Chapter 2.

From this perspective, the subgoals of the language of Sections 3.1 and 3.2
can also be viewed as declarative goals, since they can only be removed from
the plan if they are believed to be achieved. Moreover, the subgoals of 3APL
can also be viewed as declarative goals in this sense, but only if the plans
of the 3APL agent are programmed such that they behave as the subgoals of
Sections 3.1 and 3.2. We can thus not say in general that subgoals of 3APL
behave as declarative goals, but it varies from agent to agent. In the context
of Jason10, similar research has been done [Hübner et al., 2006]. In that paper,
several transformations on the plans of Jason agents are proposed, such that
the subgoals of the resulting agent behave as declarative goals.11 It is, however,
not shown formally that the resulting agent behaves according to a certain
specification.

The goals of [Winikoff et al., 2002] also behave as declarative goals, although
the conditions for dropping the goal do not only depend on whether the desired
state as represented by the goal is achieved. We refer to Section 5.4.2 for a fur-
ther explanation of this. The goals of the Jadex framework
[Braubach et al., 2005] can also be viewed as behaving as declarative goals, al-
though the desired state is not represented using logical formulas, which is in
contrast with most other approaches addressing declarative goals. Nevertheless,
it can be checked whether the desired state is believed to be reached. Further

9Here, we focus on the behavior of achievement goals, i.e., goals that are dropped once
achieved. One can, however, consider other kinds of behavior in which the fact that a goal
represents a state is used. For example, in Section 5.4.2 we also consider the behavior of
so-called maintenance goals. These can be analyzed in order to identify when they could be
called declarative goals in a similar way as we do for achievement goals in this section.

10Recall that Jason is an implementation of an interpreter for an extended version of
AgentSpeak(L)

11Each transformation yields a different variant of declarative behavior of goals. One such
transformation, e.g., results in plans failing if a subgoal is not reached after executing a plan
for achieving it. This transformation does not yield an agent that only drops its subgoals if
they are believed to be achieved. Nevertheless, the fact that the subgoal represents a desired
state is used.

98 PUTTING GOALS IN PERSPECTIVE

examples of research in which goals behave as declarative goals can be found in
[van Riemsdijk et al., 2003b, Dastani et al., 2004, Dastani et al., 2006].

Having a Declarative Goal Semantics

Above, we have considered a definition of declarative goals that is based on
whether the fact that they represent a desired state, is reflected in their be-
havior. While this can be viewed as a sufficient characterization of declarative
goals, some might argue for a still stronger definition. That is, one could argue
that the declarative behavior of goals should be enforced by the semantics of the
programming language or by the framework. Viewed from this perspective, the
subgoals of 3APL and Jason (and AgentSpeak(L)) cannot be classified as declar-
ative goals. The other discussed approaches can still be viewed as incorporating
declarative goals under this definition.

Using Logical Reasoning

We conclude this section with an even stronger definition of declarative goals,
which one might want to adopt especially in the context of bridging the gap.
This definition considers only approaches that use logic for representing goals,
and requires a more sophisticated use of the fact that goals are represented as
logical formulas.

In particular, the representation of goals should be based on a full-fledged
logical language, such as propositional logic. The subgoals of the language of
Sections 3.1 and 3.2 and of 3APL and Jason thus would not qualify as declar-
ative goals in this sense, since these subgoals are simply atoms. Further, the
programming framework should use logical reasoning for establishing the goals
of the agent. Subgoals as used in the plans of agents do not fulfill this require-
ment, since these goals are generally not considered in relation to other goals,
and are not used as input for a logical reasoning process. Goals as used in
[Winikoff et al., 2002] are represented using propositional logic. However, they
are not used for logical reasoning, although the paper contains some suggestions
on how this could be done.

Approaches that are based on logical reasoning with goals are mainly ap-
proaches inspired directly or indirectly by [Hindriks et al., 2001], such as
[van Riemsdijk et al., 2003b, Dastani et al., 2004, van Riemsdijk et al., 2005a,
Dastani et al., 2006]. The semantics of Chapter 4 and other approaches for
representing goals that are based on default logic also rely on logical reasoning
for establishing the goals of an agent [Thomason, 2000, Broersen et al., 2002,
Dastani and van der Torre, 2004]. The focus of these approaches is not so much
on the dynamic behavior of goals, but the proposed frameworks do make use
of the fact that goals are represented using logical formulas. The approach
of [Sardina and Shapiro, 2003] is another example of an approach using logical
reasoning in the context of goals.

BEHAVIOR 99

If agent programming languages incorporate a representation and semantics
of declarative goals that is strongly based on logic, it is more likely that a relation
between the programming language and BDI logics can be established. The
added expressivity provided by such logic-based representations and semantics
can, however, also be beneficial from a practical perspective.

5.4.2 Dropping and Adopting

As noted in Section 5.1.2, an important aspect of goals is their behavior over
time, i.e., when are goals adopted and when are they dropped again. In BDI
logics, the focus is on the latter. This is perhaps not surprising, since these logics
aim to formalize BDI philosophy, and an important aspect of BDI philosophy
is that agents should be committed towards their intentions. That is, agents
should stick to their intentions, unless there is a good reason for giving them
up.

While this issue of commitment has been investigated in the context of in-
tentions in BDI logics, it has been taken up by developers of agent programming
frameworks in the context of goals. In particular, the commitment strategies as
proposed in [Rao and Georgeff, 1991] for intentions, have been an inspiration
for implementing the behavior of goals in agent programming frameworks.

Dropping

These commitment strategies for agent programming frameworks are concerned
with conditions under which a goal may be dropped, such as if it is believed to be
achieved. Goals that may be dropped if believed to be achieved, are generally
called achievement goals in agent programming frameworks.12 In logic-based
approaches working with a goal base, achievement goals are implemented by
removing a goal from the goal base, once the agent believes the goal to be
achieved. In JAM, achievement goals are implemented in a similar way. With
respect to JAM, we mention that the framework makes a distinction with respect
to the level of commitment an agent has towards its top-level goals, i.e., the goals
an agent is endowed with at start-up, and the subgoals as generated from the
plans of the agent. The agent’s top-level achievement goals are maintained until
believed to be achieved, while the subgoals are dropped if a plan to achieve a
subgoal fails.

These implementations of achievement goals are implementations of blind
commitment, i.e., goals are maintained until the agent believes it has achieved
them. Implementing blindly committed agents is thus relatively straightforward.

12The subgoals of the form !p as used in the plans of AgentSpeak(L) agents are also called
achievement goals. Moreover, the abstract plans of 3APL [Dastani et al., 2004] and as used
in the language of Chapter 2 were also called achievement goals in the first version of 3APL
[Hindriks et al., 1999b]. In this section, we will however not use the term “achievement goal”
to refer to a language construct of AgentSpeak(L) or 3APL.

100 PUTTING GOALS IN PERSPECTIVE

Implementing a single minded agent, i.e., an agent that keeps a goal until it
believes it has achieved it or believes it is impossible to achieve it, is more
complicated. In order to implement this commitment strategy, an agent will,
in principle, have to reason about its future. There is, however, another way
to implement this commitment strategy, which does not require the agent to
reason about its future.

This approach was first proposed in [Winikoff et al., 2002], and is also fol-
lowed in the Jadex framework and in [Dastani et al., 2006]. The idea is, to
endow goals with a so-called failure condition, which represents a situation in
which it will not be possible for the agent to achieve its goal. If this failure con-
dition becomes true, the agent should drop the goal. This is thus a condition
that should be specified by the agent programmer. That is, it is up to the agent
programmer to think of situations in which the agent will not be able to reach a
goal, rather than having the agent reason about this. Open minded agents are
generally not considered in agent programming frameworks.

Perhaps following BDI logics, achievement goals have traditionally been the
focus of research regarding goals in agent programming frameworks. There
is however another type of goal that has been identified, which is referred to
as maintenance goal. A maintenance goal describes a situation that the agent
should maintain, i.e., the agent should make sure that this situation continues to
hold. Maintenance goals should thus not be dropped.
In [Cohen and Levesque, 1990], it is mentioned that this distinction exists, but
state that they will not be concerned with maintenance goals.

Agent programming frameworks that have incorporated maintenance goals
are PRS [Ingrand et al., 1992], JAM, Jadex, and [Dastani et al., 2006]. In PRS,
a language construct is proposed for maintenance goals, that is similar to the
construct for achievement goals as used in PRS and AgentSpeak(L). However,
very little is said in the cited paper about the meaning of such a language
construct. In JAM, the agent starts to pursue maintenance goals whenever
the desired situation as specified by the maintenance goal becomes unsatisfied.
This is thus comparable with the behavior of achievement goals, except that
achievement goals are removed once they are achieved, while maintenance goals
are not dropped.

The implementation of maintenance goals in Jadex is somewhat more in-
volved. As in JAM, maintenance goals contain a condition, i.e., the so-called
maintain condition, which triggers the execution of plans if it becomes false. The
agent can stop executing plans once the maintain condition is reached. Besides
this maintain condition, maintenance goals may also contain a target condition.
If such a target condition is specified, it is the target condition, rather than
the maintenance condition, that specifies when the agent may stop executing
plans for the maintenance goal, i.e., the agent can stop the execution of plans
for the maintenance goal if this target condition is reached. In this case, the
execution of plans is thus started once the maintain condition becomes false,
and is stopped once the target condition becomes true. This mechanism can,

BEHAVIOR 101

e.g., be used for an agent that should refuel once the level of fuel in its tank
drops below 20 %. Once it starts refueling, it should continue until its tank is
completely full again.13 The maintain condition can then be used to make sure
the agent starts refueling, while the target condition specifies when the agent
may stop.

In [Dastani et al., 2006], maintenance goals have a triggering condition and
a maintain condition. The triggering condition indicates when the agent should
take action in order to ensure that the maintain condition continues to hold. The
maintain condition is used to select appropriate plans. The triggering condition
of Dastani et al. is thus comparable with the maintain condition of Jadex, and
the maintain condition of Dastani et al. is comparable with the target condition
of Jadex (although there are some subtle differences).

Besides achievement goals and maintenance goals, another type of goal has
been introduced in JAM, Jadex and [Dastani et al., 2006], i.e., a so-called per-
form goal. A perform goal can be viewed as a procedural goal, since it is not
related to a world state that should be achieved,14 but only to actions that
should be executed. The dynamic behavior of a perform goal is simple, since it
is dropped once it is executed.15

Finally, we mention that GOAL [Hindriks et al., 2001] has an action drop(φ)
for dropping a goal φ. If such an action is executed, all goals from which φ
logically follows are removed from the goal base.

Adopting

Implementations of the behavior of goals with respect to when they are dropped,
are mainly based on the idea of commitment strategies in BDI logics. On the
other hand, mechanisms for adopting goals have been investigated primarily in
the context of agent programming frameworks.
In [van Riemsdijk et al., 2005a], an overview is presented of motivations for goal
adoption that have been suggested in the literature. The cited paper distin-
guishes between internal and external motivations for goal adoption.

As internal motivations, the generation of concrete goals from built-in ab-
stract goals as suggested in [Dignum and Conte, 1997] is mentioned. The idea
is, that abstract goals are not really achievable, but they can be approximated
through the achievement of concrete goals. In [van Riemsdijk et al., 2005a], an
implementation of this kind of goal adoption is proposed. Another internal mo-
tivation for adopting goals are desires, as used, e.g., in the BOID framework.
Desires in BOID are conditional on the agent’s beliefs or goals.

The beliefs and goals of an agent can, in general, be seen as internal reasons

13Similar examples were used in [Braubach et al., 2005] and [Dastani et al., 2006].
14In [Dastani et al., 2006], perform goals are related to a world state, but this is used only

for selecting appropriate plans.
15In Jadex and [Dastani et al., 2006], perform goals may also be endowed with a flag indi-

cating that the perform goal should be executed continuously.

102 PUTTING GOALS IN PERSPECTIVE

for adopting (new) goals. In Jadex, this approach is followed in that goals can
be endowed with a so-called creation condition. This can be a condition on
beliefs (or goals), and if it becomes true, an instance of the goal as specified in
the XML file is generated. A goal can also be adopted in Jadex by executing a
specific action in the plan of an agent. GOAL also has an action adopt(φ) for
adopting a goal φ. If such an action is executed, φ is added to the goal base.16

In [van Riemsdijk et al., 2005b], goals can be conditional on beliefs and other
goals, as in Jadex. However, the way in which these conditional goals are used
is different from the approach taken in Jadex. That is, in the former, these
conditional goals are used for defining the semantics of a logical language of
goals, based on the framework of default logic. In the latter, conditional goals
are used for the creation of goal instances at run-time. These goal instances are
placed in the goal base, once they are created.

As external motivations for the adoption of goals,
[van Riemsdijk et al., 2005a] addresses norms and obligations, and requests from
other agents. In the BOID framework, obligations can be used for the generation
of goals, in a similar way in which desires can be used. Like desires, obligations
are conditional on beliefs or goals. An implementation of the adoption of a
goal because of a request from another agent, has been proposed in the context
of AgentSpeak(L) in [Moreira et al., 2004]. In that paper, a formal semantics
of various communication acts for AgentSpeak(L) agents is presented. These
communication acts include requests for achieving a goal. If one agent sends
such a request to another agent, the goal that the receiving agent is requested
to achieve, is placed in its event base. That is, if the requesting agent has power
over the receiving agent.

5.5 Conclusion

In this chapter, we have presented an overview of various approaches that in
some form address the incorporation of goals in agent programming frameworks.
We have started out by considering goals and related motivational attitudes in
BDI philosophy and BDI logics, which lie at the basis of research into cogni-
tive agent programming. This was followed by an argumentation of why we
think goals are important in agent programming. Then, we have identified and
discussed important aspects with respect to which approaches for representing
goals in agent programming frameworks differ. Finally, we have discussed the
dynamic behavior of goals in agent programming frameworks. In particular, we
have provided an analysis of various views on what constitutes a declarative
goal.

In this chapter, we have discussed many different approaches to incorpo-
rating goals in agent programming frameworks. In our view, there is not
one “right” way of doing this. It will depend on the reason for wanting to

16That is, if φ is consistent and not believed to be achieved.

CONCLUSION 103

use goals and on the context, which is the most appropriate approach (cf.
[Rao and Georgeff, 1998], in which formalizations of various different BDI sys-
tems are presented).

Nevertheless, we believe it is important to investigate exactly how the var-
ious approaches are related to one another. Does one approach differ from
another, e.g., in terms of expressiveness, or are they essentially the same or is
one subsumed by another? We hope that this chapter can be a starting point
for such an analysis, which will clarify how various approaches to goals differ
from one another and what their merits are. This will provide a better under-
standing of the essence of different kinds of goals, which will eventually enable
agent programmers to choose the approach most suitable for their application.

Acknowledgements

We would like to thank Koen Hindriks for his valuable comments on an earlier
version of this chapter.

PART II

PLAN REVISION

105

Chapter 6

Semantics of Plan Revision

This chapter is based on [van Riemsdijk et al., 2003a, van Riemsdijk et al., 2004,
van Riemsdijk et al., 2006c]. Plan revision rules have been introduced in Chap-
ter 2 (Definition 2.4). As explained in Section 2.3.2, plan revision rules can
provide the agent with added flexibility, since they allow the agent to revise its
plan if the circumstances demand this. The introduction of these plan revision
capabilities now gives rise to interesting issues concerning the semantics of plan
execution, the exploration of which is the topic of this chapter.

An investigation of these semantic issues is important in order to get a
better understanding of the language. Furthermore, certain semantic properties
are especially relevant when it comes to verification. In the context of plan
revision rules, the important semantic property to consider is compositionality.
Generally, when proving that a program satisfies a specification, this is done
by proving properties of the parts of which the program is composed. This can
be done if the semantics of programs can be defined compositionally, i.e., by
defining the semantics of a composed program in terms of the semantics of the
parts of which the program is composed. In this chapter, we investigate this
issue of compositionality in the context of the semantics of the execution of
plans, where plans can be revised during execution by means of plan revision
rules.

The cognitive agent programming language we investigate in this chapter
is the language of Chapter 2, without goals and plan selection rules and with
some other minor modifications. The reason for leaving out goals is that in
this chapter we focus on the semantics of plan execution, for the treatment of
which only beliefs and plans will suffice. The language under consideration is
essentially a propositional and otherwise slightly simplified version of the first
version of 3APL [Hindriks et al., 1999b], and we will in the rest of this chapter
refer to our language simply as “3APL”. The language will be specified in detail
in Section 6.1.1.

The approach we take to investigating the semantics of plan execution in

107

108 SEMANTICS OF PLAN REVISION

3APL, is to introduce a meta-language on top of 3APL. Such a meta-language
has constructs for applying a plan revision rule and executing an action. The
data on which the meta-program operates are a plan and a belief base. Such a
meta-program can be viewed as an interpreter for 3APL.

We provide a semantics for this meta-language using a transition system
(Section 6.2). Such a semantics is called an operational semantics. We link
this meta-language to object-level 3APL by showing that the meta-level oper-
ational semantics of a certain meta-program is equivalent with the object-level
operational semantics of 3APL (Section 6.3). As it turns out, providing a com-
positional semantics for object-level 3APL is problematic. Instead, we provide
a compositional or denotational semantics for the meta-language (Section 6.4).
We prove that this meta-level denotational semantics is equivalent with the
meta-level operational semantics (Section 6.5). In Section 6.5.2, we discuss
whether the specification of a denotational semantics for the meta-language can
be used for specifying a denotational semantics for object-level 3APL.

For regular procedural programming languages, studying a specific meta-
language or interpreter language is in general not very interesting. In the context
of agent programming languages it however is, for several reasons. First of all,
3APL and agent programming languages in general are non-deterministic by
nature. In the case of 3APL for example, it will often occur that several plan
revision rules are applicable at the same time. Choosing a rule for application
(or choosing whether to execute an action from the plan or to apply a rule if
both are possible) is the task of a 3APL interpreter. The choices made affect the
outcome of the execution of the agent. In the context of agents, it is interesting
to study various interpreters, as different interpreters will give rise to different
agent types. An interpreter that for example always executes a rule if possible,
thereby deferring action execution, will yield a thoughtful and passive agent. In
a similar way, very bold agents can be constructed or agents with characteristics
anywhere on this spectrum. These conceptual ideas about various agent types
fit well within the agent metaphor and therefore it is worthwhile to study an
interpreter language and the interpreters that can be programmed in it (see also
[Dastani et al., 2003]).

Further, as pointed out by Hindriks et al. [Hindriks et al., 1999a], differences
between various agent languages often mainly come down to differences in their
meta-level reasoning cycle or interpreter. To provide for a comparison between
languages, it is thus important to separate the semantic specification of object-
level and meta-level execution.

SYNTAX 109

6.1 Syntax

6.1.1 Object-Level

In this section, we present the propositional version of 3APL that we use in this
chapter. Belief bases and plans are as in Chapter 2 (Definitions 2.1 and 2.3).
Note that we use ψ for formulas from L, rather than φ. The symbol φ will be
used in a different context in this chapter.

Definition 6.1 (belief base) Assume a propositional language L with typical
formula ψ and the connectives ∧ and ¬ with the usual meaning. Then the set
of belief bases Σ with typical element σ is defined to be ℘(L).

Definition 6.2 (plan) Assume that a set BasicAction with typical element
a is given, together with a set AbstractPlan with typical element p. Let c ∈
(BasicAction∪AbstractPlan). Then the set of plans Plan with typical element π
is defined as follows.

π ::= a | p | c;π

An empty plan will in this chapter be denoted by E. In contrast with 3APL as
presented in [Hindriks et al., 1999b], we exclude non-deterministic choice and
test from plans for reasons of presentation and technical convenience. This is
no fundamental restriction as non-determinism is introduced by plan revision
rules. Furthermore, tests can be modeled as basic actions that do not affect the
belief base if executed.

Plan revision rules are as in Chapter 2 (Definition 2.4), except that the belief
condition is a formula from L, rather than a belief formula with B operators.
This is for reasons of simplicity, and the choice of language for the belief condi-
tion does not influence the issue of compositionality that we investigate in this
chapter. Note that plan revision rules are typically denoted by ρ. Also, it is
important to note that πh may not be the empty plan, since the empty plan is
not included in the definition of Plan.

Definition 6.3 (plan revision rules) A plan revision rule ρ is a triple
πh | ψ πb such that ψ ∈ L, πh, πb ∈ Plan.

The definition of a 3APL agent is presented below. It is important to note that
a 3APL agent has an initial plan, which is in contrast with the agent program
of Chapter 2 (Definition 2.5). The reason for this is that 3APL agents do not
have goals on the basis of which the agent can select plans, and so the agent is
endowed with a plan at start-up.

Definition 6.4 (3APL agent) A 3APL agent A is a tuple 〈π0, σ0,Rule, T 〉,
where Rule is a finite set plan revision rules and T : (BasicAction×Σ) → Σ is a
partial function, defining belief update through action execution.

110 SEMANTICS OF PLAN REVISION

In the following, when referring to agent A, we will assume this agent to have
a set of plan revision rules Rule and a belief update function T .

In this chapter, configurations consist of a plan and a belief base, and will
be called mental states.

Definition 6.5 (mental state) Let Σ be the set of belief bases and let Plan be
the set of plans. Then Plan × Σ is the set S with typical element s of possible
mental states of a 3APL agent. A mental state with plan π and belief base σ
will be denoted as 〈π, σ〉. If 〈π0, σ0,Rule, T 〉 is an agent, then 〈π0, σ0〉 is the
initial mental state of the agent.

6.1.2 Meta-Level

In this section, we define the meta-language that can be used to write 3APL
interpreters. The programs that can be written in this language will be called
meta-programs. Like regular imperative programs, these programs are state
transformers. The kind of states they transform however do not simply consist
of an assignment of values to variables like in regular imperative programming,
but the states that are transformed are 3APL mental states. In Section 6.2.2,
we will define the transition system with which we will define the operational
semantics of our meta-programs. We will do this using the concept of a meta-
configuration. A meta-configuration consists of a meta-program and a mental
state, i.e., the meta-program is the procedural part and the mental state is the
“data” on which the meta-program operates.

The basic elements of meta-programs are the execute action and the apply(ρ)
action (called meta-actions). The execute action is used to specify that a basic
action from the plan of an agent should be executed. The apply(ρ) action is used
to specify that a plan revision rule ρ should be applied to the plan. Composite
meta-programs can be constructed in a standard way.

Below, the meta-programs and meta-configurations for agent A are defined.
An empty meta-program will be denoted by E.1

Definition 6.6 (meta-programs) We assume a setBexp of boolean expressions
with typical element b. Let b ∈ Bexp and ρ ∈ Rule, then the set Prog of meta-
programs with typical element P is defined as follows:

P ::= execute | apply(ρ) | while b do P od | P1;P2 | P1 + P2.

Definition 6.7 (meta-configurations) Let Prog be the set of meta-programs
and let S be the set of mental states. Then Prog × S is the set of possible
meta-configurations. A meta-configuration with meta-program P and mental
state s will be denoted as 〈P, s〉.

1Note that an empty plan, as well as an empty meta-program, are denoted by E.

OPERATIONAL SEMANTICS 111

6.2 Operational Semantics

In this section, we present the operational semantics of 3APL and of the meta-
language. This is done using transition systems.

6.2.1 Object-Level Transition System

The transition system for 3APL resembles the transition system of Chapter 2,
where aspects related to goals are omitted. We will call this transition system
the object-level transition system. This transition system can also be viewed as
an adaptation of the transition system presented in [Hindriks et al., 1999b], to
fit our simplified language.

The transition systems defined in this and the following section assume 3APL
agent A. The object-level transition system (Transo) is defined by the rules given
below. The transitions are labeled to denote the kind of transition.

Definition 6.8 (action execution) Let a ∈ BasicAction.

T (a, σ) = σ′

〈a;π, σ〉 →execute 〈π, σ′〉

In the next definition, we use the operator • for concatenating two plans, as
introduced in Chapter 2 (Definition 2.8).

Definition 6.9 (rule application) Let ρ : πh | ψ πb ∈ Rule.

σ |= ψ

〈πh • π, σ〉 →apply(ρ) 〈πb • π, σ〉

6.2.2 Meta-Level Transition System

The meta-level transition system (Transm) is defined by the rules below, speci-
fying which transitions from one meta-configuration to another are possible. As
for the object-level transition system, the transitions are labeled to denote the
kind of transition.

An execute meta-action is used to execute a basic action. It can thus only be
executed in a mental state, if the first element of the plan in that mental state is
a basic action. As in the object-level transition system, the basic action a must
be executable and the result of executing a on belief base σ is defined using
the function T . After executing the meta-action execute, the meta-program is
empty and the basic action is gone from the plan. Furthermore, the belief base
is changed as defined through T .

Definition 6.10 (action execution) Let a ∈ BasicAction.

T (a, σ) = σ′

〈execute, (a;π, σ)〉 →execute 〈E, (π, σ′)〉

112 SEMANTICS OF PLAN REVISION

A meta-action apply(ρ) is used to specify that plan revision rule ρ should be
applied. It can be executed in a mental state if ρ is applicable in that mental
state. The execution of the meta-action in a mental state results in the plan of
that mental state being changed as specified by the rule.

Definition 6.11 (rule application) Let ρ : πh | ψ πb ∈ Rule.

σ |= ψ

〈apply(ρ), (πh • π, σ)〉 →apply(ρ) 〈E, (πb • π, σ)〉

In order to define the transition rule for the while construct, we first need to
specify the semantics of boolean expressions Bexp.

Definition 6.12 (semantics of boolean expressions) We assume a function
W : Bexp→ (S →W) yielding the semantics of boolean expressions, where W
is the set of truth values {tt, ff} with typical formula β.

The transition for the while construct is then defined in a standard way below.
The transition is labeled with idle, to denote that this is a transition that does
not have a counterpart in the object-level transition system.

Definition 6.13 (while)

W(b)(s)

〈while b do P od, s〉 →idle 〈P ; while b do P od, s〉

¬W(b)(s)

〈while b do P od, s〉 →idle 〈E, s〉

The transitions for sequential composition and non-deterministic choice are de-
fined as follows in a standard way. The variable x is used to pass on the type
of transition through the derivation.

Definition 6.14 (sequential composition) Let x ∈ {execute, apply(ρ), idle |
ρ ∈ Rule}.

〈P1, s〉 →x 〈P ′
1, s

′〉

〈P1;P2, s〉 →x 〈P ′
1;P2, s′〉

Definition 6.15 (non-deterministic choice) Let x ∈ {execute, apply(ρ), idle |
ρ ∈ Rule}.

〈P1, s〉 →x 〈P ′
1, s

′〉

〈P1 + P2, s〉 →x 〈P ′
1, s

′〉

〈P2, s〉 →x 〈P ′
2, s

′〉

〈P1 + P2, s〉 →x 〈P ′
2, s

′〉

OPERATIONAL SEMANTICS 113

6.2.3 Operational Semantics

Using the transition systems defined in the previous section, transitions can be
derived for 3APL and for the meta-programs. Individual transitions can be put
in sequel, yielding so called computation sequences. In the following definitions,
we define computation sequences and we specify the functions yielding these
sequences, for the object- and meta-level transition systems. We also define the
function κ, yielding the last element of a computation sequence if this sequence
is finite, and the special state ⊥ otherwise. These functions will be used to
define the operational semantics.

Definition 6.16 (computation sequences) The sets S+ and S∞ of respectively
finite and infinite computation sequences are defined as follows:

S+ = {s1, . . . , si, . . . , sn | si ∈ S, 1 ≤ i ≤ n, n ∈ N},
S∞ = {s1, . . . , si, . . . | si ∈ S, i ∈ N}.

Let S⊥ = S ∪ {⊥} and δ ∈ S+ ∪ S∞. The function κ : (S+ ∪ S∞) → S⊥ is
defined by:

κ(δ) =

{
last element of δ if δ ∈ S+,
⊥ otherwise.

The function κ is extended to handle sets of computation sequences as follows:
κ({δi | i ∈ I}) = {κ(δi) | i ∈ I}.

Definition 6.17 (functions for calculating computation sequences) The func-
tions Co and Cm are respectively of type S → ℘(S+ ∪ S∞) and
Prog → (S → ℘(S+ ∪ S∞)).

Co(s) = {s1, . . . , sn ∈ ℘(S+) | s→t1 s1 →t2 . . .→tn
〈E, σn〉

is a finite sequence of transitions in Transo} ∪
{s1, . . . , si, . . . ∈ ℘(S∞) | s→t1 s1 →t2 . . .→ti

si →ti+1
. . .

is an infinite sequence of transitions in Transo}
Cm(P)(s) = {s1, . . . , sn ∈ ℘(S+) | 〈P, s〉 →x1

〈P1, s1〉 →x2
. . .

→xn
〈E, sn〉

is a finite sequence of transitions in Transm} ∪
{s1, . . . , si, . . . ∈ ℘(S∞) | 〈P, s〉 →x1

〈P1, s1〉 →x2
. . .

→xi
〈Pi, si〉 →xi+1

. . .
is an infinite sequence of transitions in Transm}

Note that both Co and Cm return sequences of mental states. Co just returns
the mental states comprising the sequences of transitions derived in Transo,
whereas Cm removes the meta-program component of the meta-configurations
of the transition sequences derived in Transm. The reason for defining these
functions in this way is that we want to prove equivalence of the object- and
meta-level transition systems: both yield the same transition sequences with

114 SEMANTICS OF PLAN REVISION

respect to the mental states (or that is for a certain meta-program, see Section
6.3). Also note that for Co as well as for Cm, we only take into account infinite
sequences and successfully terminating sequences, i.e., those sequences ending
in a mental state or meta-configuration with an empty plan or meta-program
respectively.

The operational semantics of object- and meta-level programs are functions
Oo and Om, yielding, for each mental state s and possibly meta-program P , a set
of mental states corresponding to the final states reachable through executing
the plan of s or executing the meta-program P respectively. If there is an infinite
execution path, the set of mental states will contain the element ⊥.

Definition 6.18 (operational semantics) Let s ∈ S. The functions Oo and
Om are respectively of type S⊥ → ℘(S⊥) and Prog → (S⊥ → ℘(S⊥)).

Oo(s) = κ(Co(s))
Om(P)(s) = κ(Cm(P)(s))
Oo(⊥) = Om(P)(⊥) = {⊥}

Note that the operational semantic functions can take any state s ∈ S⊥, includ-
ing ⊥, as input. This will turn out to be necessary for giving the equivalence
result of Section 6.5.

6.3 Equivalence of Object- and Meta-Level Operational Semantics

In the previous section, we have defined the operational semantics for 3APL
and for meta-programs. Using the meta-language, one can write various 3APL
interpreters. Here we will consider an interpreter of which the operational se-
mantics will prove to be equivalent to the object-level operational semantics of
3APL. This interpreter for agent A is defined by the following meta-program.

Definition 6.19 (interpreter) Let
⋃n

i=1 ρi = Rule, let s ∈ S and let
notEmptyP lan ∈ Bexp be a boolean expression such that
W(notEmptyP lan)(s) = tt if the plan component of s is not equal to E and
W(notEmptyP lan)(s) = ff otherwise. Then the interpreter can be defined as
follows.

while notEmptyP lan do (execute + apply(ρ1) + . . . + apply(ρn)) od

In the sequel, we will use the keyword interpreter to abbreviate this meta-
program.

This interpreter thus iterates the execution of a non-deterministic choice be-
tween all basic meta-actions, until the plan component of the mental state is
empty. Intuitively, if there is a possibility for the interpreter to execute some
meta-action in mental state s, resulting in a changed state s′, it is also possible to

EQUIVALENCE OF OBJECT- AND META-LEVEL OPERATIONAL SEMANTICS 115

go from s to s′ in an object-level execution through a corresponding object-level
transition. At each iteration, an executable meta-action is non-deterministically
chosen for execution. The interpreter thus, as it were, non-deterministically
chooses a path through the object-level transition tree. The possible transitions
defined by this interpreter correspond to the possible transitions in the object-
level transition system and therefore the object-level operational semantics is
equivalent to the meta-level operational semantics of this meta-program. In the
sequel we will provide some lemma’s and a corollary from which this equivalence
result will prove to follow immediately.

Remark 6.1 (reactive plan revision rules) Before moving on to proving the
equivalence theorem, we have to make the following remark. The equivalence
between object-level 3APL and the interpreter defined above would not hold in
general if the empty plan would be part of the language of plans Plan. This would
result in the possibility of Rule containing reactive rules of the form E | ψ πb.
Such rules with an empty plan as the head would be applicable, regardless of
the plan of the agent in a mental state, since any plan has the empty plan as a
prefix (the plan πh in Definition 6.9 would then be E).

The empty plan was chosen as a termination condition for the interpreter
and the interpreter will thus stop applying rules in a mental state once the plan
in this state is empty. Rule application is however still a possible transition
in the object-level transition system in case of the presence of reactive rules,
as these are applicable to empty plans. Having an empty plan or program as
a termination condition is in line with the notion of successful termination in
procedural programming languages.

We prove the equivalence result by proving a weak bisimulation between Transo

and Transm(interpreter), which are defined assuming agent A (see the text below
Definition 6.4 and Section 6.2.1). From this, we can then prove that Oo and
Om(interpreter) are equivalent. In order to do this, we first state the following
proposition. It follows immediately from the transition systems.

Proposition 6.1 (object-level versus meta-level transitions)

s →execute s′ is a transition in Transo ⇔
〈execute, s〉 →execute 〈E, s′〉 is a transition in Transm

s →apply(ρ) s′ is a transition in Transo ⇔
〈apply(ρ), s〉 →apply(ρ) 〈E, s′〉 is a transition in Transm

A weak bisimulation between two transition systems in general, is a relation
between the systems such that the following holds: if a transition step can be
derived in system one, it should be possible to derive a “similar” (sequence of)
transition(s) in system two and if a transition step can be derived in system two,
it should be possible to derive a “similar” (sequence of) transition(s) in system

116 SEMANTICS OF PLAN REVISION

one. To explain what we mean by “similar” transitions, we need the notion of
an idle transition. In a transition system, certain kinds of transitions can be
labelled as an idle transition, for example transitions derived using the while
rule (Definition 6.13). These transitions can be considered “implementation
details” of a certain transition system and we do not want to take these into
account when studying the relation between this and another transition system.
A non-idle transition in system one now is similar to a sequence of transitions
in system two if the following holds: this sequence of transitions in system two
should consist of one non-idle transition and otherwise idle transitions, and the
non-idle transition in this sequence should be similar to the transition in system
one, i.e., the relevant elements of the configurations involved, should match.

In the context of our transition systems Transo and Transm, we can now
phrase the following bisimulation lemma.

Lemma 6.1 (weak bisimulation) Let +∗ abbreviate
(execute + apply(ρ1) + . . . + apply(ρn)). Let Transm(P) be the restric-
tion of Transm to those transitions that are part of some sequence of transitions
starting in initial meta-configuration 〈P, s0〉, with s0 ∈ S an arbitrary mental
state and let t ∈ {execute, apply(ρ) | ρ ∈ Rule}. Then a weak bisimulation exists
between Transo and Transm(interpreter), i.e., the following properties hold.

s→t s
′ is a transition in Transo ⇒1

〈interpreter, s〉 →idle 〈+∗; interpreter, s〉 →t 〈interpreter, s′〉

is a transition in Transm(interpreter)

〈+∗; interpreter, s〉 →t 〈interpreter, s′〉

is a transition in Transm(interpreter) ⇒2

s→t s
′ is a transition in Transo

Proof: (⇒1) Assume s →t s′ is a transition in Transo for
t ∈ {execute, apply(ρ) | ρ ∈ Rule}. Using Proposition 6.1, the following
then is a transition in Transm.

〈(execute + apply(ρ1) + . . . + apply(ρn)); interpreter, s〉 →t

〈interpreter, s′〉 (6.1)

Furthermore, by the assumption that s→t s
′ is a transition in Transo and by the

fact that no reactive rules are contained in Rule (see Remark 6.1), we know that
the plan of s is not empty as both rule application and basic action execution
require a non-empty plan. Now, using the fact that the plan of s is not empty,
the following transition can be derived in Transm(interpreter).

〈interpreter, s〉 →idle

〈(execute + apply(ρ1) + . . . + apply(ρn)); interpreter, s〉 (6.2)

EQUIVALENCE OF OBJECT- AND META-LEVEL OPERATIONAL SEMANTICS 117

The transitions (6.2) and (6.1) can be concatenated, yielding the desired result.

(⇒2) Assume 〈+∗; interpreter, s〉 →t 〈interpreter, s′〉 is a transition in
Transm(interpreter). Then, 〈+∗, s〉 →t 〈E, s′〉 must be a transition in
Transm (Definition 6.14). Therefore, by Proposition 6.1, we can conclude that
s→t s

′ is a transition in Transo. 2

We are now in a position to give the equivalence theorem of this section.

Theorem 6.1 (Oo = Om(interpreter))

∀s ∈ S : Oo(s) = Om(interpreter)(s)

Proof: As equivalence of object-level and meta-level operational semantics
holds for input state ⊥ by Definition 6.18, we will only need to prove equiv-
alence for input states s ∈ S. Proving this theorem amounts to showing the
following: s ∈ Oo ⇔ s ∈ Om(interpreter).
(⇒) Assume s ∈ Oo. This means that a sequence of transitions
s0 →t1 . . . →tn

s must be derivable in Transo. By repeated application of
Lemma 6.1, we know that then there must also be a sequence of transitions in
Transm(interpreter) of the following form:

〈interpreter, s0〉 →idle . . .→tn−1

〈interpreter, s′〉 →idle 〈+∗; interpreter, s′〉 →tn
〈interpreter, s〉. (6.3)

As s ∈ Oo, we know that there cannot be a transition s →tn+1
s′′ for some

mental state s′′, i.e., it is not possible to execute an execute or apply meta-action
in s. Therefore, we know that the only possible transition from 〈interpreter, s〉
in (6.3) above, is . . .→idle 〈E, s〉. From this, we have that s ∈ Om(interpreter).

(⇐) Assume that s ∈ Om(interpreter). Then there must be a sequence
of transitions in Transm(interpreter) of the form:

〈interpreter, s0〉 →idle 〈+∗; interpreter, s0〉 →t1 . . .→tn−1

〈interpreter, s′〉 →idle 〈+∗; interpreter, s′〉 →tn

〈interpreter, s〉 →idle 〈E, s〉.

From this, we can conclude by Lemma 6.1 that s0 →t1 . . . →tn−1
s′ →tn

s 6→
must be a sequence of transitions in Transo. Therefore, it must be the case that
s ∈ Oo. 2

Note that it is easy to show that Oo = Om(P) does not hold for all meta-
programs P .

118 SEMANTICS OF PLAN REVISION

6.4 Denotational Semantics

In this section, we will define the denotational semantics of meta-programs. The
method used is the fixed point approach as can be found in [Stoy, 1977]. The
semantics greatly resembles the one in [de Bakker, 1980, Chapter 7] to which
we refer for a detailed explanation of the subject.

A denotational semantics for a programming language in general is, like
an operational semantics, a function taking a statement P and a state s and
yielding a state (or set of states in case of a non-deterministic language) resulting
from executing P in s. The denotational semantics for meta-programs is thus,
like the operational semantics of Definition 6.18, a function taking a meta-
program P and mental state s and yielding the set of mental states resulting
from executing P in s, i.e., a function of type Prog → (S⊥ → ℘(S⊥))2. Contrary
however to an operational semantic function, a denotational semantic function
is not defined using the concept of computation sequences and, in contrast
with most operational semantics, it is defined compositionally [Tennent, 1991,
Mosses, 1990, de Bakker, 1980].

6.4.1 Preliminaries

In order to define the denotational semantics of meta-programs, we need some
mathematical machinery. Most importantly, the domains used in defining the
semantics of meta-programs are designed as so-called complete partial orders
(CPOs). A CPO is a set with an ordering on its elements with certain char-
acteristics. This concept is defined in terms of the notions of partially ordered
sets, least upper bounds and chains (see also [de Bakker, 1980] for a rigorous
treatment of the subject).

Definition 6.20 (partially ordered set) Let C be an arbitrary set. A partial
order ⊑ on C is a subset of C × C which satisfies:

1. c ⊑ c (reflexivity),

2. if c1 ⊑ c2 and c2 ⊑ c1 then c1 = c2 (antisymmetry),

3. if c1 ⊑ c2 and c2 ⊑ c3 then c1 ⊑ c3 (transitivity).

In the sequel, we will be concerned not only with arbitrary sets with partial
orderings, but also with sets of functions with an ordering. A partial ordering
on a set of functions of type C1 → C2 can be derived from the orderings on C1

and C2 as defined below.

2The type of the denotational semantic function is actually slightly different as will become
clear in the sequel, but that is not important for the current discussion.

DENOTATIONAL SEMANTICS 119

Definition 6.21 (partial ordering on functions) Let (C1,⊑1) and (C2,⊑2) be
two partially ordered sets. An ordering ⊑ on C1 → C2 is defined as follows,
where f, g ∈ C1 → C2:

f ⊑ g ⇔ ∀c ∈ C1 : f(c) ⊑2 g(c).

Definition 6.22 (least upper bound) Let C′ ⊆ C. z ∈ C is called the least
upper bound of C′ if:

1. z is an upper bound: ∀x ∈ C′ : x ⊑ z,

2. z is the least upper bound: ∀y ∈ C : ((∀x ∈ C′ : x ⊑ y) ⇒ z ⊑ y).

