
BIT 28 (1988), ~529

METRIC SEMANTICS FOR CONCURRENCY

J. W. DE BAKKER and J.-J. CH. MEYER

Centre for Mathematics and Computer Science,
Kruislaan 413, NL-1098 SJ Amsterdam,
Free University of Amsterdam,
The Netherlands

Free University of Amsterdam,
De Boe/elaan 1081,

NL-1081 HV Amsterdam,
The Netherlands

Dedicated to Peter Naur on the occasion of his 60th birthday

Abstract.

An overview is given of work we have done in recent years on the semantics of concurrency,
concentrating on semantic models built on metric structures. Three contrasting themes are discussed,
viz. (i) uniform or schematic versus nonuniform or interpreted languages; (ii) operational versus
denotational semantics, and (iii) linear time versus branching time models. The operational models
are based on Plotkin's transition systems. Language constructs which receive particular attention are
recursion and merge, synchronization and global nondeterminacy, process creation, and communica
tion with value passing. Various semantic equivalence results are established. Both in the definitions
and in the derivation of these equivalences, essential use is made of Banach's theorem for contracting
functions.

1985 Mathematics Subject Classification: 68Q55, 68Ql0.
1987 Computing Reviews Categories: D.1.3, D.3.1, D.3.3, F.1.2, F.3.2.

Keywords: concurrency, operational semantics, denotational semantics, transition systems, process
creation, synchronization, metric spaces, domain equations, contracting functions, global non·
determinacy.

1. Introduction.

We present an expository account of work we have been pursuing in recent
years on the semantics of concurrency, concentrating on those models which are
built on structures from metric topology. We shall exhibit semantic definitions
for a variety of programming notions relating to concurrency, viz. recursion with
merge (parallel execution in the interleaving sense), synchronization and global
nondeterminacy, process creation, and communication with value passing. We
hope to demonstrate the power of metric methods, both in the semantic defini
tions themselves and in the establishment of particularly succint derivations of
equivalence results between operational and denotational semantic models.

Received October 1987. Revised April 1988.

11t';::::l!!"lo-·~--

METRIC SEMANTICS FOR CONCURRENCY 505

Three contrasting themes will recur in our considerations (cf. [7] for a more
elaborate treatment). First, there is the familiar distinction between operational
and denotational semantics. The former will always be based on transition systems
which are variations on the elegant systems of Hennessy and Plotkin ([16], [25],
[26]). The latter will throughout be defined compositionally, with (unique) fixed
points to deal with recursion. Such fixed points exist on the basis of Banach's
theorem for contracting functions. In fact, this theorem is absolutely pervasive
in our technical considerations: a good deal of our definitions and theorems
ultimately rely on it. Second, we shall contrast uniform and nonuniform languages.
The former are schematic in the sense that their elementary actions are uninter
preted, and the meanings rendered by our definitions involve entities with a
strong flavour of formal language theory. More specifically, sets of (possibly
infinite) words or tree-like objects are delivered. Nonuniform languages have
interpreted elementary actions. They include notions such as (individual) vari
ables, assignments, states and state transforming functions. As we shall demon
strate, it requires additional tools to set up a framework in which one may
merge such functions. Third, we shall be concerned with both linear time (LT)
and branching time (BT) models. Typical examples are sets of words versus trees
(with some further properties not stated here) over some alphabet A. In the
former, moments of choice are abstracted away which are present in the latter.
We recall the classical example of the LT set {ab,ac} versus the two different
trees in BT:

a

b c

The genealogy of the work described in the present paper is as follows:
Ancestors are Nivat's work on mefric techniques in semantics ([23]) and Plotkin's
work on resumptions in power domains ([24]). In (11] we described a general
method to solve domain equations using metric techniques. [12] is an example
of a specific semantic application. A substantial improvement on [11 J is given
in [4] where the scope of the method in [11] was clarified and, even better,
considerably generalized. A comparison of LT and BT models for recursion with
merge was first made in [6]. In [10], [7] ·a systematic comparison of operational

506 J. W. DE BAKKER AND J.-J. CH. MEYER

and denotational models was developed, both for recursion and merge, for
synchronization with (forms of) nondeterminacy, and for nonuniform languages.
Somewhat simultaneously we have devoted a number of papers to the design of
semantic models for the parallel object oriented language POOL ([2, 3, l]),
dealing, besides with various other notions, with process creation. An essential
step on the way to substantial simplification of the sometimes quite elaborate
arguments in [10], [1] was performed in [18]. Here the full power of the tmique
fixed point argument, not only in defining but also in comparing semantic
models, was first exploited.

In parallel to the metrically based semantic studies, we have also continued
to work with models based on partial orders, were it only to relate order-theoretic
models to metric ones. In addition, for the metric models as we use them, the
requirement that all sets considered be closed is vital, and the metric theory
fails when phenomena inducing nonclosed sets are encountered. Examples of
comparative studies, in particular relating to the "elemental" combination of
recursion with merge, are [8], [9]. An extensive application of order-theoretic
tools, specifically to deal with fair merge (the result of which is in general
nonclosed) is described in [19]. Another language notion which is not directly
amenable to metric techniques is that of hiding (cf. [20]). Finally, we mention [21]
where an order-theoretic counterpart of the topological notion of compactness
is studied.

More in general, the relationship between the metric and order-theoretic
domain theory is a topic of much current research. A representative reference
is [27].

We are at present investigating further applications of the metric method in
semantics. Two prime examples are uniform (or "logicless") versions of logic
programming, and more advanced concepts in object-oriented programming.