The least upper bound of a set C′ will be denoted by
⊔
C′.

Definition 6.23 (least upper bound of a sequence) The least upper bound of
a sequence 〈c0, c1, . . .〉 is denoted by

⊔∞
i=0 ci or by

⊔
〈ci〉∞i=0 and is defined as

follows, where “c in 〈ci〉∞i=0” means that c is an element of the sequence 〈ci〉∞i=0:

⊔
〈ci〉∞i=0 =

⊔
{c | c in 〈ci〉∞i=0}.

Definition 6.24 (chains) A chain on (C,⊑) is an infinite sequence 〈ci〉∞i=0

such that for i ∈ N : ci ⊑ ci+1.

Having defined partially ordered sets, least upper bounds and chains, we are
now in a position to define complete partially ordered sets.

Definition 6.25 (CPO) A complete partially ordered set is a set C with a
partial order ⊑ which satisfies the following requirements:

1. there is a least element with respect to ⊑, i.e., an element ⊥ ∈ C such
that ∀c ∈ C : ⊥ ⊑ c,

2. each chain 〈ci〉∞i=0 in C has a least upper bound (
⊔∞

i=0 ci) ∈ C.

The following facts about CPOs of functions will turn out to be useful. For
proofs, see for example [de Bakker, 1980].

Fact 6.1 (CPO of functions) Let (C1,⊑1) and (C2,⊑2) be CPOs. Then
(C1 → C2,⊑) with ⊑ as in Definition 6.21 is a CPO.

Fact 6.2 (least upper bound of a chain of functions) Let (C1,⊑1) and
(C2,⊑2) be CPOs and let 〈fi〉∞i=0 be a chain of functions in C1 → C2. Then the
function λc1 ·

⊔∞
i=0 fi(c1) is the least upper bound of this chain and therefore

(
⊔∞

i=0 fi)(c1) =
⊔∞

i=0 fi(c1) for all c1 ∈ C1.

The semantics of meta-programs will be defined using the notion of the least
fixed point of a function on a CPO.

120 SEMANTICS OF PLAN REVISION

Definition 6.26 (least fixed point) Let (C,⊑) a CPO, f : C → C and let
x ∈ C.� x is a fixed point of f iff f(x) = x� x is a least fixed point of f iff x is a fixed point of f and for each fixed

point y of f : x ⊑ y

The least fixed point of a function f is denoted by µf .

Finally, we will need the following definition and fact.

Definition 6.27 (continuity) Let (C1,⊑1), (C2,⊑2) be CPOs. Then a func-
tion f : C1 → C2 is continuous iff for each chain 〈ci〉∞i=0 in C1, the following
holds:

f(
⊔∞

i=0 ci) =
⊔∞

i=0 f(ci).

Fact 6.3 (fixed point theorem) Let C be a CPO and let f : C → C. If f is
continuous, then the least fixed point µf exists and equals

⊔∞
i=0 f

i(⊥), where
f0(⊥) = ⊥ and f i+1(⊥) = f(f i(⊥)).

For a proof, see for example De Bakker [de Bakker, 1980].

6.4.2 Definition of Meta-Level Denotational Semantics

We will now show how the domains used in defining the semantics of meta-
programs are designed as CPOs. The reason for designing these as CPOs will
become clear in the sequel.

Definition 6.28 (domains of interpretation) Let W be the set of truth values
of Definition 6.12 and let S be the set of possible mental states of Definition
6.5. Then the sets W⊥ and S⊥ are defined as CPOs as follows:

W⊥ = W ∪ {⊥W⊥
} CPO by β1 ⊑ β2 iff β1 = ⊥W⊥

or β1 = β2,
S⊥ = S ∪ {⊥} CPO analogously.

Note that we use ⊥ to denote the bottom element of S⊥ and that we use
⊥C for the bottom element of any other set C. As the set of mental states is
extended with a bottom element, we extend the semantics of boolean expressions
of Definition 6.12 to a strict function, i.e., yielding ⊥W⊥

for an input state ⊥.
In the definition of the denotational semantics, we will use an if-then-else

function as defined below.

Definition 6.29 (if-then-else) Let C be a CPO, c1, c2,⊥C ∈ C and β ∈ W⊥.
Then the if-then-else function of type W⊥ → C is defined as follows.

if β then c1 else c2 fi =

c1 if β = tt
c2 if β = ff
⊥C if β = ⊥W⊥

DENOTATIONAL SEMANTICS 121

Because our meta-language is non-deterministic, the denotational semantics is
not a function from states to states, but a function from states to sets of states.
These resulting sets of states can be finite or infinite. In case of bounded non-
determinism3, these infinite sets of states have ⊥ as one of their members. This
property may be explained by viewing the execution of a program as a tree
of computations and then using König’s lemma which tells us that a finitely-
branching tree with infinitely many nodes has at least one infinite path (see
[de Bakker, 1980]). The meta-language is indeed bounded non-deterministic4,
and the result of executing a meta-program P in some state is thus either a
finite set of states or an infinite set of states containing ⊥. We therefore specify
the following domain as the result domain of the denotational semantic function
instead of ℘(S⊥).

Definition 6.30 (T) The set T with typical element τ is defined as follows:
T = {τ ∈ ℘(S⊥) | τ finite or ⊥ ∈ τ}.

The advantage of using T instead of ℘(S⊥) as the result domain is that T can
nicely be designed as a CPO with the following ordering [Egli, 1975].

Definition 6.31 (Egli-Milner ordering) Let τ1, τ2 ∈ T . τ1 ⊑ τ2 holds iff either
⊥ ∈ τ1 and τ1 \ {⊥} ⊆ τ2, or ⊥ 6∈ τ1 and τ1 = τ2. Under this ordering, the set
{⊥} is ⊥T .

We are now ready to give the denotational semantics of meta-programs. We
will first give the definition and then justify and explain it.

Definition 6.32 (denotational semantics of meta-programs)
Let φ1, φ2 : S⊥ → T . Then we define the following functions.

φ̂ : T → T = λτ ·
⋃

s∈τ φ(s)

φ1 ◦ φ2 : S⊥ → T = λs · φ̂1(φ2(s))

Let (π, σ) ∈ S. The denotational semantics of meta-programs
M : Prog → (S⊥ → T) is then defined as follows.

MJexecuteK(π, σ) =

{(π′, σ′)} if π = a;π′

with a ∈ BasicAction and
T (a, σ) = σ′

∅ otherwise
MJexecuteK ⊥ = ⊥T

MJapply(ρ)K(π, σ) =

{(πb • π′, σ)} if σ |= ψ and π = πh • π′

with ρ : πh | ψ πb ∈ Rule

∅ otherwise
MJapply(ρ)K ⊥ = ⊥T

3Bounded non-determinism means that at any state during computation, the number of
possible next states is finite.

4Only a finite number of rule applications and action executions are possible in any state,
since the set of plan revision rules of an agent is finite (see Definition 6.4).

122 SEMANTICS OF PLAN REVISION

MJwhile b do P odK = µΦ
MJP1;P2K = MJP2K ◦MJP1K
MJP1 + P2K = MJP1K ∪MJP2K

The function Φ : (S⊥ → T) → (S⊥ → T) used above is defined as

λφ · λs · if W(b)(s) then φ̂(MJP K(s)) else {s} fi, using Definition 6.29.

Meta-actions

The semantics of meta-actions is straightforward. The result of executing an
execute meta-action in some mental state s is a set containing the mental state
resulting from executing the basic action of the plan of s. The result is empty
if there is no basic action on the plan to execute. The result of executing an
apply(ρ) meta-action in state s is a set containing the mental state resulting
from applying ρ in s. If ρ is not applicable, the result is the empty set.

While

The semantics of the while construct is more involved, but based on standard
techniques as described in [de Bakker, 1980]. In summary, it is as follows. What
we want to do, is define a function specifying the semantics of the while con-
struct MJwhile b do P odK, the type of which should be S⊥ → T , in accordance
with the type of M. The function should be defined compositionally, i.e., it can
only use the semantics of the guard and of the body of the while. This is
required for M to be well-defined. The requirement of compositionality is sat-
isfied, as the semantics is defined to be the least fixed point of the operator Φ,
which is defined in terms of the semantics of the guard and body of the while.

The least fixed point of an operator does not always exist. By the fixed
point theorem however (Fact 6.3), we know that if the operator is continuous
(Definition 6.27), the least fixed point does exist and is obtainable within ω
steps. By proving that Φ is continuous, we can thus conclude that µΦ exists
and therefore that M is well-defined.

We explain the semantics in detail by first defining a set of requirements on
the semantics and then giving an intuitive understanding of the general ideas
behind the semantics. Next, we will go into more detail on the semantics of a
while construct in deterministic languages, followed by details on the semantics
as defined above for our non-deterministic language.

Now, what we want to do, is define a function specifying the semantics of the
while construct MJwhile b do P odK, the type of which should be S⊥ → T ,
in accordance with the type of M. The function can moreover not be de-
fined circularly, but it should be defined compositionally, i.e., it can only use
the semantics of the guard and of the body of the while. This ensures that
M is well-defined. The semantics of the while can thus not be defined as
MJwhile b do P odK = MJif b then P ; while b do P od else skip fiK where

DENOTATIONAL SEMANTICS 123

skip is a statement doing nothing, because this would violate the requirement
of compositionality.

Intuitively, the semantics of while b do P od should correspond to repeat-
edly executing P , until b is false. The semantics could thus be something like:

MJif b then P ; if b then P ; . . . else skip fi else skip fiK.

The number of nestings of if-then-else constructs should however be infinite, as
we cannot determine in advance how many times the body of the while loop
will be executed, worse still, it could be the case that it will be executed an
infinite number of times in case of non-termination. As programs are however
by definition finite syntactic objects (see Definition 6.6), the semantics of the
while cannot be defined in this way. The idea of the solution now is, not to try
to specify the semantics at once using infinitely many nestings of if-then-else
constructs, but instead to specify the semantics using approximating functions,
where some approximation is at least as good as another if it contains more
nestings of if-then-else constructs. So to be a little more specific, what we
do is specify a sequence of approximating functions 〈φi〉∞i=0, where φi roughly
speaking corresponds to executing the body of the while construct less than i
times and the idea now is that the limit of this sequence of approximations is
the semantics of the while we are looking for.

Deterministic languages Having provided some vague intuitive ideas about
the semantics, we will now go into more detail and use the theory on CPOs
of Section 6.4.1. To simplify matters, we will first consider a deterministic
language. The function defining the semantics of the while should then be of
type S⊥ → S⊥. The domain S⊥ is designed as a CPO and therefore the domain
of functions S⊥ → S⊥ is also a CPO (see Fact 6.1). What we are looking for,
is a chain of approximating functions 〈φi〉∞i=0 in this CPO S⊥ → S⊥, the least
upper bound of which should yield the desired semantics for the while. As we
are looking for a chain (see Definition 6.24) of functions 〈φi〉

∞
i=0, it should be

the case that for all s ∈ S⊥ : φi(s) ⊑ φj(s) for i ≤ j. Intuitively, a function φj

is “as least as good” an approximation as φi.

Approximating functions with the following behavior will do the trick. A
function φi should be defined such, that the result of φi applied to an initial state
s0, is the state in which the while loop terminates if less than i runs through
the loop are needed for termination. If i or more runs are needed, i.e., if the
execution of the while has not terminated after i− 1 runs, the result should be
⊥. To illustrate how these approximating functions can be defined to yield this
behavior, we will give the first few approximations φ0, φ1 and φ2. In order to do
this, we need to introduce a special statement diverge, which yields the state
⊥ if executed. It can be shown that with the functions φi as defined below,
〈φi〉∞i=0 is indeed a chain. Therefore it has a least upper bound by definition,

124 SEMANTICS OF PLAN REVISION

which ensures that the semantics is well-defined.

φ0 = MJdivergeK

φ1 = MJif b then P ; diverge else skip fiK
φ2 = MJif b then

P ; if b then P ; diverge else skip fi

else skip fiK
...

These definitions can be generalized, yielding the following definition of the
functions φi in which we use the if-then-else function of Definition 6.29.

φ0 = ⊥S⊥→S⊥

= λs · ⊥
φi+1 = λs · if W(b)(s) then φi(MJP K(s)) else s fi

Now, as 〈φi〉∞i=0 is a chain, so is 〈φi(s0)〉∞i=0. Using Fact 6.2, we know that⊔∞
i=0 φi = λs0 ·

⊔∞
i=0 φi(s0) or (

⊔∞
i=0 φi)(s0) =

⊔∞
i=0 φi(s0), i.e., the semantics

of the execution of the while construct in an initial state s0, is the least upper
bound of the chain 〈φi(s0)〉∞i=0.

The semantic function defined in this way, will indeed yield the desired
behavior for the while loop as sketched above, which we will show now. If the
while loop is non-terminating, the chain 〈φi(s0)〉∞i=0 will be 〈⊥,⊥,⊥, . . .〉. This
is because the guard b will remain true and therefore the statement diverge will
be “reached” in each φi. Taking the least upper bound of this chain will give us
⊥, which corresponds to the desired semantics of non-terminating while loops.
If the loop terminates in some state s, the sequence 〈φi(s0)〉

∞
i=0 will be a chain

of the form 〈⊥,⊥,⊥, . . . ,⊥, s, s, s, . . .〉, as can easily be checked. The state s
then is the least upper bound.

Finally, to prepare for the treatment of the semantics as we have defined it
for the non-deterministic case, the following must still be explained. Above, we
have defined MJwhile b do P odK as

⊔∞
i=0 φi. Instead of defining the semantics

using least upper bounds, we could have given an equivalent least fixed point
characterization as follows. Let φ =

⊔∞
i=0 φi. Then we can give an operator

Φ : (S⊥ → S⊥) → (S⊥ → S⊥), i.e., a function on CPO S⊥ → S⊥, such that
the least fixed point of this operator equals φ, i.e., µΦ = φ. This operator Φ is
the function λφ · λs · if W(b)(s) then φ(MJP K(s)) else s fi. We know that
if Φ is continuous, µΦ =

⊔∞
i=0 Φi(⊥S⊥→S⊥

) by the least fixed point theorem
(Fact 6.3). It can be shown that Φ is indeed continuous and furthermore, that
Φi(⊥S⊥→S⊥

) = φi. Therefore
⊔∞

i=0 φi =
⊔∞

i=0 Φi(⊥S⊥→S⊥
) and thus φ = µΦ.

The question of whether to specify the semantics of a while construct using least
upper bounds or least fixed points, is basically a matter of taste. We have chosen
to use a least fixed point characterization in the semantics of meta-programs.

DENOTATIONAL SEMANTICS 125

Non-deterministic languages Having explained the denotational semantics
of a while loop in deterministic languages, we will now move on to the non-
deterministic case, as our meta-programming language is non-deterministic. In
the non-deterministic case, the execution of a while loop could lead to a set of
possible resulting end states, including the state ⊥ if there is a possibility of
non-termination. A certain approximation φi now is a function yielding a set
of end states that can be reached in less than i runs through the loop. It will
contain bottom if it is possible that the execution of the loop has not terminated
after i runs. The limit of the sequence 〈φi(s0)〉

∞
i=0 will thus be either a finite

set of states possibly containing ⊥ (if there is a possibility of non-termination)
or an infinite set which will always contain ⊥ because of Königs lemma (see
introduction). The semantic function we are looking for, will thus be of type
S⊥ → T .

As stated, the semantics of the while construct in our meta-language is
defined using least fixed points. To be more specific, it is defined as the least
fixed point of the operator Φ : (S⊥ → T) → (S⊥ → T) (see Definition 6.32). Φ
is thus a function on the CPO S⊥ → T (Definitions 6.28 and 6.31, and Fact 6.1)
and the semantics of the while is defined to be µΦ. We must make sure that µΦ
actually exists, in order for M to be well-defined. We do this by showing that
Φ is continuous (see Section 6.4.3), in which case µΦ =

⊔∞
i=0 Φi(⊥S⊥→T). The

bottom element ⊥S⊥→T of the CPO S⊥ → T is λs · {⊥}, i.e., a function that
takes some state and returns a set of states containing only the bottom state.
Note that the type of Φ is such, that µΦ yields a semantic function φ : S⊥ → T ,
corresponding to the type of the function MJwhile b do P odK. The operator
Φ is thus of the desired type.

The operator Φ we use, is a non-deterministic version of the Φ operator of the
previous paragraph. This is established through the function
ˆ : (S⊥ → T) → (T → T). This function takes a function φ of type S⊥ → T
and a set τ ∈ T and returns the union of φ applied to each element s ∈ τ , i.e.,⋃

s∈τ φ(s). We will now give the first few elements of the sequence of approxi-
mations 〈Φi(⊥S⊥→T)〉∞i=0, to illustrate how Φ is defined in the non-deterministic
case. For reasons of presentation, we will assume that MJP K(s) 6= ∅ in which

case (ˆ (λs · {⊥}))(MJP K(s)) = {⊥}. As it follows from the definition of φ̂

(Definition 6.32) that φ̂(∅) = ∅, some equivalences as stated below would not

126 SEMANTICS OF PLAN REVISION

hold in this case.

Φ0(⊥S⊥→T) = λs · {⊥}
Φ1(⊥S⊥→T) = Φ(Φ0(⊥S⊥→T))

= Φ(λs · {⊥})
= λs · if W(b)(s) then (ˆ(λs · {⊥}))(MJP K(s)) else {s} fi

= λs · if W(b)(s) then {⊥} else {s} fi

Φ2(⊥S⊥→T) = Φ(Φ1(⊥S⊥→T))
= Φ(λs · if W(b)(s) then {⊥} else {s} fi)
= λs · if W(b)(s)

then

(ˆ(λs′ · if W(b)(s′)
then

{⊥}
else

{s′} fi))(MJP K(s))
else {s} fi

Φ3(⊥S⊥→T) = Φ(Φ2(⊥S⊥→T))
= . . .

The zeroth approximation by definition (see Fact 6.3) always yields the bottom
element of the CPO S⊥ → T . The first approximation is a function that takes
an initial state s and yields either the set {⊥} if the guard is true in s, i.e., if
there will be one or more runs through the loop, or the set {s} if the guard is
false in s, i.e., if the while loop is such that it terminates in s without going
through the loop. The second approximation is a function that takes an initial
state s and yields, like the first approximation, the set {s} if the guard is false
in s. It thus returns the same result as the first approximation if it takes less
than one runs through the loop to terminate. This is exactly what we want,
as the first approximation will be as good as it gets in this case. If the guard
is true in s, the function λs′ · if W(b)(s′) then {⊥} else {s′} fi is applied to
each state in the set of states resulting from executing the body of the while
in s, i.e., the set MJP K(s) which we will refer to by τ ′. The function thus
takes some state s′ from τ ′ and either yields {s′} if the guard is true in s′, i.e.,
if the while can terminate in s′ after one run through the loop, or yields {⊥}
if the guard is false in s′, i.e., if the execution path going through s′ has not
ended. The functionˆnow takes the union of the results for each s′, yielding a
set of states containing the states in which the while loop can end after one run
through the loop, and containing ⊥ if it is possible that the while loop has not
terminated after one run. The function Φ is thus defined such that a certain
approximation Φi(⊥S⊥→T) is a function yielding a set of end states that can be
reached in less than i runs through the loop. It will contain ⊥ if it is possible
that the execution of the loop has not terminated after i runs.

DENOTATIONAL SEMANTICS 127

Sequential Composition and Non-Deterministic Choice

The semantics of the sequential composition and non-deterministic choice oper-
ator is as one would expect.

6.4.3 Continuity of Φ

In this section, we prove continuity of the function Φ of Definition 6.32, because,
if this is the case, the least fixed point µΦ exists and is obtainable within ω steps.
This is necessary in order for M to be well-defined.

Theorem 6.2 (continuity of Φ) The function Φ as given in Definition 6.32 is
continuous.

The proof is analogous to continuity proofs given in [de Bakker, 1980], and uses
two lemmas and a fact. In Definition 6.27, the concept of continuity was defined.
As we will state below in Fact 6.4, an equivalent definition can be given using
the concept of monotonicity of a function.

Definition 6.33 (monotonicity) Let (C,⊑), (C′,⊑) be CPOs and c1, c2 ∈ C.
Then a function f : C → C′ is monotone iff the following holds:

c1 ⊑ c2 ⇔ f(c1) ⊑ f(c2).

Fact 6.4 (continuity) Let (C,⊑), (C′,⊑) be CPOs and let f : C → C′ be a
function. Then the following holds.

for all chains 〈ci〉∞i=0 in C : f(
⊔∞

i=0 ci) =
⊔∞

i=0 f(ci)
⇔

f is monotone and for all chains 〈ci〉∞i=0 in C : f(
⊔∞

i=0 ci) ⊑
⊔∞

i=0 f(ci)

Proof: This proof is an adaptation of a proof provided to us by Paul Harren-
stein.

(⇒): Assume for all chains 〈ci〉∞i=0 in C : f(
⊔
〈ci〉∞i=0) =

⊔
〈f(ci)〉∞i=0.

Then f(
⊔
〈ci〉∞i=0) ⊑

⊔
〈f(ci)〉∞i=0 trivially holds for all chains 〈ci〉∞i=0 in C. To

prove: monotonicity of f .
Let c, c′ ∈ C and assume c ⊑ c′. The following holds: f(c) ⊑

⊔
{f(c), f(c′)}.

As
⊔
{f(c), f(c′)} =

⊔
〈f(ci)〉∞i=0 with 〈f(ci)〉∞i=0 ∈ Chain({f(c), f(c′)})

where Chain({f(c), f(c′)}) is the set of chains that can be formed using the
elements of the set {f(c), f(c′)}, we can conclude that f(c) ⊑ f(

⊔
〈ci〉∞i=0)

with 〈ci〉∞i=0 ∈ Chain({c, c′}) by assumption. As
⊔
〈ci〉∞i=0 =

⊔
{c, c′}, we can

conclude that f(c) ⊑ f(c′), using that c′ =
⊔
{c, c′}.

(⇐): Assume that f is monotone and that f(
⊔
〈ci〉∞i=0) ⊑

⊔
〈f(ci)〉∞i=0

128 SEMANTICS OF PLAN REVISION

holds for all chains 〈ci〉
∞
i=0 in C. Then we need to prove that for all chains

〈ci〉∞i=0 in C :
⊔
〈f(ci)〉∞i=0 ⊑ f(

⊔
〈ci〉∞i=0). Take an arbitrary chain 〈ci〉∞i=0 in C.

Let X = {c | c in 〈ci〉∞i=0} and let X ′ = {f(c) | c in 〈ci〉∞i=0} = {f(x) | x ∈ X}.
To prove:

⊔
X ′ ⊑ f(

⊔
X).

Take some x ∈ X . Then x ⊑
⊔
X and thus by monotonicity of f :

f(x) ⊑ f(
⊔
X). With x having been chosen arbitrarily, we may conclude that

f(
⊔
X) is an upper bound of X ′. Hence,

⊔
X ′ ⊑ f(

⊔
X). 2

Below, we will prove continuity of Φ by proving that Φ is monotone and that
for all chains 〈φi〉∞i=0 in S⊥ → T , the following holds: Φ(

⊔∞
i=0 φi) ⊑

⊔∞
i=0 Φ(φi).

Lemma 6.2 (monotonicity of Φ) The function Φ as given in Definition 6.32
is monotone, i.e., the following holds for all φi, φj ∈ S⊥ → T :

φi ⊑ φj ⇒ Φ(φi) ⊑ Φ(φj).

Proof: Take arbitrary φi, φj ∈ S⊥ → T . Let φi ⊑ φj . Then we need to prove
that ∀s ∈ S⊥ : Φ(φi)(s) ⊑ Φ(φj)(s). Take an arbitrary s ∈ S⊥. We need to
prove that Φ(φi)(s) ⊑ Φ(φj)(s), i.e., that

if W(b)(s) then φ̂i(MJP K(s)) else {s} fi ⊑

if W(b)(s) then φ̂j(MJP K(s)) else {s} fi.

We distinguish three cases.

1. Let W(b)(s) = ⊥W⊥
, then to prove: {⊥} ⊑ {⊥}. This is true by Definition

6.31.

2. Let W(b)(s) = ff , then to prove: {s} ⊑ {s}. This is true by Definition
6.31.

3. Let W(b)(s) = tt, then to prove: φ̂i(MJP K(s)) ⊑ φ̂j(MJP K(s)). Let

τ ′ = MJP K(s). Using the definition of φ̂, we rewrite what needs to be
proven into

⋃
s′∈τ ′ φi(s

′) ⊑
⋃

s′∈τ ′ φj(s
′). Now we can distinguish two

cases.

(a) Let ⊥ 6∈
⋃

s′∈τ ′ φi(s
′). Then to prove:

⋃
s′∈τ ′ φi(s

′) =
⋃

s′∈τ ′ φj(s
′).

From the assumption that ⊥ 6∈
⋃

s′∈τ ′ φi(s
′), we can conclude that

⊥ 6∈ φi(s
′) for all s′ ∈ τ ′. Using the assumption that φi(s) ⊑ φj(s) for

all s ∈ S⊥, we have that φi(s
′) = φj(s

′) for all s′ ∈ τ ′ and therefore⋃
s′∈τ ′ φi(s

′) =
⋃

s′∈τ ′ φj(s
′).

(b) Let ⊥ ∈
⋃

s′∈τ ′ φi(s
′). Then to prove: (

⋃
s′∈τ ′ φi(s

′)) \ {⊥} ⊆⋃
s′∈τ ′ φj(s

′), i.e.,
⋃

s′∈τ ′(φi(s
′) \ {⊥}) ⊆

⋃
s′∈τ ′ φj(s

′). Using the
assumption that φi(s) ⊑ φj(s) for all s ∈ S⊥, we have that for
all s′ ∈ τ ′, either φi(s

′) \ {⊥} ⊆ φj(s
′) or φi(s

′) = φj(s
′), de-

pending on whether ⊥ ∈ φi(s). From this we can conclude that⋃
s′∈τ ′(φi(s

′) \ {⊥}) ⊆
⋃

s′∈τ ′ φj(s
′).

EQUIVALENCE OF OPERATIONAL AND DENOTATIONAL SEMANTICS 129

2

As we now have that Φ is monotone, proving continuity comes down to proving
the following lemma.

Lemma 6.3 For all chains 〈φi〉∞i=0 in S⊥ → T , the following holds:

Φ(

∞⊔

i=0

φi) ⊑
∞⊔

i=0

Φ(φi).

Proof: We have to prove that for all chains 〈φi〉∞i=0 in S⊥ → T and for all
s ∈ S⊥, the following holds: (Φ(

⊔∞
i=0 φi))(s) ⊑ (

⊔∞
i=0 Φ(φi))(s). Take an arbi-

trary chain 〈φi〉∞i=0 in S⊥ → T and an arbitrary state s ∈ S⊥. Then to prove:

if W(b)(s) thenˆ(
∞⊔

i=0

φi)(τ) else {s} fi ⊑

∞⊔

i=0

if W(b)(s) then φ̂i(τ) else {s} fi,

where τ = M[P ℄(s). We distinguish three cases.

1. Let W(b)(s) = ⊥W⊥
, then to prove: {⊥} ⊑

⊔∞
i=0{⊥}, i.e., {⊥} ⊑ {⊥}.

This is true by Definition 6.31.

2. Let W(b)(s) = ff , then to prove: {s} ⊑
⊔∞

i=0{s}, i.e., {s} ⊑ {s}. This is
true by Definition 6.31.

3. Let W(b)(s) = tt, then to prove: ˆ (
⊔∞

i=0 φi)(τ) ⊑
⊔∞

i=0 φ̂i(τ). If we can

prove that ∀τ ∈ T :ˆ(
⊔∞

i=0 φi)(τ) ⊑
⊔∞

i=0 φ̂i(τ), i.e.,ˆ(
⊔∞

i=0 φi) ⊑
⊔∞

i=0 φ̂i,
we are finished. A proof of the continuity of ˆ is given in [de Bakker, 1980],
from which we can conclude what needs to be proven.

2

Proof of Theorem 6.2: Immediate from Lemmas 6.2 and 6.3 and Fact 6.4.
2

6.5 Equivalence of Operational and Denotational Semantics

In the previous section, we have given a denotational semantic function for
meta-programs and we have proven that this function is well-defined. In Section
6.5.1, we will prove that the denotational semantics for meta-programs is equal
to the operational semantics for meta-programs. From this we can conclude

130 SEMANTICS OF PLAN REVISION

that the denotational semantics of the interpreter of Section 6.3 is equal to
the operational semantics of this interpreter. As the operational semantics of
this interpreter is equal to the operational semantics of object-level 3APL, the
denotational semantics of the interpreter is equal to the operational semantics
of 3APL. One could thus argue that we give a denotational semantics for 3APL.
This will be discussed in Section 6.5.2.

6.5.1 Equivalence Theorem

We prove the theorem using techniques from [Kuiper, 1981]. Kuiper proves
equivalence of the operational and denotational semantics of a non-deterministic
language with procedures but without a while construct. The proof involves
structural induction on programs. As the cases of sequential composition and
non-deterministic choice have been proven by Kuiper (and as they can easily be
adapted to fit our language of meta-programs), we will only provide a proof for
the atomic meta-actions and for the while construct. For a detailed explanation
of the general ideas of the proof, we refer to [Kuiper, 1981].

In our proof, we will use a number of lemmas from Kuiper or slight variations
thereof. We restate those results here, after which we present and prove the
equivalence theorem.

Lemma 6.4 Let W(b)(s) = tt. Then the following holds.

O(while b do P ′ od)(s) = O(P ′; while b do P ′ od)(s)
M(while b do P ′ od)(s) = M(P ′; while b do P ′ od)(s)

Lemma 6.5

O(P ′; while b do P ′ od)(s) = O(while b do P ′ od) ◦ O(P ′)(s)

Lemma 6.6 For all s ∈ S and P ∈ Prog for which C(P)(s) ∈ ℘(S+), C(P)(s)
is a finite set.

Theorem 6.3 (Om = M) Let Om : Prog → (S⊥ → ℘(S⊥)) be the op-
erational semantics of meta-programs (Definition 6.18) and let M : Prog →
(S⊥ → T) be the denotational semantics of meta-programs (Definition 6.32).
Then, the following equivalence holds for all meta-programs P ∈ Prog and all
mental states s ∈ S⊥.

Om(P)(s) = M(P)(s)

Proof: The way to prove the equivalence result as was done by Kuiper, is the
following. In case Cm(P)(s) ∈ ℘(S+), induction on the sum of the lengths of
the computation sequences in Cm(P)(s) is applied, thus proving Om(P)(s) =
M(P)(s) in this case.5 In case there is an infinite computation sequence in

5In the sequel, we will omit the subscript “m” to C and O which is used to denote that we
are dealing with the meta-language.

EQUIVALENCE OF OPERATIONAL AND DENOTATIONAL SEMANTICS 131

C(P)(s) and so ⊥ ∈ O(P)(s), we prove O(P)(s) \ {⊥} ⊆ M(P)(s) by induction
on the length of individual computation sequences. This yields O(P) ⊑ M(P).
Proving M(P) ⊑ O(P) by standard techniques then completes the proof.

O(P)(s) = M(P)(s) holds trivially for s = ⊥, so in the sequel we will
assume s ∈ S.

1. O(P)(s) ⊑ M(P)(s)

Case A: ⊥ 6∈ O(P)(s) i.e., C(P)(s) ∈ ℘(S+)

If C(P)(s) ∈ ℘(S+), then we prove O(P)(s) = M(P)(s) by cases, applying
induction on the sum of the lengths of the computation sequences.

1. P ≡ execute
Let (π, σ) ∈ S and π = a;π′, with π′ ∈ Plan. If T (a, σ) = σ′ (which im-
plies that a ∈ BasicAction), then the following can be derived directly from
definitions 6.18, 6.16 and 6.32: O(execute)(π, σ) = κ(C(execute)(π, σ)) =
{(π′, σ′)} = M(execute)(π, σ). If T (a, σ) is undefined - meaning that
either a ∈ BasicAction and T (a, σ) is undefined for this input, or
a 6∈ BasicAction - we have O(execute)(π, σ) = ∅ = M(execute)(π, σ).

2. P ≡ apply(ρ)
The proof is similar to the proof for execute.

3. P ≡ while b do P ′ od

In case W(b)(s) = ff , we have that O(while b do P ′ od)(s) = {s} =
M(while b do P ′ od)(s) by definition. In the sequel, we will show that
the equivalence also holds in case W(b)(s) = tt.

The function “length” yields the sum of the lengths of the computation
sequences in a set. From the assumption that C(P)(s) ∈ ℘(S+), we can
conclude that C(P)(s) is a finite set (Lemma 6.6). From Definition 6.17,
we can then conclude the following.

length(C(P ′)(s)) < length(C(P ′; while b do P ′ od)(s)) <∞

length(C(while b do P ′ od)(κ(C(P ′)(s))) <

length(C(P ′; while b do P ′ od)(s)) <∞

So, by induction we have:

O(P ′)(s) = M(P ′)(s),
O(while b do P ′ od)(κ(C(P ′)(s))) = M(while b do P ′ od)(κ(C(P ′)(s))).

132 SEMANTICS OF PLAN REVISION

The proof is then as follows.

O(while b do P ′ od)(s)
= O(P ′; while b do P ′ od)(s) (Lemma 6.4)
= O(while b do P ′ od) ◦ O(P ′)(s) (Lemma 6.5)
= O(while b do P ′ od)(κ(C(P ′)(s))) (Definition 6.18)
= M(while b do P ′ od)(κ(C(P ′)(s))) (induction hypothesis)
= M(while b do P ′ od)(O(P ′)(s)) (Definition 6.18)
= M(while b do P ′ od) ◦M(P ′)(s) (induction hypothesis)
= M(P ′; while b do P ′ od)(s) (Definition 6.32)
= M(while b do P ′ od)(s) (Lemma 6.4)

Case B: ⊥ ∈ O(P)(s)
If P and s are such that ⊥ ∈ O(P)(s) then we prove by cases that

O(P)(s)\{⊥} ⊆ M(P)(s), applying induction on the length of the computa-
tion sequence corresponding to that outcome, i.e., we prove that for s′ 6= ⊥:
s′ ∈ O(P)(s) ⇒ s′ ∈ M(P)(s)).

1. P ≡ execute and P ≡ apply(ρ)
Equivalence was proven in case A.

2. P ≡ while b do P ′ od

Consider a computation sequence δ = 〈s1, . . . , sn(= s′)〉 ∈
C(while b do P ′ od)(s). From Definition 6.17 of the function C, we
can conclude that there are intermediate states sj , sj+1 6= ⊥ in this
sequence δ, i.e., δ = 〈s1, . . . , sj , sj+1, . . . , sn(= s′)〉 (where s1 can coin-
cide with sj), with sj = sj+1 and moreover: 〈s1, . . . , sj〉 ∈ C(P ′)(s) and
〈sj+1, . . . , sn〉 ∈ C(while b do P ′ od)(sj). The following can be derived
immediately from the above.

length(〈s1, . . . , sj〉) < length(〈s1, . . . , sn〉)
length(〈sj+1, . . . , sn〉) < length(〈s1, . . . , sn〉)

We thus have the following induction hypothesis.

sj ∈ O(P ′)(s) ⇒ sj ∈ M(P ′)(s)
s′ ∈ O(while b do P ′ od)(sj) ⇒ s′ ∈ M(while b do P ′ od)(sj)

As 〈s1, . . . , sj〉 ∈ C(P ′)(s), we know that sj ∈ O(P ′)(s) (Definition 6.18)
and similarly we can conclude that s′ ∈ O(while b do P ′ od)(sj). We
thus have, using the induction hypothesis that: sj ∈ M(P ′)(s) and
s′ ∈ M(while b do P ′ od)(sj). From this we can conclude the follow-
ing, deriving what was to be proven.

s′ ∈ M(P ′; while b do P ′ od)(s) (Definition 6.32)
s′ ∈ M(while b do P ′ od)(s) (Lemma 6.4)

2. M(P)(s) ⊑ O(P)(s)

EQUIVALENCE OF OPERATIONAL AND DENOTATIONAL SEMANTICS 133

1. P ≡ execute
Equivalence was proven in case (1).

2. P ≡ apply(ρ)
Equivalence was proven in case (1).

3. P ≡ while b do P ′ od

We will use induction on the entity (i, length(P)) where length(P) denotes
the length of the statement P and we use a lexicographic ordering on
these entities, i.e., (i1, l1) < (i2, l2) iff either i1 < i2 or i1 = i2 and
l1 < l2. Clearly, length(P ′) < length(while b do P ′ od) holds. Therefore
(i, length(P ′)) < (i, length(while b do P ′ od)) holds.

We know that M(while b do P ′ od) = µΦ =
⊔∞

i=0 Φi(⊥S⊥→T) by con-
tinuity of Φ (Theorem 6.2). Let φi = Φi(⊥S⊥→T). We thus need to
prove that

⊔∞
i=0 φi ⊑ O(while b do P ′ od). So, if we can prove that

φi ⊑ O(while b do P ′ od) holds for all i, we will have the desired re-
sult. We will prove this by induction on the entity (i, length(P)). As
(i, length(P ′)) < (i, length(while b do P ′ od)) and (i, l) < (i + 1, l), our
induction hypothesis will be:

M(P ′) ⊑ O(P ′) and φi ⊑ O(while b do P ′ od).

The induction basis is provided as φ0 = ⊥S⊥→T ⊑ O(while b do P ′ od)
holds. From this we have to prove that for all s ∈ S : φi+1(s) ⊑
O(while b do P ′ od)(s). Take an arbitrary s ∈ S. We have to prove
that:

Φ(φi)(s) ⊑ O(while b do P ′ od)(s) i.e., by Definition 6.32

φ̂i(M(P ′)(s)) ⊑ O(while b do P ′ od)(s) i.e., by Lemma 6.4 and 6.5

φ̂i(M(P ′)(s)) ⊑ O(while b do P ′ od)(O(P ′)(s)) (∗).

We know that M(P ′)(s) = O(P ′)(s) by the induction hypothesis and
the fact that we have already proven M(P ′)(s) ⊒ O(P ′)(s). Let
τ ′ = M(P ′)(s) = O(P ′)(s) and let s′ ∈ τ ′. By the induction hypoth-
esis, we have that φi(s

′) ⊑ O(while b do P ′ od)(s′) for all s′ ∈ S⊥. From
this, we can conclude that

⋃
s′∈τ φi(s

′) ⊑
⋃

s′∈τ O(while b do P ′ od)(s′)
(see the proof of Lemma 6.2), which can be rewritten into what was to be

proven (∗) using the definitions of φ̂i and function composition.

2

In Section 6.3, we stated that the object-level operational semantics of 3APL
is equal to the meta-level operational semantics of the interpreter we specified
in Definition 6.19. Above, we then stated that it holds for any meta-program
that its operational semantics is equal to its denotational semantics. This holds
in particular for the interpreter of Definition 6.19, i.e., we have the following
corollary.

134 SEMANTICS OF PLAN REVISION

Corollary 6.1 (Oo = M(interpreter)) From Theorems 6.1 and 6.3 we can
conclude that the following holds.

Oo = M(interpreter)

6.5.2 Denotational Semantics of Object-Level 3APL

Corollary 6.1 states an equivalence between a denotational semantics and the
object-level operational semantics for 3APL. The question is, whether this deno-
tational semantics can be called a denotational semantics for object-level 3APL.

A denotational semantics for object-level 3APL should be a function taking
a plan and a belief base and returning the result of executing the plan on this
belief base, i.e., a function of type Plan → (Σ⊥ → ℘(Σ⊥)) or equivalently6, of
type (Plan×Σ) → ℘(Σ⊥). The type of M(interpreter), i.e., S⊥ → ℘(S⊥)7, does
not match the desired type. This could however be remedied by defining the
following function.

Definition 6.34 (N) Let snd be a function yielding the second element, i.e.,
the belief base, of a mental state in S and yielding ⊥Σ⊥

for input ⊥. This
function is extended to handle sets of mental states through the functionˆ, as
was done in Definition 6.32. Then N : S⊥ → ℘(Σ⊥) is defined as follows.

N = λs · ŝnd(MJinterpreterK(s))

Disregarding a ⊥ input, the function N is of the desired type (Plan × Σ) →
℘(Σ⊥). The question now is, whether it is legitimate to characterize the func-
tion N as being a denotational semantics for 3APL. The answer is no, because
a denotational semantic function should be compositional in its program argu-
ment, which in this case is Plan. This is obviously not the case for the function
N and therefore this function is not a denotational semantics for 3APL.

So, it seems that the specification of the denotational semantics for meta-
programs cannot be used to define a denotational semantics for object-level
3APL. The difficulty of specifying a compositional semantic function is due
to the nature of the plan revision rules: these rules can transform not just
atomic statements, but any sequence of statements. The semantics of an atomic
statement can thus depend on the statements around it. We will illustrate the
problem using an example. In our example, we omit the belief condition from
the plan revision rules for reasons of simplicity and presentation, and assume
that the belief condition is true.

a b
b; c d
c e

6For the sake of argument, we for the moment disregard a ⊥Σ⊥
input.

7M(interpreter) is actually defined to be of type S⊥ → T , but T ⊂ ℘(S⊥), so we may
extend the result type to ℘(S⊥).

RELATED WORK AND CONCLUSION 135

Now the question is, how we can define the semantics of a; c. Can it be defined
in terms of the semantics of a and c? The semantics of a would have to be
something involving the semantics of b and the semantics of c something with
the semantics of e, taking into account the plan revision rules given above. The
semantics of a; c should however also be defined in terms of the semantics of d,
because of the second plan revision rule: a; c can be rewritten to b; c, which can
be rewritten to d. Moreover, if b is not a basic action, the third rule cannot
be applied and the semantics of e would be irrelevant. So, although we do not
have a formal proof, it seems that the semantics of the sequential composition
operator8 of a 3APL plan or program cannot be defined using only the semantics
of the parts of which the program is composed.

Another way to look at this issue is the following. In a regular procedural
program, computation can be defined using the concept of a program counter.
This counter indicates the location in the code of the statement that is to be
executed next or the procedure that is to be called next. If a procedure is called,
the program counter jumps to the body of this procedure. Computation of a
3APL program cannot be defined using such a counter. Consider for example
the plan revision rules defined above and assume an initial plan a; c. Initially,
the program counter would have to be at the start of this initial plan. Then the
first plan revision rule is “called” and the counter jumps to b, i.e., the body of
the first rule. According to the semantics of 3APL, it should be possible to get
to the body of the second plan revision rule, as the statement being executed
is b; c. There is however no reason for the program counter to jump from the
body of the first rule to the body of the second rule.

6.6 Related Work and Conclusion

The concept of a meta-language for programming 3APL interpreters was first
considered in [Hindriks et al., 1999a]. Our meta-language is similar to, but sim-
pler than Hindriks’ language. The main difference is that Hindriks includes
constructs for explicit selection of a plan revision rule from a set of applica-
ble ones. These constructs were not needed in this chapter. Dastani defines a
meta-language for 3APL in [Dastani et al., 2003]. This language is similar to,
but more extensive than Hindriks’ language. Dastani’s main contribution is the
definition of constructs for explicit planning. Using these constructs, the pos-
sible outcomes of a certain sequence of rule applications and action executions
can be calculated in advance, thereby providing the possibility to choose the
most beneficial sequence. Contrary to our chapter, these papers do not discuss
the relation between object-level and meta-level semantics, nor do they give a
denotational semantics for the meta-language.

Concluding, we have proven equivalence of an operational and denotational
semantics for a 3APL meta-language. We furthermore linked this 3APL meta-

8or actually of the plan concatenation operator •

136 SEMANTICS OF PLAN REVISION

language to object-level 3APL by proving equivalence between the semantics of a
specific interpreter and object-level 3APL. Although these results were obtained
for a simplified 3APL language, we conjecture that it will not be fundamentally
more difficult to obtain similar results for full first order 3APL.9

As argued in the introduction, studying interpreter languages or
meta-languages of agent programming languages is important. The research
presented in this chapter provides an investigation into the semantics of such
a meta-language, and shows how it is related to object-level 3APL. While it is
possible to define a denotational semantics for the meta-language, it seems that
it will be very difficult if not impossible to define a denotational semantics for
object-level 3APL. Such a denotational semantics is important, especially if one
is aiming for a compositional proof system for object-level 3APL.

Given that defining such a denotational semantics is problematic, a possible
direction of research is to investigate whether it is possible to define a proof
system for object-level 3APL that does not rely on a compositional semantics
of plans. Researches along these lines will be presented in Chapter 7. Another
direction of research, and one that will be followed in Chapter 8, is to restrict
plan revision rules, such that the semantics of plans becomes compositional.

9The requirement of bounded non-determinism will in particular not be violated.

Chapter 7

Dynamic Logic for Plan Revision

This chapter is based on [van Riemsdijk et al., 2005d] and
[van Riemsdijk et al., 2005e]. The agent programming language we consider
in this chapter is essentially the object-level 3APL language of Chapter 6, with
some minor modifications. We investigate the possibility of defining a logic for
reasoning about this 3APL language. This logic will have to be designed such
that it can somehow handle the non-compositional nature of the semantics of
3APL plans, which arises if plans can be revised using plan revision rules. The
logic that we present is a dynamic logic.

The outline of this chapter is as follows. In Section 7.1, we address related
work. After defining 3APL and its semantics (Section 7.2), we propose a dy-
namic logic for proving properties of 3APL plans in the context of plan revision
rules (Section 7.3). As will become clear, this is actually not a logic for general
3APL plans, but the plans that the logic can deal with are restricted in a certain
way. For this logic, we provide a sound and complete axiomatization (Section
7.4). In Section 7.5, we discuss how this logic for restricted 3APL plans can be
extended to a logic for non-restricted plans and we discuss some example proofs,
using the logic. Finally, we consider the relation between proving properties of
procedural programs and proving properties of 3APL agents in Section 7.6. In
particular, we compare procedures with plan revision rules.

To the best of our knowledge, this is the first attempt to design a logic
and deductive system for plan revision rules or similar language constructs.
Considering the semantic difficulties that arise with the introduction of this
type of construct, it is not a priori obvious that it would be possible at all to
design a deductive system to reason about these constructs. The main aim of
this work was thus to investigate whether it is possible to define such a system,
and in this way also to get a better theoretical understanding of the construct
of plan revision rules. Whether the system presented in this chapter is also
practically useful to verify 3APL agents, remains to be seen and will be subject
to further research.

137

138 DYNAMIC LOGIC FOR PLAN REVISION

7.1 Related Work

This research builds on a body of work done in the area of theoretical computer
science on formal semantics and logics of programming languages (see, e.g.,
[de Bakker, 1980]). A formal semantics for a programming language is used to
formally specify the meaning of the programs written in this language. Specify-
ing the meaning of a programming language using formal semantics is important
for a number of reasons. For example, the specification of a formal semantics
can be used to identify issues and problems with the language. Defining the
semantics forces one to be precise, which might uncover problems which were
overlooked before. Also, the semantics can serve as a basis for comparing var-
ious languages. Further, and most important in this context, it is a necessary
prerequisite if one wants to do formal verification of programs written in some
language. One cannot claim to have proven that a program satisfies a certain
property, without knowing exactly what this program does.

Semantics of programming languages can be defined in different ways. One
kind of semantics is the operational semantics, which has been used several
times in this thesis. The operational semantics of plan revision rules, which is
important in this chapter, is similar to that of procedures in procedural pro-
gramming. In fact, plan revision rules can be viewed as an extension of proce-
dures. Logics and semantics for procedural languages are for example studied in
[de Bakker, 1980]. Although the operational semantics of procedures and plan
revision rules are similar, techniques for reasoning about procedures cannot be
used for plan revision rules. This is due to the fact that the introduction of
these rules results in the semantics of the sequential composition operator no
longer being compositional. We elaborate on this issue in Sections 7.3 and 7.6.

With respect to verification, there are in general two approaches: model
checking [E.M.Clarke et al., 2000] and theorem proving (see, e.g.,
[de Bakker, 1980]). In model checking, a model is built describing the exe-
cution of the program, and it is checked whether some temporal property is
satisfied by this model. An example of work on model checking in the area of
agent programming languages is [Bordini et al., 2003], in which model checking
of the agent programming language AgentSpeak is addressed.

In theorem proving, on which we focus in this chapter, a program is proven
to satisfy a certain property using a logic with deductive system or axiomatiza-
tion. Various logics can be used for this purpose, such as Hoare logic (see, e.g.,
[Apt, 1981] for a survey) and dynamic logic [Harel et al., 2000], which we use in
this chapter. In the context of 3APL, a sketch of a dynamic logic to reason about
programs written in this language has been given in [van Riemsdijk et al., 2003b].
This logic however is designed to reason about a 3APL interpreter language or
meta-language, whereas in this chapter we take a different viewpoint and reason
about plans. In [Hindriks et al., 2000], a programming logic (without axioma-
tization) was given for a fragment of 3APL without plan revision rules.

Further, we mention related work in the field of planning. In general, plan-

RELATED WORK 139

ning deals with the problem of how to get from some current state to a de-
sired goal state through a sequence of actions forming the plan. The way this
problem is approached in this field, is by searching for an appropriate plan us-
ing a specification of the available actions and their preconditions and effects
[Fikes and Nilsson, 1971]. The search space can however become quite large
in realistic problems. Part of the planning research thus involves the investi-
gation of more efficient ways in which this search can be performed, and the
development of heuristics to guide this search.

While the general objective of planning, i.e., generating a plan with which
the agent can achieve its goals, is closely related to the objective of cognitive
agent programming, the techniques that are used in the two fields differ. Plan-
ning involves reasoning about the effects of actions, while in a programming
context it is the programmer who defines the available plans, together with the
situations in which they might be executed. In fact, the so-called Procedural
Reasoning System [Georgeff and Lansky, 1987] on which most of today’s agent
programming languages, including 3APL, are directly or indirectly based, was
proposed as an alternative to the traditional planning systems.1 It was in part
motivated by the observation that those systems require search through poten-
tially large search spaces. In contrast with research in the field of planning,
research regarding agent programming languages involves the design and inves-
tigation of appropriate programming constructs for the specification of plans,
and in this chapter we are concerned with the programming construct of plan
revision rules of the 3APL language in particular. Also, the structure of plans
generally differs between the two fields: in planning, a plan often consists of a
partially ordered set of actions, while in agent programming the structure of
plans is generally simpler.

Nevertheless, the general idea of plan revision as incorporated in 3APL is
also being investigated in the field of planning. In that context, it is mostly
referred to as plan repair. The motivation for that work is similar to the moti-
vation of the addition of plan revision capabilities to 3APL agents, i.e., things
may go wrong during execution of a plan since the agent executes its plans
in some environment, and in that case the agent will have to replan, or to
adapt the old plan to the changed circumstances (see, e.g., [Hammond, 1990,
van der Krogt and de Weerdt, 2005a]). In theory, modifying an existing plan is
(worst-case) no more efficient than a complete replanning
[Nebel and Koehler, 1995], but the idea is that in practice, plan repair is of-
ten more efficient [van der Krogt and de Weerdt, 2005a].

While approaches to plan repair mostly involve reasoning about actions,
there are also some approaches which use precompiled plans to do plan repair,
such as [van der Krogt and de Weerdt, 2005b, Drabble et al., 1997]. The latter

1An exception to this distinction between planning and programming is formed by the
language ConGolog [Giacomo et al., 2000], in which both approaches are combined. ConGolog
is based on the situation calculus, and a program written in the language is used to constrain
the search space for finding an appropriate plan.

140 DYNAMIC LOGIC FOR PLAN REVISION

approaches are somewhat more closely related to plan revision as done in 3APL,
since the way in which plans may be repaired is prespecified in both approaches.
Nevertheless, these approaches to plan repair are embedded in a general plan-
ning framework, and the exact relation with plan revision as used in 3APL is
not immediately clear. Investigations along these lines fall outside the scope of
this chapter, but form an interesting issue for future research.

7.2 3APL

7.2.1 Syntax

The languages of belief bases and plans are the same as in Chapter 6 (Definitions
6.1 and 6.2). Note, however, that in this chapter we use p as typical element of
the language L.

Definition 7.1 (belief base) Assume a propositional language L with typical
formula p and the connectives ∧ and ¬ with the usual meaning. Then the set
of belief bases Σ with typical element σ is defined to be ℘(L).

Definition 7.2 (plan) Assume that a set BasicAction with typical element
a is given, together with a set AbstractPlan with typical element p.2 Let c ∈
(BasicAction∪ AbstractPlan). Then the set of plans Plan with typical element π
is defined as follows.

π ::= a | p | c;π

We use ǫ to denote the empty plan. The concatenation of a plan π and the
empty plan is equal to π, i.e., ǫ;π and π; ǫ are taken to be identical to π (see
Chapter 2 (Definition 2.8 and Remark 2.1) for a rigorous explanation).

Plan revision rules are as in Chapters 2 and 6, except that we omit the belief
condition from the rules here. The approach presented in this chapter could be
extended to rules with belief condition without fundamental difficulties. We
omit the belief condition from plan revision rules since we want to focus on the
plan revision aspect of these rules.

Definition 7.3 (plan revision rules) The set of plan revision rules R is defined
as follows: R = {πh πb | πh, πb ∈ Plan}.

Note that πh may not be the empty plan, since ǫ is not an element of the
language of plans Plan. Below, we provide the definition of a 3APL agent. It
will become clear in the sequel that for the investigations carried out in this
chapter, it is not necessary to endow the agent with an initial belief base and
plan.

2Note that we use p to denote an element from the propositional language L, as well as
an element from AbstractPlan. It will however be indicated explicitly which kind of element
is meant.

3APL 141

Definition 7.4 (3APL agent) A 3APL agent A is a tuple
〈Rule, T 〉 where Rule ⊆ R is a finite set of plan revision rules and
T : (BasicAction × Σ) → Σ is a partial function, expressing how belief bases
are updated through basic action execution.

Configurations are defined as in Chapter 6 (Definition 6.5), except that they
were called “mental states” in that chapter.

Definition 7.5 (configuration) Let Σ be the set of belief bases and let Plan

be the set of plans. Then Plan×Σ is the set of configurations of a 3APL agent.

7.2.2 Semantics

The semantics of a programming language can be defined as a function taking
a statement and a state, and yielding the set of states resulting from executing
the initial statement in the initial state. In this way, a statement can be viewed
as a transformation function on states. In (object-level) 3APL, plans can be
seen as statements and belief bases can be seen as states on which these plans
operate. The kind of semantics we are concerned with in this chapter, is an
operational semantics.

As usual in this thesis, we define the operational semantics of 3APL using
a transition system [Plotkin, 1981]. This transition system TransA is specific to
3APL agent A. We take A to be 〈Rule, T 〉, and we assume A to have a set of
basic actions BasicAction.

As in Chapter 6, there are two kinds of transitions, i.e., transitions describing
the execution of basic actions and those describing the application of a plan revi-
sion rule. The transitions are labeled to denote the kind of transition (although
the labeling differs slightly from the labeling in Chapter 6). The transition rule
for application of a plan revision rule differs from the plan revision transition
rule of Chapter 6 (Definition 6.9), since we omit the belief condition from plan
revision rules in this chapter.

Definition 7.6 (action execution) Let a ∈ BasicAction.

T (a, σ) = σ′

〈a;π, σ〉 →exec 〈π, σ′〉

Definition 7.7 (rule application) Let ρ : πh πb ∈ Rule.

〈πh • π, σ〉 →app 〈πb • π, σ〉

In the sequel, it will be useful to have a function taking a plan revision rule and
a plan, and yielding the plan resulting from the application of the rule to this
given plan. Based on this function, we also define a function taking a set of plan
revision rules and a plan and yielding the set of rules applicable to this plan.

142 DYNAMIC LOGIC FOR PLAN REVISION

Definition 7.8 (rule application) Let R be the set of plan revision rules and
let Plan be the set of plans. Let ρ : πh πb ∈ R and π, π′ ∈ Plan. The partial
function apply : (R× Plan) → Plan is then defined as follows.

apply(ρ)(π) =

{
πb • π′ if π = πh • π′,
undefined otherwise.

The function applicable : (℘(R) × Plan) → ℘(R) yielding the set of rules ap-
plicable to a certain plan, is then as follows: applicable(Rule, π) = {ρ ∈ Rule |
apply(ρ)(π) is defined}.

As in Chapter 6 (Definition 6.16), the operational semantics is defined using
the notion of computation sequences. The function for calculating computation
sequences is parameterized by 3APL agent A. In this chapter, we need to make
the parametrization with agent A explicit in order to define the dynamic logic
properly.

Definition 7.9 (computation sequences) The set Σ+ of finite computation
sequences is defined as {σ1, . . . , σi, . . . , σn | σi ∈ Σ, 1 ≤ i ≤ n, n ∈ N}.

Definition 7.10 (function for calculating computation sequences) Let
xi ∈ {exec, app} for 1 ≤ i ≤ m. The function CA : (Plan × Σ) → ℘(Σ+) is
then as defined below.

CA(π, σ) = {σ, . . . , σm ∈ Σ+ | 〈π, σ〉 →x1
. . .→xm

〈ǫ, σm〉

is a finite sequence of transitions in TransA}.

Note that we only take into account successfully terminating transition se-
quences, i.e., those sequences ending in a configuration with an empty plan.
Explicitly taking into account non-terminating transition sequences in the se-
mantics as was done in Chapter 6 (Definition 6.17), is not needed in this chapter.
The semantics of the dynamic logic is defined on the basis of the operational
semantics that will be introduced below, which is defined on the basis of suc-
cessfully terminating transition sequences.

Definition 7.11 (operational semantics) Let κ : Σ+ → Σ be a function
yielding the last element of a finite computation sequence, extended to han-
dle sets of computation sequences as follows, where I is some set of indices:
κ({δi | i ∈ I}) = {κ(δi) | i ∈ I}. The operational semantic function
OA : Plan → (Σ → ℘(Σ)) is defined as follows:

OA(π)(σ) = κ(CA(π, σ)).

We will sometimes omit the superscript A to functions as defined above, for
reasons of presentation.

PLAN REVISION DYNAMIC LOGIC 143

Example 7.1 Let A be an agent with plan revision rules {p; a b, p c},
where p is an abstract plan and a, b, c are basic actions. Let σa be the belief
base resulting from the execution of a in σ, i.e., T (a, σ) = σa, let σab be the
belief base resulting from executing first a and then b in σ, etc.

Then CA(p; a)(σ) = {(σ, σ, σb), (σ, σ, σc, σca)}, which is based on the tran-
sition sequences 〈p; a, σ〉 →app 〈b, σ〉 →exec 〈ǫ, σb〉 and 〈p; a, σ〉 →app 〈c; a, σ〉
→exec 〈a, σc〉 →exec 〈ǫ, σca〉. We thus have that OA(p; a)(σ) = {σb, σca}. △

7.3 Plan Revision Dynamic Logic

In programming language research, an important area is the specification and
verification of programs. Program logics are designed to facilitate this process.
One such logic is dynamic logic [Harel, 1979, Harel et al., 2000], which we are
concerned with in this chapter. In dynamic logic, programs are explicit syntactic
constructs in the logic. To be able to discuss the effect of the execution of a
program π on the truth of a formula φ, the modal construct [π]φ is used. This
construct intuitively states that in all states in which π halts, the formula φ
holds.

Programs in general are constructed from atomic programs and composition
operators. An example of a composition operator is the sequential composition
operator (;), where the program π1;π2 intuitively means that π1 is executed first,
followed by the execution of π2. The semantics of such a compound program can
in general be determined by the semantics of the parts of which it is composed.
This compositionality property allows analysis by structural induction (see also
[van Emde Boas, 1978]), i.e., analysis of a compound statement by analysis of its
parts. Analysis of the sequential composition operator by structural induction
can in dynamic logic be expressed by the following formula, which is usually a
validity: [π1;π2]φ ↔ [π1][π2]φ. For 3APL plans on the contrary, this formula
does not always hold. This is due to the presence of plan revision rules.

We will informally explain this using the 3APL agent of Example 7.1. As
explained, the operational semantics of this agent, given initial plan p; a and
initial state σ, is as follows: O(p; a)(σ) = {σb, σca}. Now compare the result
of first “executing”3 p in σ and then executing a in the resulting belief base,
i.e., compare the set O(a)(O(p)(σ)). In this case, there is only one success-
fully terminating transition sequence and it ends in σca, i.e., O(a)(O(p)(σ)) =
{σca}. Now, if it would be the case that σca |= φ but σb 6|= φ, the formula
[p; a]φ ↔ [p][a]φ would not hold. In particular, the implication would not hold
from right to left.

3We will use the word “execution” in two ways. Firstly, as in this context, we will use it
to denote the execution of an arbitrary plan in the sense of going through several transition
of type exec or app, starting in a configuration with this plan and resulting in some final
configurations. Secondly, we will use it to refer to the execution of a basic action in the sense
of going through a transition of type exec.

144 DYNAMIC LOGIC FOR PLAN REVISION

Analysis of plans by structural induction in this way thus does not work for
3APL. In order to be able to prove correctness properties of 3APL programs
however, one can perhaps imagine that it is important to have some kind of
induction. As we will show in the sequel, the kind of induction that can be used
to reason about 3APL programs, is induction on the number of plan revision
rule applications in a transition sequence. We will introduce a dynamic logic for
3APL based on this idea.

7.3.1 Syntax

In order to be able to do induction on the number of plan revision rule appli-
cations in a transition sequence, we introduce so-called restricted plans. These
are plans, annotated with a natural number4. Informally, if the restriction pa-
rameter of a plan is n, the number of rule applications during execution of this
plan cannot exceed n.

Definition 7.12 (restricted plans) Let Plan be the language of plans and let
N

− = N ∪ {−1}. Then, the language Planr of restricted plans is defined as
{π↾n | π ∈ Plan, n ∈ N

−}.

Below, we define the language of dynamic logic in which properties of 3APL
agents can be expressed. In the logic, one can express properties of restricted
plans. As will become clear in the sequel, one can prove properties of the plan
of a 3APL agent by proving properties of restricted plans.

Definition 7.13 (plan revision dynamic logic (PRDL)) Let π↾n ∈ Planr be a
restricted plan. Then the language of dynamic logic LPRDL with typical element
φ is defined as follows:� L ⊆ LPRDL,� if φ ∈ LPRDL, then [π↾n]φ ∈ LPRDL,� if φ, φ′ ∈ LPRDL, then ¬φ ∈ LPRDL and φ ∧ φ′ ∈ LPRDL.

7.3.2 Semantics

In order to define the semantics of PRDL, we first define the semantics of re-
stricted plans. As for ordinary plans, we also define an operational semantics for
restricted plans. We do this by defining a function for calculating computation
sequences, given an initial restricted plan and a belief base.

Definition 7.14 (function for calculating computation sequences) Let
xi ∈ {exec, app} for 1 ≤ i ≤ m. Let Napp(θ) be a function yielding the number

4Or with the number −1. It will become clear in the sequel why we need this.

THE AXIOM SYSTEM 145

of transitions of the form si →app si+1 in the sequence of transitions θ. The
function CA

r : (Planr × Σ) → ℘(Σ+) is then as defined below.

CA
r (π↾n, σ) = {σ, . . . , σm ∈ Σ+ | θ = 〈π, σ〉 →x1

. . .→xm
〈ǫ, σm〉

is a finite sequence of transitions in TransA where 0 ≤ Napp(θ) ≤ n}

As one can see in the definition above, the computation sequences CA
r (π↾n, σ)

are based on transition sequences starting in configuration 〈π, σ〉. The number
of rule applications in these transition sequences should be between 0 and n, in
contrast with the function CA of Definition 7.10, in which there is no restriction
on this number.

Based on the function CA
r , we define the operational semantics of restricted

plans by taking the last elements of the computation sequences yielded by CA
r .

The set of belief bases is empty if the restriction parameter is equal to −1.

Definition 7.15 (operational semantics) Let κ be as in Definition 7.11. The
operational semantic function OA

r : Planr → (Σ → ℘(Σ)) is defined as follows:

OA
r (π↾n)(σ) =

{
κ(CA

r (π↾n, σ)) if n ≥ 0,
∅ if n = −1.

Using the operational semantics of restricted plans, we can now define the se-
mantics of plan revision dynamic logic.

Definition 7.16 (semantics of PRDL) Let p ∈ L be a propositional formula,
let φ, φ′ ∈ LPRDL and let |=L be the entailment relation defined for L as usual.
The semantics |=A of LPRDL is then as defined below.

σ |=A p ⇔ σ |=L p
σ |=A [π↾n]φ ⇔ ∀σ′ ∈ OA

r (π↾n)(σ) : σ′ |=A φ
σ |=A ¬φ ⇔ σ 6|=A φ
σ |=A φ ∧ φ′ ⇔ σ |=A φ and σ |=A φ′

We use the subscript A to the satisfaction relation for PRDL, to indicate that
the semantics is relative to agent A. Let Rule ⊆ R be a finite set of plan revision
rules. Then, if ∀T , σ : σ |=〈Rule,T 〉 φ, we write |=Rule φ.

7.4 The Axiom System

In order to prove properties of restricted plans, we propose a deductive system
for PRDL in this section. Rather than proving properties of restricted plans,
the aim is however to prove properties of non-restricted 3APL plans. The idea
is that this can be done using the axiom system for restricted plans, by relating
the semantics of restricted plans to that of non-restricted plans. We will explain
and elaborate on this in Section 7.5.

146 DYNAMIC LOGIC FOR PLAN REVISION

Definition 7.17 (axiom system (ASRule)) Let BasicAction be a set of ba-
sic actions, AbstractPlan be a set of abstract plans and Rule ⊆ R be a fi-
nite set of plan revision rules. Let a ∈ BasicAction, let p ∈ AbstractPlan, let
c ∈ (BasicAction∪AbstractPlan) and let ρ range over applicable(Rule, c;π). The
following are then the axioms of the system ASRule.

(PRDL1) [π↾−1]φ
(PRDL2) [p↾0]φ
(PRDL3) [ǫ↾n]φ↔ φ with 0 ≤ n
(PRDL4) [c;π↾n]φ↔ [c↾0][π↾n]φ ∧

∧
ρ[apply(ρ, c;π)↾n−1]φ with 0 ≤ n

(PL) axioms for propositional logic
(PDL) [π↾n](φ→ φ′) → ([π↾n]φ→ [π↾n]φ′)

The following are the rules of the system ASRule.

(GEN)
φ

[π↾n]φ

(MP)
φ1, φ1 → φ2

φ2

As the axiom system is relative to a given set of plan revision rules Rule, we
will use the notation ⊢Rule φ to specify that φ is derivable in the system ASRule

above.
We will now explain the PRDL axioms of the system. The other axioms and

the rules are standard for propositional dynamic logic (PDL) [Harel, 1979]. We
start by explaining the most interesting axiom: (PRDL4). We first observe that
there are two types of transitions that can be derived for a 3APL agent: action
execution and rule application (see Definitions 7.6 and 7.7). Consider a config-
uration 〈a;π, σ〉 where a is a basic action. Then during computation, possible
next configurations are 〈π, σ′〉5 (action execution) and 〈apply(ρ, a;π), σ〉 (rule
application) where ρ ranges over the applicable rules, i.e., applicable(Rule, a;π).6

We can thus analyze the plan a;π by analyzing π after the execution of a, and
the plans resulting from applying a rule, i.e., apply(ρ, a;π).7 The execution of
an action can be represented by the number 0 as restriction parameter, yield-
ing the first term of the right-hand side of (PRDL4): [a↾0][π↾n]φ.8 The second
term is a conjunction of [apply(ρ, c;π)↾n−1]φ over all applicable rules ρ. The

5assuming that T (a, σ) = σ′

6See Definition 7.8 for the definitions of the functions apply and applicable.
7Note that one could say we analyze a plan a; π partly by structural induction, as it is

partly analyzed in terms of a and π.
8In our explanation, we consider the case where c is a basic action, but the axiom holds

also for abstract plans.

THE AXIOM SYSTEM 147

restriction parameter is n−1 as we have “used” one of our n permitted rule ap-
plications. The first three axioms represent basic properties of restricted plans.
(PRDL1) can be used to eliminate the second term on the right-hand side of
axiom (PRDL4), if the left-hand side is [c;π↾0]φ. (PRDL2) can be used to elim-
inate the first term on the right-hand side of (PRDL4), if c is an abstract plan.
As abstract plans can only be transformed through rule application, there will
be no resulting states if the restriction parameter of the abstract plan is 0, i.e.,
if no rule applications are allowed. (PRDL3) states that if φ is to hold after
execution of the empty plan, it should hold “now”. It can be used to derive
properties of an atomic plan c, by using axiom (PRDL4) with the plan c; ǫ.

7.4.1 Soundness

The axiom system of Definition 7.17 is sound.

Theorem 7.1 (soundness) Let φ ∈ LPRDL. Let Rule ⊆ R be an arbitrary
finite set of plan revision rules. Then the axiom system ASRule is sound, i.e.:

⊢Rule φ ⇒ |=Rule φ.

Proof: We prove soundness of the PRDL axioms of the system ASRule. In the
following, let π ∈ Plan be an arbitrary plan and let φ ∈ LPRDL be an arbitrary
PRDL formula. Furthermore, A = 〈Rule, T 〉 and |=〈Rule,T 〉 will be abbreviated
by |=Rule.

(PRDL1) To prove: ∀T , σ : σ |=Rule [π↾−1]φ. Let σ ∈ Σ be an arbitrary
belief base and let T be an arbitrary belief update function. We have that
σ |=Rule [π↾−1]φ⇔ ∀σ′ ∈ OA

r (π↾−1)(σ) : σ′ |=Rule φ by Definition 7.16. Further-
more, OA

r (π↾−1)(σ) = ∅ by Definition 7.15, trivially yielding the desired result.

(PRDL2) Let p ∈ AbstractPlan be an arbitrary abstract plan. To prove:
∀T , σ : σ |=Rule [p↾0]φ. Let σ ∈ Σ be an arbitrary belief base and let T be
an arbitrary belief update function. We have that σ |=Rule [p↾0]φ ⇔ ∀σ′ ∈
OA

r (p↾0)(σ) : σ′ |=Rule φ by Definition 7.16. Furthermore, OA
r (p↾0)(σ) = ∅

by Definitions 7.15, 7.14, 7.6, and 7.7, trivially yielding the desired result.

(PRDL3) To prove: ∀T , σ : σ |=Rule [ǫ↾n]φ ↔ φ where n ≥ 0, i.e.,
∀T , σ : (σ |=Rule [ǫ↾n]φ ⇔ σ |=Rule φ). Let σ ∈ Σ be an arbitrary belief
base and let T be an arbitrary belief update function. By Definition 7.14, we
have that CA

r (ǫ↾n, σ) = {σ} where n ≥ 0, i.e.:

κ(CA
r (ǫ↾n, σ)) = {σ}. (7.1)

148 DYNAMIC LOGIC FOR PLAN REVISION

By Definitions 7.16, 7.15 and (7.1), we have the following, yielding the desired
result.

σ |=Rule [ǫ↾n]φ ⇔ ∀σ′ ∈ OA
r (ǫ↾n)(σ) : σ′ |=Rule φ

⇔ ∀σ′ ∈ κ(CA
r (ǫ↾n, σ)) : σ′ |=Rule φ

⇔ σ |=Rule φ

(PRDL4) To prove: ∀T , σ : σ |=〈Rule,T 〉 [c;π↾n]φ ↔ [c↾0][π↾n]φ∧∧
ρ[apply(ρ, c;π)↾n−1]φ. Let σ ∈ Σ be an arbitrary belief base and let T

be an arbitrary belief update function. Then to prove:

σ |=〈Rule,T 〉 [c;π↾n]φ⇔

σ |=〈Rule,T 〉 [c↾0][π↾n]φ and σ |=〈Rule,T 〉

∧

ρ

[apply(ρ, c;π)↾n−1]φ.

Assume c ∈ BasicAction and furthermore assume that 〈c;π, σ〉 →execute 〈π, σ1〉
is a transition in TransA, i.e., κ(CA

r (c↾0, σ)) = {σ1} by Definition 7.14. Let ρ
range over applicable(Rule, c;π). Now, observe the following by Definition 7.14:

κ(CA
r (c;π↾n, σ)) = κ(CA

r (π↾n, σ1)) ∪
⋃

ρ

κ(CA
r (apply(ρ, c;π)↾n−1, σ)). (7.2)

If c ∈ AbstractPlan or if a transition of the form 〈c;π, σ〉 →execute 〈π, σ1〉 is not
derivable, the first term of the right-hand side of (7.2) is empty.

(⇒) Assume σ |=Rule [c;π↾n]φ, i.e., by Definition 7.16 ∀σ′ ∈ OA
r (c;π↾n, σ) :

σ′ |=Rule φ, i.e., by Definition 7.15:

∀σ′ ∈ κ(CA
r (c;π↾n, σ)) : σ′ |=Rule φ. (7.3)

To prove: (A) σ |=Rule [c↾0][π↾n]φ and (B) σ |=Rule

∧
ρ[apply(ρ, c;π)↾n−1]φ.

(A) If c ∈ AbstractPlan or if a transition of the form 〈c;π, σ〉 →execute 〈π, σ1〉
is not derivable, the desired result follows immediately from axiom (PRDL2) or
an analogous proposition for non executable basic actions. If c ∈ BasicAction,
we have the following from Definitions 7.16 and 7.15.

σ |=Rule [c↾0][π↾n]φ ⇔ ∀σ′ ∈ OA
r (c↾0, σ) : σ′ |=Rule [π↾n]φ

⇔ ∀σ′ ∈ OA
r (c↾0, σ) : ∀σ′′ ∈ OA

r (π↾n, σ
′) : σ′′ |=Rule φ

⇔ ∀σ′ ∈ κ(CA
r (c↾0, σ)) : ∀σ′′ ∈ κ(CA

r (π↾n, σ
′)) :

σ′′ |=Rule φ
⇔ ∀σ′′ ∈ κ(CA

r (π↾n, σ1)) : σ′′ |=Rule φ

(7.4)

From (7.2), we have that κ(CA
r (π↾n, σ1)) ⊆ κ(CA

r (c;π↾n, σ)). From this and
assumption (7.3), we can now conclude the desired result (7.4).

THE AXIOM SYSTEM 149

(B) Let c ∈ (BasicAction∪AbstractPlan) and let ρ ∈ applicable(Rule, c;π). Then
we want to prove σ |=Rule [apply(ρ, c;π)↾n−1]φ. From Definitions 7.16 and 7.15,
we have the following.

σ |=Rule [apply(ρ, c;π)↾n−1]φ ⇔ ∀σ′ ∈ OA
r (apply(ρ, c;π)↾n−1, σ) : σ′ |=Rule φ

⇔ ∀σ′ ∈ κ(CA
r (apply(ρ, c;π)↾n−1, σ)) :

σ′ |=Rule φ

(7.5)

From (7.2), we have that κ(CA
r (apply(ρ, c;π)↾n−1, σ)) ⊆ κ(CA

r (c;π↾n, σ)). From
this and assumption (7.3), we can now conclude the desired result (7.5).

(⇐) Assume σ |=Rule [c↾0][π↾n]φ and σ |=Rule

∧
ρ[apply(ρ, c;π)↾n−1]φ, i.e.,

∀σ′ ∈ κ(CA
r (π↾n, σ1)) : σ′ |=Rule φ (7.4) and ∀σ′ ∈ κ(CA

r (apply(ρ, c;π)↾n−1, σ)) :
σ′ |=Rule φ (7.5).
To prove: σ |=Rule [c;π↾n]φ, i.e., ∀σ′ ∈ κ(CA

r (c;π↾n, σ)) : σ′ |=Rule φ (7.3).
If c ∈ AbstractPlan or if a transition of the form 〈c;π, σ〉 →execute 〈π, σ1〉 is
not derivable, we have that κ(CA

r (c;π↾n, σ)) =
⋃

ρ κ(C
A
r (apply(ρ, c;π)↾n−1, σ))

(7.2). From this and the assumption, we have the desired result.
If c ∈ BasicAction and a transition of the form 〈c;π, σ〉 →execute 〈π, σ1〉 is

derivable, we have (7.2). From this and the assumption, we again have the
desired result. 2

7.4.2 Completeness

In order to prove completeness of the axiom system, we first prove Proposition
7.1, which says that any formula from LPRDL can be rewritten into an equivalent
formula where all restriction parameters are 0. This proposition is proven by
induction on the size of formulas. The size of a formula is defined by means of
the function size : LPRDL → N

3. This function takes a formula from LPRDL and
yields a triple 〈x, y, z〉, where x roughly corresponds to the sum of the restriction
parameters occurring in the formula, y roughly corresponds to the sum of the
length of plans in the formula and z is the length of the formula. The idea is
that the size of a formula is 0 if all restriction parameters are 0. In order to
make the induction technically possible, we however also need to incorporate
the length of plans and of the formula into the function size. This is explained
further after the definition of the function.

Definition 7.18 (size) Let the following be a lexicographic ordering on tuples
〈x, y, z〉 ∈ N

3:

〈x1, y1, z1〉 < 〈x2, y2, z2〉 iff

x1 < x2 or (x1 = x2 and y1 < y2) or (x1 = x2 and y1 = y2 and z1 < z2).

150 DYNAMIC LOGIC FOR PLAN REVISION

Let max be a function yielding the maximum of two tuples from N
3 and let f

and s respectively be functions yielding the first and second element of a tuple.
Let l be a function yielding the number of symbols of a syntactic entity and let
l(ǫ) = 0. The function size : LPRDL → N

3 is then as defined below.

size(p) = 〈0, 0, l(p)〉

size([π↾n]φ) =

{
〈n+ f(size(φ)), l(π) + s(size(φ)), l([π↾n]φ)〉 if n > 0
〈f(size(φ)), s(size(φ)), l([π↾n]φ)〉 otherwise

size(¬φ) = 〈f(size(φ)), s(size(φ)), l(¬φ)〉
size(φ ∧ φ′) = 〈f(max(size(φ), size(φ′))),

s(max(size(φ), size(φ′))), l(φ ∧ φ′)〉

Note that when calculating the plan length of a formula [π↾n]φ, i.e., the sec-
ond element of the tuple size([π↾n]φ), the length of π is added to the length
of the plans in φ in case n > 0. If however n = 0 or n = −1, the length
of π is not added to the length of the plans in φ and s(size(φ)) is simply
returned. This definition of the function size results in the fact that a for-
mula φ in which all restriction parameters are 0 (or −1), will satisfy size(φ) =
〈0, 0, l(φ)〉. Further, this definition gives us that size([c↾0][π↾n]φ) is smaller than
size([c;π↾n]φ), which is needed in the proof of Lemma 7.1, which will be used
in the proof of Proposition 7.1.

Clause (7.7) of Lemma 7.1 specifies that the right-hand side of axiom (PRDL4)
is smaller than the left-hand side. This axiom will usually be used by applying
it from left to right to prove a formula such as [π↾n]φ. Intuitively, the fact that
the formula will get “smaller” as specified through the function size, suggests
convergence of the deduction process.

Lemma 7.1 Let φ ∈ LPRDL, let c ∈ (BasicAction ∪ AbstractPlan), let ρ range
over applicable(Rule, c;π) and let n > 0. The following then holds.

size(φ) < size([ǫ↾n]φ) (7.6)

size([c↾0][π↾n]φ ∧
∧

ρ

[apply(ρ, c;π)↾n−1]φ) < size([c;π↾n]φ) (7.7)

size(φ) < size(φ∧ φ′) (7.8)

size(φ′) < size(φ∧ φ′) (7.9)

Proof: First, we prove (7.6). From Definition 7.18, we have:

size([ǫ↾n]φ) = 〈n+ f(size(φ)), s(size(φ)), l([ǫ↾n]φ)〉.

This is bigger than size(φ).

THE AXIOM SYSTEM 151

Now we prove (7.7). We have the following from Definition 7.18, using that
n > 0:

size([c;π↾n]φ) = 〈n+ f(size(φ)), l(c;π) + s(size(φ)), l([c;π↾n]φ)〉,
size([c↾0][π↾n]φ) = 〈n+ f(size(φ)), l(π) + s(size(φ)), l([c↾0][π↾n]φ)〉,
size([apply(ρ, c;π)↾n−1]φ) = 〈(n− 1) + f(size(φ)), l(apply(ρ, c;π))

+ s(size(φ)), l([apply(ρ, c;π)↾n−1]φ)〉.

Let F = [c↾0][π↾n]φ and S = [apply(ρ, c;π)↾n−1]φ. Then,
max(size(F), size(S)) = size(F) for any plan revision rule ρ. Thus,
size(F ∧

∧
ρ S) = 〈n + f(size(φ)), l(π) + s(size(φ)), l(F ∧

∧
ρ S)〉, which is

smaller than size([c;π↾n]φ), yielding the desired result.
Finally, we prove (7.8) and (7.9). First, we show that size(φ) < size(φ∧φ′),

which we will refer to by R. We thus have to show:

〈f(size(φ)), s(size(φ)), l(φ)〉 <

〈f(max(size(φ), size(φ′))), s(max(size(φ), size(φ′))), l(φ ∧ φ′)〉.

If f(size(φ)) < f(max(size(φ), size(φ′))), we have R. If f(size(φ)) =
f(max(size(φ), size(φ′))) and s(size(φ)) < s(max(size(φ), size(φ′))), we again
have R. If s(size(φ)) = s(max(size(φ), size(φ′))), we also have R, because
l(φ) < l(φ∧φ′). Covering all cases, this yields the desired result. The same line
of reasoning can be applied to show size(φ′) < size(φ ∧ φ′). 2

Now we can formulate and prove the following proposition.

Proposition 7.1 Any formula φ ∈ LPRDL can be rewritten into an equivalent
formula φPDL where all restriction parameters are 0, i.e.:

∀φ ∈ LPRDL : ∃φPDL ∈ LPRDL : size(φPDL) = 〈0, 0, l(φPDL)〉 and ⊢Rule φ↔ φPDL.

Proof: The fact that a formula φ has the property that it can be rewritten
as specified in the proposition, will be denoted by PDL(φ) for reasons that will
become clear in the sequel. The proof is by induction on size(φ).� φ ≡ p

size(p) = 〈0, 0, l(p)〉 and let pPDL = p, then PDL(p).� φ ≡ [π↾n]φ′

If n = −1, we have that [π↾n]φ′ is equivalent with ⊤ (PRDL1). As PDL(⊤),
we also have PDL([π↾n]φ′) in this case.