2. Mathematical preliminaries.

2.1. Notation.

The phrase "let (x E)X be such that ... " introduces a set X with variable x
ranging over X such that For X a set, £?ll(X) denotes the collection of all
subsets of X, and 81',,(X) is the collection of all subsets of X which have
property n. The notation f: X ..-. Y expresses that f is a function with domain
X and range Y. We use the notation f {y/x }, with x EX and ye Y, for a variant
off, i.e. for the function which is defined by

f {y/x}(x') = {;(x') if x = x'

otherwise

If f: X-.. X and f(x) = x, we call x a fixed point of f.

f

METRIC SEMANTICS FOR CONCURRENCY' 507

2.2. Metric spaces.

From standard topology (e.g. [14], [15]) we assume known the notion of
(ultra)metric space (M, d) with distance or (ultra)metric d. We use the notions of
closed subset X of (M, d), of continuous mapping (Mi. di)-+ (M2 , d2), of com

pleteness of a metric space, and of isometry (~)between metric spaces (M 1,di)
and (M2 ,d2). A mapping/: (Mi.di)-+ (M 2 ,d2) is called contracting whenever,
for all x, ye MI> we have d 2(f (x),f (y)) ~ IX· di(x, y), with 0 ~IX < 1. If the same
condition holds with IX = 1, we call f non distance increasing (ndi). Clearly, a

. contracting or ndi mapping is continuous. A central role is played below by

PROPOSITION 2.1 (Banach). Let f: (M, d)-+ (M, d) be contracting, and let (M, d)
be complete. Then f has a unique fixed point x 0 and, for any y, x 0 = limdi(y),
wheref0 = A.x·x,p+i =fop.

2.3. Metric spaces of (sets of) words.

Let A be a finite alphabet, let A*(A"') denote the collection of all finite
(infinite) words over A, and let A"' = "' · A* u A"'. Let e denote the empty word.
For each u e A 00 , u(n) is the prefix of u of length n, if this exists, and
u(n) = u, otherwise. We define a metric don A 00 by putting d(u,v) = 2-n, where
n = sup{k I u(k) = v(k)}. Thus, d(u,v) = i- 00 = 0 if u = v. We have

PROPOSITION 2.2. (A 00 , d) is a complete ultrametric space.

In (A 00 ,d) we have, e.g., that lim"u(n) = u. A typical closed subset of (A 00,d)
is a*· b u {a"'}, whereas a*· bis not closed. Let Q = &'nc(A 00) denote the collec
tion of all nonempty closed subsets of A 00 • Let, for X e Q, X(n) = { u(n) I u e X}. We
define a metric a on Q by putting a(X, Y) = r", where n = sup{k I X(k) = Y(k)}.
For example, a({abc,ef}, {abcd,efg}) = i- 2 • We have

PROPOSITION 2.3. (Q, a) is a complete ultrametric space.

2.4. Domain equations and resumptions.

We briefly recall the notion of a (metric) domain equation. The general· form
of such an equation is

(2.1) P ~ F(P)

or, more precisely, (P, dp) = F((P, dp)), where the mapping F (technically a
functor from the category of complete metric spaces to itself, but we do not have
to be aware of this) is built up as follows: Fis either a constant (delivering
some complete (A, d,.)), a transformation id11 which maps (M, d) to (M, ix· d)

508 J. W. DE BAKKER AND J.-J. CH. MEYER

for some real a, or composed from already given components by operations such
as cartesian product, disjoint union, (restricted) function spaces, or the "closed

subset of" mapping. We have no room to discuss details which are described at
length in [11 J or [4] (see also (13] for the connecti9n between such P and
spaces obtained through bisimulation from synchronization trees as, e.g., in (22]).

It is sufficient to know that isometries such as

(2.2)

(2.3)

(2.4)

all have well-defined solutions as complete metric spaces. For examples, P as in
(2.2) consists of p0 , all finite sequences (a1 (a2 , .• ., (an, Po) ...)), n > 0, and all
infinite sequences (a 1 , (a2 , •.. , (a., ...) ...)). Elements of each P are either finite
(and then equal to p0 or in some P.+ 1 = ffe'(P.)), or infinite and then satisfy
p = lim.p., with p. e P •. Occurrences of P in terms ... x P on the right-hand
side of these equations justify the terminology of resumptions: For example, for
peP with P as in (2.4), p(f p0) is a function which, when supplied with
argument a EA turns itself into, among other things, some (b, p'). In later
applications we shall read this with the connotation: process p maps a to b and
then turns itself into process p' as resumption.

For subsequent purposes, we note that, if the constant spaces (A, d..t), (B, d 8), ...

are assumed to be ultrametric, then the solutions P (as in (2.2) to (2.4)) are also
ultrametric.

Example: Elements from Pas in (2.3) are, e.g., {(a,{(b,p0),(c,p0)})} and
{(a,{(b,p0)}),(a,{(c,p0)})}. These may be pictorially represented by the trees
from section I. No such distinction is present in the set Q, where both
objects are represented by the set { ab, ac}.

3. Recursion and merge.

The first language we consider is a simple extension of the traditional (uniform)
sequential languages, obtained by adding the programming construct of parallel
execution or merge s1 lls2 of the two statements s1 and s2 • By a traditional
(uniform) language we mean here a language which has (uninterpreted) elementary
actions taken from some alphabet A, sequential composition, nondeterministic
choice and recursion. It is well-known that these four concepts put together in
the customary way - the exact syntax follows in a moment - yield the
expressive power of context-free languages, here taken in the general sense of
languages over finite and infinite words over A. Thus, we may rephrase the object

METRIC SEMANTICS FOR CONCURRENCY 509

of study in the present section as infinitary context-free languages extend.ell wttn
merge or shuffle, where the latter notion is the standard operation of language
theory. This combination of (basic notions with) recursion and merge was first
studied in [6] (denotational LT and BT models) and [10, 7] (operational vs.
denotational LT models). The presentation below essentially follows [18], though

. c:iur returning here to the format of simultaneous recursion - rather than employing
possibly nested µ-constructs - allows a considerably more concise treatment.

We build the syntax starting from

• a (not necessarily finite) alphabet A, with elements a, b, c, ...

• a set &>vai of procedure variables xi. x2, •••• It will be convenient to
assume that each program uses exactly the procedure variables in the initial
fragment !'£ = {xi. ... , x.} of &>vai, for some n ~ 0.