Let n = 0. We then have that size([π↾n]φ′) =
〈f(size(φ′)), s(size(φ′)), l([π↾n]φ′)〉 is greater than size(φ′) =
〈f(size(φ′)), s(size(φ′)), l(φ′)〉. By induction, we then have PDL(φ′),
i.e., φ′ can be rewritten into an equivalent formula φ′PDL, such that

152 DYNAMIC LOGIC FOR PLAN REVISION

size(φ′PDL) = 〈0, 0, l(φ′PDL)〉. As size([π↾n]φ′PDL) = 〈0, 0, l([π↾n]φ′PDL)〉, we
have PDL([π↾n]φ′PDL) and therefore PDL([π↾n]φ′).

Let n > 0. Let π = ǫ. By Lemma 7.1, we have size(φ′) < size([ǫ↾n]φ′).
Therefore, by induction, PDL(φ′). As [ǫ↾n]φ′ is equivalent with φ′ by
axiom (PRDL3), we also have PDL([ǫ↾n]φ′). Now let π = c;π′ and let L =
[c;π′↾n]φ′ and R = [c↾0][π

′↾n]φ′ ∧
∧

ρ[apply(ρ, c;π
′)↾n−1]φ

′. By Lemma
7.1, we have that size(R) < size(L). Therefore, by induction, we have
PDL(R). As R and L are equivalent by axiom (PRDL4), we also have
PDL(L), yielding the desired result.� φ ≡ ¬φ′

We have that size(¬φ′) = 〈f(size(φ′)), s(size(φ′)), l(¬φ′)〉, which is
greater than size(φ′). By induction, we thus have PDL(φ′) and
size(φ′PDL) = 〈0, 0, l(φ′PDL)〉. Then, size(¬φ′PDL) = 〈0, 0, l(¬φ′PDL)〉 and
thus PDL(¬φ′PDL) and therefore PDL(¬φ′).� φ ≡ φ′ ∧ φ′′

By Lemma 7.1, we have size(φ′) < size(φ′ ∧ φ′′) and size(φ′′) <
size(φ′ ∧ φ′′). Therefore, by induction, PDL(φ′) and PDL(φ′′) and there-
fore size(φ′PDL) = 〈0, 0, l(φ′PDL)〉 and size(φ′′PDL) = 〈0, 0, l(φ′′PDL)〉. Then,
size(φ′PDL∧φ

′′
PDL) = 〈0, 0, l(φ′PDL∧φ

′′
PDL)〉 and therefore size((φ′∧φ′′)PDL) =

〈0, 0, l((φ′ ∧ φ′′)PDL)〉 and we can conclude PDL((φ′ ∧ φ′′)PDL) and thus
PDL(φ′ ∧ φ′′).

2

Although structural induction is not possible for plans in general, it is possible
if we only consider action execution, i.e., if the restriction parameter is 0. This
is specified in the following proposition, from which we can conclude that a
formula φ with size(φ) = 〈0, 0, l(φ)〉 satisfies all standard PDL properties.

Proposition 7.2 (sequential composition) Let Rule ⊆ R be a finite set of plan
revision rules. The following is then derivable in the axiom system ASRule.

⊢Rule [π1;π2↾0]φ↔ [π1↾0][π2↾0]φ

Proof: If π1 = ǫ, we have [π2↾0] ↔ [ǫ↾0][π2↾0]φ by axiom (PRDL3). Otherwise,
let ci ∈ (BasicAction ∪ AbstractPlan) for i ≥ 1, let π1 = c1; . . . ; cn, with n ≥ 1.
Through repeated application of axiom (PRDL4), first from left to right and then
from right to left (also using axiom (PRDL1) to eliminate the rule application

THE AXIOM SYSTEM 153

part of the axiom), we derive the desired result.9

[π1;π2↾0]φ ↔ [c1; . . . ; cn;π2↾0]φ
↔ [c1↾0][c2; . . . ; cn;π2↾0]φ
↔ . . .
↔ [c1↾0][c2↾0] . . . [cn↾0][π2↾0]φ
↔ [c1; c2↾0][c3↾0] . . . [cn↾0][π2↾0]φ
↔ . . .
↔ [c1; . . . ; cn↾0][π2↾0]φ
↔ [π1↾0][π2↾0]φ

2

Theorem 7.2 (completeness) Let φ ∈ LPRDL and let Rule ⊆ R be a finite set
of plan revision rules. Then the axiom system ASRule is complete, i.e.:

|=Rule φ ⇒ ⊢Rule φ.

Proof: Let φ ∈ LPRDL. By Proposition 7.1 we have that a formula φPDL exists
such that ⊢Rule φ ↔ φPDL and size(φPDL) = 〈0, 0, l(φPDL)〉 and therefore by
soundness of ASRule also |=Rule φ ↔ φPDL. Let φPDL be a formula with these
properties.

|=Rule φ ⇔ |=Rule φPDL (|=Rule φ↔ φPDL)
⇒ ⊢Rule φPDL (completeness of PDL)
⇔ ⊢Rule φ (⊢Rule φ↔ φPDL)

The second step in this proof needs some justification. The general idea is
that all PDL axioms and rules are applicable to a formula φPDL and moreover,
these axioms and rules are contained in our axiom system ASRule. As PDL is
complete, we have |=Rule φPDL ⇒ ⊢Rule φPDL. There are however some subtleties
to be considered, as our action language is not exactly the same as the action
language of PDL, nor is it a subset (at first sight).

The action language of PDL is built using basic actions, sequential com-
position, test, non-deterministic choice and iteration. The action language of
PRDL is built using basic actions, abstract plans, empty plans and sequential
composition. If we for the moment disregard abstract plans and empty plans,
the language PRDL is a subset of the language PDL. If we take the subset of
PDL axioms and rules dealing with formulas in this subset, this axiom system
should be complete with respect to these formulas.

The action language of full PRDL however also contains abstract plans and
empty plans. The question is, how these should be axiomatized such that we

9We use the notation φ1 ↔ φ2 ↔ φ3 ↔ . . ., which should be read as a shorthand for
φ1 ↔ φ2 and φ2 ↔ φ3 and . . . This notation will also be used in the sequel.

154 DYNAMIC LOGIC FOR PLAN REVISION

obtain a complete axiomatization. In order to answer this question, we make
the following observation. In a formula φPDL, abstract and empty plans can
only occur with a 0 restriction parameter by definition. Further, the semantics
of a formula [p↾0]φPDL where p is an abstract plan, is similar to the semantics of
the fail statement of (an extended version of) PDL. The set of states resulting
from “execution” of both statements is empty.10 The semantics of a formula
[ǫ↾0]φPDL is similar to the semantics of the skip statement of PDL. The set of
states resulting from the execution of both statements in a state σ is {σ},11 i.e.,
the semantics is the identity relation. The action language of PRDL can thus
be considered to be a subset of the action language of PDL, where p↾0 and ǫ↾0
correspond respectively to fail and skip.

Now, fail and skip are not axiomatized in the basic axiom system of PDL.
These statements are however defined as 0? and 1? respectively and the test
statement is axiomatized: [ψ?]φ ↔ (ψ → φ). We now fill in 0 and 1 for ψ in
this axiom, which gives us the following.

[0?]φ↔ (0 → φ) ⇔ [0?]φ ⇔ [fail]φ
[1?]φ↔ (1 → φ) ⇔ [1?]φ↔ φ ⇔ [skip]φ↔ φ

The statements fail and skip are thus implicitly axiomatized through the
axiomatization of the test. For our axiom system to be complete for formulas
φPDL, it should thus contain the PDL axioms and rules that are applicable to
these formulas, that is, the axiom for sequential composition, the axioms for
fail and skip as stated above, the axiom for distribution of box over implication
and the rules (MP) and (GEN). The latter three are explicitly contained in
ASRule. The axiom for sequential composition is derivable in the system ASRule

for formulas φPDL, by Proposition 7.2. Axiom (PRDL2) for p↾0 corresponds with
the axiom for fail. The axiom for ǫ↾0, corresponding with the axiom for skip,
is an instantiation of axiom (PRDL3). Axiom (PRDL3), i.e., the more general
version of [ǫ↾0]φ ↔ φ, is needed in the proof of Proposition 7.1, which is used
elsewhere in this completeness proof. 2

We conclude with a remark with respect to axiom (PRDL3). In the proof above,
we explained that the semantics of ǫ↾0 and skip are equivalent. As it turns out
(see Proposition 7.3), [ǫ↾0]φ is equivalent with [ǫ↾n]φ, as can be proven from
axiom (PRDL3), which is thus also equivalent with skip.

Proposition 7.3 (empty plan) Let Rule ⊆ R be a finite set of plan revision
rules. The following is then derivable in the axiom system ASRule.

⊢Rule [ǫ↾0]φ↔ [ǫ↾n]φ with 0 ≤ n

10An abstract plan p cannot be executed directly, it can only be transformed using plan
revision rules. The restriction parameter is however 0, so no plan revision rules may be applied
and the set OA

r ([p↾0]φ)(σ) = ∅ for all A and σ.
11CA

r ([ǫ↾0]φPDL)(σ) = {σ} = κ(CA
r ([ǫ↾0]φPDL)(σ)) = OA

r ([ǫ↾0]φPDL)(σ)

PROVING PROPERTIES OF NON-RESTRICTED PLANS 155

Proof:
1. [ǫ↾n][ǫ↾0]φ↔ [ǫ↾0]φ (PRDL3)
2. [ǫ↾0]φ↔ φ (PRDL3)
3. [ǫ↾n][ǫ↾0]φ↔ [ǫ↾n]φ 2, (GEN), (PDL)
4. [ǫ↾0]φ↔ [ǫ↾n]φ 1, 3, (PL)

2

7.5 Proving Properties of Non-Restricted Plans

In Sections 7.3 and 7.4 we have presented a logic for restricted plans with sound
and complete axiomatization. This means that it should be possible to construct
a proof for, e.g., a formula [a; b↾3]φ if and only if it is true for a given agent.
This might be considered an interesting result, but our ultimate aim is to prove
properties of non-restricted 3APL plans.

The semantics of restricted plans is closely related to the semantics of non-
restricted plans. Using this relation, we will show how the proof system for
restricted plans can be extended to a proof system for non-restricted plans.
Then we will discuss the usability of this system, using examples.

7.5.1 From Restricted to Non-Restricted Plans

We first add the following clause to the language LPRDL (Definition 7.13),12

yielding a language that we will call LPRDL+ : if φ ∈ LPRDL+ and π ∈ Plan, then
[π]φ ∈ LPRDL+ . By means of this construct, we can thus specify properties of
non-restricted plans. We define the semantics of this construct in terms of the
operational semantics of non-restricted plans as follows.

Definition 7.19 (semantics of PRDL+) Let A be a 3APL agent (Definition
7.4). The semantics of formulas not of the form [π]φ with φ ∈ LPRDL+ is as in
Definition 7.16. The semantics of formulas of the form [π]φ is as defined below.

σ |=A [π]φ⇔ ∀σ′ ∈ OA(π)(σ) : σ′ |=A φ

This definition thus takes the operational semantics of non-restricted plans to
define the semantics of constructs of the form [π]φ. In the following proposition,
we relate the operational semantics of plans and the operational semantics of
restricted plans.

Proposition 7.4 ⋃

n∈ N

Or(π↾n)(σ) = O(π)(σ)

12Replacing each occurrence of LPRDL in this definition by LPRDL+ .

156 DYNAMIC LOGIC FOR PLAN REVISION

Proof: Immediate from Definitions 7.15, 7.14, 7.11 and 7.10. 2

From this proposition, we have the following corollary, which shows how the
construct [π↾n]φ is related to the construct [π]φ.

Corollary 7.1

∀n ∈ N : σ |=A [π↾n]φ ⇔ ∀σ′ ∈ OA(π)(σ) : σ′ |=A φ
⇔ σ |=A [π]φ

Proof: Immediate from Proposition 7.4, Definition 7.16 and Definition 7.19.
2

From this corollary, we can conclude that we can prove a property of the form
[π]φ by proving ∀n ∈ N : ⊢Rule [π↾n]φ, using the system for restricted plans.
This idea can be captured in a proof rule as follows.

Definition 7.20 (proof rule for non-restricted plans)

[π↾n]φ, n ∈ N

[π]φ

This rule should be read as having an infinite number of premises, i.e., [π↾0]φ,
[π↾1]φ, [π↾2]φ, . . . (see also [Harel et al., 2000]). Deriving a formula [π]φ using
this infinitary rule thus requires infinitely many premises to have been previously
derived.

The rule is sound by corollary 7.1. The system ASRule for restricted plans
(Definition 7.17) taken together with the rule above, is a complete axiom system
for PRDL+: if [π]φ is true then each of the premises of the rule is true (corollary
7.1) and each of these premises can be proven by completeness of ASRule. The
notion of a proof in this case is however non-standard, as a proof can be infinite.
This completeness result is therefore theoretical, and putting the system to use
in this way is obviously problematic.

One way to try to deal with this problem is the following. The idea is
that properties of the form ∀n ∈ N : ⊢Rule [π↾n]φ can be proven by induc-
tion on n, rather than proving [π↾n]φ for each n. If we can prove [π↾0]φ and
∀n ∈ N : ([π↾n]φ ⊢Rule [π↾n+1]φ), we can conclude the desired property. In the
next section we will illustrate how this could be done, using examples. The
examples however show that it is not obvious that this kind of induction can be
applied in all cases.

7.5.2 Examples

Example 7.2 Let A be an agent with one plan revision rule, i.e., Rule =
{a; b c} and let T be such that [a↾0]φ, [b↾0]φ and [c↾0]φ. We now want to
prove that ∀n : [a; b↾n]φ. We have [a; b↾0]φ by using that this is equivalent to

PROVING PROPERTIES OF NON-RESTRICTED PLANS 157

[a↾0][b↾0]φ by Proposition 7.2. The latter formula can be derived by applying
(GEN) to [b↾0]φ. We prove ∀n ∈ N : ([a; b↾n]φ ⊢Rule [a; b↾n+1]φ) by taking an
arbitrary n and proving that [a; b↾n]φ ⊢Rule [a; b↾n+1]φ. Using (PRDL4) and
(PRDL3), we have the following equivalences.

[a; b↾n]φ ↔ [a↾0][b↾n]φ ∧ [c↾n−1]φ
↔ [a↾0][b↾0][ǫ↾n]φ ∧ [c↾0][ǫ↾n−1]φ
↔ [a↾0][b↾0]φ ∧ [c↾0]φ

Similarly, we have the following equivalences for [a; b↾n+1]φ, yielding the desired
result.

[a; b↾n+1]φ ↔ [a↾0][b↾n+1]φ ∧ [c↾n]φ
↔ [a↾0][b↾0][ǫ↾n+1]φ ∧ [c↾0][ǫ↾n]φ
↔ [a↾0][b↾0]φ ∧ [c↾0]φ

△

Example 7.3 We will prove a property of a very simple 3APL agent using
axiom (PRDL4) and induction on the number of plan revision rule applications.
Our agent has one plan revision rule: Rule = {a a; a}. Furthermore, assume
that T is defined such that [a↾0]φ. We want to prove the following: ∀n ∈ N :
[a↾n]φ. In order to prove the desired result by induction on the number of plan
revision rule applications, we thus have to prove [a↾0]φ and ∀n ∈ N : [a↾n]φ ⊢Rule

[a↾n+1]φ. [a↾0]φ was given. Let ai denote a sequence of a’s of length i, with
a0 = ǫ. The premise of the second conjunct can be rewritten using axiom
(PRDL4) as follows.

[a↾n]φ ↔ [a↾0]φ ∧ [(a; a)↾n−1]φ
↔ [a↾0]φ ∧ [a↾0][a↾n−1]φ ∧ [(a; a; a)↾n−2]φ
↔ [a↾0]φ ∧ [a↾0][a↾n−1]φ ∧ [a↾0][(a; a)↾n−2]φ ∧ [(a; a; a; a)↾n−3]φ
...
↔ [a↾0]φ ∧ [a↾0][a↾n−1]φ ∧ . . . ∧ [a↾0][(a

n)↾0]φ ∧ [(a; (an))↾0]φ

So, in order to prove [a↾n+1]φ, we may assume - among other things - [a↾n]φ,
[(a; a)↾n−1]φ, [(a; a; a)↾n−2]φ, . . ., [(a; (an))↾0]φ (last conjunct of each line).
Equivalently, we may thus assume the following.13

∧

i

[(a; (ai))↾n−i]φ for 0 ≤ i ≤ n (7.10)

13Note that [a↾0][(a0)↾n]φ ↔ [a↾0][ǫ↾n]φ and [a↾0][ǫ↾n]φ ↔ [a↾0]φ, using axiom (PRDL3).

158 DYNAMIC LOGIC FOR PLAN REVISION

The consequent, i.e., [a↾n+1]φ, can be rewritten using axiom (PRDL4) as below.

[a↾n+1]φ ↔ [a↾0]φ ∧ [(a; a)↾n]φ
↔ [a↾0]φ ∧ [a↾0][a↾n]φ ∧ [(a; a; a)↾n−1]φ
↔ [a↾0]φ ∧ [a↾0][a↾n]φ ∧ [a↾0][(a; a)↾n−1]φ ∧ [(a; a; a; a)↾n−2]φ
...
↔ [a↾0]φ ∧ [a↾0][a↾n]φ ∧ . . . ∧ [a↾0][(a; (a

n))↾0]φ ∧ [(a; a; (an))↾0]φ
(7.11)

As [a↾n+1]φ is equivalent to all of the lines on the righthandside of (7.11), we
may prove any of these lines, in order to prove the desired result. As it turns
out, it is easiest to prove the last line. The reason is that in this case, the last
conjunct has a restriction parameter of 0. We can thus use Proposition 7.2 for
sequential composition to prove this conjunct as follows.

1. [a↾0]φ assumption
2. [(a; a; (an−1))↾0][a↾0]φ 1, (GEN)
3. [(a; a; (an−1); a)↾0]φ 2,Proposition 7.2
4. [(a; a; (an))↾0]φ 3, definition of ai

Proving the other part of the last line of (7.11), i.e.,
∧

i[a↾0][(a; (a
i))↾n−i]φ for

0 ≤ i ≤ n, can be done by applying (GEN) to each of the conjuncts of 7.10,
yielding the desired result. △

The important thing to note about this example is that rewriting of formulas
like [a↾n]φ using (PRDL4), terminates. This is because the number of rewrite
steps is restricted by n. If we would not have this restriction parameter, we
might have the following variant of (PRDL4):

[c;π]φ↔ [c↾0][π]φ ∧
∧

ρ

[apply(ρ, c;π)]φ.14

An attempt to proving [a]φ for an agent with the plan revision rule of Example
7.3 and this “axiom”, would however result in infinite regression:

[a]φ ↔ [a↾0]φ ∧ [a; a]φ
↔ [a↾0]φ ∧ [a↾0][a]φ ∧ [a; a; a]φ
↔ [a↾0]φ ∧ [a↾0][a]φ ∧ [a↾0][a; a]φ ∧ [a; a; a; a]φ
...

In the example above, we have proven the desired result in our axiom system,
using the key axiom (PRDL4). Another way to look at an agent with only
the plan revision rule a a; a, is by considering the language of plans that is
“generated” by this rule. By doing this, a much simpler proof can be obtained.

14We use the 0-restriction parameter here to distinguish between rule application and action
execution, i.e., [c;π]φ is true, if and only if [π]φ is true after the execution of c and φ is true
after the plans resulting from the application of the plan revision rules of the agent.

PROVING PROPERTIES OF NON-RESTRICTED PLANS 159

Example 7.4 We take again the agent of Example 7.3, i.e., an agent with
one plan revision rule a a; a, and with [a↾0]φ. We want to prove again
∀n ∈ N : [a↾n]φ. Taking into account the plan revision rule that is given
and the initial plan a, one can conclude that the action sequences that can be
executed by this agent, are sequences of a of an arbitrary length. Given this, one
could instead prove ∀n ∈ N

+ : [an↾0]φ, where N
+ is the set of positive natural

numbers.15 We prove this by taking an arbitrary n and proving [an↾0]φ for this
n.

1. [a↾0]φ assumption
2. [a↾0][a↾0]φ 1, GEN

3. [a; a↾0]φ 2, Proposition 7.2
...

[an↾0]φ

△

Obviously, this proof is much shorter than the proof of Example 7.3. It is
however obtained through meta-reasoning about the plan revision rules of the
agent. In the desired result ∀n ∈ N

+ : [an↾0]φ, the restriction parameter is 0.
The application of plan revision rules has thus in effect been eliminated from
the expression in the object language.

Meta-reasoning could be done in this simple case: the plan revision rule
actually generates the language of plans that can be represented by the simple
regular expression a∗. Plan revision rules in general however do not only gen-
erate languages that can be represented by regular expressions. In particular,
rules of the form p π, where p is an abstract plan, can be compared with
parameterless recursive procedures (see also Section 7.6), which can in turn be
linked to context-free programs [Harel et al., 2000, Chapter 9]. Furthermore,
plan revision rules can have the form πh πb, where the head is an arbitrary
plan. It is thus not obvious that a meta-argument about the plans generated
by the agent can be constructed in the general case. Investigations along these
lines are however not within the scope of this chapter and remain for future
research.

In the next example, we will use Proposition 7.5 below, in the proof of which
we use the following lemma.

Lemma 7.2 Let Rule ⊆ R be a finite set of plan revision rules. The following
is then derivable in the axiom system ASRule.

⊢Rule [π↾n]φ→ [π↾0]φ

15The result ∀n ∈ N : [a↾n]φ that we want to prove specifies that always at least one action
a is executed: if n = 0, the required result is [a↾0]φ, which specifies the execution of a. The
result does not require proving [ǫ↾n]φ, which would be provable if we would assume φ to be
valid.

160 DYNAMIC LOGIC FOR PLAN REVISION

Proof: Let ci ∈ (BasicAction ∪ AbstractPlan) for i ≥ 1 and let π = c1; . . . ; cm,
with m ≥ 1. Through repeated application of axiom (PRDL4), from left to
right, then using (PRDL3) to get rid of [ǫ↾n] and then using Proposition 7.2
for sequential composition with a 0 restriction parameter, we derive the desired
result.

[π↾n]φ ↔ [c1; . . . ; cm↾n]φ
→ [c1↾0][c2; . . . ; cm↾n]φ
→ . . .
→ [c1↾0][c2↾0] . . . [cm↾0][ǫ↾n]φ
→ [c1↾0][c2↾0] . . . [cm↾0]φ
→ [c1; c2↾0][c3↾0] . . . [cm↾0]φ
→ . . .
→ [c1; . . . ; cm↾0]φ
→ [π↾0]φ

2

In the following proposition, we will use some notation that we will first explain.
The notation (PRDL4)i([π↾n]φ), with 0 ≤ i ≤ n, denotes the formula that results
from rewriting [π↾n]φ using (PRDL4) from left to right, such that all restriction
parameters are either 0 or i. Formulas of the form [ǫ↾m]φ are replaced by
φ, using axiom (PRDL3). In this process, (PRDL4) may only be applied to a
formula [π↾m]φ if m > i.

Take, e.g., the agent of Example 7.3 with a a; a as the only plan revi-
sion rule. The formula (PRDL4)3([a↾5]φ) then for example denotes the formula
[a↾0]φ∧ [a↾0][a↾0]φ∧ [a↾0][a; a↾3]φ∧ [a; a; a↾3]φ, which can be obtained by rewrit-
ing the formula [a↾5]φ as below.

[a↾5]φ ↔ [a↾0][ǫ↾5]φ ∧ [a; a↾4]φ
↔ [a↾0]φ ∧ [a↾0][a↾4]φ ∧ [a; a; a↾3]φ
↔ [a↾0]φ ∧ [a↾0][a↾0][ǫ↾4]φ ∧ [a↾0][a; a↾3]φ ∧ [a; a; a↾3]φ
↔ [a↾0]φ ∧ [a↾0][a↾0]φ ∧ [a↾0][a; a↾3]φ ∧ [a; a; a↾3]φ

The idea is thus, that formulas of the form [π↾m]φ are rewritten until formulas
are obtained with i as the restriction parameter. A formula [π↾i]φ may not be
rewritten.

Any formula [π↾n]φ can be rewritten into a formula (PRDL4)i([π↾n]φ) with
0 ≤ i ≤ n. An application of (PRDL4) to a formula [π↾m]φ yields two conjuncts
(the second of which is again a conjunction). The first conjunct is smaller in
plan size than [π↾m]φ.16 Each conjunct of the second conjunct is smaller than
[π↾m]φ with respect to the restriction parameter. With each rewrite step, we
thus have a decrease either in plan size or in size of the restriction parameter of
each resulting conjunct. This can thus continue for each conjunct until either

16The second element of size(F), where F denotes the first conjunct, is smaller than the
second element of size([π↾m]φ.

PROVING PROPERTIES OF NON-RESTRICTED PLANS 161

the plan size (minus the plan size of φ) is 0 or the non-zero restriction parameters
are equal to i.

Another notation that we will use is to0(φ), denoting the formula that results
from replacing all restriction parameters in φ by 0.

Proposition 7.5 (restriction parameter) Let Rule ⊆ R be a finite set of plan
revision rules. The following is then derivable in the axiom system ASRule.

⊢Rule [π↾n]φ→ [π↾i]φ with − 1 ≤ i ≤ n

Proof: If i = −1, the desired result follows immediately by axiom (PRDL1).
We will now prove the result for i ≥ 0.

1. [π↾n]φ↔ (PRDL4)n−i([π↾n]φ) (PRDL4)
2. [π↾i]φ↔ (PRDL4)0([π↾i]φ) (PRDL4)
3. (PRDL4)n−i([π↾n]φ) → to0((PRDL4)n−i([π↾n]φ)) Lemma 7.2
4. to0((PRDL4)n−i([π↾n]φ)) ↔ (PRDL4)0([π↾i]φ) syntactic equality
5. (PRDL4)n−i([π↾n]φ) → (PRDL4)0([π↾i]φ) 3, 4
6. [π↾n]φ→ [π↾i]φ 1, 2, 5

Step 4 is justified, because both (PRDL4)n−i([π↾n]φ) and (PRDL4)0([π↾i]φ) re-
sult from the same number of applications of (PRDL4) to [π↾n]φ and [π↾i]φ
respectively. The latter two formulas are syntactically equal, except for the
restriction parameter. The formulas (PRDL4)n−i([π↾n]φ) and (PRDL4)0([π↾i]φ)
are thus also syntactically equal,17 except for the restriction parameters, which
are n − i or 0 in the first case and 0 in the latter. Setting the restriction
parameters of the first formula to 0, will thus give us equivalent formulas. 2

Example 7.5 We now consider an agent with two plan revision rules: Rule =
{a a; a, a; a; a b} and we assume that [a↾0]φ and [b↾0]φ. We want to prove
∀n ∈ N : [a↾n]φ. Along similar lines of reasoning as in Example 7.3, i.e., by
using axiom (PRDL4) to rewrite [a↾n]φ, we can conclude that we may again use
assumption (7.10) from Example 7.3. We have to prove the following, taking
the “last line” of the rewriting of [a↾n+1]φ by (PRDL4).

∧

i

[a↾0][(a; (a
i))↾n−i]φ for 0 ≤ i ≤ n (7.12)

∧

i

[(b; (ai−2))↾n−i]φ for 2 ≤ i ≤ n (7.13)

[(a; a; (an))↾0]φ (7.14)

The formulas (7.12) and (7.14) were proven in the example above, using as-
sumption (7.10). We will prove (7.13) by proving

∧
i[(a

i−2)↾n−i]φ and using
(GEN) to derive the desired formula.

17That is, modulo swapping of conjuncts.

162 DYNAMIC LOGIC FOR PLAN REVISION

In the proof below, let 3 ≤ i ≤ n and let 0 ≤ r ≤ n in the first line and
0 ≤ r ≤ n− 3 in the second line.

1.
∧

r[(a; (a
r))↾n−r]φ assumption (7.10)

2.
∧

r[(a; (a
r))↾n−r−3]φ 1,Proposition 7.5

3.
∧

i[(a; (a
i−3))↾n−i]φ where r = i− 3

4.
∧

i[(a
i−2)↾n−i]φ definition of ai

5.
∧

i[b↾0][(a
i−2)↾n−i]φ 4, (GEN)

6.
∧

i[b↾0][(a
i−2)↾n−i]φ↔

∧
i[(b; (a

i−2))↾n−i]φ (PRDL4)
7.

∧
i[(b; (a

i−2))↾n−i]φ 5, 6, (MP)

The above proves [(b; (ai−2))↾n−i]φ for 3 ≤ i ≤ n. If i = 2, we need to prove
[b↾n−2]φ. According to axiom (PRDL4), this is equivalent to proving [b↾0]φ.18

This was given, so we are done. △

In Section 7.5.1, we have presented an infinitary axiom system to prove prop-
erties of non-restricted 3APL plans. As an infinitary axiom system is difficult
to use, we have suggested to use induction on the number of plan revision rule
applications, i.e., on the restriction parameter, in an expression. Some exam-
ples have been worked out to illustrate this approach. As the examples show,
it is doable (at least for the example cases) to use induction on the number of
plan revision rule applications. It is however a fairly complicated undertaking.
Future research will have to show whether this type of reasoning is amenable to
some kind of automation, and what the limits of the approach are.

7.6 Plan Revision Rules versus Procedures

The operational semantics of (parameterless) procedures is similar to that of
plan revision rules. The operational semantics of a procedure p ⇐ S where p
is the procedure name and the statement S is the body of the procedure, can
be defined by a transition 〈p;S′, σ〉 → 〈S;S′, σ〉, where S′ is a statement. If we
compare this semantics to the semantics of plan revision rules of Definition 7.7,
we can see that both are so-called body-replacement semantics: if the head of a
plan revision rule or the name of a procedure occur at the head of a statement
that is to be executed, the head or the procedure name are replaced by the body
of the rule or the procedure respectively.

Because of this similarity, one might think that techniques used for reasoning
about procedures can be used to reason about plan revision rules. This however
turns out not to be the case, due to the non-compositional semantics of the se-
quential composition operator in 3APL (see introduction of Section 7.3). In this
section, we will elaborate on this issue by studying inference rules of Hoare logic
for reasoning about procedures (see for example [de Bakker, 1980, Apt, 1981]

18By (PRDL4) we have [b↾n−2]φ ↔ [b↾0][ǫ↾n−2]φ and by (PRDL3): [b↾0][ǫ↾n−2]φ ↔ [b↾0]φ.

PLAN REVISION RULES VERSUS PROCEDURES 163

for a detailed explanation of Hoare logic). We will also show that reasoning
by induction on the number of plan revision rule applications and reasoning
about procedures using Hoare logic inference rules, although very different at
first sight, actually do have similarities.

7.6.1 Reasoning about Procedures

Hoare logic is used for reasoning about programs. Inference rules are defined
to derive so-called Hoare triples. A Hoare triple is of the form {φ1} S {φ2}
and intuitively means that if φ1 holds, φ2 will always hold after the execution
of the statement S.19 To reason about non-recursive procedures, the following
inference rule can be defined for a procedure p ⇐ S (for simplicity, we assume
we only have one procedure) with procedure name p and body S.

{φ1} S {φ2}

{φ1} p {φ2}

The rule states that if we can prove that φ2 holds after the execution of the
body S of the procedure (assuming φ1 holds before execution), we can infer
that φ2 holds after the procedure call p.

If the procedure p ⇐ S is recursive, that is, if p is called in S, the rule
above will still be sound, but a system with only this rule for reasoning about
procedure calls will not be complete (see also [Apt, 1981]). An attempt at prov-
ing {φ1} p {φ2} results in an infinite regression. The following rule [Apt, 1981],
which is a variant of so-called Scott’s induction rule (see for example
[de Bakker, 1980]), is meant to overcome this difficulty.

Definition 7.21 (Scott’s induction rule)

{φ1} p {φ2} ⊢ {φ1} S {φ2}

{φ1} p {φ2}

The rule states that if we can prove {φ1} S {φ2} from the assumption that
{φ1} p {φ2}, we can infer {φ1} p {φ2}. Using this rule for reasoning about
procedure calls, a complete proof system can be obtained [Apt, 1981].20

In a proof of a property of a procedural program, the rule above is (often)
used in combination with the following rule for sequential composition.

Definition 7.22 (rule for sequential composition)

{φ1} S {φ2} {φ2} S
′ {φ3}

{φ1} S;S′ {φ3}

19The Hoare triple {φ1} S {φ2} can be characterized in dynamic logic by the formula
φ1 → [S]φ2.

20Note that this is a proof rule for deriving partial correctness specifications, a Hoare triple
{φ1} p {φ2} meaning that if p terminates, φ2 will hold after execution of p (provided that p

is executed in a state in which φ1 holds). If p does not terminate, anything is derivable for p.
The rule cannot be used to prove termination of p.

164 DYNAMIC LOGIC FOR PLAN REVISION

Consider for example a procedure p ⇐ p and suppose we want to prove
{φ1} p;S {φ3} (p is non-terminating, so we should be able to prove this for
any φ1 and φ3). We then have to prove {φ1} p {φ2} and {φ2} S {φ3} for some
φ2. If we take φ2 = 0, i.e., falsum, the second conjunct follows immediately. In
proving {φ1} p {0}, which we will refer to as H , we use Scott’s induction rule
and we thus have to prove H from the assumption that H . This is immediate,
concluding the proof.

The point of this example is the following. Using Scott’s induction rule, we
can prove properties of a procedure call p. If we want to prove a property of a
statement involving the sequential composition of this procedure call and some
other statement S, we can use properties proven of the procedure call (obtained
using Scott’s induction rule) and compose it with properties proven of S by
means of the rule for sequential composition. In particular, this technique can
be applied to for example a procedure p ⇐ p;S, where an assumption about
p can be used to prove properties of p;S. Scott’s induction rule for proving
properties of procedure calls is thus most useful if used in combination with the
rule for sequential composition.

Scott’s induction rule for plan revision rules

A question one might ask, is whether a variant of Scott’s induction rule can
be used to reason about plan revision rules. Assuming one plan revision rule
πh πb, the following rule could be formulated.

{φ1} πh {φ2} ⊢ {φ1} πb {φ2}

{φ1} πh {φ2}

Assume for the moment that it is possible to use this rule to prove {φ1} πh {φ2}
for some plan revision rule πh πb and properties φ1 and φ2. The question
now is, whether the fact that we can prove {φ1} πh {φ2}, will do us any good
if we want to prove properties of more complex plans such as πh;π.

Proving properties of πh;π based on properties proven of πh, would have
to be done using the rule for sequential composition. This rule is however not
sound in the context of plan revision rules. In general, it is not the case that
O(π1;π2)(σ) ⊆ O(π2)(O(π1)(σ)) (see also the introduction of Section 7.3). Let
Σ1 = O(π1)(σ) and Σ2 = O(π2)(Σ1). If φ2 holds in all states in Σ1 (if φ1 holds
in σ), then φ3 will hold in all states in Σ2 by assumption. Let Σ3 = O(π1;π2)(σ)
and let σ′ ∈ Σ3, but σ′ 6∈ Σ2. Then we may not conclude that φ3 will hold in
σ′ and therefore the rule is not sound.

The fact that we can prove {φ1} πh {φ2}, will thus not help if we want to
prove properties of a plan like πh;π, because we do not have a rule for sequential
composition. In particular, the assumption {φ1} πh {φ2} will not help to prove
{φ1} πb {φ2}, even if πb = πh;π. It is thus not clear whether it should be possible
in the general case to prove {φ1} πb {φ2} from the assumption {φ1} πh {φ2}.
Moreover, the rule above is not sound for agents with more than one plan

PLAN REVISION RULES VERSUS PROCEDURES 165

revision rule. It is then in general not the case that O(πb)(σ) = O(πh)(σ),
rather O(πb)(σ) ⊆ O(πh)(σ). Therefore, we may not conclude {φ1} πh {φ2}
from a proof of {φ1} πb {φ2}.

7.6.2 Induction

In Section 7.6.1 we argued that, although the operational semantics of plan revi-
sion rules and procedure calls are very similar, we cannot use Scott’s induction
rule, which is used for reasoning about procedure calls, to reason about plan
revision rules. Our solution to the issue of reasoning about plan revision rules
as presented in this chapter, is to do induction on the number of plan revision
rule applications. In this section, we will elaborate on why Scott’s induction
rule is called an induction rule and by doing this, we will see that induction on
the number of plan revision rule applications and induction as used in Scott’s
induction rule, have strong similarities.

At first sight, it does not look like using Scott’s induction rule involves
doing induction, because we do not see formulas parameterized with natural
numbers n and n + 1. To see why the rule actually is an induction rule, we
first rephrase the rule of Definition 7.21 and adopt notation used by De Bakker
[de Bakker, 1980]. Ω is used to denote a non-terminating statement (similar to
the fail statement mentioned in the proof of Theorem 7.2). The first element
of a tuple 〈. . . | . . .〉 is used to indicate the procedures, in the presence of which
the formula of the second element should hold.

{φ1} Ω {φ2} 〈 | {φ1} p {φ2} ⊢ {φ1} S {φ2}〉

〈p⇐ S | {φ1} p {φ2}〉
(7.15)

The rule above is an instantiation of a more general version of this rule for
multiple procedures [de Bakker, 1980]. The first antecedent is derived from this
general rule, but could be omitted in this form: Ω is a non-terminating statement
and therefore the triple {φ1} Ω {φ2} is valid for any φ1, φ2. We will however not
eliminate it for the purpose of comparing this rule with reasoning about plan
revision rules.

Now, consider a procedure p ⇐ S and let Sn be defined as follows: S0 = Ω
and Sn+1 = S[Sn/p], where S[Sn/p] means that every occurrence of p in S
is replaced by Sn. If for example S = p;S′, then S1 = S0;S′ = Ω;S′, S2 =
S1;S′ = (Ω;S′);S′, etc.

Using this substitution construction, we can define the meaning M of a pro-
cedure p⇐ S in the following way (see Apt [Apt, 1981]): M(p) =

⋃∞
n=0 M(Sn).

From this, we can conclude that 〈p ⇐ S | {φ1} p {φ2}〉 is true iff ∀n : 〈p ⇐
Sn | {φ1} p {φ2}〉 is true [Apt, 1981]. Therefore, the induction rule above is
equivalent with the following rule.

{φ1} Ω {φ2} 〈 | {φ1} p {φ2} ⊢ {φ1} S {φ2}〉

∀n : 〈p⇐ Sn | {φ1} p {φ2}〉
(7.16)

166 DYNAMIC LOGIC FOR PLAN REVISION

The meaning of a procedure call p of a procedure p⇐ S is equivalent with the
meaning of S. More in general, the meaning of a statement S′ in which a call
to procedure p ⇐ S occurs, is equivalent with the meaning of the statement
S′[S/p], i.e., the statement S′ in which all occurrences of p are replaced with
S (see [de Bakker, 1980]). Therefore, we may replace p with Sn in rule (7.16)
and we may replace occurrences of p in S with Sn. We have by definition that
S[Sn/p] = Sn+1, yielding the following equivalent rule21.

{φ1} Ω {φ2} ∀n : ({φ1} Sn {φ2} ⊢ {φ1} Sn+1 {φ2})

∀n : {φ1} Sn {φ2}
(7.17)

This rule, which is equivalent with Scott’s induction rule, demonstrates clearly
why Scott’s induction rule is called an induction rule. The idea of proving prop-
erties of a 3APL agent of the form ∀n : ⊢Rule [π↾n]φ by induction on n, is that
we prove [π↾0]φ and ∀n : ([π↾n]φ ⊢Rule [π↾n+1]φ). The similarity between the
two approaches is thus that induction on respectively the number of procedure
calls and plan revision rule applications is done (implicitly or explicitly).

The important difference however is that the statement S in rule (7.17)
corresponds with the body of a procedure p in the equivalent rule (7.15). The
plan π on the other hand does not correspond with the body of a plan revision
rule, but rather refers to the initial plan of the agent. Related to this is the fact
that rule (7.17) or the equivalent rule (7.15) can be used in combination with
the rule for sequential composition, as explained in Section 7.6.1. In the case of
using induction to reason about 3APL plans, this is impossible.

Concluding, the general idea of doing induction on the number of plan revi-
sion rule applications is less obscure than one might have thought at first sight,
because of the similarity with the standard Scott’s induction rule. The way in
which induction can be used to prove properties of plans or programs, however
differs between the two approaches due to the non-compositional semantics of
the sequential composition operator in plans, as a result of the presence of plan
revision rules.

7.7 Conclusion

In this chapter, we presented a dynamic logic for reasoning about 3APL agents,
tailored to handle the plan revision aspect of the language. As we argued,
3APL plans cannot be analyzed by structural induction, which means that
standard propositional dynamic logic cannot be used to reason about 3APL
plans. Instead, we proposed a logic of restricted plans with sound and complete
axiomatization. We also showed that this logic can be extended to a logic for
non-restricted plans. This however results in an infinitary axiom system. We

21We omit the procedure declaration p ⇐ S, because there are no occurrences of p in either
Sn or Sn+1 by definition.

CONCLUSION 167

suggested that a possible way of dealing with the infinitary nature of the axiom
system, is reasoning by induction on the restriction parameter. We showed some
examples of how this could be done. Finally, we discussed the relation between
plan revision rules and procedures. In particular, we argued that there is a sim-
ilarity between the use of Scott’s induction rule for reasoning about procedures,
and the use of induction on the number of plan revision rules applications for
reasoning about plan revision rules.

Concluding, being able to do structural induction is usually considered an
essential property of programs in order to reason about them. As 3APL plans
lack this property, it is not at all obvious that it should be possible to reason
about them, especially using a clean logic with sound and complete axioma-
tization. The fact that we succeeded in providing such a logic, thus at least
demonstrates this possibility. The resulting infinitary axiom system is never-
theless more of theoretical than practical importance. Future research will have
to show whether reasoning by doing induction on the number of plan revision
rule applications is amenable to some kind of automation, working towards an
extension of these results to a more practical setting. Another important line
of research is to find interesting subclasses of plan revision rules that can be
analyzed by structural induction. One such class is defined in Chapter 8.

Chapter 8

Compositional Semantics of Plan

Revision

This chapter is based on [van Riemsdijk and Meyer, 2006]. The main issue
which arises with the introduction of plan revision rules, is the issue of compo-
sitionality of semantics of plans. Due to the introduction of plan revision rules,
the semantics of plans is not compositional, which gives rise to problems when
trying to reason about 3APL programs. A proof system for a programming
language will typically contain rules by means of which properties of the entire
program can be proven by proving properties of the parts of which the program
is composed. Since the semantics of 3APL plans is not compositional, this is
problematic in the case of 3APL. One way of trying to approach this problem is
by defining a specialized logic for 3APL which tries to circumvent the issue, as
was done in Chapter 7. The resulting logic, however, is non-standard and can
be difficult to use, due to the infinitary axiom system.

The approach we take in this chapter, is to try to restrict the allowed plan
revision rules, such that the semantics of plans becomes compositional in some
sense. It is not immediately obvious what kind of restriction would yield the
desired result. In this chapter, we propose such a restriction and prove that the
semantics of plans in that case is compositional.

The outline of the chapter is as follows. In Section 8.1, we present the syntax
and semantics of a simplified version of 3APL. In Section 8.2 we elaborate on
the issue of compositionality and explain why the semantics of full 3APL is not
compositional. In Section 8.3 we present our proposal for a restricted version
of plan revision rules, and prove that the semantics of plans is compositional,
given this restriction on plan revision rules.

169

170 COMPOSITIONAL SEMANTICS OF PLAN REVISION

8.1 3APL

8.1.1 Syntax

The 3APL language we use in this chapter, is almost the same as the language of
Chapter 7. The only difference is that we omit abstract plans from the language
of plans, for reasons of simplicity. This is no fundamental restriction, since
abstract plans can be modeled as non-executable basic actions, i.e., actions for
which the function T is always undefined. We repeat the definitions of Chapter
7 here, for ease of reference.

Definition 8.1 (belief bases) Assume a propositional language L with typical
formula p and the connectives ∧ and ¬ with the usual meaning. Then the set
of belief bases Σ with typical element σ is defined to be ℘(L).

Definition 8.2 (plans) Assume that a set BasicAction with typical element a
is given. The set of plans Plan with typical element π is then defined as follows.

π ::= a | π1;π2

We use ǫ to denote the empty plan and identify ǫ;π and π; ǫ with π.

Definition 8.3 (plan revision rules) The set of plan revision rules R is defined
as follows: R = {πh πb | πh, πb ∈ Plan, πh 6= ǫ}.

Definition 8.4 (3APL agent) A 3APL agent A is a tuple 〈PR, T 〉 where PR ⊆
R is a finite set of plan revision rules and T : (BasicAction × Σ) → Σ is a
partial function, expressing how belief bases are updated through basic action
execution.

Definition 8.5 (configuration) Let Σ be the set of belief bases and let Plan

be the set of plans. Then Plan×Σ is the set of configurations of a 3APL agent.

8.1.2 Semantics

The semantics of 3APL is again as in Chapter 7. We repeat the definitions here.

Definition 8.6 (action execution) Let a ∈ BasicAction.

T (a, σ) = σ′

〈a;π, σ〉 →exec 〈π, σ′〉

Definition 8.7 (rule application) Let ρ : πh πb ∈ PR.

〈πh • π, σ〉 →apply 〈πb • π, σ〉

Definition 8.8 (computation sequences) The set Σ+ of finite computation
sequences is defined as {σ1, . . . , σi, . . . , σn | σi ∈ Σ, 1 ≤ i ≤ n, n ∈ N}.

3APL AND NON-COMPOSITIONALITY 171

Definition 8.9 (function for calculating computation sequences) Let
xi ∈ {exec, apply} for 1 ≤ i ≤ m. The function CA : (Plan × Σ) → ℘(Σ+)
is then as defined below.

CA(π, σ) = {σ, . . . , σm ∈ Σ+ | 〈π, σ〉 →x1
. . .→xm

〈ǫ, σm〉

is a finite sequence of transitions in TransA}.

Definition 8.10 (operational semantics) Let κ : Σ+ → Σ be a function
yielding the last element of a finite computation sequence, extended to han-
dle sets of computation sequences as follows, where I is some set of indices:
κ({δi | i ∈ I}) = {κ(δi) | i ∈ I}. The operational semantic function
OA : Plan → (Σ → ℘(Σ)) is defined as follows:

OA(π)(σ) = κ(CA(π, σ)).

We will in the sequel omit the superscript A to functions as defined above, for
reasons of presentation.

8.2 3APL and Non-Compositionality

In this section, we revisit the issue of compositionality in the context of 3APL.
Before we go into discussing why the semantics of 3APL plans is not composi-
tional, we consider compositionality of standard procedural languages.

8.2.1 Compositionality of Procedural Languages

The semantics of standard procedural languages such as described in
[de Bakker, 1980, Chapter 5] are compositional. Informally, a semantics for a
programming language is compositional if the semantics of a composed program
can be defined in terms of the semantics of the parts of which it is composed. To
be more specific, the meaning of a composed program S1;S2 should be definable
in terms of the meaning of S1 and S2, for the semantics to be compositional.

A semantics can be defined directly in a compositional way, in which case
the semantics is often termed a denotational semantics [de Bakker, 1980]. Al-
ternatively, a semantics can be defined in a non-compositional way, such as an
operational semantics defined using computation sequences, while it still satisfies
a compositionality property. In this chapter, we focus on the latter case. It turns
out that the operational semantics for a procedural language such as discussed in
[de Bakker, 1980, Chapter 5] satisfies such a compositionality property, while
the operational semantics of 3APL of Definition 8.10 does not. All results and
definitions with respect to procedural languages which we refer to in Section
8.2, can be found in [de Bakker, 1980, Chapter 5].

An operational semantics of a procedural language can be defined analo-
gously to the operational semantics of 3APL of Definition 8.10, where plans are

172 COMPOSITIONAL SEMANTICS OF PLAN REVISION

statements and belief bases are states (see also Section 7.6). Both operational
semantics are defined in a non-compositional way, since they do not use the
structure of the plan or statement to define its semantics. Nevertheless, the
operational semantics of a procedural language does satisfy a compositionality
property, i.e., the following holds: O(S1;S2)(σ) = O(S2)(O(S1)(σ)), where S1

and S2 are statements. This property specifies that the set of states possibly
resulting from the execution of a composed statement S1;S2 in σ is equal to the
set of states resulting from the execution of S2 in all states resulting from the
execution of S1 in σ.

8.2.2 Non-Compositionality of 3APL

While the presented compositionality property is termed “natural” in
[de Bakker, 1980, Chapter 5], it is not satisfied by the operational semantics
of 3APL, i.e., it is not the case that O(π1;π2)(σ) = O(π2)(O(π1)(σ)) always
holds. The reason for this lies in the presence of plan revision rules. Take for
example an agent with one plan revision rule a; b c. Let σab and σc be the
belief bases resulting from the execution of actions a followed by b, and c in σ,
respectively. We then have that O(a; b)(σ) = {σab, σc}, i.e., the agent can either
execute the actions a and b one after the other, or it can apply the plan revision
rule and then execute c.

If the semantics of 3APL plans would have been compositional, we would
also have that O(b)(O(a)(σ)) = {σab, σc}. This is however not the case, since
O(b)(O(a)(σ)) = {σab}.

1 This stems from the fact that if one “breaks” the
composed plan a; b in two, one can no longer apply the plan revision rule a; b c,
because this rule can only be applied if the composed plan a; b is considered.
The set of belief bases O(a)(σ) only contains those resulting from the execution
of a. The action b is then executed on those belief bases, yielding O(b)(O(a)(σ)).
The result thus does not contain σc.

8.2.3 Reasoning about 3APL

This non-compositionality property of 3APL plans gives rise to problems when
trying to define a proof system for reasoning about 3APL plans. In standard
procedural languages, the following proof rule is part of any Hoare logic for such
a language [de Bakker, 1980], where p, p′ and q are assertions.

{p} S1 {p′} {p′} S2 {q}

{p} S1;S2 {q}
(8.1)

This rule specifies that one can reason about a composed program by proving
properties of the parts of which it is composed. The soundness of this rule de-
pends on the fact that O(S1;S2)(σ) = O(S2)(O(S1)(σ)). Because this property

1Note that O(b)(O(a)(σ)) ⊆ O(a; b)(σ).

COMPOSITIONAL 3APL 173

does not hold for 3APL plans, a similar rule for 3APL would not be sound (see
also the discussion in Section 7.6). Nevertheless, one would still want to reason
about composed 3APL plans.

In Chapter 7, we have presented a specialized dynamic logic for this purpose.
While that chapter aims at reasoning about full 3APL, we take a different
approach in this chapter. Here, we investigate whether we can somehow restrict
plan revision rules, such that the semantics of plans becomes compositional (in
some sense). The idea is that given such a compositional semantics, it will be
possible to come up with a more standard and easy to use proof system for
3APL.

8.3 Compositional 3APL

One obvious candidate for a restricted version of plan revision rules is the re-
striction to rules with an atomic head, i.e., to rules of the form a π. These
rules are very similar to procedures, apart from the fact that an action a could
either be transformed using a plan revision rule, or executed directly. In con-
trast with actions, procedure variables cannot be executed, i.e., they can only
be replaced by the body of a procedure. It is easy to see that a semantics for
3APL with only these plan revision rules would be compositional.

However, this kind of plan revision rules would capture very little of the
general plan revision capabilities of the non-restricted rules. The challenge
is thus to find a less restrictive kind of plan revision rules, which would still
satisfy the desired compositionality property. Finding such a restricted kind
of plan revision rules is non-trivial. We discuss the line of reasoning by which
it can be obtained in Section 8.3.1. In Section 8.3.2, we present and explain
the theorem that expresses that the proposed restriction on plan revision rules
indeed establishes (some form of) compositionality. Finally, in Section 8.3.3, we
briefly address the issue of reasoning about 3APL with restricted plan revision
rules, and point to directions for future research regarding this issue.

8.3.1 Restricted Plan Revision Rules

The restriction to plan revision rules that we propose is given in Definition 8.11
below, and can be understood by trying to get to the essence of the composi-
tionality problem arising from non-restricted plan revision rules.

First, we have to observe that the general kind of compositionality as spec-
ified in Section 8.2.1 for procedural languages is in general not obtainable for
3APL, if the set of plan revision rules contains a rule with a non-atomic head.
The property specifies that the semantics of a composed plan (or program)
should be definable in terms of the parts of which it is composed. The prop-
erty however does not specify how a composed plan should be broken down
into parts. That is, for a plan to be compositional in the general sense, com-

174 COMPOSITIONAL SEMANTICS OF PLAN REVISION

positionality should hold, no matter how the plan is decomposed. Consider
for example the plan a; b; c. It should then be the case that O(a; b; c)(σ) =
O(c)(O(a; b)(σ)) = O(b; c)(O(a)(σ)), i.e., the compositionality property should
hold, no matter whether the plan is decomposed into a; b and c, or a and b; c.

If a set of plan revision rules however contains a rule with a non-atomic head,
it is always possible to come up with a plan (and belief base and belief update
function) for which this property does not hold. This plan should contain the
head of the plan revision rule. If the decomposition of the plan is then chosen
such that it “breaks” this occurrence of the head of the rule in the plan, the
compositionality property in general does not hold for this decomposition. This
is because the plan revision rule can in that case not be applied when calculating
the result of the operational semantic function. Consider for example the plan
revision rule a; b c and the plan a; b; c. If the plan is decomposed into a and
b; c, the rule cannot be applied and thus O(a; b; c)(σ) = O(b; c)(O(a)(σ)) does
not always hold.

The question is now which kind of compositionality can be obtained for
3APL. We have established that being allowed to decompose a composed plan
into arbitrary parts for a definition of compositionality gives rise to problems in
the case of 3APL. That is, the standard definition of compositionality will always
be problematic if we want to consider plan revision rules with a non-atomic
head. Since we want our restriction on plan revision rules to allow at least some
form of non-atomicity (because otherwise we would essentially be considering
procedures), we have to come up with another definition of compositionality if
we want to make any progress.

The idea that we propose is essentially to take the operational meaning of
a plan as the basis for a compositionality property. When executing a plan π,
either the first action of π is executed, or an applicable plan revision rule is
applied. In the first case, π has to be of the form a;πr

2, and in the latter case
of the form πh;π′

r, given an applicable plan revision rule of the form πh πb.
Taking this into account, we are, broadly speaking, looking for a restriction to
plan revision rules which allows us to decompose π into a and πr, or πh and
π′

r. To be more specific, it should be possible to execute a and then consider
πr separately, or to apply the specified plan revision rule and then consider the
body of the rule πb and the rest of the plan, i.e., π′

r, separately. That is, we are
after something like the following compositionality property:3

O(π)(σ) = O(πr)(O(a)(σ)) ∪ O(π′
r)(O(πb)(σ)). (8.2)

In order to come up with a restriction on plan revision rules that gives us such a
property, we have to understand why this property does not always hold in the
presence of non-restricted plan revision rules. Essentially, what this property

2The subscript r here indicates that πr is the rest of the plan π.
3The property that will be proven in Section 8.3.2 differs slightly, as it takes into account

the existence of multiple applicable plan revision rules.

COMPOSITIONAL 3APL 175

specifies is that we can separate the semantics of certain prefixes of the plan π
(i.e., a and πh), from the semantics of the rest of π.

A case in which this is not possible, is the following. Consider a plan of the
form πh;π′

h;π, and plan revision rules of the form πh πb and πb;π
′
h π′

b. We
can apply the first rule to this plan, yielding πb;π

′
h;π. If the semantics of the

plan would be compositional in the sense of (8.2), it should now be possible to
consider the semantics of π′

h;π, i.e., the “rest” of the plan, separately. Given the
second plan revision rule however, this is not possible: if we separate πb;π

′
h;π

into πb and π′
h;π, we can no longer apply the second plan revision rule, whereas

we can apply the rule if the plan is considered in its composed form. The
semantics of the plan πh;π′

h;π is thus not compositional, given the two plan
revision rules.

This argument is similar to the explanation of why the general notion of
compositionality does not hold for 3APL. Contrary to the general case however,
we can in the case of compositionality as defined in (8.2), specify a restriction to
plan revision rules that prevents this problem from occurring. The restriction
will thus allow us to consider the semantics of π′

r (see (8.2)) separately from the
semantics of πb, thereby establishing compositionality Property (8.2).

As explained, if there is a plan revision rule of the form πh πb, a plan
revision rule with a head of the form πb;π

′
h is problematic. A restriction one

could thus consider, is the restriction that if there is a rule of the form πh πb,
there should not also be a rule of the form πb;π

′
h π′

b, i.e., the body of a
rule cannot be equal to the prefix of the head of another rule. This restriction
however does not do the trick completely. The reason has to do with the fact
that actions from a plan of the form πb;π

′
h can be executed.

Consider for example a plan a1; a2; b1; b2 and plan revision rules
a1; a2 c1; c2 and c2; b1 c3. The head of the second rule does not have
the form c1; c2;π, i.e., the body of the first rule is not equal to the prefix of
the head of another rule. Therefore, according to the suggested restriction, this
rule is allowed. We can apply the first rule to the plan, yielding c1; c2; b1; b2.
If the compositionality property holds, we should now be able to consider the
semantics of b1; b2 separately. Suppose the action c1 is executed, resulting in the
plan c2; b1; b2. Considering the second plan revision rule, we observe that this
rule is applicable to this plan. This is however only the case if we consider this
plan in its composed form. If we separate the semantics of b1; b2 as specified by
the compositionality Property (8.2), we cannot apply the rule. Given the plan
a1; a2; b1; b2 and the two plan revision rules, the compositionality property thus
does not hold.

The solution to this problem is to adapt the suggested restriction which
considers the body of a rule in relation with the prefix of the head of another
rule, to a restriction which consider the suffix of the body of a rule in relation
with the prefix of the head of another rule. The restriction should thus specify
that the suffix of the body of a rule cannot be equal to the prefix of the head of
another rule. Under that restriction, the second rule of the example discussed

176 COMPOSITIONAL SEMANTICS OF PLAN REVISION

above would not be allowed, and the compositionality Property (8.2) would
hold. This restriction on plan revision rules is specified formally below. The
fact that under this restriction, the Property (8.2) (or a slight variation thereof)
holds, is formally shown in Section 8.3.2.

Definition 8.11 (restricted plan revision rules) Let PR be a set of plan revi-
sion rules. Let suff be a function taking a plan and yielding all its suffixes, and
let pref be a function taking a plan and yielding all its strict prefixes.4 We say
that PR is restricted iff the following holds:

∀ρ ∈ PR : (ρ : πh πb) :¬∃ρ′ ∈ PR : (ρ′ : π′
h π′

b) :
(
suff(πb)∩pref(π′

h)
)
6= ∅.

The fact that we define pref as yielding strict prefixes allows the suffix of the
body of a plan revision rule to be exactly equal to the head of another rule.
This does not violate the compositionality property, and it results in restricted
plan revision rules being a superset of rules with an atomic head. Otherwise, a
rule b c, for example, would not be allowed if there is also a rule a a; b,
since b, i.e., the suffix of the latter rule, would then by definition be equal to
the prefix of the head of the first rule.

8.3.2 Compositionality Theorem

The theorem expressing the compositionality property that holds for plans under
a restricted set of plan revision rules, is given below. It is similar to Property
(8.2) specified in Section 8.3.1, except that we take into account the existence
of multiple applicable plan revision rules. A plan π can thus be decomposed
into a and πr (where π is of the form a;π), or into πρ

h and πρ
r (where π is of the

form πρ
h;πρ

r) for any applicable plan revision rule ρ of the form πρ
h πρ

b .

Theorem 8.1 (compositionality of semantics of plans) Let A be an agent
with a restricted set of plan revision rules PR. Let ρ range over the set of rules
from PR that are applicable to the plan π, and let π be of the form πρ

h;πρ
r for

an applicable rule ρ of the form πρ
h πρ

b . Further, let a be the first action of
π, i.e., let π be of the form a;πr. We then have for all π 6= ǫ and σ:

O(π)(σ) = O(πr)(O(a)(σ)) ∪
⋃

ρ

O(πρ
r)(O(πρ

b)(σ)).

In order to prove this theorem, we use Lemma 8.1 below. This lemma, broadly
speaking, specifies that for a plan of the form πh;π, the following is the case:
after application of a plan revision rule of the form πh πb, yielding the plan
πb;π, it will always be the case that πb is executed entirely, before π is executed.
Because of this, the semantics of πb and of π can be considered separately, which
is the core of our compositionality theorem.

4The plan a is for example a strict prefix of a; b, but the plan a; b is not. Further, the
empty plan ǫ should not be returned as a prefix, nor as a suffix.

COMPOSITIONAL 3APL 177

Lemma 8.1 Let A be an agent with a restricted set of plan revision rules
PR, and let πh πb ∈ PR. We then have that any transition sequence
〈πb;π, σ〉 → . . .→ 〈ǫ, σ′〉 has the form5

〈πb;π, σ〉 → . . .→ 〈π, σ′′〉 → . . .→ 〈ǫ, σ′〉

such that each configuration in the first part of the sequence, i.e., in
〈πb;π, σ〉 → . . .→ 〈π, σ′′〉 = θ, has the form 〈πi;π, σi〉. That is, π is always the
suffix of the plan of the agent in each configuration of θ.

In the proof of this lemma, we use the notion of a plan π′ being suffix in π
with respect to some set of plan revision rules. A plan π′ is suffix in π, if π
is the suffix of π′, i.e., if π′ is of the form πpre;π. Further, πpre should be a
concatenation of suffixes of the bodies of the relevant set of plan revision rules.

Definition 8.12 (suffix in π) Let PR be a set of plan revision rules. Let
sufi with 1 ≤ i ≤ n denote plans that are equal to the suffix of the body of a
rule in PR, i.e., for each sufi there is a rule in PR of the form πh πr; sufi.
We say that a plan π′ is suffix in π with respect to PR, iff π′ is of the form
suf1; . . . ; sufn;π, and the length of suf1; . . . ; sufn is greater than 0.

The idea is that, given a plan of the form πb;π which is suffix in π by definition6,
this property is preserved until the plan is of the form π. If this is the case,
we have that π is always the (strict) suffix of the plan of each configuration,
until the plan equals π. We thus use the preservation of this property to prove
Lemma 8.1 (see below).

We need the fact that the part of the plan occurring before π is a sequence
of suffixes, in order to prove that π is preserved as the suffix of the plan.7 The
reason is, that if this is the case, we know by the fact that our plan revision
rules are restricted, that there cannot occur a rule application which trans-
forms π, thereby violating our requirement that π remains the suffix of the
plan of the agent, until the plan becomes equal to π. If a plan is of the form
suf1; . . . ; sufn;π, where each sufi denotes a plan that is equal to the suffix of
the body of a plan revision rule, we know that any plan revision rule will only
modify a prefix of suf1, because the plan revision rules are restricted. There
cannot be a rule with a head of the form suf1;πh, because this would violate
the requirement of restricted plan revision rules.

Proof of Lemma 8.1: Let A be an agent with a restricted set of plan revision
rules PR. Let 〈π1, σ〉 → 〈π2, σ

′〉 be a transition of A. First, we show that if π1

is suffix in π (with respect to PR), it has to be the case that π2 is suffix in π, or
that π2 = π.

5In this lemma we omit the labels of transitions, for reasons of presentation.
6That is, if πb is the body of a plan revision rule.
7Note that we use the term suffix to refer to suffixes of the plans of the bodies of plan

revision rules, and to refer to the suffix of the plan in a configuration.

178 COMPOSITIONAL SEMANTICS OF PLAN REVISION

Assume that π1 is suffix in π, i.e., let π1 = suf1; . . . ; sufn;π. If π = ǫ,
the result is immediate. Otherwise, the proof is as follows. A transition from
〈π1, σ〉 results either from the execution of an action, or from the application of
an applicable rule.

Let suf1 = a; suf ′
1. If action a is executed, π2 is of the form

suf ′
1; . . . ; sufn;π. If suf ′

1, . . . , sufn are ǫ, we have that π2 = π. Otherwise,
we have that π2 is suffix in π.

Let ρ : πh πb be a rule from PR that is applicable to π1. Then it must
be the case that π1 is of the form πh;πr. By the fact that PR is restricted, we
have that there is not a rule ρ′ of the form suf1;π

′ π′
b, i.e., such that suf1,

which is the suffix of the body of a rule, is the prefix of the head of ρ′. Given
that ρ is applicable to π1, it must thus be the case that πh is a prefix of suf1,
i.e., that suf1 is of the form πh;π′′. Applying ρ to π1 thus yields a plan of the
form πb;π

′′; suf2; . . . ; sufn;π. Since both πb and π′′ are suffixes of the bodies
of rules in PR, we have that π2 is suffix in π.

We have to show that any transition sequence θ of the form
〈πb;π, σ〉 → . . . → 〈ǫ, σ′〉 has a prefix θ′ such that π is always a suffix of the
plan in each configuration of θ′. Let π2 be the plan of the second configuration
of θ. We have that πb;π is suffix in π. Therefore, it must be the case that
π2 is also suffix in π, or that π2 = π. In the latter case, we have the desired
result. In the former case, we have that π is a suffix of π2, in which case the
first two configuration may form a prefix of θ′. Let π3 be the plan of the third
configuration of θ. If π2 is suffix in π, it has to be the case that π3 is suffix
in π, or that π3 = π. In the latter case, we are done. In the former case, the
first three configurations may form a prefix of θ′. This line of reasoning can be
continued. Since θ is a finite sequence, it has to be the case that at some point
a configuration of the form 〈π, σ′′〉 is reached. This yields the desired result.

2

Proof of Theorem 8.1: We have to show the following:

σ′ ∈ O(π)(σ) ⇔ σ′ ∈ O(πr)(O(a)(σ)) ∪
⋃

ρ

O(πρ
r)(O(πρ

b)(σ)).

(⇐) Follows in a straightforward way from the definitions.
(⇒) Let n be the number of plan revision rules applicable to π, where πρi

h and
πρi

b respectively denote the head and body of rule ρi. We then have to show:

σ′ ∈ O(π)(σ) ⇒ σ′ ∈ O(πρ1
r)(O(πρ1

b)(σ)) or
...

σ′ ∈ O(πρn

r)(O(πρn

b)(σ)) or
σ′ ∈ O(πr)(O(a)(σ)).

If σ′ ∈ O(π)(σ), then there is a transition sequence of the form

〈π, σ〉 →x . . .→x 〈ǫ, σ′〉

COMPOSITIONAL 3APL 179

i.e., if πρ
h πρ

b is an arbitrary rule ρ that is applicable to π, where π = πρ
h;πρ

r ,
there are transition sequences of the form

〈πρ
h;πρ

r , σ〉 →apply 〈πρ
b ;πρ

r , σ〉 →x . . .→x 〈ǫ, σ′〉 (8.3)

or, if π = a;πr, of the form

〈a;πr, σ〉 →exec 〈πr , σ
′′〉 →x . . .→x 〈ǫ, σ′〉. (8.4)

In case σ′ has resulted from a transition sequence of form (8.3), we prove

σ′ ∈ O(πρ
r)(O(πρ

b)(σ)). (8.5)

In case σ′ has resulted from a transition sequence of form (8.4), we prove

σ′ ∈ O(πr)(O(a)(σ)). (8.6)

Assume σ′ has resulted from a transition sequence of form (8.3). We then
have to prove (8.5), i.e., we have to prove that there is a belief base σ′′ ∈
O(πρ

b)(σ), such that σ′ ∈ O(πρ
r)(σ′′). That is, we have to prove that there

are transition sequences of the form 〈πρ
b , σ〉 → . . . → 〈ǫ, σ′′〉, and of the form

〈πρ
r , σ

′′〉 → . . .→ 〈ǫ, σ′〉.
By Definitions 8.6 and 8.7, we have that if 〈π1;π2, σ〉 → 〈π′

1;π2, σ
′〉 is a

transition for arbitrary plans π1 and π2, then 〈π1, σ〉 → 〈π′
1, σ

′〉 is also a tran-
sition. By Lemma 8.1, we have that there is a prefix of (8.3) of the form
〈πρ

h;πρ
r , σ〉 → 〈πρ

b ;πρ
r , σ〉 → . . . → 〈πρ

r , σ
′′〉, such that the plan of each

configuration in this sequence is of the form πi;π. From this we can con-
clude the desired result, i.e., that there are transition sequences of the form
〈πρ

b , σ〉 → . . .→ 〈ǫ, σ′′〉, and of the form 〈πρ
r , σ

′′〉 → . . .→ 〈ǫ, σ′〉.
Assume σ′ has resulted from a transition sequence of form (8.4). Then

proving (8.6) is analogous to proving (8.5), except that we do not need Lemma
8.1. 2

8.3.3 Reasoning about Compositional 3APL

As argued, an important reason for defining a variant of 3APL with a composi-
tional semantics, is that it is more likely that it will be possible to come up with
a more standard and easy to use proof system for such a language. A natural
starting point for such an effort is the definition of a proof rule for sequential
composition, analogous to rule (8.1), as specified below (we use the notation of
Theorem 8.1).

{p} a {p′} {p′} πr {q}
∧

ρ

(
{p} πρ

b {p′} and {p′} πρ
r {q}

)

{p} π {q}
(8.7)

180 COMPOSITIONAL SEMANTICS OF PLAN REVISION

The soundness proof of this rule is analogous to the soundness proof of rule (8.1)
[de Bakker, 1980, Chapter 2], but using Theorem 8.1 instead of O(S1;S2)(σ) =
O(S2)(O(S1)(σ)). A complete proof system for compositional 3APL would how-
ever also need an induction rule. We conjecture that it will be possible to define
an analogue of Scott’s induction rule [de Bakker, 1980, Chapter 5] which is used
for proving properties of recursive procedures, for reasoning about plans in the
context of plan revision rules. Investigating this is however left for future re-
search.

PART III

SOFTWARE ENGINEERING ASPECTS

181

Chapter 9

Goal-Oriented Modularity

This chapter is based on [van Riemsdijk et al., 2006a]. Modularization is widely
recognized as a central issue in software engineering [Meyer, 1988]
[Ghezzi et al., 1991, Bergstra et al., 1990]. A system which is composed of mod-
ules, i.e., relatively independent units of functionality, is called modular. A pro-
gramming language which adheres to this principle of modularization supports
the decomposition of a system into modules. The principle lies, e.g., at the
basis of procedural programming and object-oriented programming, in which
respectively (libraries of) procedures and classes form the modules.

An important advantage of modularity in a programming language is that it
can increase the understandability of the programs written in the language. The
reason is that modules can be separately understood, i.e., the programmer does
not have to oversee the entire workings of the system when considering a certain
module. Further, modularization enables reuse of software, since modules can
potentially be used in different programs or parts of a single program. Finally,
we mention an important principle which any kind of modularity should stick to,
namely the principle of information hiding. This means that information about
a module should be private to the module, i.e., not accessible from outside,
unless it is specifically declared as public. The amount of information declared
public should typically be relatively small. The idea behind information hiding
is that a module can be changed (or at least the non-public part of a module),
without affecting other modules.

In this chapter we address the issue of modularization in cognitive agent
programming languages. Cognitive agents are agents endowed with high-level
mental attitudes such as beliefs, goals, plans, etc. Several programming lan-
guages and platforms have been introduced to program these agents, such as
3APL [Hindriks et al., 1999b, Dastani et al., 2004], AgentSpeak(L) [Rao, 1996,
Moreira and Bordini, 2002], JACK� [Winikoff, 2005], Jadex
[Pokahr et al., 2005b], etc. Some of these languages incorporate support for
modularization, which we discuss in some detail in Section 9.1.1.

183

184 GOAL-ORIENTED MODULARITY

Our contribution is the proposal of a new kind of modularity, i.e., goal-
oriented modularity, which is, as we will argue, particularly suited for agent
programming languages (Section 9.1). Further, we present a formalization of
goal-oriented modularity in the context of the 3APL programming language
(Section 9.2). We conclude the chapter with directions for future research in
Section 9.3.

9.1 Goal-Oriented Modularity

In this section, we explain the general idea of goal-oriented modularity. First,
we discuss which kinds of modularity are present in today’s cognitive agent
programming languages and platforms (Section 9.1.1). Then, we explain the
general idea of goal-oriented modularity (Section 9.1.2).

As for programming in general, modularization is also an important issue for
agent programming. One could argue that the agent paradigm provides inherent
support for modularity, since a complex problem can be broken down and solved
by a team of autonomous agents. Constructing a team of agents to solve a prob-
lem rather than creating a single more complex agent, might however not always
be the appropriate approach. The team approach will likely generate significant
communication overhead, and having several independent agents can make it
difficult to handle problems that require global reasoning [Busetta et al., 2000,
Braubach et al., 2006]. Following [Busetta et al., 2000, Braubach et al., 2006],
we thus argue that modularization is important also at the level of individual
agents.

9.1.1 Related Work

With regard to cognitive agent programming languages such as 3APL and
AgentSpeak(L), one could argue that these languages support modularization:
an agent is typically composed of a number of components such as a belief
base, a plan or intention base, a plan library, a goal or event base, etc. These
components however do not provide the appropriate modularization, since their
workings are closely intertwined and therefore they cannot be considered as
relatively independent units of functionality. Cognitive agent programming lan-
guages thus need more support for structuring the internals of an agent, in order
for them to deserve the predicate “modular”.

One possible approach to addressing this issue of modularity of cognitive
agent programming languages has been proposed in [Busetta et al., 2000]. In
that paper, the notion of capability was introduced and its implementation in
the JACK cognitive agent programming language was described.

JACK extends the Java� [Gosling et al., 2000] programming language in
several ways, such as by introducing constructs for declaring cognitive agent
notions like beliefs, events, plans, etc. Events are used to model messages being

GOAL-ORIENTED MODULARITY 185

received, new goals being adopted, and information being received from the
environment. Plans are used to handle events, i.e., if an event is posted, the
reasoning engine tries to find an appropriate plan which has this event as its
so-called triggering condition.

A capability in JACK is a cluster of components of a cognitive agent, i.e.,
it encapsulates beliefs, events (either posted or handled by the capability), and
plans. Examples of capabilities given in [Busetta et al., 2000] are a buyer and
seller capability, clustering functionality for buyer and seller agents, respectively.
A capability can import another capability, in which case the latter becomes a
sub-capability of the former. Using the importation mechanism for capabilities,
the beliefs of a capability can also be used by its super-capability, that is, if
they are explicitly imported by the latter. Also, the beliefs of a capability can
be used by its sub-capabilities if they are explicitly declared as exported (and if
they are also imported by the sub-capabilities). For events, a similar mechanism
exists, by means of which events posted from one capability can also be handled
by plans of its sub- and possibly super-capabilities.

The notion of capability as used in JACK has been extended in the context
of the Jadex platform [Braubach et al., 2006]. Jadex is a cognitive reasoning
engine which is built on top of the Jade [Bellifemine et al., 2000] agent platform.
A Jadex agent has beliefs, goals, plans, and events. Like capabilities in JACK,
a Jadex capability clusters a set of beliefs, goals, plans, and events. Its most
important difference with the notion of capability as used in JACK, is the fact
that a general import/export mechanism is introduced for all kinds of elements
of a capability, i.e., the mechanism is the same for beliefs, events, etc.

Another approach which could be viewed as addressing the issue of mod-
ularity in cognitive agent programming languages, has been proposed in the
context of 3APL in [Dastani et al., 2005b]. In that paper, a formalization of
the notion of a role is given. Similar to capabilities, a role clusters beliefs, goals,
plans, and reasoning rules. The usage of roles at run-time however differs from
that of capabilities. In the cited paper, a role can be enacted and deacted at
run-time, which is specified at the level of the 3APL reasoning engine or delib-
eration cycle. If a role is enacted, the agent pursues the goals of the role, using
the plans and reasoning rules of the role.1 Further, the agent has a single belief
base, and if a role is enacted, the beliefs associated with the role are added
to the agent’s beliefs. This is in contrast with JACK and Jadex where beliefs
are distributed over capabilities, and can only be used in other capabilities if
explicitly imported and exported. Also, only one role at the time can be active.
This is in contrast with the way capabilities are used, since a JACK or Jadex
agent can in principle use any of its capabilities at all times.

1We simplify somewhat, since the details are not relevant for the purpose of this chapter.

186 GOAL-ORIENTED MODULARITY

9.1.2 Our Proposal

While the approaches to modularization as described in Section 9.1.1 are in-
teresting in their own right, we propose an alternative which we argue to be
particularly suited for cognitive agent programming languages. As the name
suggests, goal-oriented modularity takes the goals of an agent as the basis for
modularization. The idea is that modules encapsulate the information on how to
achieve a goal, or a set of (related) goals. That is, modules contain information
about the plans that can be used to achieve a (set of) goal(s). At run-time, the
agent can then dispatch a goal to a module, which, broadly speaking, tries to
achieve the dispatched goal using the information about plans contained in the
module.

This mechanism of dispatching a goal to a module can be used for an agent’s
top-level goals2, but also for the subgoals as occurring in the plans of an agent.
Plans are often built from actions which can be executed directly, and subgoals
which represent a state that is to be achieved before the agent can continue the
execution of the rest of the plan. An agent can for example have the plan to
take the bus into town, to achieve the goal of having bought a birthday cake,
and then to eat the cake.3 This goal of buying a birthday cake will have to be
fulfilled by executing in turn an appropriate plan of for example which shops
to go to, paying for the cake, etc., before the agent can execute the action of
eating the cake.

Before continuing, we remark that goals and subgoals in this chapter are
declarative goals, which means that they describe a state that is to be reached.
This is in contrast with procedural goals, which are directly linked to courses
of action. We refer to Chapter 5 (Section 5.4.1) for a discussion on declarative
and procedural goals. In Chapter 3, semantics of subgoals are explored, and
declarative and procedural interpretations of subgoals are related to one another.

Returning to our treatment of goal-oriented modularity, the idea is thus
that agents try to achieve subgoals of a plan by dispatching the subgoal to an
appropriate module, i.e., by calling a module. The module should then define
the plans that can be used for achieving the (sub)goal. If a module is called
for a goal, these plans are tried one by one until either the goal is achieved,
or all plans have been tried. Control then returns to the plan from which the
module was called. Depending on whether the subgoal is achieved or not upon
returning from the module, the plan respectively continues execution, or fails.
If the plan fails, another plan is selected (if it exists), for achieving the goal for
which the failed plan was selected, etc.

2Top-level goals are goals that the agent, e.g., has from start-up, or that it for example has
adopted because of requests from other agents, etc.

3Assuming that both taking the bus into town and eating cake are actions that can be
executed directly.

GOAL-ORIENTED MODULARITY 187

9.1.3 Discussion

An advantage of our proposal is the flexible agent behavior with respect to
handling plan failure, which comes with the usage of declarative goals. As
argued in Section 5.4.1, the usage of declarative goals facilitates a decoupling
of plan execution and goal achievement. If a plan fails, the goal that was
to be achieved by the plan remains a goal of the agent, and the agent can
select a different plan to try to achieve the goal. While these ideas regarding
declarative goals are not new, we contribute by proposing to use modules to
encapsulate this mechanism for achieving goals by trying different plans. We
thus exploit the advantages of declarative goals for obtaining modularization.
Since in our view goals, proactiveness and flexible behavior are at the heart of
(cognitive) agenthood, we argue that goal-oriented modularity, which builds on
these notions, is a kind of modularity fitting for cognitive agents.

Comparing goal-oriented modularity with capabilities, we point out two ma-
jor differences. Firstly, in the case of capabilities, there is no notion of calling
a capability for a subgoal, thereby passing control to another capability. An
event (or subgoal) posted from the plan of one capability, will be handled by
the plans of this capability itself. That is, unless the capability imports other
capabilities, in which case the plans of these other capabilities are added to the
set of plans considered for handling the posted event (given appropriate import
and export declarations of events). This is thus in contrast with goal-oriented
modularity, where, in case of calling a module, only the plans of the called
module are considered. These plans are not added to, e.g., some other set of
plans, thereby preventing possibly unforeseen interactions between these plans.
One could thus consider the idea of goal-oriented modularity to provide a higher
degree of modularity or encapsulation of behavior at run-time, compared with
the way in which capabilities are used. As we will explain in Section 9.2, this is
especially advantageous in the case of 3APL.

Secondly, modules in goal-oriented modularity contain only information about
the plans which can be used to achieve certain goals. This is in contrast with ca-
pabilities, which can also contain beliefs. The idea for goal-oriented modularity
is that the agent has one global belief base, rather than defining beliefs inside
modules. When using capabilities, beliefs can by contrast be distributed over
these capabilities, and only the beliefs of a certain capability can be accessed
from this capability.

While from a software engineering perspective it might be convenient to
be able to define beliefs inside capabilities (or modules), it can be considered
less intuitive from a conceptual point of view. When testing, e.g., from within
a plan whether the agent believes something, one could argue that the agent
would have to consider all of its beliefs, rather than just the ones available in
the capability. Also, if logical reasoning is involved as in the case of 3APL, it is
more intuitive to let an agent have just one belief base. Consider for example
that the formula p is in the belief base of one module, and that p→ q is in the

188 GOAL-ORIENTED MODULARITY

belief base of another. When testing whether q holds from the latter module,
one would probably want the test to succeed.

Nevertheless, in JACK and Jadex, beliefs can be used in other capabilities if
they are imported and exported in appropriate ways. Also, beliefs (or beliefsets)
in those languages are effectively databases which store elements representing
the beliefs of the agent. The definition of beliefs inside a capability could thus be
viewed as the specification of a part of the larger database (or set of databases)
comprising the total set of beliefs of the agent. From within a capability, an
agent can then only refer to the part of its beliefs defined in this capability.
It is then up to the programmer to make sure that the beliefs of a capability
are the only ones relevant for the plans of this capability. The possibility of
storing beliefs inside modules in a way which is somewhere inbetween the current
proposal and the way it is done for capabilities, is discussed in Section 9.3.

Comparing goal-oriented modularity with the notion of roles as used in
[Dastani et al., 2005b], we remark the following. As in the case of capabili-
ties, roles can, in contrast with modules, not call each other. Also, beliefs can
be part of the definition of a role. However, a role does not have its own beliefs
once it is enacted at run-time. If a role is enacted, its beliefs are added to the
global belief base of the agent. This is more in line with goal-oriented modular-
ity, but it is in contrast with the way capabilities are used. Further, contrary to
roles, modules do not have goals. That is, a goal can be dispatched to a module,
but goals are not part of the definition of a module.

9.2 Goal-Oriented Modularity in 3APL

In this section, we make the idea of goal-oriented modularity as presented in
Section 9.1 precise. In particular, we present a formalization in the context
of the language similar to the language of Chapter 2, to which we will simply
refer as “3APL” in this chapter. Although this formalization is presented in the
context of 3APL, we stress that we consider the general idea of goal-oriented
modularity to be suited for cognitive agent programming languages in general,
rather than for 3APL only.