We start with

DEFINITION 3.1 (Syntax).

a (statements). The class (s E)2 1 of statements is given by

s : : = a Ix I s1 ;s2 I s1 u s2 I sills2. with x E fl'

b (guarded statements). The class (gE)2t of guarded statements is given by

g ::=a lg;s 191 uu2 IB1llu2

c (declarations). The class (D E).@ ect" 1 of declarations consists of n-tuples
D = x 1 <;:::.g1 , .•. ,Xn<;:::.9n or (Xi<;:::.g;);, for short, with xiefl' and g;E2t.

d (programs). The class (t E)&>wp1 of programs consists of pairs t = (D Is).
with DE!?}ed1 and SE21 .

ExAMPLES.

1. <
x1 <;:::.a;x2 ub;x3 ,

x 2 <;:::. b u b;x1 u a;x3 ;x3,

X3 <;:::.a u a; X1 u b; X2; Xi.

lx1)

2. (x <;:::.a; (bllx) I (cllx))

REMARKS.

1. We find it convenient not to worry about the ambiguity in the syntax for
2 1 (and the other langu~ges that we shall define in the sequel). If required,
the reader may add parentheses around the composite constructs, or assign
priorities to the operators.

510 J. W. DE BAKKER AND J.-J. CH. MEYER

2. All B; occurring in a declaration D = (x; <= g;); are required bo be guarded,
i.e. occurrences of x E PI in B; are to be preceded by some g (which, by
clause b, has to start with an elementary action). This requirement corre
sponds to the usual Greibach condition in formal language theory.

3. We have adopted the simultaneous declaration format for recursion rather
than the µ-formalism which features constructs such as, for example,
cllµx[a;(µy[b 1 ;y;b2 ub3Jllx)]. As remarked already, the avoidance of
(nested) µ-constructs allows for a simpler derivation of the main semantic
equivalence result to follow.

We proceed with the definitions leading up to the operational semantics for
s e !!' 1 and t e &>wf1• It is convenient to extend !!' 1 with a special "empty state
ment" E which performs no action (it will obtain {e} as its meaning). We put
!!''1 = !!'1 u {E}. The operational semantics is based on transitions (following
the operational semantics techniques of Structured Operational Semantics, cf.
[16, 25, 26]). Here, transitions are four-tuples in !!' 1 x Ax g&ect 1 x !!''i. written
in the notation

with s e !!' 1 , a e A, D E £1) .ect 1 , s' e 2''1• We present a formal transition system T1

which consists of axioms and rules. Transitions which are given as axioms
hold by definition. Moreover, a transition which is the consequence of a rule
holds in T1 whenever it can be established that, according to T1 , its premise holds
(or, in later sections, its premises bold). We shall employ below the following
notational variants of the format of rules: We use

to abbreviate

Also,

abbreviates

11 is given in

1-+ 213
4-+ 516

1-+2 1-+3
and

4-+5 4-+6.

1-+ 1'

2-+ 2'

n -+n'

1-+ 1' 1-+ l'
2 -+ 2' ' · · ., n -+ n' ·

METRIC SEMANTICS FOR CONCURRENCY 511

DEFINITION 3.2 (transition system Ti). Let s, s', s E ,Sf i. a e A, De ~eel 1.

a~DE

s ~Ds'IE
s ;s ~Ds' ;sis

s ~Ds'IE
s us~Ds'IE
s us ~Ds'IE

g ~os'IE . .
a , I E , with x <= g m D

X -+DS

s ~Ds'IE
slls ~os'llsls
.Slls ~o.Slls'IS

(Elem)

(SeqComp)

(Choice)

(Ree)

(ParComp)

We next define how to collect the successive transitions s ~Ds', s' !!.+Ds", . .. ,
starting from some t = (Dis), into its operational meaning lD[t]. We use Q as
introduced in section 2.3.

DEFINITION 3.3.

a. The mapping (!): r!Jw?- 1 -+ Q is given by
(!)[(Dis)]= @D[s].

b. The mapping (!)D:.5f'1 -+ Q is given by: @D[E] = {e}, and for s =f E,

@D[s] = u{a·@D[s'] ls~Ds'},

where the transitions are with respect to T1• Also, a · ... denotes the usual
prefixing operation: a· {s} = {a},a· X ={a· u I u eX}, where a· u is assumed
to be known.

It may not be obvious that the function (90 is well-defined. This is in fact a
consequence of the following

LEMMA 3.4. Let the o per at or 4': (.5f'1 -+ Q) --+ (.5f'1 --+ Q) be defined as follows :
For any 1F0 : .fe'1 --+ Q we put 4'(1F0)(E) = {s}, and.for sf. E,

<P(F0)(s) = u{a· F 0 [s'] Is ~0 s'}.

Then <P is a contracting mapping with <90 as its fixed point.

PR.ooF. Clear from the definitions and Banach's theorem. •

512 J. W. DE BAKKER AND J.-J. CH. MEYER

ExAMPLE. lD[(x<=a;x ubjx)] = {aw} ua*·b.

REMARK. As explained in [10], if we were to drop the guardedness restriction
for the gi in D, the operational meaning of (Dis) (based on the definitions in
[10]) is not necessarily a closed set, and definition 3.3 would not, in general,
yield the desired result. (Definition 3.3 always gives closed sets as results.)

The next step is the development of the denotional model. We now also
define various semantic operators: Q x Q -+ Q, viz. the operators of union (' u'),
composition ('o') and merge ('JI').

DEFINITION 3.5. For each x E Q we wtite x. = {u EA 00 Ja. u EX}.

a. X u Y equals the set-theoretic union of X and Y.

b. Let op stand for o or II. Let <P be any ndi mapping: Q x Q -+ Q. Let
<P0 P: (Q x Q-+ Q)-+ (Q x Q-+ Q) be defined as follows:

cP (<P)(X)(Y) = { UaeA {a· <P(X0)(Y) I X 0 f ~} U Y,
0 UaeA {a· <P(X.)(Y) IX. f ~ },

4'1i(cl>)(X)(Y) = cP0 (</>)(X)(Y) u cP0 (</>)(Y)(X)

c. We now put o =fixed point (4>0), II =fixed point (4>11).

We have

if 8 E Xa
otherwise

LEMMA 3.6. The operators u, o, II are well-defined and ndi (and, hence, continuous).