9.2.1 Syntax

A 3APL agent has beliefs, a plan, goals, rules for selecting a plan to achieve a
certain goal given a certain belief, and rules for revising its plan during execu-
tion. We use these ingredients for our formalization of goal-oriented modularity.

Throughout this chapter, we assume a language of propositional logic L with
negation and conjunction. The symbol |= will be used to denote the standard
entailment relation for L. Further, we assume a belief query language LB with
typical element β (see Definitions 2.2 and 2.7 for the syntax and semantics of
LB).

GOAL-ORIENTED MODULARITY IN 3APL 189

Below, we define the language of plans Plan. A plan is a sequence of basic
actions and module calls. Basic actions can change the beliefs of an agent if
executed. A module call is of the form m(φ), where m is the name of a module
(to be defined in Definition 9.4), and φ is a propositional formula representing
the goal which is dispatched to module m.

Further, we define an auxiliary set of plans Plan′ with the additional con-
struct m(φ) ↓. This construct is used in the semantic definitions for recording
whether module m has already been called for goal φ (see Section 9.2.2 for
further explanation). It should not be used by the agent programmer for pro-
gramming plans, which is why we define two different plan languages.

Definition 9.1 (plan) Let BasicAction with typical element a be the set of
basic actions, let ModName with typical element m be a set of module names,
and let φ ∈ L. The set of plans Plan with typical element π is then defined as
follows.

π ::= a | m(φ) | π1;π2

We use ǫ to denote the empty plan and identify ǫ;π and π; ǫ with π. The set
Plan′ is defined as follows.

π ::= a | m(φ) | m(φ) ↓ | π1;π2

3APL uses rules for selecting an appropriate plan for a certain goal. In this
chapter, these rules are called plan generation rules. A plan generation rule is
of the form φ | β ⇒ π. This rule represents that it is appropriate to select plan
π for goal φ, if the agent believes β.4

Definition 9.2 (plan generation rule) The set of plan generation rules RPG

is defined as follows: RPG = {φ | β ⇒ π : φ ∈ L, β ∈ LB, π ∈ Plan}.5

In contrast with the plan selection rules of Chapter 2 (Definition 2.4), plan
generation rules in this chapter use a propositional formula for referring to the
goal for which the rule may be applied, rather than a goal formula. This has to
do with the fact that modules are called with a propositional formula.

Plan revision rules are as in Chapter 2 (Definition 2.4).

Definition 9.3 (plan revision rule) The set of plan revision rules RPR is de-
fined as follows: RPR = {πh | β πb : β ∈ LB, πh, πb ∈ Plan, πh 6= ǫ}.

Plan generation rules capture the information about which plan can be selected
for which goal, and plan revision rules can be used during the execution of a plan.
These rules thus specify the information on how to achieve goals, and therefore

4Note that it is up to the programmer to specify appropriate plans for a certain goal. 3APL
agents can thus be viewed as a kind of reactive planning agents.

5We use the notation {. . . : . . .} instead of {. . . | . . .} to define sets, to prevent confusing
usage of the symbol | in this definition and Definition 9.3.

190 GOAL-ORIENTED MODULARITY

we propose to have these rules make up a module, as specified below. It is
important to remark that non-modular versions of 3APL have one set of plan
generation rules, and one set of plan revision rules, rather than an encapsulation
of these into modules.

Definition 9.4 (module) A module is a tuple 〈m,PG,PR〉, consisting of a
module name m, a finite set of plan generation rules PG ⊆ RPG, and a finite set
of plan revision rules PR ⊆ RPR.

The mechanism of calling a module is formalized using the notion of a stack.
This stack can be compared with the stack resulting from procedure calls in pro-
cedural programming, or method calls in object-oriented programming. During
execution of the agent, a single stack is built (see Definition 9.7). Each element
of the stack represents, broadly speaking, a module call.

To be more specific, each element of the stack is of the form (φ, π,PG,PR),
where φ is the goal for which the module was called, π is the plan currently
being executed in order to achieve φ, and PG and PR correspond with the plan
generation and plan revision rules of the module which was called for achieving
φ. Rather than using the name of the module to refer to the relevant plan
generation and plan revision rules, we copy these rules into the stack element.
The reason is that we want to remove plan generation rules if they are tried
once. This will be explained further in Section 9.2.2.

Definition 9.5 (stack) The set of stacks Stack with typical element S to de-
note arbitrary stacks, and s to denote single elements of a stack, is defined as
follows, where φ ∈ L, π ∈ Plan′, PG ⊆ RPG, and PR ⊆ RPR.

s ::= (φ, π,PG,PR)
S ::= s | s.S

E is used to denote the empty stack (or the empty stack element), and E.S is
identified with S.

Note that the plan π of a stack element is from the extended set of plans Plan′,
since a stack is a run-time construct which is not specified by the programmer
when programming an agent (see Definition 9.6). The plan π might thus, in
contrast with the plans of plan generation and plan revision rules, contain a
construct of the form m(φ) ↓. The empty stack E is introduced for technical
convenience when defining the semantics in Section 9.2.2. Stacks as used here
differ from intention stacks of AgentSpeak(L), as the elements comprising the
stacks are essentially different: stack elements in this chapter correspond with
module calls, whereas in AgentSpeak(L) they represent (parts of) plans or in-
tentions. Like non-modular 3APL, AgentSpeak(L) has one large set of plans
(corresponding with the rules of 3APL).

An agent, as defined below, consists of a belief base, a goal base, a set of
modules, and a function which specifies how beliefs are updated if actions are

GOAL-ORIENTED MODULARITY IN 3APL 191

executed. As in non-modular 3APL, the belief base σ is a consistent set of
propositional formulas. The goal base γ is essentially also a set of propositional
formulas, and forms the top-level goals of the agent. In contrast with non-
modular 3APL however, each goal is associated with a module which should be
called for achieving the goal, i.e., goals are of the form m(φ). The set of modules
Mod form the modules which can be called to achieve (sub)goals.

Definition 9.6 (agent) Let Σ = {σ | σ ⊆ L, σ 6|= ⊥} be the set of belief
bases. An agent is a tuple 〈σ, γ,Mod, T 〉 where σ ∈ Σ is the belief base, γ ⊆
{m(φ) | m ∈ ModName, φ ∈ L} is the initial goal base, and Mod is a set of
modules such that each module in this set has a distinct name. T is a partial
function of type (BasicAction×Σ) → Σ and specifies the belief update resulting
from the execution of basic actions.

The notion of a configuration, as defined below, is used to represent the state
of an agent at each point during computation. It consists of the elements which
may change during execution of the agent, i.e., it consists of a belief base, a goal
base, and a stack. Note that an agent initially has an empty stack.

Definition 9.7 (configuration) A configuration is a tuple 〈σ, γ, S〉 where σ ∈
Σ, γ ⊆ {m(φ) | m ∈ ModName, φ ∈ L}, and S ∈ Stack. If 〈σ, γ,Mod, T 〉 is an
agent, then 〈σ, γ, E〉 is the initial configuration of the agent.

9.2.2 Semantics

The semantics of modular 3APL agents is defined by means of a transition
system [Plotkin, 1981]. In the transition rules below, we assume an agent with
a set of modules Mod, and a belief update function T .

The first transition rule specifies how a transition for a composed stack can
be derived, given a transition for a single stack element. It specifies that only
the top element of a stack can be transformed or executed.6

Definition 9.8 (stack execution) Let s 6= E.

〈σ, γ, s〉 → 〈σ′, γ′, S′〉

〈σ, γ, s.S〉 → 〈σ′, γ′, S′.S〉

In the transition rule for stack execution, we specify that s cannot be the empty
stack. The reason is related to the transition rule for stack initialization of
Definition 9.9 below. In that rule, we want to specify that a stack initialization
transition can only be derived if the current stack is empty. We however do not
want to use that rule in combination with the rule for stack execution, since that

6For technical convenience, we overload the “.” operator in Definition 9.8. We use it to
“push” a stack onto a stack, rather than to push a single stack element onto a stack, as it
was, strictly speaking, defined in Definition 9.5.

192 GOAL-ORIENTED MODULARITY

would result in the possibility of deriving an “initialization” transition, even if
the current stack is not empty.

An initialization transition can thus only be derived if the current stack is
empty. The idea of initialization is that a (top-level) goal m(φ) from the goal
base is (randomly) selected, and then the module m is called with the goal φ.
The resulting stack is then of the form (φ, ǫ,PG,PR), where PG and PR are the
plan generation and plan revision rules of m. Note that the plan of the resulting
stack element is empty. The idea is that the plan generation rules of the module
should now be used to generate an appropriate plan.

Definition 9.9 (initialization of stack)

m(φ) ∈ γ 〈m,PG,PR〉 ∈ Mod

〈σ, γ, E〉 → 〈σ, γ, (φ, ǫ,PG,PR)〉

Note that a consequence of this way of defining the goal base is that multiple
goals from the goal base cannot be dispatched to the same module in one initial-
ization. Thinking about alternative ways to define the goal base which might
allow this, is left for future research.

The following transition rule is the rule for plan generation, defining when
a plan generation rule can be applied. A prerequisite for applying a plan gen-
eration rule is that the plan of the relevant stack element is empty. A rule
φ′ | β ⇒ π from PG can then be applied if β is true, φ′ follows from φ (i.e., the
goal for which the module was called), and φ′ is not believed to be achieved.
Note that since φ′ follows from φ, it is the case that φ is also not reached, if φ′

is not reached. With respect to the second condition for plan generation rule
application, we remark that a plan generation rule with goal antecedent p (i.e.,
φ′ = p) can thus be applied if the agent has, e.g., a goal p ∧ q (i.e., φ = p ∧ q).
It is convenient when programming, since plan generation rules can be specified
for parts of a composed goal.

If a plan generation rule is applied, the plan π in its consequent becomes the
plan of the resulting stack element. Further, the applied plan generation rule is
removed from the set of plan generation rules of the stack element.

Definition 9.10 (plan generation)

φ′ | β ⇒ π ∈ PG σ |=LB
β φ |= φ′ σ 6|= φ′

〈σ, γ, (φ, ǫ,PG,PR)〉 → 〈σ, γ, (φ, π,PG′,PR)〉

where PG′ = PG \ {φ′ | β ⇒ π}

The reason for removing plan generation rules is that we do not want the agent
to try the same plan generation rule twice, to achieve a certain goal. Otherwise,
the agent could get stuck “inside” a module trying to achieve a subgoal, if all its
plans keep failing to reach the goal. The idea is that modules contain various

GOAL-ORIENTED MODULARITY IN 3APL 193

plans for achieving a certain goal. If the agent cannot reach a certain subgoal of
a plan with the designated module, the agent should thus at a certain point give
up trying to reach the subgoal. It should just try another plan with possibly
different subgoals. Wanting to remove plan generation rules of a stack element is
the reason that we copy the rules into stack elements, rather than just referring
to the rules of a module using the name of the module. If we would extend
this semantics to a first order version, we would have to record which instances
of a plan generation rule are tried, rather than just removing the rule. This
mechanism is comparable to the mechanism for selecting plans for subgoals in
JACK. In JACK it is also the case that the same plan is not tried for the same
subgoal twice.

The following two transition rules are standard for 3APL, and define how
a plan is executed. The only difference is that the plan is now inside a stack
element. Note that actions, which are executed from within a module, operate
on the global belief base of the agent.

Definition 9.11 (action execution)

T (a, σ) = σ′

〈σ, γ, (φ, a;π,PG,PR)〉 → 〈σ′, γ′, (φ, π,PG,PR)〉

where γ′ = γ \ {m(φ) | σ |= φ}.

The transition below specifies the application of a plan revision rule.

Definition 9.12 (plan revision)

πh | β πb ∈ PR σ |=LB
β

〈σ, γ, (φ, πh;π,PG,PR)〉 → 〈σ, γ, (φ, πb;π,PG,PR)〉

We now revisit the point made in Section 9.1.3, that the encapsulation provided
by modules at run-time is especially advantageous in the case of 3APL. The
reason is that modules encapsulate not only plan generation rules, but also
plan revision rules. These plan revision rules provide very flexible ways for
revising a plan during execution, but a large number of rules can interact in
possibly unforeseen ways. This has to do with the semantics of plans not being
compositional in case of plan revision, as discussed in Chapters 6, 7, and 8.
Being able to cluster plan revision rules into modules thus reduces the chances
of unforeseen interactions with other rules: the number of plan revision rules in
a module will be small compared with the global set of plan revision rules of a
non-modular 3APL agent.

The next two transition rules specify the cases in which a stack element can
be popped from the stack. Both transition rules specify that an element can
be popped if its plan has finished execution, i.e., if the plan is empty. The
idea is, that an agent should always finish the execution of an adopted plan,

194 GOAL-ORIENTED MODULARITY

even though, e.g., the goal for which it was selected might already be reached.
This is standard for 3APL, and the reason is that the programmer might have
specified some necessary “clean-up” actions. Consider as an example the case
where an agent still has to pay after refueling, even though the goal of having
gas is already reached.

The first transition rule for popping a stack element specifies that the element
can be popped if the goal φ of the stack element is reached.

Definition 9.13 (goal of stack element reached)

σ |= φ

〈σ, γ, (φ, ǫ,PG,PR)〉 → 〈σ, γ, E〉

The second transition rule for popping a stack element specifies that the element
can be popped if there are no more applicable plan generation rules (regardless
of whether the goal is reached). Since we assume that plan revision rules do not
have the empty plan as a head (Definition 9.3), these rules cannot be applied if
the plan of the stack element is empty.

Definition 9.14 (no applicable plan generation rules)

¬∃(φ′ | β ⇒ π) ∈ PG : (σ |=LB
β and φ |= φ′ and σ 6|= φ′)

〈σ, γ, (φ, ǫ,PG,PR)〉 → 〈σ, γ, E〉

The next three definitions specify the semantics of the constructm(φ′) for calling
a module. If this construct is encountered in a plan, and it is not annotated with
the symbol ↓, the module m should be called for the goal φ′. That is, only if φ′

is not yet reached. If a module with the name m exists,7 a new element with
goal φ′, an empty plan, and the rules of m, is pushed onto the stack. Further,
the construct m(φ′) is annotated with ↓ to indicate that a module has been
called for this subgoal. This is important, since we do not want to call module
m again upon returning from m.

Definition 9.15 (calling a module)

〈m,PG′,PR′〉 ∈ Mod σ 6|= φ′

〈σ, γ, (φ,m(φ′);π,PG,PR)〉 → 〈σ, γ, (φ′, ǫ,PG′,PR′).(φ,m(φ′)↓;π,PG,PR)〉

The transition rules of the next definition specify that the agent can continue
the execution of the rest of its plan, if the subgoal φ′ occurring at the head
of the plan is reached. The agent should continue if it has already called the
module m for the subgoal, i.e., if the construct is of the form m(φ′)↓, or if the
module has not yet been called, i.e., if the construct is of the form m(φ′). The
latter case is however probably less likely to occur.

7And it should if the programmer has done a good job.

GOAL-ORIENTED MODULARITY IN 3APL 195

Definition 9.16 (subgoal reached)

σ |= φ′

〈σ, γ, (φ,m(φ′)↓;π,PG,PR)〉 → 〈σ, γ, (φ, π,PG,PR)〉

σ |= φ′

〈σ, γ, (φ,m(φ′);π,PG,PR)〉 → 〈σ, γ, (φ, π,PG,PR)〉

The next transition rule specifies that if a module has been called for a subgoal,
i.e., if a construct of the form m(φ′) ↓ is at the head of the plan of a stack
element, and the subgoal φ′ has not been reached, the plan fails. That is, the
plan is replaced by an empty plan. If there are any applicable plan generation
rules left, another plan can then be selected to try to achieve the goal φ of the
stack element.

Definition 9.17 (subgoal dispatched and not reached)

σ 6|= φ′

〈σ, γ, (φ,m(φ′)↓;π,PG,PR)〉 → 〈σ, γ, (φ, ǫ,PG,PR)〉

In this version of modular 3APL, a plan can fail to reach a goal only in case the
programmer has specified the “wrong” actions in the plans. Since all actions (as
is usually the case for 3APL’s formal semantics) operate on the belief base and
there is no notion of an external environment, there is no notion of the environ-
ment preventing an action from being executed, thereby possibly causing a plan
to fail. One could thus argue that it is not necessary to have a mechanism for
selecting a different plan upon plan failure, since it is the job of the programmer
to make sure that the plans do not fail and reach the goals. We however aim
for the ideas presented in this paper to be used in domains involving actions
being executed in the environment, and it is thus important to incorporate a
mechanism for handling plan failure.

The final transition rule below is very similar to the previous, in the sense
that it specifies another reason for plan failure. In particular, it specifies that a
plan fails if the action at its head cannot be executed, i.e., if the function T is
undefined for the action and the belief base of the stack element.

Definition 9.18 (failure of action execution) Let “no applicable plan revi-
sion rule” be defined as ¬∃(πh | β πb) ∈ PR : σ |=LB

β and a;π =
πh;π′ for some π′.

no applicable plan revision rule T (a, σ) is undefined

〈σ, γ, (φ, a;π,PG,PR)〉 → 〈σ, γ, (φ, ǫ,PG,PR)〉

9.2.3 Example

For illustration, we present a simple example of a modular 3APL agent. The
agent has to bring a rock from the location where the rocks are loc(rock)8, to its

8Note that all formulas are propositional, although we use brackets for presentation pur-
poses.

196 GOAL-ORIENTED MODULARITY

base location loc(base). It has three modules, i.e., collectRock for the general
goal of collecting the rock, and goTo and pickUp for going to a location and
picking up a rock, respectively. Initially, the agent believes that it is at the base
location, and that it does not have a rock, i.e., ¬have(rock). Further, it has
the goal collectRock(have(rock) ∧ loc(base)), i.e., it wants to achieve the goal
have(rock) ∧ loc(base) using module collectRock.

Below, we define the initial belief base σ and goal base γ of the rock collecting
agent.

σ = {loc(base),¬have(rock)}
γ = {collectRock(have(rock) ∧ loc(base))}

The plan generation rules PGcr of the module collectRock are defined as below.
The set of plan revision rules is empty.

PGcr = {have(rock) ∧ loc(base) | ⊤ ⇒
goTo(loc(rock)); pickUp(have(rock)); goTo(loc(base))}

There is one plan generation rule which can be used for the goal have(rock) ∧
loc(base), i.e., the initial goal of the agent. The plan of the rule consists entirely
of calls to other modules. Note that the goTo module is called with two different
goals. The rule does not specify a condition on beliefs (other than ⊤). In
particular, there is no need to specify that the agent should, e.g., believe that it is
at the base location, rather than at the rock location. If the agent would already
be at the rock location, the first module call of the plan, i.e., goTo(loc(rock)),
would be skipped, since the subgoal loc(rock) is already reached (see Definition
9.16).

The plan generation rules PGgt and plan revision rules PRgt of the module
goTo are defined as follows.

PGgt = {loc(rock) | B(loc(base)) ⇒ toRock,
loc(base) | B(loc(rock)) ⇒ toBase}

PRgt = {toRock | B(loc(rock)) skip,
toRock | ¬B(loc(rock)) east; toRock,
toBase | B(loc(base)) skip,
toBase | ¬B(loc(base)) west; toBase}

This module has two plan generation rules: one for selecting a plan to get from
the base location to the rock location, and one for the other way around. The
plans toRock and toBase in the bodies of the plan generation rules are non-
executable basic actions, which are used as procedure variables.9 Assuming that
the rock is located east from the base location, we specify plan revision rules for
moving east until the rock location is reached, and moving west until the base
location is reached. The action skip is a special action which does nothing if
executed.

9Non-executable basic actions are often termed abstract plans in the 3APL literature.

FUTURE RESEARCH 197

In this simple example, we specify separate plan revision rules for moving
east and west respectively. The plans for moving to the rock location and to
the base location thus use different plan revision rules. We could therefore have
created two separate modules, i.e., one for going to the rock, and one for going
to the base. In a more realistic setting however, one could imagine to have one
set of plan revision rules for moving to any given location. In that case, it would
be advantageous to specify these rules only in one module.

The plan generation rules PGpu of the module pickUp are defined as below,
and the set of plan revision rules is empty.

PGpu = {have(rock) | B(loc(rock)) ⇒ pickUp1,
have(rock) | B(loc(rock)) ⇒ pickUp2}

The plan generation rules of this module can be applied if the agent believes it
is at the rock location. Note that the call pickUp(have(rock)) to this module
from the collectRock module, can only be executed if the subgoal of the previous
module call, i.e., goTo(loc(rock)), has been achieved. If pickUp(have(rock)) is
executed, we thus know for sure that the agent believes to be at the rock location.
The module pickUp illustrates that the agent may have multiple plans, i.e.,
pickUp1 and pickUp2 in this case, for achieving the same goal. If, e.g., pickUp1
fails, the agent can try pickUp2.

9.3 Future Research

As directions of future research, we mention the following. In the current pro-
posal there is no notion of importing a module into another module. Some
notion of importation could be added in a straightforward way, but it will have
to be investigated what exactly the semantics of importation should be. Should
the rules of the imported module just be “added” to the other module, or should
there be some kind of prioritization among rules of the module itself and the
imported module?

Further, goal-oriented modularity as presented here provides a high degree
of information hiding. That is, when calling a module, only the name of the
module has to be known. In principle, any part of a module can be adapted
without having to adapt the call to the module. We thus have no notion of an
interface of a module, i.e., those parts of the module which are known outside
the module. Nevertheless, it might be worthwile to investigate whether the
framework can be extended with some notion of interface, such as the goals
for which a module can be called, etc. This might be a useful tool to help a
programmer.

Also, we envisage that a mechanism similar to the mechanism of dispatching
a goal to a module, could be used in a multi-agent team work setting (see, e.g.,
[Yoshimura et al., 2000]) to delegate a goal to an agent. Using a uniform mech-
anism both for calling modules and delegating goals to agents could potentially

198 GOAL-ORIENTED MODULARITY

yield more transparent systems. In case of delegation, a plan would have to
contain a request message to an agent, rather than a call to a module. A way of
“returning” from the request, just as one can return from a module, would have
to be defined. An agent would for example have to report back to the requesting
agent, either with a message expressing that the goal has been achieved, or that
he has failed and stopped trying. Moreover, it can be interesting to investigate
a construct for calling modules in parallel. This can also be interesting in the
case of multi-agent teamwork as also discussed in [Yoshimura et al., 2000], since
an agent could then dispatch several goals to different agents in parallel.

Finally, we remark that it could be useful to be able to store information dur-
ing execution within a module, which would not need to be kept after returning
from the module. This could be realized by adding actions to the specification
of a module, which would then update the module’s internal information store,
rather than the global belief base. This could be considered as a compromise
between the way beliefs are handled in capabilities, and the way we handle
beliefs in the presented framework.

Concluding, we have presented the idea of goal-oriented modularity, which
takes the goals of an agent as the basis for modularization. Since we view goals
as being an essential ingredient of cognitive agents, we argue that this approach
to modularity is suited for cognitive agent programming languages. Further, we
have shown how goal-oriented modularity might be incorporated in a cognitive
agent programming language, by presenting a formalization of goal-oriented
modularity in 3APL.

Acknowledgements

We would like to thank Alexander Pokahr, Lin Padgham, and Lars Braubach
for very useful discussions on the issue of modularization in cognitive agent
programming frameworks.

Chapter 10

Prototyping 3APL in the Maude Term

Rewriting Language

This chapter is based on [van Riemsdijk et al., 2006b]. Research on agent pro-
gramming languages is concerned with an investigation of what kind of program-
ming constructs an agent programming language should contain, and what ex-
actly the meaning of these constructs should be. In order to test whether these
constructs indeed facilitate the programming of agents in an effective way, the
programming language has to be implemented.

This can be done using Java, which was for example used for implementing
the agent programming language 3APL [Hindriks et al., 1999b]
[Dastani et al., 2004]. Java has several advantages, such as its platform in-
dependence, its support for building graphical user interfaces, and the extensive
standard Java libraries. A disadvantage is however that the translation of the
formal semantics of an agent programming language such as 3APL into Java is
not very direct. It can therefore be difficult to ascertain that such an implemen-
tation is a faithful implementation of the semantics of the agent programming
language, and experimenting with different language constructs and semantics
can be quite cumbersome.

As an alternative to the use of Java, we explore in this chapter the us-
age of the Maude term rewriting language [Clavel et al., 2005] for prototyping
3APL. Maude is based on the mathematical theory of rewriting logic. The lan-
guage has been shown to be suitable both as a logical framework in which many
other logics can be represented, and as a semantic framework, through which
programming languages with an operational semantics can be implemented in
a rigorous way [Mart́ı-Oliet and Meseguer, 2000]. We argue that, since agent
programming languages such as 3APL have both a logical and a semantic com-
ponent, Maude is very well suited for prototyping such languages (see Section
10.4.1). Further, we show that, since Maude is reflective, 3APL’s meta-level rea-

199

200 PROTOTYPING 3APL IN THE MAUDE TERM REWRITING LANGUAGE

soning cycle or deliberation cycle can be implemented very naturally in Maude
(Section 10.3.2).

An important advantage of Maude is that it can be used for verification as
it comes with an LTL model checker [Eker et al., 2002]. This chapter does not
focus on model checking 3APL using Maude. However, the usage of Maude’s
model checker is relatively easy, given the implementation of 3APL in Maude.
Nevertheless, the fact that Maude provides these verification facilities is an im-
portant, and was in fact, our original, motivation for our effort of implementing
3APL in Maude.

The outline of this chapter is as follows. We present (a simplified version of)
3APL in Section 10.1, and we briefly explain Maude in Section 10.2. We explain
how we have implemented this simplified version of 3APL in Maude in Section
10.3. In Section 10.4, we discuss in more detail the advantages of Maude for the
implementation of agent programming languages such as 3APL, and we address
related work.

10.1 3APL

The cognitive agent programming language we have implemented in Maude
comes close to the language of Chapter 2, and can be viewed as a propositional
and otherwise slightly simplified version of the language 3APL as presented in
[Dastani et al., 2004]. We will in the rest of this chapter refer to the language
under consideration simply as “3APL”.

We have implemented this simple version of 3APL to serve as a proof-of-
concept of the usage of Maude for prototyping languages such as 3APL. In
Section 10.4.2, we discuss the possible implementation of various extensions of
the version of 3APL as defined in this section, although implementing these is
left for future research.

10.1.1 Syntax

The version of 3APL as presented in this chapter takes a simple language,
consisting of a set of propositional atoms, as the basis for representing beliefs
and goals.

Definition 10.1 (base language) The base language is a set of atoms Atom.

As will be specified in Definition 10.7, the belief base and goal base are sets of
atoms from Atom. This is thus a simplification of the representation of goals and
beliefs of Chapter 2 (Definition 2.1), since we do not use arbitrary propositional
formulas for their representation. The possibility of extending the representation
of beliefs and goals and the accompanying belief and goal formulas is discussed
in Section 10.4.2.

3APL 201

The language of plans is as in Chapter 2 (Definition 2.3), except that we
omit abstract plans. Extending the implementation to include abstract plans is
straightforward.

Definition 10.2 (plan) Let BasicAction with typical element a be the set of
basic actions. The set of plans Plan with typical element π is then defined as
follows.

π ::= a | π1;π2

We use ǫ to denote the empty plan and identify ǫ;π and π; ǫ with π.

The belief and goal formulas are as in Chapter 2 (Definition 2.2), except that
the B and G operators take atoms as their arguments, rather than arbitrary
propositional formulas. This is done for reasons of simplicity. In this chapter,
we refer to these languages as belief and goal query languages. We explicitly
include disjunction in the languages, for ease of representation.

Definition 10.3 (belief and goal query language) Let p ∈ Atom. The belief
query language LB with typical element β, and the goal query language LG with
typical element κ, are then defined as follows.

β ::= ⊤ | B(p) | ¬β | β1 ∧ β2 | β1 ∨ β2

κ ::= ⊤ | G(p) | ¬κ | κ1 ∧ κ2 | κ1 ∨ κ2

The actions of an agent’s plan update the agent’s beliefs, if executed. In order
to specify how actions should update the beliefs, we use so-called action speci-
fications. Throughout this thesis and generally in the context of 3APL, often a
belief update function T is assumed for this purpose, i.e., the exact definition of
T is usually omitted. Since in this chapter we are concerned with implementing
3APL, we also have to be specific about the implementation of belief update
through actions.

An action specification is of the form {β}a{Add,Del}. Here, a represents the
action name, β is a belief query that represents the precondition of the action,
and Add and Del are sets of atoms, that should be added to and removed from
the belief base, respectively, if a is executed. This way of specifying how actions
update beliefs corresponds closely with the way it is implemented in the Java
version of 3APL.

Definition 10.4 (action specification) The set of action specifications AS is
defined as follows: AS = {{β}a{Add,Del} : β ∈ LB, a ∈ BasicAction, Add ⊆
Atom, Del ⊆ Atom}.1

Plan selection rules and plan revision rules are as in Chapter 2 (Definition 2.4),
although the syntax of plan selection rules differs slightly.

1We use the notation {. . . : . . .} instead of {. . . | . . .} to define sets, to prevent confusing
usage of the symbol | in Definition 10.6.

202 PROTOTYPING 3APL IN THE MAUDE TERM REWRITING LANGUAGE

Definition 10.5 (plan selection rule) The set of plan selection rules RPS is
defined as follows: RPS = {β, κ⇒ π : β ∈ LB, κ ∈ LG, π ∈ Plan}.

Definition 10.6 (plan revision rule) The set of plan revision rules RPR is
defined as follows: RPR = {πh | β πb : β ∈ LB, πh, πb ∈ Plan}.

10.1.2 Semantics

The semantics of 3APL agents is defined by means of a transition system
[Plotkin, 1981]. Configurations in this chapter consist of a belief base σ and
a goal base γ which are both sets of atoms, a plan, and sets of plan selection
rules, plan revision rules, and action specifications. Reasoning rules and action
specifications need to be included in configurations for a proper implementation
of 3APL in Maude. Nevertheless, we omit these from the configurations in the
transition rules of this section, for reasons of presentation.

Definition 10.7 (configuration) A 3APL configuration is a tuple
〈σ, π, γ,PS,PR,AS〉2 where σ ⊆ Atom is the belief base, π ∈ Plan is the plan,
γ ⊆ Atom is the goal base, PS ⊆ RPS is a set of plan selection rules, PR ⊆ RPR

is a set of plan revision rules, and AS ⊆ AS is a set of action specifications.

Programming a 3APL agent comes down to specifying its initial configuration.
Before moving on to defining the transition rules for 3APL, we define the

semantics of belief and goal queries. The semantics of belief and goal queries
can be defined in a simple way, due to the simplicity of the query languages.
That is, a formula B(p) is true in a configuration iff p is in the belief base, and
G(p) is true iff p is in the goal base. The semantics of negation, disjunction, and
conjunction are defined in the standard way (see Chapter 2 (Definition 2.7)),
and we omit this here.

Definition 10.8 (belief and goal queries)

〈σ, π, γ〉 |=LB
B(p) ⇔ p ∈ σ

〈σ, π, γ〉 |=LG
G(p) ⇔ p ∈ γ

In Chapter 2 (Definition 2.7), we have defined the semantics of atomic goal
formulas Gφ such, that it is true iff φ follows from the goal base and φ is not
believed. The idea is, that an agent should not have something as a goal which
it already believes to be the case. Given the simple structure of the belief base
and goal base that we use in this chapter, it is however possible to make sure
that an atom is never in the goal base if it is also in the belief base. We thus
do not have to add this extra condition to the semantics of goal queries in this
case.

2Note that in this chapter, the second element of a configuration is the plan, and the third
element is the goal base. This differs from Chapter 2 (Definition 2.6).

MAUDE 203

The first transition rule as specified below is used to derive a transition for
action execution. An action a that is the first action of the plan, can be executed
if there is an action specification for a, and the precondition of this action as
specified in the action specification holds. The belief base σ is updated such
that the atoms of Add are added to, and the atoms of Del are removed from σ.
Further, the atoms that have been added to the belief base should be removed
from the goal base, as the agent believes these goals to be achieved. Also, the
action is removed from the plan.

Definition 10.9 (action execution)

{β}a{Add,Del} ∈ AS 〈σ, a;π, γ〉 |=LB
β

〈σ, a;π, γ〉 → 〈σ′, π, γ′〉

where σ′ = (σ ∪Add) \Del, and γ′ = γ \Add.

The semantics of the application of reasoning rules is as in Chapter 2 (Definitions
2.10 and 2.11).

Definition 10.10 (plan selection rule application)

β, κ⇒ π ∈ PS 〈σ, ǫ, γ〉 |=LB
β 〈σ, ǫ, γ〉 |=LG

κ

〈σ, ǫ, γ〉 → 〈σ, π, γ〉

Definition 10.11 (plan revision rule application)

πh | β πb ∈ PR 〈σ, πh;π, γ〉 |=LB
β

〈σ, πh;π, γ〉 → 〈σ, πb;π, γ〉

10.2 Maude

We cite from [Ölveczky, 2005]: “Maude is a formal declarative programming
language based on the mathematical theory of rewriting logic [Meseguer, 1992].
Maude and rewriting logic were both developed by José Meseguer. Maude is a
state-of-the-art formal method in the fields of algebraic specification
[Wirsing, 1990] and modeling of concurrent systems. The Maude language spec-
ifies rewriting logic theories. Data types are defined algebraically by equations
and the dynamic behavior of a system is defined by rewrite rules which describe
how a part of the state can change in one step.”

A rewriting logic specification consists of a signature, a set of equations, and
a set of rewrite rules. The signature specifies the terms that can be rewritten
using the equations and the rules. Maude supports membership equational logic
[Meseguer, 1997], which is an extension of order-sorted equational logic, which
is in turn an extension of many-sorted equational logic. For this chapter, it
suffices to treat only the many-sorted subset of Maude. A signature in many-
sorted equational logic consists of a set of sorts, used to distinguish different
types of values, and a set of function symbols declared on these sorts.

204 PROTOTYPING 3APL IN THE MAUDE TERM REWRITING LANGUAGE

In Maude, sorts are declared using the keyword sort, for example as follows:
sort List. Function symbols can be declared as below, using the keywords op
and ops.

op app : Nat List -> List .

ops 0 1 2 3 : -> Nat .

op nil : -> List .

The function app, expressing that natural numbers can be appended to form a
list, takes an argument of sort Nat and an argument of sort List, and the re-
sulting term is again of sort List. The functions 0, 1, 2 and 3 are nullary
functions, i.e., constants, of sort Nat. The nullary function nil represents
the empty list. An example of a term (of sort List) over this signature is
app(1,app(2,app(3,nil))).

In order to define functions declared in the signature, one can use equations.
An equation in Maude has the general form eq 〈Term-1〉 = 〈Term-2〉. Assume
a function declaration op sum : List -> Nat, and a function + for adding
natural numbers (declared as op _+_ : Nat Nat -> Nat, where the underscores
are used express infix use of +). Further, assume variable declarations var N

: Nat and var L : List, expressing that N and L are variables of sorts Nat

and List respectively. The equations eq sum(app(N,L)) = N + sum(L) and
eq sum(nil) = 0 can then be used to define the function sum.

Maude also supports conditional equations, which have the following general
form.

ceq 〈Term-1〉 = 〈Term-2〉

if 〈EqCond-1〉 /\ . . . /\ 〈EqCond-n〉

A condition can be either an ordinary equation of the form t = t’, a matching
equation of the form t := t’, or an abbreviated boolean equation of the form
t, which abbreviates t = true. An example of the use of a matching equation as
the condition of a conditional equation is
ceq head(L) = N if app(N,L’) := L. This equation defines the function head,
which is used to extract the first element of a list of natural numbers. The
matching equation app(N,L’) := L expresses that L, as used in the left-hand
side of the equation, has to be of the form app(N,L’), thereby binding the first
element of L to N, which is then used in the righthand side of the equation.

Operationally, equations can be applied to a term from left to right. Equa-
tions in Maude are assumed to be terminating and confluent, i.e., there is no
infinite derivation from a term t using the equations, and if t can be reduced
to different terms t1 and t2, there is always a term u to which both t1 and t2

can be reduced. This means that any term has a unique normal form, to which
it can be reduced using equations in a finite number of steps.

Finally, we introduce rewrite rules. A rewrite rule in Maude has the general
form rl [〈Label〉] : 〈Term-1〉 => 〈Term-2〉, expressing that term Term-1

IMPLEMENTATION OF 3APL IN MAUDE 205

can be rewritten into term Term-2. Conditional rewrite rules have the following
general form.

crl [〈Label〉] 〈Term-1〉 => 〈Term-2〉

if 〈Cond-1〉 /\ . . . /\ 〈Cond-n〉

Conditions can be of the type as used in conditional equations, or of the form
t => t’, which expresses that it is possible to rewrite term t to term t’. An ex-
ample of a rewrite rule is rl [duplicate] : app(N,L) => app(N,app(N,L)),
which expresses that a list with head N can be rewritten into a new list with N du-
plicated. The term app(1,app(2,app(3,nil))) can for example be rewritten
to the term app(1,app(1,app(2,app(3,nil)))) using this rule. The former
term can however also be rewritten into app(1,app(2,app(2,app(3,nil)))),
because rewrite rules (and equations alike) can be applied to subterms.

The way the Maude interpreter executes rewriting logic specifications, is as
follows [Ölveczky, 2005]. Given a term, Maude tries to apply equations from left
to right to this term, until no equation can be applied, thereby computing the
normal form of a term. Then, an applicable rewrite rule is arbitrarily chosen
and applied (also from left to right). This process continues, until no rules can
be applied. Equations are thus applied to reduce each intermediate term to its
normal form before a rewrite rule is applied.

Finally, we remark that in Maude, rewriting logic specifications are grouped
into modules with the following syntax: mod 〈Module-Name〉 is 〈Body〉 endm.
Here, 〈Body〉 contains the sort and variable declarations and the (conditional)
equations and rewrite rules.

10.3 Implementation of 3APL in Maude

In this section, we describe how we have implemented 3APL in Maude. We
distinguish the implementation of 3APL as defined in Section 10.1, which we
will refer to as object-level 3APL (Section 10.3.1), and the implementation of a
meta-level reasoning cycle (Section 10.3.2).

10.3.1 Object-Level

The general idea of the implementation of 3APL in Maude, is that 3APL
configurations are represented as terms in Maude, and the transition rules
of 3APL are mapped onto rewrite rules of Maude. This idea is taken from
[Verdejo and Mart́ı-Oliet, 2003], in which, among others, implementations in
Maude of the operational semantics of a simple functional language and an im-
perative language are discussed. In this section we describe in some detail how
we have implemented 3APL, thereby highlighting 3APL-specific issues.

206 PROTOTYPING 3APL IN THE MAUDE TERM REWRITING LANGUAGE

Syntax

Each component of 3APL’s syntax as specified in Definitions 10.1 through 10.6
is mapped onto a module of Maude. As an example, we present the definition
of the module for the belief query language, corresponding with Definition 10.3.

mod BELIEF-QUERY-LANGUAGE is

including BASE-LANGUAGE .

sort BQuery .

op B : LAtom -> BQuery .

op top : -> BQuery .

op ~_ : BQuery -> BQuery .

op _/_ : BQuery BQuery -> BQuery .

op _\/_ : BQuery BQuery -> BQuery .

endm

The module BELIEF-QUERY-LANGUAGE imports the module used to define the
base language of Definition 10.1. A sort BQuery is declared, representing ele-
ments from the belief query language. The sort LAtom is declared in the module
BASE-LANGUAGE, and represents atoms from the base language. Five operators
are defined for building belief query formulas, which correspond with the oper-
ators of Definition 10.3. The other syntax modules are defined in a similar way.
Note that only sort and function declarations are used in syntax modules. None
of the syntax modules contain equations or rewrite rules.

The notion of configuration as specified in Definition 10.7 is also mapped
onto a Maude module. This module imports the other syntax modules, and
declares a sort Conf and an operator op <_,_,_,_,_,_> : BeliefBase Plan

GoalBase PSbase PRbase ASpecs -> Conf.

Semantics

The implementation of the semantics of 3APL in Maude can be divided into the
implementation of the logical part, i.e., the belief and goal queries as specified in
Definition 10.8, and the operational part, i.e., the transition rules of Definitions
10.9 through 10.11. The logical part, i.e., the semantics of the satisfaction
relations |=LB

and |=LG
, is modeled as equational specifications, whereas the

transition rules of the operational part are translated into rewrite rules.

As an example of the modeling of the logical part, we present part of the
module for the semantics of |=LB

below. Here [owise] is a built-in Maude
construct that stands for “otherwise”.

IMPLEMENTATION OF 3APL IN MAUDE 207

mod BELIEF-QUERY-SEMANTICS is

including BELIEF-QUERY-LANGUAGE .

op _|=LB_ : BeliefBase BQuery -> Bool .

var p : LAtom .

vars BB BB’ : BeliefBase .

vars BQ : BQuery .

ceq BB |=LB B(p) = true if p BB’ := BB .

eq BB |=LB B(p) = false [owise] .

ceq BB |=LB ~BQ = true if not BB |=LB BQ .

eq BB |=LB ~BQ = false [owise] .