PROOF. Clear for u. For the operators, another appeal to Banach's theorem
together with some calculations in the style of Appendix B of [11] suffices. •

The denotational semantic definitions employ the usual notion of environment.
Let (ye)I' = 9v.a/t -+ Q be the set of environments, i.e. of mappings from
procedure variables to their meanings. We define

DEFINITION 3.7 (denotational semantics for 2'i, 9-wsii). Below we often suppress
parentheses around arguments of fl.l;nctions. The mappings .,H: rff'wsi1 -+ Q and
f}: ~ 1 -+ (I' -+ Q) are given as follows:

a. .,H[(DJs)] = f}[s]YD, with YD as in clause b.

b. YD= y{XdxiH=t• where y is arbitrary, and, for D = (xi<=Bi)i, we put

(X1, ... ,Xn) =fixed point (4>1,. •• ,tPn)

,, where cP1: Q"-+ Q is given by tP1(Yi) . .. (Y,,) = ~[gi]Y{l'f/xi};.

METRIC SEMANTICS FOR CONCURRENCY

c. ~[a]y = {a},~[x]y = y(x),~[s 1 ops2]y = ~[si]yop~[s2]y,
for op= ;, u,11 and op = o, u, II, respectively.

ExAMPLES. ~[a;(b uc)]y = ~[(a;b) v (a;c)]y = {ab,ac}.

513

,,H[(x <= a;(b\\x) Ix)]= limiX;, where Xi+i =a· (bl\X;), and X0 eQ is arbitrary.

The well-definedness of £?2 is a consequence of the guardedness requirement
which ensures the contractivity of the <Pi, whence the fixed points in clause b
exist:

LEMMA 3.8. Assume the notation as in definition 3.7. For simplicity, we taken= 1.

a. For each s e ft' 1,

b. For each g e !i'L

d(£?2[g]y{Yi/x},~[g]y{Y2 /x}) ~ t·d(Yi. Y2).

PR.ooF. We use induction on the complexity of s and g. We give details of a
few subcases for g:

• g=g1;s:
We use the abbreviation Y;' = ~[g1]y{ Y;/x} for i = 1, 2. Now

d(~[g 1 ; s]y{ Yifx }, ~[9 1 ; s]y{ Y2/x}) =

d(Y{ o .@[s]y{ Yi/x }, Y2 ° ~[s]y{ Y2/x}).

If Y{ f. Y2, we use the induction hypothesis and the fact that, in general,

for Z 1 f. U 1.

d(Z1 oZ2 , U1 o U2) ~ d(Z1, Ui).

If Y{ = Y2, we use part a, and the fact that, for e f Z,

d(Z o Z 2 , Z o U2) ;a! t· d(Z2, U2).

• 9 = gi\\92:
We use the abbreviations Y;i = ~[g;]'Y{lJ/x} for i,je{l,2}. Now

d(~[91 \192]1'{ Yifx }, ~[91 \\92]1'{ Y2/x}) =

d(Yu 11 Y21> Yu II ¥22) ~
max(d(Y11 , Y12),d(Y21> Y22)) ~
! · d(Yi. ¥2),

where we have used that, in general,

d(Zi\\Z2, U1 \\U2) ~ max(d(Zt> Ui),d{Z2, U2)),

and the induction hypothesis (twice). •

514 J. W. DE BAKKER AND J.-J. CH. MEYER

The above definitions of the operational and denotational semantics have been
tuned such that the proof of ()! = .A is now no longer a major undertaking (as
it was in [10]). We follow the approach as in [18] (cf. [16], [5] for a similar
approach in an order-theoretic framework) with the additional simplifications
due to our replacing µ-constructs by simultaneous recursion. We prove

THEOREM 3.9. For all t E &'wg:i. @[t] = .A[t].

PRooF. Let us put !'Jv[s] = df.!'J[s]yv. By the definition of()! and lemma 3.4,
it is sufficient to show that, for s E 2 1, (*): !'Jn[s] = <l>(!'Jn)(s). The proof proceeds
in two stages; first for g E 21 and next for any s E 2 1.

Stage 1. Take g E 2~. We prove (*) by induction on the complexity of g.
We only treat the case that g = g 1 lig2, the other cases being simpler. We have:

cf>(!'Jn)(gdlg2) = (def. <I>)
U {a· !'Jv[s] I 91 Jlg2 ~vs} = (def. T1)
LJ{a·!'Jn[s'llgz] lg1 ~ns'} v U {a·.@v[9ills"] 192~ns"} = (def . .@)
U {a '(!'Jv[s']ll.@n[g2]) I 91 ~D s'} u

U {a· (!'Jn[9i]ll.@v[s"]) I 92 ~ns"} = (ind. hyp.)
U {a· (.@v[s']ll<l>(!'Jv)(92)) I gl ':.+vs'} u

U {a· (cf>(.@v)(g1)li.@n[s"]) I gz ~vs"} = (def.JJ, T,)
<l>(.@v)(gi)Jl<l>(.@v)(g2) = (ind. hyp.)
~D[gi]Jl~n[gz] = (def. .@)
~n[911lgz].

Stage 2. Takes E 2 1. We prove(*) by induction on the complexity of s. All cases
are as in stage 1, but for the cases = x, with x = X; E ~- We have

<l>(.@0)(x;)= LJ{a·.@n[s]Jx;~vs} = LJ{a·.@v[s]Jg;~ns} (with x;=9; in !'J)
= (by stage 1, the desired result holds for g; E !ff) !'Jn[g;] = (by the fixed point
property) .@n[x;]. •

REMARK. Now that we have developed the appropriate metric semantics
machinery, we can elaborate on the reasons why the concepts of fairness and
hiding are not (directly) amenable to a metric approach. For fairness, note that
a"'ll1.ir b"' = (a*bb*a)"', which is not a closed set. (It does not include, e.g., the
limit a"'.) For hiding, note that, e.g., X = {a"b" In~ 1} u {a"'} is closed, whereas
X hid a is not. (X hid a 2 b*, but b"' ~ X hid a.)