. . .

endm

The relation |=LB
is modelled as a function |=LB, which takes a belief base of

sort BeliefBase (a sort from the base language module), and a belief query of
sort BQuery, and yields a boolean, i.e., true or false. Although the semantics
of belief queries as specified in Definition 10.8 is defined on configurations rather
than on belief bases, it is in fact only the belief base part of the configuration
that is used in the semantic definition. For ease of specification we thus define
the function |=LB on belief bases, rather than on configurations.

The first pair of (conditional) equations defines the semantics of a belief
query B(p). The matching equation p BB’ := BB expresses that beliefbase BB

is of the form p BB’ for some beliefbase BB’,3 i.e., that the atom p is part of BB.
The second pair of (conditional) equations specifies the semantics of a negative
query ~BQ. The term not BB |=LB BQ is an abbreviated boolean equation, i.e., it
abbreviates not BB |=LB BQ = true, and not is a built-in boolean connective.
The module for the semantics of goal query formulas is defined in a similar way.

We now move on to the implementation of the operational part. Below, we
present the rewrite rule for action execution, corresponding with the transition
rule of Definition 10.9. The variables B, B’ and B’’ are of sort BeliefBase, A is
of sort Action, P is of sort Plan, and G and G’ are of sort GoalBase. Moreover,
PSB, PRB, and AS are respectively of sorts PSbase, PRbase, and ASpecs. Further,
Pre is of sort BQuery and Add and Del are of sort AtomList.

crl [exec] : < B, A ; P, G, PSB, PRB, AS > =>

< B’, P, G’, PSB, PRB, AS >

if {Pre} A {Add,Del} AS’ := AS /\ B |=LB Pre /\ B’’ := B U Add /\

B’ := B’’ \ Del /\ G’ := G \ Add .

3Belief bases are defined as associative and commutative space-separated sequences of
atoms.

208 PROTOTYPING 3APL IN THE MAUDE TERM REWRITING LANGUAGE

The transition as specified in the conclusion of the transition rule of Definition
10.9 is mapped directly to the rewrite part of the conditional rewrite rule.4 The
conditions of the transition rule, and the specification of how belief base and
goal base should be changed, are mapped onto the conditions of the rewrite rule.

The first condition of the rewrite rule corresponds with the first condition
of the transition rule. It specifies that if action A is to be executed, there
should be an action specification for A in the set of action specifications AS. The
second condition of the rewrite rule corresponds with the second condition of
the transition rule, and specifies that the precondition of the action should hold.
Note that the previously defined satisfaction relation |=LB is used here.

The third and fourth conditions of the rewrite rule specify how the belief
base is changed, if the action A is executed. For this, a function U (union) has
been defined using equations, which we omit here. This function takes a belief
base and a list of atoms, and adds the atoms of the list to the belief base,
thereby making sure that no duplicate atoms are introduced in the belief base.
The function \ for deleting atoms is defined in a similar way, and is also used
for updating the goal base as specified in the last condition.

The translation of the transition rules for plan selection and plan revision rule
application is done in a similar way. As an illustration, we present the rewrite
rule for plan revision, corresponding with the transition rule of Definition 10.11.
The variables Ph and Pb are of sort Plan, and PRB’ is of sort PRbase. The
syntax (Ph | BQ -> Pb) is used for representing a plan revision rule of the
form πh | β πb.

crl [apply-pr] : < B, Ph ; P, G, PSB, PRB, AS > =>

< B, Pb ; P, G, PSB, PRB, AS >

if (Ph | BQ -> Pb) PRB’ := PRB /\ B |=LB BQ .

As was the case for action execution, the transition as specified in the conclusion
of the transition rule of Definition 10.11 is mapped directly onto the rewrite part
of the conditional rewrite rule. The conditions of the transition rule furthermore
correspond to the conditions of the rewrite rule.

Above, we have discussed the Maude modules for specifying the syntax and
semantics of 3APL. In order to run a concrete 3APL program using Maude,
one has to create another module for this program. In this module, one needs
to specify the initial belief base, goal base, etc. For this, the atoms as can be
used in, e.g., the belief base have to be declared as (nullary) operators of sort
LAtom. Also, the possible basic actions have to be declared. Then, the initial
configuration has to be specified. This can be conveniently done by declaring
an operator for each component of the configuration, and specifying the value of
that component using an equation. An initial belief base containing the atoms
p and q can for example be specified using eq bb = p q, where bb is a nullary

4Recall that the plan selection and plan revision rule bases and the action specifications
were omitted from Definitions 10.9 through 10.11 for reasons of presentation.

IMPLEMENTATION OF 3APL IN MAUDE 209

operator of sort BeliefBase, and p and q are atoms. In a similar way, the
initial plan, goal base, rule bases, and action specifications can be defined. The
3APL program as thus specified can be executed by calling Maude with the
command rewrite <bb, plan, gb, psb, prb, as>, where <bb, plan, gb,

psb, prb, as> is the initial configuration.

10.3.2 Meta-Level

Given the transition system of 3APL as defined in Section 10.1.2, different
possible executions might be derivable, given a certain initial configuration. It
might for example be possible to execute an action in a certain configuration,
as well as to apply a plan revision rule. The transition system does not specify
which transition to choose during the execution. An implementation of 3APL
corresponding with this transition system might non-deterministically choose a
possible transition. The implementation of 3APL in Maude does just this, as
Maude arbitrarily chooses an applicable rewrite rule for application.

In some cases however, it can be desirable to have more control over the
execution. This can be achieved by making it possible to specify more pre-
cisely which transition should be chosen, if multiple transitions are possible. In
the case of 3APL, meta-level languages have been introduced for this purpose
(see [Hindriks et al., 1999b, Dastani et al., 2003] and Chapter 6). These meta-
languages have constructs for specifying that an action should be executed or
that a rule should be applied. Using a meta-language, various so-called deliber-
ation cycles can be programmed.

A deliberation cycle can for example specify that the following process should
be repeated: first apply a plan selection rule (if possible), then apply a plan
revision rule, and then execute an action. Alternatively, a deliberation cycle
could for example specify that a plan revision rule can only be applied if it is
not possible to execute an action. It might depend on the application which is
an appropriate deliberation cycle.

It turns out that this kind of meta-programming can be modeled very nat-
urally in Maude, since rewriting logic is reflective [Clavel and Meseguer, 1996].
“Informally, a reflective logic is a logic in which important aspects of its metathe-
ory can be represented at the object level in a consistent way, so that the ob-
ject level representation correctly simulates the relevant metatheoretic aspects.”
[Clavel et al., 2005, Chapter 10]

In order to perform meta-level computation, terms and modules of the
object-level have to be represented as Maude terms on the meta-level, i.e., they
have to be meta-represented. For this, Maude has predefined modules, that
include the functions upTerm and upModule for meta-representing terms and
modules, and the function metaXapply which defines the meta-level application
of a rewrite rule5.

5Maude also has a function metaApply for this purpose with a slightly different meaning
[Clavel et al., 2005]. It is however beyond the scope of this chapter to explain the difference.

210 PROTOTYPING 3APL IN THE MAUDE TERM REWRITING LANGUAGE

The function upTerm takes an (object-level) term and yields the
meta-representation of this term, i.e., a term of sort Term. The function upModule

takes the meta-representation of the name of a module, i.e., the name of a mod-
ule with a quote prefixed to it, and yields the meta-representation of the module
with this name, i.e., a term of sort Module. The function metaXapply takes the
meta-representation of a module, the meta-representation of a term, the meta-
representation of a rule label (i.e., the rule label with a quote prefixed to it),
and some more arguments which we do not go into here, as they are not rele-
vant for understanding the general idea. The function tries to rewrite the term
represented by its second argument using the rule as represented by its third
argument. A rule with the label as given as the third argument of the function,
should be part of the module as represented by the function’s first argument.
The function returns a term of sort Result4Tuple?. If the rule application was
successful, i.e., if the rule could be applied to the term, the function returns a
4-tuple of sort Result4Tuple,6 which contains, among other information, the
term resulting from the rule application. This term can be retrieved from the
tuple using the function getTerm, which returns the meta-representation of the
term of sort Term resulting from the rewrite rule application.

Meta-level function calls, such as the application of a certain rewrite rule
through metaXapply, can be combined to form so-called strategies
[Clavel et al., 2005]. These strategies can be used to define the execution of
a system at the meta-level. Deliberation cycles of 3APL can be programmed as
these strategies.

An example of a deliberation cycle implemented in Maude is the following,
which first tries to apply a plan selection rule, then to execute an action and
then to apply a plan revision rule. The code below only specifies one sequence
of rule applications and action executions. This sequence can be repeated to
form a deliberation cycle using another function and equation, but we omit that
code.

ceq one-cycle(Meta-Conf, Meta-Prog) = Meta-Conf’

if Meta-Conf’ := try-meta-apply-pr(try-meta-exec(try-meta-apply-ps(

Meta-Conf, Meta-Prog), Meta-Prog), Meta-Prog) .

Here, Meta-Conf and Meta-Conf’ are variables of sort Term which stand for the
meta-representations of 3APL configurations, and Meta-Prog is a variable of
sort Module, which should be instantiated with the meta-representation of the
module with Maude code of a 3APL program. The variable Meta-Conf is input
to the function one-cycle, and Meta-Conf’ represents the result of applying
the function one-cycle to Meta-Conf and Meta-Prog. This module imports
the syntax and semantics modules, which are also meta-represented in this way.
The functions try-meta-apply-pr, try-meta-exec, and try-meta-apply-ps

6Note that the difference with the sort Result4Tuple? is the question mark. The sort
Result4Tuple is a subsort of the sort Result4Tuple?.

DISCUSSION AND RELATED WORK 211

try to apply the (object-level) rewrite rules for plan revision, action execution,
and plan selection, respectively. In the definitions of these functions, the pre-
defined function metaXapply is called, with the names of the respective object-
level rewrite rules as one of its arguments, i.e., with, respectively, apply-pr,
exec, and apply-ps.

As an example, we present the definition of the function try-meta-apply-pr.

ceq try-meta-apply-pr(Meta-Conf, Meta-Prog) =

if Result? :: Result4Tuple

then getTerm(Result?)

else Meta-Conf

fi

if Result? := metaXapply(Meta-Prog, Meta-Conf, ’apply-pr, ...) .

The variable Result? is of sort Result4Tuple?. The function metaXapply takes
the meta-representation of a module representing a 3APL program,7 the meta-
representation of a configuration, and the meta-representation of the label of
the plan revision rewrite rule, i.e., ’apply-pr, and yields the result of applying
the plan revision rewrite rule to the configuration. If the rule application was
successful, i.e., if Result? is of sort Result4Tuple, the term of the resulting
4-tuple which meta-represents the new configuration, is returned. Otherwise,
the original unmodified configuration is returned. Note that there is only one
object-level rule for plan revision (see Section 10.3.1), and that this is the one
referred to in the definition of the function try-meta-apply-pr. Nevertheless,
there might be multiple ways of applying this rule, since potentially multiple
plan revision rules are applicable in a configuration. The function metaXapply

then takes the first instance it finds.
A 3APL program can be executed through a deliberation cycle by calling

Maude with the command.8

rewrite cycle(upTerm(conf),upModule(’3APL-PROGRAM)) .

The function cycle uses the function one-cycle as specified above, to define the
deliberation cycle as a Maude strategy. The term conf represents the initial con-
figuration of the 3APL program, and ’3APL-PROGRAM is the meta-representation
of the name of the module containing the 3APL program.

10.4 Discussion and Related Work

10.4.1 Advantages of Maude

Based on our experience with the implementation of 3APL in Maude as elabo-
rated on in Section 10.3, we argue that Maude is well suited as a prototyping

7The modules defining the syntax and semantics of 3APL are imported by this module,
and are therefore also meta-represented.

8We omit some details for reasons of clarity.

212 PROTOTYPING 3APL IN THE MAUDE TERM REWRITING LANGUAGE

and analysis tool for logic based cognitive agent programming languages.

In [Mart́ı-Oliet and Meseguer, 2000], it is argued that rewriting logic is suit-
able both as a logical framework in which many other logics can be represented,
and as a semantic framework.9 The paper shows how to map Horn logic and
linear logic in various ways to rewriting logic, and, among other things, it is
observed that operational semantics can be naturally expressed in rewriting
logic. The latter has been demonstrated from a more practical perspective in
[Verdejo and Mart́ı-Oliet, 2003], by demonstrating how simple functional, im-
perative, and concurrent languages can be implemented in Maude.

In this chapter, we show how (a simple version of) 3APL can be implemented
in Maude. We observe that cognitive agent programming languages such as
3APL have a logical as well as a semantic component: the logical part consists
of the belief and goal query languages (together with their respective satisfaction
relations), and the semantic part consists of the transition system. Since Maude
supports both the logical and the semantic component, the implementation of
languages like 3APL in Maude is very natural, and the integration of the two
components is seamless.

We observe that the direct mapping of transition rules of 3APL into rewrite
rules of Maude ensures a faithful implementation of the operational semantics of
3APL in Maude. This direct mapping is a big advantage compared with the im-
plementation of a 3APL interpreter in a general purpose language such as Java,
in which the implementation is less direct. In particular, in Java one needs to
program a mechanism for applying the specified transition rules in appropriate
ways, whereas in the case of Maude the term rewriting engine takes care of this.
As another approach of implementing a cognitive agent programming language
in Java, one might consider to implement the plans of the agent as methods in
Java, which is for example done in the Jadex framework [Pokahr et al., 2005b].
Since Java does not have support for revision of programs, implementing 3APL
plans as methods in Java is not possible. We refer to Chapters 6, 7, and 8 for
a theoretical treatment of the issues with respect to semantics of plan revision.

A faithful implementation of 3APL’s semantics in Maude is very impor-
tant with regard to our main original motivation for this work, i.e., to use
the Maude LTL model checker to do formal verification for 3APL. The natu-
ral and transparent way in which the operational semantics of 3APL can be
mapped to Maude, is a big advantage compared with the use of, e.g., the
PROMELA language [Holzmann, 1991] in combination with the SPIN model
checker [Holzmann, 1997].

SPIN is a generic verification system which supports the design and verifi-
cation of asynchronous process systems. SPIN verification models are focused
on proving the correctness of process interactions, and they attempt to ab-
stract as much as possible from internal sequential computations. The language

9Obviously, logics often have semantics, but the notion of a semantic framework used in
the cited paper refers to semantics of programming languages.

DISCUSSION AND RELATED WORK 213

PROMELA is a high level language for specifying abstractions of distributed
systems which can be used by SPIN, and it’s main data structure is the message
channel. In [Bordini et al., 2003], an implementation of the cognitive agent pro-
gramming language AgentSpeak(F) - the finite state version of AgentSpeak(L)
[Rao, 1996, Moreira and Bordini, 2002] - in PROMELA is described, for usage
with SPIN. Most of the effort is devoted to translating AgentSpeak(F) into
the PROMELA data structures. It is shown how to translate the data struc-
tures of AgentSpeak(F) into PROMELA channels. It is however not shown that
this translation is correct, i.e., that the obtained PROMELA program correctly
simulates the AgentSpeak(F) semantics. In contrast with the correctness of
the implementation of 3APL in Maude, the correctness of the AgentSpeak(F)
implementation in PROMELA is not obvious, because of the big gap between
AgentSpeak(F) data structures and semantics, and PROMELA data structures
and semantics. In [Eker et al., 2002], it is shown that the performance of the
Maude model checker is comparable with that of SPIN with respect to a number
of problems.

A further important advantage of Maude is that deliberation cycles can be
programmed very naturally as strategies, using reflection. A related advantage
is that a clear separation of the object-level and meta-level semantics can be
maintained in Maude. A 3APL program can be executed without making use of
a deliberation cycle, while it can equally easily be executed with a deliberation
cycle.

10.4.2 Extending the Implementation

As was explained in Section 10.1, this chapter presents an implementation of a
simplified version of 3APL in Maude. We however argue that the features of
Maude are very well suited to support the implementation of various extensions
of this version of 3APL. Implementing these extensions is left for future research.

In particular, an extension of a single-agent to a multi-agent version will
be naturally implementable, since, from a computational point of view, rewrit-
ing logic is intrinsically concurrent [Mart́ı-Oliet and Meseguer, 2000]. It was in
fact the search for a general concurrency model that would help unify the het-
erogeneity of existing models, that provided the original impetus for the first
investigations on rewriting logic [Meseguer, 1992].

Further, a more practically useful implementation will have to be first-order,
rather than propositional. Although the implementation of a first-order ver-
sion will be more involved, it can essentially be implemented in the same way
as the current version, i.e., by mapping transition rules to rewrite rules. In
[Dastani et al., 2004], the transition rules for a first-order version of 3APL are
presented. Configurations in this setting have an extra substitution component,
which records the assignment of values to variables. An implementation of this
version in Maude will involve extending the notion of a configuration with such
a substitution component, as specified in the cited paper.

214 PROTOTYPING 3APL IN THE MAUDE TERM REWRITING LANGUAGE

Finally, we aim to extend the logical part in various ways, for which, as
already pointed out, Maude is very well suited. Regarding this propositional
version, one could think of extending the belief base and goal base to arbitrary
sets of propositional formulas, rather than just sets of atoms. Also, the belief
and goal query languages could be extended to query arbitrary propositional
formulas. The satisfaction relations for queries could then be implemented us-
ing, e.g., tableau methods as suggested in [Mart́ı-Oliet and Meseguer, 2000], for
checking whether a propositional formula follows from the belief or goal base.
Further, when considering a first-order version of 3APL, the belief base can be
implemented as a set of Horn clauses, or even as a Prolog program. In the cur-
rent Java implementation of 3APL, the belief base is implemented as a Prolog
program. How to define standard Prolog in rewriting logic has been described
in [Kulas and Beierle, 2000]. Finally, we aim to experiment with the implemen-
tation of more sophisticated specifications of the goals of 3APL agents and their
accompanying satisfaction relations, such as proposed in Chapter 4.

10.4.3 Related Work

Besides the related work as already discussed in Sections 10.4.1 and 10.4.2, we
mention a number of papers on Maude and agents. To the best of our knowledge,
Maude has not been used widely in the agent community, and in particular not
in the area of agent programming languages. Nevertheless, we found a small
number of papers describing the usage of Maude in the agent systems field,
which we will briefly discuss in this section.

A recent paper describes the usage of Maude for the specification of DIMA
multi-agent models [Boudiaf et al., 2005]. In that paper, the previously not for-
malized DIMA model of agency is formalized using Maude. This work thus
differs from our approach in that it does not implement an agent programming
language which already has a formal semantics, independent of Maude. Conse-
quently, its techniques for implementation are less principled and differing from
ours.

Further, Maude has been used in the mobile agent area for checking fault-
tolerant agent-based protocols used in the DaAgent system [Baalen et al., 2001].
Protocols in the DaAgent system are related to mobility issues, such as detection
of node failure. The authors remark that the Java implementation for testing
their protocols has proved to be “extremely time-consuming and inflexible”. Us-
ing Maude, the protocol specifications are formalized and they can be debugged
using the Maude model checker. Another example of the usage of Maude in the
mobile agent area is presented in [Durán et al., 2000]. In that paper, Mobile
Maude is presented, which is a mobile agent language extending Maude, and
supporting mobile computation.

Chapter 11

Conclusion

“Semantics is a strange kind of applied mathematics; it seeks profound defini-
tions rather than difficult theorems” [Karp et al., 1980, page 288].1 This is a
profound statement. It captures the essence of what semantics is all about.

When designing a programming language, the first step is to come up with
a set of language constructs that should constitute the language. The choice of
language constructs is motivated by the reason for designing the language. At
this point, one generally has intuitions about the meaning of these constructs.
The role of semantics is then to make these intuitions precise. This is where the
process of carefully shaping the language begins.

Often, one will discover that the initial specification of the semantics does
not fully capture the intuitions, or even yields counterintuitive or undesired
behavior. Also, the semantics may turn out to be quite complex. This starts off
a process of reconsideration of the semantic definitions, which might also result
in changes to the syntax of the language.

Once the language definition has reached a point at which the language
designer is reasonably satisfied with the result, the time comes to study the
language, in order to get a better understanding of the proposed language con-
structs and their semantics. That is, semantic properties have to be investigated,
and the language can be compared with other languages. Also, verification can
be addressed. Finally, the language needs to be implemented, in order to test
it in practice. All of these efforts may again result in changes to the syntax and
semantics of the language.

This thesis has presented results concerning all these aspects of language de-
sign, i.e., the initial proposal for a language, studying properties of the language
constructs, verification, and implementation.

1In [Tennent, 1991], this quote is attributed to Reynolds, who is a co-author of
[Karp et al., 1980].

215

216 CONCLUSION

11.1 Part I: Goals

In Chapter 2, we have presented a simple cognitive agent programming language
in which an agent has beliefs, goals, a plan, and plan selection and plan revision
rules. In Chapter 3, we have studied a particular aspect of this language, i.e.,
we have studied the semantics of abstract plans (or achievement goals) in com-
bination with plan revision rules. In particular, we have provided a language
containing declarative subgoals, and have compared the semantics of abstract
plans with the semantics of these subgoals. We have argued that the semantics
of abstract plans interprets these in a procedural way. Nevertheless, we have
shown that abstract plans can be programmed to behave as declarative sub-
goals, by proving a weak bisimulation between a language containing abstract
plans, and a language containing declarative subgoals.

In Chapter 4, we have further investigated the representation of goals in
cognitive agent programming languages. In particular, we have addressed the
representation of conflicting goals, and (conflicting) goals that may be con-
ditional on beliefs and other goals. We have proposed an alternative to the
semantics of goal formulas of Chapter 2, that does not trivialize the logic in the
case of an inconsistent goal base. That semantics was shown to be an extension
of Hindriks’ semantics [Hindriks et al., 2001], allowing the derivation of more
goals (Proposition 4.2).

In order to allow the representation of conditional goals, we have proposed a
language construct called goal adoption rules. It turned out that the semantics
of goal formulas, given these goal adoption rules, could be defined using default
logic. Default logic was designed to handle conflicting information, and it is also
a natural way of handling conflicting goals.

In contrast with other approaches using default logic for the representation
of goals, our approach defines the semantics of a full logical language of goal
formulas. Further, our approach allows to express that certain goals are conflict-
ing, even though they are logically consistent. This is achieved by translating
negative goal formulas in the antecedent of goal adoption rules to the justifi-
cations of the corresponding default rules. We have investigated the proposed
semantics by studying properties of the goal operator and comparing these with
the axioms of modal logics. Also, we have investigated the relation between
various semantics for goal formulas. Further, we have addressed the semantics
of intention generation, as this is based on the semantics of goals. We have
proposed a semantics for intention generation that is only partly satisfactory,
and have identified a number of issues with respect to this semantics.

In Chapter 5, we have tried to put our research regarding goals in cognitive
agent programming in perspective, by providing a broad overview of the vari-
ous approaches that in some form address the incorporation of goals in agent
programming frameworks. We have tried to provide some structure to the area
by identifying important strands of research regarding ways in which goals have
been represented and used in agent programming frameworks.

PART II: PLAN REVISION 217

11.2 Part II: Plan Revision

In Part II, we have investigated the semantics of plans in the context of plan
revision rules. The operational semantics of plans is not compositional, due to
the fact that the heads of plan revision rules may contain arbitrary plans, rather
than atomic plans. It is important that the semantics is compositional, in order
to be able to define a compositional proof system.

In Chapter 6, we have addressed this issue by proposing a meta-language
with a denotational semantics, which is compositional. We have shown how this
meta-language is related to the object language using the operational semantics
of the meta-language and the object language. In particular, we have provided
a specific meta-program, the operational semantics of which was shown to be
equivalent with the operational semantics of the object language. Further, we
have shown that the denotational semantics of the meta-language is equivalent
with the meta-level operational semantics.

In Chapter 7, we have addressed the issue of reasoning about plans in the
context of plan revision rules by providing a dynamic logic that is tailored to
handle plan revision. Because of the fact that the operational semantics of plans
is not compositional in the context of plan revision, plans cannot be analyzed
by structural induction. This means that standard propositional dynamic logic
cannot be used to reason about these plans. Instead, we proposed a logic of
restricted plans with sound and complete axiomatization. We also showed that
this logic can be extended to a logic for non-restricted plans. This however
results in an infinitary axiom system. We suggested that a possible way of
dealing with the infinitary nature of the axiom system, is reasoning by induction
on the restriction parameter. We showed some examples of how this could
be done. Finally, we discussed the relation between plan revision rules and
procedures.

The approach to the issue of compositionality of the semantics of plans that
we take in Chapter 8, is to try to restrict the allowed plan revision rules,2 such
that the semantics of plans becomes compositional in some sense. It is not
immediately obvious what kind of restriction would yield the desired result. We
have proposed a restriction and proven that the semantics of plans in that case
is compositional. Defining a proof system for these restricted plan revision rules
is left for future research.

11.3 Part III: Software Engineering Aspects

In Chapter 9, we address the issue of modularization in cognitive agent pro-
gramming languages. Modularization is widely recognized as a central issue in

2Note that in Chapter 8, we syntactically restrict plan revision rules, while in Chapter 7
we restrict the execution of plans by constraining the number of times that plan revision rules
can be applied during execution of these plans.

218 CONCLUSION

software engineering, and has several advantages. The kind of modularization
we have proposed is based on the goals of an agent, and was termed goal-
oriented modularity. The idea is to incorporate modules into cognitive agent
programming languages that encapsulate the information on how to achieve a
goal, or a set of (related) goals. That is, modules contain information about the
plans that can be used to achieve a (set of) goal(s). At run-time, the agent can
then dispatch a goal to a module, which, broadly speaking, tries to achieve the
dispatched goal using the information about plans contained in the module.

We have made the idea of goal-oriented modularity more concrete by propos-
ing an extension to a cognitive agent programming language resembling the
language of Chapter 2. This extended language contains modules consisting of
plan selection and plan revision rules. Further, the plans are extended with a
construct for calling a module with a certain (declarative) goal. The semantics
of the extended language is provided.

In Chapter 10, we suggest the use of the Maude term rewriting language for
prototyping cognitive agent programming languages such as the one provided in
Chapter 2. We have observed that these cognitive agent programming languages
have a logical as well as a semantic component: the logical part consists of
the belief and goal query languages (together with their respective satisfaction
relations), and the semantic part consists of the transition system. Since Maude
supports both the logical and the semantic component, the implementation
of such languages in Maude is very natural, and the integration of the two
components is seamless. In particular, the translation of the transition rules
of the transition system into rewrite rules of Maude is very direct, ensuring a
faithful implementation of the semantics. Another advantage of Maude is that
the language comes with an LTL model checker, which can be used for verifying
cognitive agent programs.

11.4 Final Remarks

As was stated in [Karp et al., 1980], semantics seeks profound definitions rather
than difficult theorems. All aspects of the process of designing a programming
language, from an initial definition of the language to an investigation of its
semantic properties to implementation and testing, in the end aim at defining
a language that is somehow the “right” language for a certain purpose.

Proving that a language obeys certain desired properties provides some
handle on the question of whether the language is the right language - or per-
haps a right language. However, a set of properties never completely defines a
language. Any language that emanates from the mind of a language designer
is thus in large part a product of the intuitions of the designer. This is part of
what makes semantics so difficult, and yet so interesting. As Wooldridge puts
it in the foreword of [Bordini et al., 2005a, page xxix]: “[...] every programmer
knows that what makes a “good” programming language is at least in part a

FINAL REMARKS 219

kind of magic: there is an indefinable “rightness” to the best languages, that
make them somehow easier, more fun, more natural, just better to use”.

In this thesis, we have proposed several language constructs with accompa-
nying semantics that may be used in cognitive agent programming languages.
Moreover, we have investigated properties of these and existing constructs. We
hope that our efforts have resulted in a better understanding of the discussed
constructs, but even more so we hope that the readers see in them some of that
elusive “rightness”, even if it is just a glimpse.

Bibliography

[Antoniou, 1997] Antoniou, G. (1997). Nonmonotonic Reasoning. Artificial
Intelligence. The MIT Press, Cambridge, Massachusetts.

[Apt, 1981] Apt, K. R. (1981). Ten years of Hoare’s logic: A survey - part I.
ACM Transactions of Programming Languages and Systems, 3(4):431–483.

[Baalen et al., 2001] Baalen, J. V., Caldwell, J. L., and Mishra, S. (2001).
Specifying and checking fault-tolerant agent-based protocols using Maude.
In FAABS ’00: Proceedings of the First International Workshop on Formal
Approaches to Agent-Based Systems-Revised Papers, volume 1871 of LNCS,
pages 180–193, London, UK. Springer-Verlag.

[Bellifemine et al., 2000] Bellifemine, F., Poggi, A., Rimassa, G., and Turci, P.
(2000). An object oriented framework to realize agent systems. In Proceedings
of WOA 2000 Workshop, pages 52–57. WOA.

[Bergstra et al., 1990] Bergstra, J. A., Heering, J., and Klint, P. (1990). Module
algebra. Journal of the Association for Computing Machinery, 37(2):335–372.

[Besnard and Hunter, 1995] Besnard, P. and Hunter, A. (1995). Quasi-classical
logic: Non-trivializable classical reasoning from incosistent information. In
Symbolic and Quantitative Approaches to Reasoning and Uncertainty, pages
44–51.

[Blackburn et al., 2001] Blackburn, P., de Rijke, M., and Venema, Y. (2001).
Modal Logic. Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, Cambridge.

[Bordini et al., 2005a] Bordini, R. H., Dastani, M., Dix, J., and El Fallah
Seghrouchni, A. (2005a). Multi-Agent Programming: Languages, Platforms
and Applications. Springer, Berlin.

[Bordini et al., 2003] Bordini, R. H., Fisher, M., Pardavila, C., and Wooldridge,
M. (2003). Model checking AgentSpeak. In Proceedings of the second in-
ternational joint conference on autonomous agents and multiagent systems
(AAMAS’03), pages 409–416, Melbourne.

221

222 BIBLIOGRAPHY

[Bordini et al., 2005b] Bordini, R. H., Hübner, J. F., and Vieira, R. (2005b).
Jason and the golden fleece of agent-oriented programming. In Bordini, R. H.,
Dastani, M., Dix, J., and El Fallah Seghrouchni, A., editors, Multi-Agent
Programming: Languages, Platforms and Applications. Springer, Berlin.

[Bordini and Moreira, 2004] Bordini, R. H. and Moreira, Á. F. (2004). Proving
BDI properties of agent-oriented programming languages: The asymmetry
thesis principles in AgentSpeak(L). Annals of Mathematics and Artificial
Intelligence, 42(1–3):197–226. Special Issue on Computational Logic in Multi-
Agent Systems.

[Boudiaf et al., 2005] Boudiaf, N., Mokhati, F., Badri, M., and Badri, L. (2005).
Specifying DIMA multi-agent models using Maude. In Intelligent Agents
and Multi-Agent Systems, 7th Pacific Rim International Workshop on Multi-
Agents (PRIMA 2004), volume 3371 of LNCS, pages 29–42. Springer, Berlin.

[Bratman, 1987] Bratman, M. E. (1987). Intention, plans, and practical reason.
Harvard University Press, Massachusetts.

[Braubach et al., 2006] Braubach, L., Pokahr, A., and Lamersdorf, W. (2006).
Extending the capability concept for flexible BDI agent modularization. In
Bordini, R. H., Dastani, M., Dix, J., and Seghrouchni, A. E. F., editors,
Proceedings of the Third International Workshop on Programming Multiagent
Systems (ProMAS’05), volume 3862 of LNAI, pages 139–155. Springer-Verlag.

[Braubach et al., 2005] Braubach, L., Pokahr, A., Moldt, D., and Lamersdorf,
W. (2005). Goal representation for BDI agent systems. In Programming mul-
tiagent systems, second international workshop (ProMAS’04), volume 3346
of LNAI, pages 44–65. Springer, Berlin.

[Bresciani et al., 2004] Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopou-
los, J., and Perini, A. (2004). Tropos: An agent-oriented software develop-
ment methodology. Journal of Autonomous Agents and Multi-Agent Systems,
8(3):203–236.

[Brewka, 1991] Brewka, G. (1991). Nonmonotonic reasoning: logical founda-
tions of commonsense. Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, Cambridge.

[Brewka et al., 1997] Brewka, G., Dix, J., and Konolige, K. (1997). Nonmono-
tonic reasoning: an overview. CSLI Publications, Stanford.

[Broersen et al., 2002] Broersen, J., Dastani, M., Hulstijn, J., and van der
Torre, L. (2002). Goal generation in the BOID architecture. Cognitive Science
Quarterly, 2(3-4):428–447.

BIBLIOGRAPHY 223

[Busetta et al., 2000] Busetta, P., Howden, N., Rönnquist, R., and Hodgson, A.
(2000). Structuring BDI agents in functional clusters. In ATAL ’99: 6th Inter-
national Workshop on Intelligent Agents VI, Agent Theories, Architectures,
and Languages (ATAL),, pages 277–289, London, UK. Springer-Verlag.

[Castañeda, 1981] Castañeda, H.-N. (1981). The paradoxes of deontic logic.
The simplest solution to all of them in one fell swoop. New studies in deontic
logic: norms, actions and the foundations of ethics, pages 37–85.

[Chellas, 1980] Chellas, B. F. (1980). Modal Logic: An Introduction. Cambridge
University Press, Cambridge.

[Clavel et al., 2005] Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet,
N., Meseguer, J., and Talcott, C. (2005). Maude manual (version 2.1.1).

[Clavel and Meseguer, 1996] Clavel, M. and Meseguer, J. (1996). Reflection
and strategies in rewriting logic. Electronic Notes in Theoretical Computer
Science, 4:125–147.

[Cohen and Levesque, 1990] Cohen, P. R. and Levesque, H. J. (1990). Intention
is choice with commitment. Artificial Intelligence, 42:213–261.

[Dastani et al., 2003] Dastani, M., de Boer, F. S., Dignum, F., and Meyer, J.-
J. Ch. (2003). Programming agent deliberation – an approach illustrated
using the 3APL language. In Proceedings of the second international joint con-
ference on autonomous agents and multiagent systems (AAMAS’03), pages
97–104, Melbourne.

[Dastani et al., 2005a] Dastani, M., Governatori, G., Rotolo, A., and van der
Torre, L. (2005a). Programming cognitive agents in defeasible logic. In
Proceedings of Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR’05), volume 3835 of LNAI, pages 621–637. Springer-Verlag.

[Dastani and van der Torre, 2004] Dastani, M. and van der Torre, L. (2004).
Programming BOID-Plan agents: deliberating about conflicts among defea-
sible mental attitudes and plans. In Proceedings of the Third Conference on
Autonomous Agents and Multi-agent Systems (AAMAS’04), pages 706–713,
New York, USA.

[Dastani et al., 2004] Dastani, M., van Riemsdijk, M. B., Dignum, F., and
Meyer, J.-J. Ch. (2004). A programming language for cognitive agents: goal
directed 3APL. In Programming multiagent systems, first international work-
shop (ProMAS’03), volume 3067 of LNAI, pages 111–130. Springer, Berlin.

[Dastani et al., 2005b] Dastani, M., van Riemsdijk, M. B., Hulstijn, J., Dignum,
F., and Meyer, J.-J. Ch. (2005b). Enacting and deacting roles in agent pro-
gramming. In Odell, J., Giorgini, P., and Müller, J., editors, Agent-Oriented

224 BIBLIOGRAPHY

Software Engineering V, volume 3382 of LNCS, pages 189–204. Springer-
Verlag.

[Dastani et al., 2005c] Dastani, M., van Riemsdijk, M. B., and Meyer, J.-J. Ch.
(2005c). Programming multi-agent systems in 3APL. In Bordini, R. H.,
Dastani, M., Dix, J., and El Fallah Seghrouchni, A., editors, Multi-Agent
Programming: Languages, Platforms and Applications. Springer, Berlin.

[Dastani et al., 2006] Dastani, M., van Riemsdijk, M. B., and Meyer, J.-J. Ch.
(2006). Goal types in agent programming. In Proceedings of the 17th European
Conference on Artifical Intelligence 2006 (ECAI’06). To appear.

[de Bakker, 1980] de Bakker, J. (1980). Mathematical Theory of Program Cor-
rectness. Series in Computer Science. Prentice-Hall International, London.

[Dennett, 1987] Dennett, D. (1987). The Intentional Stance. MIT Press, Cam-
bridge MA.

[Dignum and Conte, 1997] Dignum, F. and Conte, R. (1997). Intentional agents
and goal formation. In Agent Theories, Architectures, and Languages, pages
231–243.

[d’Inverno et al., 1998] d’Inverno, M., Kinny, D., Luck, M., and Wooldridge,
M. (1998). A formal specification of dMARS. In ATAL ’97: Proceedings
of the 4th International Workshop on Intelligent Agents IV, Agent Theories,
Architectures, and Languages, pages 155–176, London, UK. Springer-Verlag.

[Dix and Zhang, 2005] Dix, J. and Zhang, Y. (2005). IMPACT: a multi-agent
framework with declarative semantics. In Bordini, R. H., Dastani, M., Dix,
J., and El Fallah Seghrouchni, A., editors, Multi-Agent Programming: Lan-
guages, Platforms and Applications. Springer, Berlin.

[Douglas and Saunders, 2003] Douglas, G. and Saunders, S. (2003). The
Philosopher’s Magazine Online: Philosopher of the Month, April 2003, Dan
Dennett. http://www.philosophers.co.uk/cafe/phil_apr2003.htm.

[Drabble et al., 1997] Drabble, B., Dalton, J., and Tate, A. (1997). Repairing
plans on the fly. In Proceedings of the NASA Workshop on Planning and
Scheduling for Space.

[Durán et al., 2000] Durán, F., Eker, S., Lincoln, P., and Meseguer, J. (2000).
Principles of mobile Maude. In ASA/MA 2000: Proceedings of the Second
International Symposium on Agent Systems and Applications and Fourth In-
ternational Symposium on Mobile Agents, volume 1882 of LNCS, pages 73–85,
London, UK. Springer-Verlag.

[Egli, 1975] Egli, H. (1975). A mathematical model for nondeterministic com-
putations. Technical report, ETH, Zürich.

BIBLIOGRAPHY 225

[Eker et al., 2002] Eker, S., Meseguer, J., and Sridharanarayanan, A. (2002).
The Maude LTL model checker. In Gaducci, F. and Montanari, U., editors,
Proceedings of the 4th International Workshop on Rewriting Logic and Its
Applications (WRLA 2002), volume 71 of Electronic Notes in Theoretical
Computer Science. Elsevier.

[E.M.Clarke et al., 2000] E.M.Clarke, Grumberg, O., and Peled, D. (2000).
Model Checking. MIT Press.

[Evertsz et al., 2004] Evertsz, R., Fletcher, M., Jones, R., Jarvis, J., Brusey,
J., and Dance, S. (2004). Implementing industrial multi-agent systems us-
ing JACK�. In Proceedings of the first international workshop on program-
ming multiagent systems (ProMAS’03), volume 3067 of LNAI, pages 18–49.
Springer, Berlin.

[Fikes and Nilsson, 1971] Fikes, R. and Nilsson, N. (1971). STRIPS: A new
approach to the application of theorem proving to problem solving. Artificial
Intelligence, 2:189–208.

[Fisher, 1997] Fisher, M. (1997). Implementing BDI-like systems by direct ex-
ecution. In Proceedings of the International Joint Conference on AI (IJ-
CAI’97), pages 316–321. Morgan-Kaufmann.

[Fisher, 2006] Fisher, M. (2006). METATEM: The story so far. In Bordini,
R. H., Dastani, M., Dix, J., and Seghrouchni, A. E. F., editors, Proceedings
of the Third International Workshop on Programming Multiagent Systems
(ProMAS’05), volume 3862 of LNAI, pages 3–22. Springer-Verlag.

[Gabbay and Hunter, 1991] Gabbay, D. and Hunter, A. (1991). Making incon-
sistency respectable: A logical framework for inconsistency in reasoning. In
Jorrand, P. and Kelemen, J., editors, Proceedings of Fundamentals of Artifical
Intelligence Research (FAIR’91), pages 19–32. Springer-Verlag.

[Georgeff and Lansky, 1987] Georgeff, M. and Lansky, A. (1987). Reactive rea-
soning and planning. In Proceedings of the Sixth National Conference on
Artificial Intelligence (AAAI-87), pages 677–682.

[Georgeff et al., 1999] Georgeff, M., Pell, B., Pollack, M., Tambe, M., and
Wooldridge, M. (1999). The Belief-Desire-Intention model of agency. In
Muller, J., Singh, M., and Rao, A., editors, Intelligent Agents V (ATAL’98),
volume 1365 of LNAI. Springer-Verlag.

[Ghezzi et al., 1991] Ghezzi, C., Jazayeri, M., and Mandrioli, D. (1991). Fun-
damentals of software engineering. Prentice-Hall International, London.

[Giacomo et al., 2000] Giacomo, G. d., Lespérance, Y., and Levesque, H.
(2000). ConGolog, a Concurrent Programming Language Based on the Situ-
ation Calculus. Artificial Intelligence, 121(1-2):109–169.

226 BIBLIOGRAPHY

[Giacomo and Levesque, 1999] Giacomo, G. D. and Levesque, H. J. (1999). An
incremental interpreter for high-level programs with sensing. In Levesque,
H. J. and Pirri, F., editors, Logical foundations for cognitive agents, pages
86–102. Springer-Verlag.

[Gosling et al., 2000] Gosling, J., Joy, B., Steele, G., and Bracha, G. (2000).
The Java Language Specification. Addison-Wesley, second edition.