4. Synchronization and global nondeterminacy.

We discuss an extension of .st'1 with two new features. Firstly, we add a form
of synchronization in the tradition of CCS [22] or CSP [17]. Secondly, we
replace the nondeterministic choice (s 1 v s2) of section 3 by a new form of

METRIC SEMANTICS FOR CONCURRENCY 515

nondeterminism, written as s1 +s2 • The latter is called global (sometimes also
external) nondeterminism. In the presence of synchronization, the former variety
is then called local. For an extensive discussion of these two notions we refer to
[10] and the papers cited there. The interesting point with the notion of global
nondeterminacy is that it needs some form of non-LT denotational semantics
to make sufficient distinctions. For example, assuming that a, bare normal actions
and c is a communication action (which requires a corresponding c in a parallel
component to establish synchronization), we want to assign different denotational
meanings to s1 =a ;(b +c) and s2 = (a; b)+ (a ;c).A simple LT model would not
capture the operational intuition (which treats si.s2 differently, details follow),
since it would deliver the outcome { ab, ac} in both cases (cf. the example following
definition 3.7).

We shall present below a branching time (BT) denotational model for !1'2
which indeed provides the desired refinement to distinguish between ~[s 1] and
~[s2[·

The syntax and operational semantics for !t' 2 exhibit only minor differences
with those for .!!' l · Firstly, we assume a subset (c E)C ~ A of communications,
and assume moreover a mapping - : C -+ C, such that (writing c for - (c)) we have
l = c. Finally, we postulate a special element re A '\,C which will be used as
outcome for a successful synchronization between an action c and its counterpart
c. Fot this we refer to the rule(s) Synch in definition 4.2.

DEFINITION 4.1 (Syntax). Let A be as just described, and f!{ as in section 3.

a (se!t'2). s ::=alxls1;s2 js1+s2 ls1jjs2,withxef!{.

b (ge!t'~). g::=ajg;slg1+92lg11ig2.

c (De~ect2). D = (x; ~g;);,x;ef!{,g;e!t'~.

d (t e.9w92). t =(DI s), De~ect'2 ,s e !1'2.

e !!'~ = !1'2 u {E}.

The transition system T2 is given in

DEFINTION 4.2. The transition system T2 contains Elem, SeqComp, Ree and
ParComp from T1 . Moreover, it contains the rules (s, s', s, si. s2, s" e !t' 2. a e A,

c EC, DE ~iid 2)

s ~Ds'IE
s+s .a+Ds'IE
s+s ~Ds'jE

C I f II
S1 -+DS ,S2 -+DS

s1lls2 4Ds'lls"

(GloCho)

(Synch 1)

516 J. W. DE BAKKER AND J.-J. CH. MEYER

S1 ~DE,s2 ~DE
S1 lls2 4v E

REMARKS.

1. By Elem, we now also have that c ~DE.

2. (In contrast to [10].) The rules in T1 and T2 for 'u' and '+',respectively,

have the same form. The difference will become manifest when we define

(!JD for sin 2 2 •

In order to define (!) for f!ho51 2 , we provide a slight variation on the set Q
used in section 3. We introduce a new symbol {J f{: A, modellingfailure, and we put

A[' = A* v A"' u A*· b. Thus, Af extends A 00 by adding all finite sequences

over A to which [) is appended. Furthermore, we put R = &PnAA;'). We shall

again use X, Y to range over R, and use the notation X a as before. (Note,

however, that elements in Xa now may end with b.) We give

DEFINITION 4.3 (operational semantics for &Pw512 , 2"2).

a. @:f!i'w?2 ~R is given by @[(Dis)]= lPv[s].

b. (!JD:!i''z ~R is given by: @D[E] = {s}, and for sf E,

where the transitions are with respect to T2 •

As in section 3, (!JD may be shown to be well-defined by a contractivity
argument.

EXAMPLE. @v[a;(b+c)] = {ab},lDv[(a;b)+(a;c)] = {ab,ab}.

The denotational model for ft' 2 assumes a domain (p E)P of branching time
processes (cf. section 2.4) satisfying the isometry

(4.1)

METRIC SEMANTICS FOR CONCURRENCY 517

Here we assume the discrete metric on A. Typical processes are

• the "nil process" p0 and the empty process</> (the empty set), corresponding
to the LT objects {e} and {Cl}, respectively,

• {(a, { (b, Po>}), (a, { (c, Po)})}, which is different from
{(a,{(b,p0),(c,po)})},

• the infinite process p = lim.p., where Pn+ 1 = {(a, p.), (b, p.) }.

We recall from section 2.4 that P is a complete ultrametric space, and that
elements of P are either finite or satisfy p = lim.p"' for p. fiQite. We draw
attention to the difference between {Cl} ER and rp E P. There is no problem in
incorporating </> into P. In particular, we have that d({(a,p1)}, {(a,p2)})

= t · d(Pi. P2) holds, even for p1 or p2 equal to </>. (This follows from the use
of id 112 (P) on the right-hand side of (4.1).) On the other hand, since a·</> = </>,
including </> into R would invalidate the contractivity property d(a · X I> a· X 2)

= t· d(X i. X2).
We next define the semantic operators op: P x P-+ P, for op E { u, 0 , II}, as

natural variations on those of definition 3.5.

DEFINmON 4.4.

a. p u q = p, if q = Po.
p u q = q, if p = Po·
Otherwise, p u q equals the set-theoretic union of the sets p and q.

b. Let op stand for o or II. Let </> be any ndi mapping: P x P -+ P. Let
4>0 P: (P x P-+ P)-+ (P)(P-+ P) be defined as follows:

4> (</>)(p)(q) = {q, if P =Po
0 {(a,q,(p')(q)) l(a,p')ep}, otherwise

where <$'1 : P x P -+ P is given by

<P (p)(q) = { < t, q,(p')(q')) I (c, p') e p, (c, q') e q}

c. We now put o =fixed point (4>0), II =fixed point (4>11).

We have again that the operators u, o, II are well-defined and ndi (and, henee,
continuous).

The denotational definitions are now easy variations on the ones in section 3.
Let (ye)I'2 = ~-+ P. Now .It :9-wp2 -+ P and~: !l'2-+ (I'2-+ P) are defined in

518 J. W. DE BAKKER AND J.-J. CH. MEYER

DEFINITION 4.5 (denotational semantics for !t' 2, fY!w? 2).

a. .lt[<Dls)] = ~[s]'J'D.

b. YD = y{pJx;}7 =" where, for D = <x; = g);, we put

<P 1o ••• , Pn) =fixed point (<P1, ... , <Pn)

with <Pi: P"--" P is given by, for j = 1, ... , n, <Pi(qi) ... (q.) = !?!1[gi]y{q;/x;};.

c. ~[a]y ={(a, p0)}, fiiJ[x]y = y(x),
~[s 1 ops2]y = ~[si]yopfi1J[s2]y, for op= ;, u, II and

op = o, u, II. respectively.

EXAMPLES. !'![a; (b +c)]y = {<a, { (b, Po), (c, Po)})},
!'t[(a;b)+(a;c)]y = {(a,{(b,p0)}),<a,{(c,p0)})},

.K[(x =a; (bllx)lx)] = lim;p;, where P;+ 1 = {(a, { (b, Po)} llP;) }.

We see that ~[s]y contains traces of unsuccessful communications which are not
present in l!JD[s]. For example, !?#[c]y = {(c,p0)}, CPD[c] =b. Moreover, the
elements delivered by ~[s]y are branching time objects (in P) and the elements
delivered by l!Jn[s] are linear time objects (in R). We therefore define an
abstraction operator abs: P --" R which links the two meanings: given an
argument p, abs deletes (c, ...) branches from p, and collapses the branching time
structure into the set of all "paths" in the process p.

DEFINITION 4.6 (abstraction). We define abs as fixed point of the contracting
mapping 'Pabs: (P ~ R) ~ (P--" R) given as follows: Let l/J e P--" R. Writing
liiabs as shorthand for lJ'abs(l/J), we put

fiiabs(Po) = {a},

and, for p f Po.

- {{Ci},if{al(a,p')ep,a~C} =c/>
l/Jabs(P) = U {a· t/l(p') I (a, p') e p, a~ C}, otherwise.

REMARK. The well-definedness of abs relies on the finiteness of A, cf. [6].

It can now be shown that

THEOREM 4.7. For each te&>wp2 , (!)[t] = (abso.K)[t].

We omit the proof which is an extension of that of theorem 3.9. Details are
given in [18].

METRIC SEMANTICS FOR CONCURRENCY 519

5. Process creation.

We now turn to the study of a simple uniform language with processt creation
as central feature. We couch the notion of process creation in the framework
of the language 2 3 (with induced .9'wg:3). This language is like 2 1 (or
&>wpi), but with the construct of merge replaced by the construct new(s):
execution of new(s) creates a new process with body s, to be executed in parallel
with the already existing processes. (A more precise definition follows in a
moment.)

We first encountered the notion of process creation during our study of the
semantics of POOL, a parallel object-oriented language. In [2, 3] we have
designed operational and denotational semantics for POOL, and in [1] we
massaged these definitions such that the equivalence of the two semantics for
process creation could be shown. What follows below is a new presentation,
which could be simplified considerably thanks to another application of a con
tractivity argument.

We assume A and :!(' as in section 3. (For simplicity, this section has no
(c e)C ~A, and 'u' again replaces '+'.)

DEFINITION 5.1 (Syntax).

a (se£'3). s::=a/x/s1 ;s2 /s1 us2 /new(s),withxe!l'

b (se£'3). g::=h/91;92191U92/new(g)
(h EH). h : : = a I h; s I h1 u h2 ,

C (DE !?)ect' 3). D = (x; <= 9;);, X; E !!', 9; E £'~, i = 1, ... , n.

d (te&'w.?3). t = (D/s),De,qj).ect'3,se£'3 .

REMARK. The complications in the definition of (g e)~ are caused by the
following phenomenon: We want to make sure that occurrences of x in 9 are
guarded by some statement which starts with an elementary action a. Without
the precaution as taken in clause b (i.e., adopting a syntax for .2"';, analogous
to .'l"{, of the form g ::= a/9;slg1 u92 /new(g)), a statement new(a);x would
qualify as guarded. As we shall see later, the intended meaning of new(a); x
is the same as that of the unguarded (£' 1 -)statement a/Ix, allowing execution
of x before a. This would violate the desired contractivity of the function(s)
associated with the declarations; hence, the need for the more involved
definition.

Before providing the formal semantic definitions, we first present an informal
explanation of process creation. The execution of s is described in terms of a

t The programming notion of "process" as studied in section 5 has nothing to do with the
mathematical notion of "process" appearing in section 4.

520 J. W. DE BAKKER AND J.-J. CH. MEYER

dynamically growing number of processes which execute statements in parallel
in the following manner (all steps are with respect to some given D):

1. Set an auxiliary variable i to 1 and set s1 to s, the statement to be executed.
A process, numbered 1, is created to execute s1•

2. Processes 1 to i execute in parallel. Process j executes si (1 ~ j ~ i) in the
usual way in case si does not begin with some new(s') statement.

3. If some process j (1 ~ j ~ i) has to execute a statement of the form new(s'),
then the variable i is set to i + 1, si is set to s', and a new process with
number i is created to execute s;. Process j will continue to execute the part
after the new(s') statement. Go to step 2.

4. Execution terminates if all processes have terminated their execution.

We proceed with the formal semantic definitions. We use a somewhat extended
transition formalism which involves constructs defined in

DEFINITION 5.2.

a. The set (r E)9'e? of sequents is defined by r : : = Eis; r, with s e Ii' 3 •

b. The set (Cl e)&at of parallel constructs is defined by Cl : : = rI> .. . , r m n ~ 1.

Transitions in 13 are elements of r?ai x Ax ~ect3 x &'at, written in the notation

a ' C! -+o Cl ·

We shall often encounter instances of transitions written as ... , r, ... ~D ••• , r',
Here r (r') is a component of(! (Cl'1 and the notation implies that all terms at the
dots (...) are unaffected by the transition. Mutatis mutandis, such notation also
applies to transition rules.