[Governatori and Rotolo, 2004] Governatori, G. and Rotolo, A. (2004). Defea-
sible logic: Agency, intention and obligation. In Lomuscio, A. and Nute,
D., editors, Deontic Logic in Computer Science (DEON’04), volume 3065 of
LNAI, pages 114–128. Springer, Berlin.

[Hammond, 1990] Hammond, K. J. (1990). Explaining and repairing plans that
fail. Artificial Intelligence, 45:173–228.

[Hansson, 1969] Hansson, B. (1969). An analysis of some deontic logics. In
Nous 3.

[Harel, 1979] Harel, D. (1979). First-Order Dynamic Logic. Lectures Notes in
Computer Science 68. Springer, Berlin.

[Harel et al., 2000] Harel, D., Kozen, D., and Tiuryn, J. (2000). Dynamic Logic.
The MIT Press, Cambridge, Massachusetts and London, England.

[Harrenstein, 2004] Harrenstein, B. P. (2004). Logic in Conflict: Logical Explo-
rations in Strategic Equilibrium. PhD thesis.

[Hindriks et al., 1999a] Hindriks, K., de Boer, F. S., van der Hoek, W., and
Meyer, J.-J. Ch. (1999a). Control structures of rule-based agent languages. In
Müller, J., Singh, M. P., and Rao, A. S., editors, Proceedings of the 5th Inter-
national Workshop on Intelligent Agents V : Agent Theories, Architectures,
and Languages (ATAL-98), volume 1555, pages 381–396. Springer-Verlag:
Heidelberg, Germany.

[Hindriks, 2001] Hindriks, K. V. (2001). Agent programming languages - pro-
gramming with mental models. PhD thesis.

[Hindriks et al., 1998] Hindriks, K. V., de Boer, F. S., van der Hoek, W., and
Meyer, J.-J. Ch. (1998). A formal embedding of AgentSpeak(L) in 3APL.
In Antoniou, G. and Slaney, J., editors, Advanced Topics in Artificial Intelli-
gence, pages 155–166. Springer, LNAI 1502.

[Hindriks et al., 1999b] Hindriks, K. V., de Boer, F. S., van der Hoek, W.,
and Meyer, J.-J. Ch. (1999b). Agent programming in 3APL. Int. J. of
Autonomous Agents and Multi-Agent Systems, 2(4):357–401.

BIBLIOGRAPHY 227

[Hindriks et al., 2000] Hindriks, K. V., de Boer, F. S., van der Hoek, W., and
Meyer, J.-J. Ch. (2000). A programming logic for part of the agent language
3APL. In Proceedings of the First Goddard Workshop on Formal Approaches
to Agent-Based Systems (FAABS’00).

[Hindriks et al., 2001] Hindriks, K. V., de Boer, F. S., van der Hoek, W., and
Meyer, J.-J. Ch. (2001). Agent programming with declarative goals. In In-
telligent Agents VI - Proceedings of the 7th International Workshop on Agent
Theories, Architectures, and Languages (ATAL’2000), Lecture Notes in AI.
Springer, Berlin.

[Hindriks et al., 2002] Hindriks, K. V., Lespirance, Y., and Levesque, H. (2002).
A formal embedding of ConGolog in 3APL. In Proceedings of the 14th Euro-
pean Conference on Artificial Intelligence, pages 558–562.

[Holzmann, 1991] Holzmann, G. (1991). Design and Validation of Computer
Protocols. Prentice Hall, New Jersey.

[Holzmann, 1997] Holzmann, G. (1997). The model checker SPIN. IEEE Trans.
Software Engineering, 23(5):279–295.

[Horty, 1993] Horty, J. F. (1993). Deontic logic as founded on nonmonotonic
logic. Annals of Mathematics and Artificial Intelligence (Special Issue on
Deontic Logic in Computer Science), 9:69–91.

[Horty, 1994] Horty, J. F. (1994). Moral dilemmas and nonmonotonic logic.
Journal of Philosophical Logic, 23(1):35–65.

[Horty, 1997] Horty, J. F. (1997). Nonmonotonic foundations for deontic logic.
In Nute, D., editor, Defeasible Deontic Logic, pages 17–44. Kluwer Academic
Publishers.

[Huber, 1999] Huber, M. J. (1999). JAM: A BDI-theoretic mobile agent archi-
tecture. In Proceedings of the third international conference on autonomous
agents (Agents’99), pages 236–243.

[Hübner et al., 2006] Hübner, J. F., Bordini, R. H., and Wooldridge, M. (2006).
Declarative goal patterns for AgentSpeak. In Proceedings of the fourth
International Workshop on Declarative Agent Languages and Technologies
(DALT’06).

[Ingrand et al., 1992] Ingrand, F. F., Georgeff, M. P., and Rao, A. S. (1992).
An architecture for real-time reasoning and system control. IEEE Expert,
7(6):34–44.

[Jennings, 1999] Jennings, N. (1999). Agent-oriented software engineering. In
Proceedings of the 12th International Conference on Industrial and Engineer-
ing Applications of AI, pages 4–10. Invited paper.

228 BIBLIOGRAPHY

[Jennings et al., 1996] Jennings, N., Faratin, P., Johnson, M. J., Norman, T. J.,
O’Brien, P., and Wiegand, M. E. (1996). Agent-based business process man-
agement. International Journal of Cooperative Information Systems, 5(2–
3):105–130.

[Karp et al., 1980] Karp, R. M., Manna, Z., Meyer, A. R., Reynolds, J. C.,
Ritchie, R. W., Ullman, J. D., and Winograd, S. (1980). Theory of compu-
tation. In Arden, B. W., editor, What Can Be Automated? The Computer
Science and Engineering Research Study, pages 137–295. The MIT Press.

[Kuiper, 1981] Kuiper, R. (1981). An operational semantics for bounded non-
determinism equivalent to a denotational one. In de Bakker, J. W. and van
Vliet, J. C., editors, Proceedings of the International Symposium on Algorith-
mic Languages, pages 373–398. North-Holland.

[Kulas and Beierle, 2000] Kulas, M. and Beierle, C. (2000). Defining standard
Prolog in rewriting logic. In Electronic Notes in Theoretical Computer Sci-
ence, volume 36. Elsevier Science Publishers.

[Maher and Governatori, 1999] Maher, M. J. and Governatori, G. (1999). A
semantic decomposition of defeasible logics. In Proceedings of the American
National Conference on Artificial Intelligence (AAAI’99), pages 299–305.

[Mart́ı-Oliet and Meseguer, 2000] Mart́ı-Oliet, N. and Meseguer, J. (2000).
Rewriting logic as a logical and semantic framework. In Meseguer, J., ed-
itor, Electronic Notes in Theoretical Computer Science, volume 4. Elsevier
Science Publishers.

[Meseguer, 1992] Meseguer, J. (1992). Conditional rewriting logic as a unified
model of concurrency. Theoretical Computer Science, 96:73–155.

[Meseguer, 1997] Meseguer, J. (1997). Membership algebra as a logical frame-
work for equational specification. In WADT ’97: Selected papers from the 12th
International Workshop on Recent Trends in Algebraic Development Tech-
niques, pages 18–61, London, UK. Springer-Verlag.

[Meyer, 1988] Meyer, B. (1988). Object-oriented software construction. Series
in Computer Science. Prentice-Hall International, London.

[Meyer and van der Hoek, 1995] Meyer, J.-J. Ch. and van der Hoek, W. (1995).
Epistemic logic for AI and computer science. Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, Cambridge.

[Moreira and Bordini, 2002] Moreira, A. and Bordini, R. (2002). An operational
semantics for a BDI agent-oriented programming language. In Proceedings of
the Workshop on Logics for Agent-Based Systems (LABS’02).

BIBLIOGRAPHY 229

[Moreira et al., 2004] Moreira, A. F., Vieira, R., and Bordini, R. H. (2004). Ex-
tending the operational semantics of a BDI agent-oriented programming lan-
guage for introducing speech-act based communication. In Declarative Agent
Languages and Technologies, First International Workshop (DALT’03), vol-
ume 2990 of LNAI, pages 135–154, London, UK. Springer-Verlag.

[Mosses, 1990] Mosses, P. D. (1990). Denotational semantics. In van Leeuwen,
J., editor, Handbook of Theoretical Computer Science, volume B: Formal Mod-
els and Semantics, pages 575–631. Elsevier, Amsterdam.

[Nebel and Koehler, 1995] Nebel, B. and Koehler, J. (1995). Plan reuse versus
plan generation: a theoretical and empirical analysis. Artificial Intelligence,
76:427–454.

[Norling, 2003] Norling, E. (2003). Capturing the quake player: using a BDI
agent to model human behaviour. In Proceedings of the second international
joint conference on autonomous agents and multiagent systems (AAMAS’03),
poster, pages 1080–1081, Melbourne.

[Nute, 1994] Nute, D. (1994). Defeasible logic. 3:353–395.

[Ölveczky, 2005] Ölveczky, P. C. (2005). Formal modeling and analysis of dis-
tributed systems in Maude. Lecture Notes.

[Plotkin, 1981] Plotkin, G. D. (1981). A Structural Approach to Operational
Semantics. Technical Report DAIMI FN-19, University of Aarhus.

[Pokahr et al., 2005a] Pokahr, A., Braubach, L., and Lamersdorf, W. (2005a).
A goal deliberation strategy for BDI agent systems. In MATES 2005, volume
3550 of LNAI, pages 82–93. Springer-Verlag.

[Pokahr et al., 2005b] Pokahr, A., Braubach, L., and Lamersdorf, W. (2005b).
Jadex: a BDI reasoning engine. In Bordini, R. H., Dastani, M., Dix, J., and
El Fallah Seghrouchni, A., editors, Multi-Agent Programming: Languages,
Platforms and Applications. Springer, Berlin.

[Poole, 1988] Poole, D. (1988). A logical framework for default reasoning. Ar-
tificial Intelligence, 36:27–47.

[Rao, 1996] Rao, A. S. (1996). AgentSpeak(L): BDI agents speak out in a logical
computable language. In van der Velde, W. and Perram, J., editors, Agents
Breaking Away (LNAI 1038), pages 42–55. Springer-Verlag.

[Rao and Georgeff, 1991] Rao, A. S. and Georgeff, M. P. (1991). Modeling ratio-
nal agents within a BDI-architecture. In Allen, J., Fikes, R., and Sandewall,
E., editors, Proceedings of the Second International Conference on Principles
of Knowledge Representation and Reasoning (KR’91), pages 473–484. Morgan
Kaufmann.

230 BIBLIOGRAPHY

[Rao and Georgeff, 1998] Rao, A. S. and Georgeff, M. P. (1998). Decision pro-
cedures for BDI logics. Journal of Logic and Computation, 8(3):293.

[Reiter, 1980] Reiter, R. (1980). A logic for default-reasoning. Artificial Intel-
ligence, 13:81–132.

[Reiter, 1987] Reiter, R. (1987). A theory of diagnosis from first principles.
Artificial Intelligence, 32:57–95.

[Sardina and Shapiro, 2003] Sardina, S. and Shapiro, S. (2003). Rational ac-
tion in agent programs with prioritized goals. In Proceedings of the second
international joint conference on autonomous agents and multiagent systems
(AAMAS’03), pages 417–424, Melbourne.

[Segerberg, 1989] Segerberg, K. (1989). Bringing it about. Journal of Philo-
sophical Logic, 18:327–347.

[Shoham, 1993] Shoham, Y. (1993). Agent-oriented programming. Artificial
Intelligence, 60:51–92.

[Simon et al., 2006] Simon, G., Mermet, B., and Fournier, D. (2006). Goal de-
composition tree: An agent model to generate a validated agent behaviour.
In Declarative Agent Languages and Technologies III, Third International
Workshop (DALT’05), volume 3904 of LNAI, pages 124–140, London, UK.
Springer-Verlag.

[Stoy, 1977] Stoy, J. E. (1977). Denotational Semantics: The Scott-Strachey
Approach to Programming Language Theory. MIT Press, Cambridge, MA.

[Tennent, 1991] Tennent, R. (1991). Semantics of Programming Languages. Se-
ries in Computer Science. Prentice-Hall International, London.

[Thangarajah et al., 2003a] Thangarajah, J., Padgham, L., and Winikoff, M.
(2003a). Detecting and avoiding interference between goals in intelligent
agents. In Proceedings of the 18th International Joint Conference on Ar-
tificial Intelligence (IJCAI 2003).

[Thangarajah et al., 2003b] Thangarajah, J., Padgham, L., and Winikoff, M.
(2003b). Detecting and exploiting positive goal interaction in intelligent
agents. In Proceedings of the second international joint conference on au-
tonomous agents and multiagent systems (AAMAS’03), pages 401–408, Mel-
bourne.

[Thangarajah et al., 2002] Thangarajah, J., Winikoff, M., Padgham, L., and
Fischer, K. (2002). Avoiding resource conflicts in intelligent agents. In van
Harmelen, F., editor, Proceedings of the 15th European Conference on Artif-
ical Intelligence 2002 (ECAI 2002), Lyon, France.

BIBLIOGRAPHY 231

[Thomason, 2000] Thomason, R. H. (2000). Desires and defaults: A framework
for planning with inferred goals. In Cohn, A. G., Giunchiglia, F., and Selman,
B., editors, KR2000: Principles of Knowledge Representation and Reasoning,
pages 702–713, San Francisco. Morgan Kaufmann.

[van der Hoek et al., 1998] van der Hoek, W., van Linder, B., and Meyer,
J.-J. Ch. (1998). An integrated modal approach to rational agents. In
Wooldridge, M. and Rao, A. S., editors, Foundations of Rational Agency,
Applied Logic Series 14, pages 133–168. Kluwer, Dordrecht.

[van der Hoek and Wooldridge, 2003] van der Hoek, W. and Wooldridge, M.
(2003). Towards a logic of rational agency. Logic Journal of the IGPL,
11(2):133.

[van der Krogt and de Weerdt, 2005a] van der Krogt, R. P. and de Weerdt,
M. M. (2005a). Plan repair as an extension of planning. In Proceedings of
the International Conference on Planning and Scheduling (ICAPS’05), pages
161–170.

[van der Krogt and de Weerdt, 2005b] van der Krogt, R. P. and de Weerdt,
M. M. (2005b). Plan repair using a plan library. In Proceedings of the
Belgium-Dutch Conference on Artificial Intelligence (BNAIC’05), pages 254–
259. BNVKI.

[van Emde Boas, 1978] van Emde Boas, P. (1978). The connection between
modal logic and algorithmic logics. In Mathematical foundations of computer
science 1978, volume 64 of LNCS, pages 1–15. Springer, Berlin.

[van Fraassen, 1973] van Fraassen, B. C. (1973). Values and the heart’s com-
mand. Journal of Philosophy, 70(1):5–19.

[van Lamsweerde and Letier, 2004] van Lamsweerde, A. and Letier, E. (2004).
From object orientation to goal orientation: a paradigm shift for requirements
engineering. In Radical Innovations of Software and Systems Engineering in
the Future: 9th International Workshop (RISSEF’02), volume 2941 of LNCS,
pages 325–340, London, UK. Springer-Verlag.

[van Riemsdijk, 2002] van Riemsdijk, M. B. (2002). Agent programming in
Dribble: from beliefs to goals with plans. Master’s thesis, Utrecht University.

[van Riemsdijk et al., 2005a] van Riemsdijk, M. B., Dastani, M., Dignum, F.,
and Meyer, J.-J. Ch. (2005a). Dynamics of declarative goals in agent pro-
gramming. In Leite, J. A., Omicini, A., Torroni, P., and Yolum, P., editors,
Declarative agent languages and technologies II: second international work-
shop (DALT’04), volume 3476 of LNAI, pages 1–18.

232 BIBLIOGRAPHY

[van Riemsdijk et al., 2005b] van Riemsdijk, M. B., Dastani, M., and Meyer,
J.-J. Ch. (2005b). Semantics of declarative goals in agent programming. In
Proceedings of the fourth international joint conference on autonomous agents
and multiagent systems (AAMAS’05), pages 133–140, Utrecht.

[van Riemsdijk et al., 2005c] van Riemsdijk, M. B., Dastani, M., and Meyer,
J.-J. Ch. (2005c). Subgoal semantics in agent programming. In Bento, C.,
Cardoso, A., and Dias, G., editors, Progress in Artifical Intelligence: 12th
Portuguese Conference on Artificial Intelligence (EPIA’05), volume 3808 of
LNAI, pages 548–559. Springer-Verlag.

[van Riemsdijk et al., 2006a] van Riemsdijk, M. B., Dastani, M., Meyer, J.-
J. Ch., and de Boer, F. S. (2006a). Goal-oriented modularity in agent
programming. In Proceedings of the fifth international joint conference on
autonomous agents and multiagent systems (AAMAS’06), pages 1271–1278,
Hakodate.

[van Riemsdijk et al., 2006b] van Riemsdijk, M. B., de Boer, F. S., Dastani, M.,
and Meyer, J.-J. Ch. (2006b). Prototyping 3APL in the Maude term rewriting
language. In Proceedings of the Seventh Workshop on Computational Logic
in Multi-Agent Systems (CLIMA’06). To appear in LNAI.

[van Riemsdijk et al., 2005d] van Riemsdijk, M. B., de Boer, F. S., and Meyer,
J.-J. Ch. (2005d). Dynamic logic for plan revision in intelligent agents. In
Leite, J. A. and Torroni, P., editors, Computational logic in multi-agent sys-
tems: fifth international workshop (CLIMA’04), volume 3487 of LNAI, pages
16–32.

[van Riemsdijk et al., 2005e] van Riemsdijk, M. B., de Boer, F. S., and Meyer,
J.-J. Ch. (2005e). Dynamic logic for plan revision in intelligent agents. Tech-
nical Report UU-CS-2005-013, Utrecht University, Institute of Information
and Computing Sciences. To appear in Journal of Logic and Computation.

[van Riemsdijk and Meyer, 2006] van Riemsdijk, M. B. and Meyer, J.-J. Ch.
(2006). A compositional semantics of plan revision in intelligent agents. In
Johnson, M. and Vene, V., editors, Algebraic Methodology And Software Tech-
nology: 11th International Conference, AMAST 2006, volume 4019 of LNCS,
pages 353–367. Springer-Verlag.

[van Riemsdijk et al., 2003a] van Riemsdijk, M. B., Meyer, J.-J. Ch., and
de Boer, F. S. (2003a). Semantics of plan revision in intelligent agents.
Technical report, Utrecht University, Institute of Information and Computing
Sciences. UU-CS-2004-002.

[van Riemsdijk et al., 2004] van Riemsdijk, M. B., Meyer, J.-J. Ch., and
de Boer, F. S. (2004). Semantics of plan revision in intelligent agents. In
Rattray, C., Maharaj, S., and Shankland, C., editors, Proceedings of the 10th

BIBLIOGRAPHY 233

International Conference on Algebraic Methodology And Software Technology
(AMAST04), volume 3116 of LNCS, pages 426–442. Springer-Verlag.

[van Riemsdijk et al., 2006c] van Riemsdijk, M. B., Meyer, J.-J. Ch., and
de Boer, F. S. (2006c). Semantics of plan revision in intelligent agents.
Theoretical Computer Science, 351(2):240–257. Special issue of Algebraic
Methodology and Software Technology (AMAST’04).

[van Riemsdijk et al., 2003b] van Riemsdijk, M. B., van der Hoek, W., and
Meyer, J.-J. Ch. (2003b). Agent programming in Dribble: from beliefs to
goals using plans. In Proceedings of the second international joint conference
on autonomous agents and multiagent systems (AAMAS’03), pages 393–400,
Melbourne.

[Verdejo and Mart́ı-Oliet, 2003] Verdejo, A. and Mart́ı-Oliet, N. (2003). Exe-
cutable structural operational semantics in Maude. Technical report, Univer-
sidad Complutense de Madrid, Madrid.

[Visser and Burkhard, 2006] Visser, U. and Burkhard, H.-D. (2006). RoboCup
2006, Bremen, Germany. http://www.robocup2006.org.

[von Wright, 1951] von Wright, G. H. (1951). Deontic logic. Mind, 60:1–15.

[Winikoff, 2005] Winikoff, M. (2005). JACK� intelligent agents: an industrial
strength platform. In Bordini, R. H., Dastani, M., Dix, J., and El Fallah
Seghrouchni, A., editors, Multi-Agent Programming: Languages, Platforms
and Applications. Springer, Berlin.

[Winikoff et al., 2002] Winikoff, M., Padgham, L., Harland, J., and Thangara-
jah, J. (2002). Declarative and procedural goals in intelligent agent systems.
In Proceedings of the eighth international conference on principles of knowl-
edge respresentation and reasoning (KR2002), Toulouse.

[Wirsing, 1990] Wirsing, M. (1990). Algebraic specification. In van Leeuwen, J.,
editor, Handbook of Theoretical Computer Science, volume B: Formal Models
and Semantics, pages 675–788. Elsevier, Amsterdam.

[Wooldridge, 1997] Wooldridge, M. (1997). Agent-based software engineering.
IEEE Proceedings Software Engineering, 144(1):26–37.

[Wooldridge, 2002] Wooldridge, M. (2002). An introduction to multiagent sys-
tems. John Wiley and Sons, LTD, West Sussex.

[Wooldridge and Ciancarini, 2001] Wooldridge, M. and Ciancarini, P. (2001).
Agent-Oriented Software Engineering: The State of the Art. In Ciancarini, P.
and Wooldridge, M., editors, First Int. Workshop on Agent-Oriented Software
Engineering, volume 1957, pages 1–28. Springer-Verlag, Berlin.

234 BIBLIOGRAPHY

[Wooldridge and Jennings, 1995] Wooldridge, M. and Jennings, N. R. (1995).
Intelligent agents: Theory and practice. Knowledge Engineering Review,
10(2):115–152.

[Yoshimura et al., 2000] Yoshimura, K., Rönnquist, R., and Sonenberg, L.
(2000). An approach to specifying coordinated agent behaviour. In
PRIMA’00, volume 1881 of LNAI, pages 115–127. Springer, Berlin.

[Zambonelli et al., 2003] Zambonelli, F., Jennings, N. R., and Wooldridge, M.
(2003). Developing multiagent systems: The Gaia methodology. ACM Trans-
actions on Software Engineering and Methodology (TOSEM), 12(3):317–370.

Programmeren van Cognitieve

Agenten

Dit proefschrift gaat over het ontwerpen en onderzoeken van gespecialiseerde
programmeertalen voor het programmeren van agenten. Wij concentreren ons
hierbij in het bijzonder op programmeertalen voor rationele agenten. Onder
rationele agenten verstaan wij stukjes software die zich flexibel gedragen en die
in staat zijn om “goede” beslissingen te nemen over wat te doen.

Een belangrijke onderzoekslijn op dit gebied is gebaseerd op Bratman’s zo-
genaamde Belief Desire Intention (BDI) filosofie. Het idee van de BDI filosofie
is dat het gedrag van rationele agenten voorspeld en verklaard kan worden door
aan deze agenten geloof (beliefs), wensen (desires) en intenties (intentions) toe
te schrijven, en door aan te nemen dat de agent geneigd is om actie te onderne-
men om zijn wensen te vervullen, waarbij hij rekening houdt met zijn geloof
over de wereld.

Na de introductie van BDI filosofie, werd het idee geopperd dat het wellicht
niet alleen mogelijk zou zijn het gedrag van rationele agenten te verklaren en
te beschrijven in termen van de BDI begrippen, maar dat het misschien ook
mogelijk zou zijn om rationele agenten te programmeren, waarbij de begrippen
beliefs, desires en intentions als basis voor een programmeertaal gebruikt zouden
worden. Het onderzoek dat in deze richting wordt uitgevoerd, gebruikt niet
alleen de begrippen beliefs, desires en intentions, maar ook gerelateerde noties
zoals goals (doelen) en plans (plannen). Al dit soort begrippen noemen wij
“cognitieve” begrippen. Programmeertalen voor agenten die gebaseerd zijn op
deze begrippen noemen wij “cognitieve-agentprogrammeertalen”.

In ons werk stellen wij nieuwe programmeerconstructen voor om deze cog-
nitieve begrippen in een programmeertaal te kunnen representeren, en wij on-
derzoeken bestaande constructen. Wij nemen een semantische benadering, in
de zin dat wij formele semantiek definieren voor de voorgestele constructen,
en wij onderzoeken de constructen door het doen van een semantische analyse.
Wij onderzoeken in het bijzonder manieren voor het representeren van doelen,
en wij bestuderen een construct genaamd “planrevisieregel” van de cognitieve-
agentprogrammeertaal 3APL. Planrevisieregels kunnen gebruikt worden om het

235

236 PROGRAMMEREN VAN COGNITIEVE AGENTEN

plan van een agent te wijzigen als de omstandigheden daarom vragen.
Wat betreft het representeren van doelen onderzoeken wij in het bijzonder

de representatie van subdoelen in de plannen van agenten. Wij laten zien hoe
declaratieve subdoelen, dat wil zeggen subdoelen die een gewenste toestand aan-
duiden, kunnen worden geprogrammeerd in 3APL. Dit ondanks het feit dat de
semantiek van 3APL zo gedefinieerd is dat subdoelen zich procedureel gedra-
gen. Verder stellen wij een semantiek voor het representeren van conflicterende
doelen voor die is gebaseerd op default logic, en wij onderzoeken eigenschappen
van deze semantiek. Ook geven wij een analyse van manieren waarop doelen
gerepresenteerd worden in bestaande cognitieve-agentprogrammeertalen.

Wat betreft planrevisieregels analyseren wij de semantische problemen die
ontstaan bij het introduceren van deze regels. Dat wil zeggen, de semantiek van
het executeren van plannen wordt niet-compositioneel met de introductie van
deze regels. Dit is problematisch wanneer men wil redeneren over het uitvoeren
van plannen. Wij stellen een dynamische logica voor die erop gericht is om
met planrevisie om te gaan, door het probleem van niet-compositionaliteit op
een bepaalde manier te omzeilen. Bovendien laten we zien hoe planrevisieregels
beperkt kunnen worden, zodanig dat de semantiek weer compositioneel wordt.

Tot slot doen wij enkele voorstellen op het gebied van software engineering.
Wij stellen een manier voor om ondersteuning voor modularisatie in cognitieve-
agentprogrammeertalen te introduceren die gebaseerd is op de doelen van de
agent. Bovendien laten we zien dat de Maude termherschrijftaal geschikt is voor
het implementeren van logica-gebaseerde cognitieve-agentprogrammeertalen
zoals 3APL.

Curriculum Vitae

Maria Birna van Riemsdijk

29 oktober 1978

Geboren te Wageningen.

september 1991 - augustus 1997

Voorbereidend Wetenschappelijk Onderwijs aan de Regionale Scholengemeen-
schap Pantarijn te Wageningen. Diploma behaald in juni 1997.

september 1997 - augustus 2002

Studie Informatica aan het Institute of Information and Computing Sciences
van de Universiteit Utrecht. Diploma behaald in augustus 2002 (cum laude).

september 2002 - augustus 2006

Assistent in Opleiding aan het Institute of Information and Computing Sciences
van de Universiteit Utrecht.

237

SIKS Dissertation Series

1998

Johan van den Akker, DEGAS - An Ac-
tive, Temporal Database of Autonomous
Objects, CWI, 1998-1

Floris Wiesman, Information Retrieval
by Graphically Browsing Meta-Information,
UM, 1998-2

Ans Steuten, A Contribution to the Lin-
guistic Analysis of Business Conversations
within the Language/Action Perspective,
TUD, 1998-3

Dennis Breuker, Memory versus Search in
Games, UM, 1998-4

E.W. Oskamp, Computerondersteuning bij
Straftoemeting, RUL, 1998-5

1999

Mark Sloof, Physiology of Quality Change
Modelling; Automated modelling of Qual-
ity Change of Agricultural Products, VU,
1999-1

Rob Potharst, Classification using deci-
sion trees and neural nets, EUR, 1999-2

Don Beal, The Nature of Minimax Search,
UM, 1999-3

Jacques Penders, The practical Art of
Moving Physical Objects, UM, 1999-4

Aldo de Moor, Empowering Communities:
A Method for the Legitimate User-Driven
Specification of Network Information Sys-
tems, KUB, 1999-5

Niek J.E. Wijngaards, Re-design of com-

positional systems, VU, 1999-6

David Spelt, Verification support for ob-
ject database design, UT, 1999-7

Jacques H.J. Lenting, Informed Gam-
bling: Conception and Analysis of a Multi-
Agent Mechanism for Discrete Reallocation.,
UM, 1999-8

2000

Frank Niessink, Perspectives on Improving
Software Maintenance, VU, 2000-1

Koen Holtman, Prototyping of CMS Stor-
age Management, TUE, 2000-2

Carolien M.T. Metselaar, Sociaal-orga-
nisatorische gevolgen van kennistechnologie;
een procesbenadering en actorperspectief,
UVA, 2000-3

Geert de Haan, ETAG, A Formal Model
of Competence Knowledge for User Inter-
face Design, VU, 2000-4

Ruud van der Pol, Knowledge-based
Query Formulation in Information Re-
trieval, UM, 2000-5

Rogier van Eijk, Programming Languages
for Agent Communication, UU, 2000-6

Niels Peek, Decision-theoretic Planning of
Clinical Patient Management, UU, 2000-7

Veerle Coup, Sensitivity Analyis of
Decision-Theoretic Networks, EUR, 2000-
8

Florian Waas, Principles of Probabilistic
Query Optimization, CWI, 2000-9

239

240 SIKS DISSERTATION SERIES

Niels Nes, Image Database Management
System Design Considerations, Algorithms
and Architecture, CWI, 2000-10

Jonas Karlsson, Scalable Distributed Data
Structures for Database Management, CWI,
2000-11

2001

Silja Renooij, Qualitative Approaches to
Quantifying Probabilistic Networks, UU,
2001-1

Koen Hindriks, Agent Programming Lan-
guages: Programming with Mental Models,
UU, 2001-2

Maarten van Someren, Learning as prob-
lem solving, UvA, 2001-3

Evgueni Smirnov, Conjunctive and Dis-
junctive Version Spaces with Instance-Based
Boundary Sets, UM, 2001-4

Jacco van Ossenbruggen, Processing
Structured Hypermedia: A Matter of Style,
VU, 2001-5

Martijn van Welie, Task-based User In-
terface Design, VU, 2001-6

Bastiaan Schonhage, Diva: Architectural
Perspectives on Information Visualization,
VU, 2001-7

Pascal van Eck, A Compositional Seman-
tic Structure for Multi-Agent Systems Dy-
namics, VU, 2001-8

Pieter Jan ’t Hoen, Towards Distributed
Development of Large Object-Oriented Mod-
els, Views of Packages as Classes, RUL,
2001-9

Maarten Sierhuis, Modeling and Simulat-
ing Work Practice BRAHMS: a multiagent
modeling and simulation language for work
practice analysis and design, UvA, 2001-10

Tom M. van Engers, Knowledge Man-
agement: The Role of Mental Models in
Business Systems Design, VUA, 2001-11

2002

Nico Lassing, Architecture-Level Modifia-
bility Analysis, VU, 2002-01

Roelof van Zwol, Modelling and searching
web-based document collections, UT, 2002-
02

Henk Ernst Blok, Database Optimiza-
tion Aspects for Information Retrieval, UT,
2002-03

Juan Roberto Castelo Valdueza, The
Discrete Acyclic Digraph Markov Model in
Data Mining, UU, 2002-04

Radu Serban, The Private Cyberspace
Modeling Electronic Environments inhabited
by Privacy-concerned Agents, VU, 2002-05

Laurens Mommers, Applied legal episte-
mology; Building a knowledge-based ontology
of the legal domain, UL, 2002-06

Peter Boncz, Monet: A Next-Generation
DBMS Kernel For Query-Intensive Applica-
tions, CWI, 2002-07

Jaap Gordijn, Value Based Require-
ments Engineering: Exploring Innovative
E-Commerce Ideas, VU, 2002-08

Willem-Jan van den Heuvel, Integrating
Modern Business Applications with Objecti-
fied Legacy Systems, KUB, 2002-09

Brian Sheppard, Towards Perfect Play of
Scrabble, UM, 2002-10

Wouter C.A. Wijngaards, Agent Based
Modelling of Dynamics: Biological and Or-
ganisational Applications, VU, 2002-11

Albrecht Schmidt, Processing XML in
Database Systems, UVA, 2002-12

Hongjing Wu, A Reference Architecture
for Adaptive Hypermedia Applications,
TUE, 2002-13

Wieke de Vries, Agent Interaction: Ab-
stract Approaches to Modelling, Program-
ming and Verifying Multi-Agent Systems,
UU, 2002-14

Rik Eshuis, Semantics and Verification
of UML Activity Diagrams for Workflow

241

Modelling, UT, 2002-15

Pieter van Langen, The Anatomy of De-
sign: Foundations, Models and Applications,
VU, 2002-16

Stefan Manegold, Understanding, Model-
ing, and Improving Main-Memory Database
Performance, UVA, 2002-17

2003

Heiner Stuckenschmidt, Onotology-Based
Information Sharing In Weakly Structured
Environments, VU, 2003-1

Jan Broersen, Modal Action Logics for
Reasoning About Reactive Systems, VU,
2003-02

Martijn Schuemie, Human-Computer In-
teraction and Presence in Virtual Reality
Exposure Therapy, TUD, 2003-03

Milan Petkovic, Content-Based Video Re-
trieval Supported by Database Technology,
UT, 2003-04

Jos Lehmann, Causation in Artificial In-
telligence and Law - A modelling approach,
UVA, 2003-05

Boris van Schooten, Development and
specification of virtual environments, UT,
2003-06

Machiel Jansen, Formal Explorations of
Knowledge Intensive Tasks, UvA, 2003-07

Yongping Ran, Repair Based Scheduling,
UM, 2003-08

Rens Kortmann, The resolution of visu-
ally guided behaviour, UM, 2003-09

Andreas Lincke, Electronic Business Ne-
gotiation: Some experimental studies on
the interaction between medium, innovation
context and culture, UvT, 2003-10

Simon Keizer, Reasoning under Uncer-
tainty in Natural Language Dialogue using
Bayesian Networks, UT, 2003-11

Roeland Ordelman, Dutch speech recog-
nition in multimedia information retrieval,
UT, 2003-12

Jeroen Donkers, Nosce Hostem - Search-
ing with Opponent Models, UM, 2003-13

Stijn Hoppenbrouwers, Freezing Lan-
guage: Conceptualisation Processes across
ICT-Supported Organisations, KUN, 2003-
14

Mathijs de Weerdt, Plan Merging in
Multi-Agent Systems, TUD, 2003-15

Menzo Windhouwer, Feature Grammar
Systems - Incremental Maintenance of In-
dexes to Digital Media Warehouses, CWI,
2003-16

David Jansen, Extensions of Statecharts
with Probability, Time, and Stochastic Tim-
ing, UT, 2003-17

Levente Kocsis, Learning Search Deci-
sions, UM, 2003-18

2004

Virginia Dignum, A Model for Orga-
nizational Interaction: Based on Agents,
Founded in Logic, UU, 2004-01

Lai Xu, Monitoring Multi-party Contracts
for E-business, UvT, 2004-02

Perry Groot, A Theoretical and Empiri-
cal Analysis of Approximation in Symbolic
Problem Solving, VU, 2004-03

Chris van Aart, Organizational Princi-
ples for Multi-Agent Architectures, UVA,
2004-04

Viara Popova, Knowledge discovery and
monotonicity, EUR, 2004-05

Bart-Jan Hommes, The Evaluation of
Business Process Modeling Techniques,
TUD, 2004-06

Elise Boltjes, Voorbeeldig onderwijs; voor-
beeldgestuurd onderwijs, een opstap naar
abstract denken, vooral voor meisjes, UM,
2004-07

Joop Verbeek, Politie en de Nieuwe Inter-
nationale Informatiemarkt, Grensregionale
politiële gegevensuitwisseling en digitale ex-
pertise, UM, 2004-08

Martin Caminada, For the Sake of the

242 SIKS DISSERTATION SERIES

Argument; explorations into argument-based
reasoning, VU, 2004-09

Suzanne Kabel, Knowledge-rich indexing
of learning-objects, UVA, 2004-10

Michel Klein, Change Management for
Distributed Ontologies, VU, 2004-11

The Duy Bui, Creating emotions and fa-
cial expressions for embodied agents, UT,
2004-12

Wojciech Jamroga, Using Multiple Mod-
els of Reality: On Agents who Know how to
Play, UT, 2004-13

Paul Harrenstein, Logic in Conflict. Log-
ical Explorations in Strategic Equilibrium,
UU, 2004-14

Arno Knobbe, Multi-Relational Data Min-
ing, UU, 2004-15

Federico Divina, Hybrid Genetic Rela-
tional Search for Inductive Learning, VU,
2004-16

Mark Winands, Informed Search in Com-
plex Games, UM, 2004-17

Vania Bessa Machado, Supporting the
Construction of Qualitative Knowledge
Models, UvA, 2004-18

Thijs Westerveld, Using generative proba-
bilistic models for multimedia retrieval, UT,
2004-19

Madelon Evers, Learning from Design:
facilitating multidisciplinary design teams,
Nyenrode, 2004-20

2005

Floor Verdenius, Methodological Aspects
of Designing Induction-Based Applications,
UVA, 2005-01

Erik van der Werf, AI techniques for the
game of Go, UM, 2005-02

Franc Grootjen, A Pragmatic Approach
to the Conceptualisation of Language, RUN,
2005-03

Nirvana Meratnia, Towards Database
Support for Moving Object data, UT,

2005-04

Gabriel Infante-Lopez, Two-Level Prob-
abilistic Grammars for Natural Language
Parsing, UVA, 2005-05

Pieter Spronck, Adaptive Game AI, UM,
2005-06

Flavius Frasincar, Hypermedia Presenta-
tion Generation for Semantic Web Informa-
tion Systems, TUE, 2005-07

Richard Vdovjak, A Model-driven Ap-
proach for Building Distributed Ontology-
based Web Applications, TUE, 2005-08

Jeen Broekstra, Storage, Querying and
Inferencing for Semantic Web Languages,
VU, 2005-09

Anders Bouwer, Explaining Behaviour:
Using Qualitative Simulation in Interactive
Learning Environments, UVA, 2005-10

Elth Ogston, Agent Based Matchmaking
and Clustering - A Decentralized Approach
to Search, VU, 2005-11

Csaba Boer, Distributed Simulation in
Industry, EUR, 2005-12

Fred Hamburg, Een Computermodel voor
het Ondersteunen van Euthanasiebeslissin-
gen, UL, 2005-13

Borys Omelayenko, Web-Service configu-
ration on the Semantic Web; Exploring how
semantics meets pragmatics, VU, 2005-14

Tibor Bosse, Analysis of the Dynamics of
Cognitive Processes, VU, 2005-15

Joris Graaumans, Usability of XML
Query Languages, UU, 2005-16

Boris Shishkov, Software Specification
Based on Re-usable Business Components,
TUD, 2005-17

Danielle Sent, Test-selection strategies for
probabilistic networks, UU, 2005-18

Michel van Dartel, Situated Representa-
tion, UM, 2005-19

Cristina Coteanu, Cyber Consumer Law,
State of the Art and Perspectives, UL, 2005-
20

243

Wijnand Derks, Improving Concurrency
and Recovery in Database Systems by Ex-
ploiting Application Semantics, UT, 2005-
21

2006

Samuil Angelov, Foundations of B2B
Electronic Contracting, TUE, 2006-01

Cristina Chisalita, Contextual issues in
the design and use of information technol-
ogy in organizations, VU, 2006-02

Noor Christoph, The role of metacog-
nitive skills in learning to solve problems,
UVA, 2006-03

Marta Sabou, Building Web Service On-
tologies, VU, 2006-04

Cees Pierik, Validation Techniques for
Object-Oriented Proof Outlines, UU, 2006-
05

Ziv Baida, Software-aided Service
Bundling - Intelligent Methods Tools for
Graphical Service Modeling, VU, 2006-06

Marko Smiljanic, XML Schema Matching
- Balancing Efficiency and Effectiveness by
Eeans of Elustering, UT, 2006-07

Eelco Herder, Forward, Back and Home
Again - Analyzing User Behavior on the
Web, UT, 2006-08

Mohamed Wahdan, Automatic Formula-
tion of the Auditor’s Opinion, UM, 2006-09

Ronny Siebes, Semantic Routing in Peer-
to-Peer Systems, VU, 2006-10

Joeri van Ruth, Flattening Queries over
Nested Data Types, UT, 2006-11

Bert Bongers, Interactivation - Towards
an e-cology of People, our Technological
Environment, and the Arts, VU, 2006-12

Henk-Jan Lebbink, Dialogue and Deci-
sion Games for Information Exchanging
Agents, UU, 2006-13

Johan Hoorn, Software Requirements: Up-
date, Upgrade, Redesign - towards a Theory
of Requirements Change, VU, 2006-14

Rainer Malik, CONAN: Text Mining in
the Biomedical Domain, UU, 2006-15

Carsten Riggelsen, Approximation Meth-
ods for Efficient Learning of Bayesian Net-
works, UU, 2006-16

Stacey Nagata, User Assistance for Mul-
titasking with Interruptions on a Mobile
Device, UU, 2006-17

Valentin Zhizhkun, Graph transforma-
tion for Natural Language Processing, UVA,
2006-18

M. Birna van Riemsdijk, Cognitive
Agent Programming: A Semantic Approach,
UU, 2006-19