DEFINITION 5.3 (transition system T3).

a ... , a; r, ... -+0 •• • , r, ...

. . . ,s1; (s2; r), ... ~D Cl

... , (s 1 ;s2);r, ... a.+D (!

. .. ,s;r, ... ~D Cl

... , (s uS);r, ... a.+D (!

... , (s us);r, ... ~0 (!

g . a ... , ,r, ... -+o(l "h . D
---------"'----'- , Wlt X <= g 1D
... ,x;r, ... 11+0 (!

(Elem)

(SeqComp)

(Choice)

(Ree)

METRIC SEMANTICS FOR CONCURRENCY

... , r, ... , s; E ~De
... , new(s); r, ... 14D e

521

(New)

Note that in the rule (New), if the transition in the consequence has n components
on its lefthand side, then the transition in the premise has n + 1 components on
its left-hand side.

EXAMPLE. new(a; new(b, c)); d; E !!.+D d; E, new(b; c); E £+D
d; E, E, c; E !!..D E, E, c; E ~DE, E, E.

The operational semantics associated with T3 is described in

DEFINITION 5.4.

a. {P: f!J'w?3 -+ Q is given by <P[(Dis>] = <PD[s; E].

b. {PD: f!J'a2-+ Q is given by:

[] {{e}, if e = E,E, ... ,E
{PD (! = u {a. @D[e'] I(! ~De'}, otherwise,

where the transitions are with respect to T3 .

REMARK. Well-definedness of {PD follows as usual.

We continue with the denotational definitions. Let Q and the operators u, II be
as in section 3 ("o" plays no role here). Besides the usual environments, we also
introduce the set of socalled continuations ~on/ which, in the present setting,
coincides with Q. We have, altogether, the following domains and functions:

(X E)Q, (X E)~on/= Q
(y E)I' 3 = f!l:-+ (<Ion/-+ Q), e E <Ion/-+ Q
.A: f!J'w?3 -+ Q
fJ: !L' 3 -+ (I' 3 -+ (<{font-+ Q))

with .A and !iJ defined in

DEFINITION 5.5.

a. .A[(Dis>] = fJ[s]YD{e}.

b. YD = y{eifxiH = 1. where, for D = (x; <;:::. gi)i, we put

<e1 ,en> =fixed point (<Pi.···· <Pn)

with <P1 : (<l.091/-+ Q)"-+ (<lont-+Q)is given by '1>1(e'i) ... (e~) = fJ[g1]y{ej/xjh,
for j = l, ,n.

522 J. W. DE BAKKER AND J.-J. CH. MEYER

c. ~[a]yX = a· X, ~[x]yX = y(x)X, gjj[s1; s2]yX = ~[s1]y(~[s2]YX),
~[s 1 u s2]yX = (gjj[si]yX) u (~[s2]YX).

d. ~[new(s)]yX = (gjj[s]y{e})llX.

As usual, our main task is to relate {J) and A. We shall prove

THEOREM 5.6. For all t ef!J>wr;3, (l)[t] = jf[t].

The proof uses an auxiliary function CD: f!l>ai --. Q defined by

• G"v[ri, ... ,rn] = Cv[r1]1! ... llCv[rn],

• Cv[E] = {e},Cv[s;r] = gjj[s]rv(Sv[r]).

We shall show that the following holds:

CLAIM.

{ {e}, if fl = E, E, . .. , E
CD[fl] = U {a· SD[fl'] I fl f!+v fl'}, otherwise.

Once this claim has been established, we are done: By the usual argument, it
implies that S v[fl] = f!J v[fl] ; hence, in particular,

(!)[(Dis)]= (l)v[s;E] = CD[s;E] = gjj[s]yD{e} = A[<Dls)].

The claim is proved by showing that Cv satisfies (*): 'l'(Sn) = cB'n. where 'l' is
defined, for each .~0 ef!J>az--. Q, by

'l'(ff)()={{e},ifQ=E, ... ,E
D (l U{a· .'FD[e'] I (l !!+De'}, otherwise.

We prove (*) by induction on the complexity of fl = r 1 , ••• , r m• which we define
as the entity (k, c(e)), where k ~ 0 is the number of unguarded occurrences of
some xi (1 ~ j ~ n) in some ri (l ~ i ~ m). Moreover, c{fl) is defined as
c(ri)+ ... +c(rm), where c·(E) = 0, c(s;r) = c(s)+c(r), and c(a) = c(x) = 1,
c(s1 ;s2) = c(s1 u s2) = l +c(si)+c(s2), c(new(s)) = 1 +c(s). (We recall here that
x does occur unguarded in, e.g., new(a);x;E.) We order the entities (k,c) by
putting (k, c) < (k', c') whenever k < k' or k = k' and c < c'.

Stage l. We first consider the case that complexity((}) = (0, ...). If e = r, (l'

we show that cP(S D)(r, e') = tf n[r, (11
] by an argument similar to that in section 3,

stage 1 of the proof of theorem 3.9. Here we use, in addition, that, if

METRIC SEMANTICS FOR CONCURRENCY 523

then complexity(gi) < complexity(Q2). If Q = r, we distinguish various subcases.
If r = E, the claim is obvious. If r = s; r', we argue by case analysis on the
structure of s. We discuss two typical subcases:

• s = s1 ;s2. Then
4>(cfn)((s1 ;s2);r) =

LJ{a·Sn[e] I (s1 ;s2);r .'!+ne} = (def. T3)

u {a· Sn[e] I S1; (s2 ;r) .'!+De}=
(since c(s1 ; (s2; r)) < c((s1 ; s2); r), we may apply the ind. hyp.)
S n[s 1 ; (s2; r)] = (def. S D• ~)
c9'n[(s1 ;s2);r].

• s = new(s').
tl>(cfv)(new(s);r) =
LJ{a·Sn[e] I (new(s);r.'!+ve} = (def. T3)

LJ{a·Sn[e]lr,s;E.'!+ne} =
(since c(r,s;E) < c(new(s);r), we may apply the ind. hyp.)
Sv[r,s; E] = (def. Sn)
@" v[r]llS n[s; E] = (def. @• D• ~)

(~[s]rn{e})ll&n[r] =
~[new(s)]Yn(@''n[r]) =
c8' n[new(s); r].

Stage k + 1. Assume that (*) holds for any e with at most k unguarded
occurrences of some x;. Now consider a e with /< + 1 unguarded occurrences.
All cases are as before, but for the case {} = r, r = s; r',s = X;, for some x;EEl'.
Then

tl>(Sv)(x;;r') =
LJ{a·Sn[e] lx;;r' .'!+ne} = (def. T3) u {a. Sn[e] I g;;r' .'!+u e} (with X; <= 9; in D) =

(since g; is guarded, we may apply stage k)

Sn[g;;r'] =
<B' n[x;; r'], where the last equality holds by the definition of !'J. •

We conclude this section with two

REMARKS.

1. It has been shown by IJ. J. Aalbers berg and P. America (personal communi
cation) that the expressive powers of II and of new(...) are incomparable:
There exists t 1 e f!l'wSJ 1 such that for no t 3 e (!l>wSJ3 , c'.O[t i] = lD[t3], and
vice versa.

2. In [1], process creation is also considered in a nonuniform setting, in the
sense of, e.g., the language of the next section.

524 J. W. DE BAKKER AND J.-J. CH. MEYER

6. Communicztion with value passing.

We conclude our list of four specimen languages analyzed with metric tools
with a discussion of a nonuniform language 2 4 which is best seen as an extension
of 2 2 from section 4. The atomic actions of 2 4 are no longer uninterpreted
symbols a from some alphabet A, but, instead, assignments v := e, for v an
individual variable and e an expression, and communication actions c ?v 01 c !e.
Also, booleans b are introduced appearing as tests in conditional statements.
Accordingly, the semantic models now incorporate states, i.e. mappings from
individual variables v to elements oc in some set V of values.

We first collect some syntactic preparations. We introduce the set (ve)J"ndv
of individual variables and (c e)C of channels. Channel names c appear in the
communication actions c?v and c !e. Synchronization of two such actions is
defined similarly to that of c, c in section 4. In addition, however, at the
moment of successful synchronization the assignment v : = e takes place.
Assuming that c?v occurs in some component s1, and c!e in a component s2

of the parallel statement s1 lls2 , the current value of e is transmitted by the sender
s2 over the channel c to the receiver si. where it is (instantaneously) assigned to
the variable v. Furthermore, we introduce the syntactic classes (e e)Sxft of
expressions and (be)tll.oot of booleans. For simplicity, we assume some
elementary syntax for r!xfz and PA.oot, and leave this unspecified here. We only
postulate that no complications such as side-effects or nontermination arise in
the evaluation of some e or b.

We now give

DEFINITION 6.1. Let PI= {xi. ... , xn} be as before.

a. (s e 2 4).

s: := v := e I c?v I c!e Ix I if b then s1 else s2 ft I s1 ;s2 I sills2 , with x e?I.

b. (g e 2!). g : : = v : = e I c ?v I c !e I g ; s I if b then g 1 else g 2 ft I g 1 I lg 2 •

c. De~ed4, tef/Jwf4 are formed from se.!£4 and ge2! as usual.

REMARK. For simplicity, 2 4 has no form of nondeterminism.

Some semantic preparations are contained in

DEFINITION 6.2.

a. (cxe)Vis the set of values, {tt,jf) is the set of truth-values.

b. (u e)!' = J"ndv _. V is the set of states.

c. ('1 e)H = .r u LI, where
(be)LI = {c?vlceC,veJ"ndv} u{c!cxlceC,cxeV}.

METRIC SEMANTICS FOR CONCURRENCY 525

d. For e e Sxjt, [e](a) denotes its value in state a; for be :!loo!, [b](a) denotes
its truth-value in state a.

REMARKS.

1. The reader may always take 71.. for V to give some realistic flavour to our
considerations.

2. The set H serves technical purposes in the definitions below. For given input
a, computations yield elements 17 e H as output. These may be distinguished
into "normal" '1 e E and "abnormal" '1 e LI, where the latter results from one
sided (and therefore failing) attempts at synchronization c?v or c!e.

We proceed with the definition of the transition system 74. This time, transitions
are fivetuples in !£'4 xExt)ecl4 x!i'4 xH or four-tuples 2 4 xExt)ecl4 xH,
written as

(s, a) -+v (s', 17),

(s, a) -+v 17,

respectively. T4 is defined, applying a self-explanatory style of abbreviating rules, in

DEFINITION 6.3.

(v := e,a)-+va{oc/v}, where~= [e](a)

{
(c?v, a) -+v c?v

< 1) 1 , where IX= [e](a)
c .e, a -+v c .IX

(if b then s1 else s2 ft, a) -+v (s', 1'/)ll'/

where si = si(s2) in case [b](a) = tt(jf)

(s, a) -+v (s', 17) 117
(s; s, a) -+D (s'; s, 17) l(s, 17)

(s, a) -+v (s', 17)117

(sllS, o) -+D (s'llS, 17)l(s, t/)
(SJls, o) -+D (Slls', 17)l(s, t/)

(s1, a) -+D (s', c?v), (s2, a) -+D (s", c!ll)

(s1lls2, a) -+D (s'lls", u{1X/v})

(Ass)

(JndCom)

(Cond)

(SeqComp)

(ParComp)

(Synch)

and the three obvious variations in cases', s" or both are missing

526 J. W. DE BAKKER AND J.-J. CH. MEYER

(g, a) _,.D (s', 11>111 "th . D
------ , WI X <= g In
(x, a) _,.D (s', 11>!11

(Ree)

Before we define c'D[t] and mv[s] we first introduce the process domain P as
solution of

(6.1) P ~ {Po} U (l:-+ Pl'compacr(H X id112(P))),

with the discrete metric on l: and H.

REMARKS.

1. In (6.1), Pl'compack) denotes all compact subsets of (·). This is necessitated
by the fact that the "alphabet" H is, in general, infinite (contrary to the
finite A in section 4).

2. We leave for another occasion discussion of the equation

(6.2) P' ~ {e} U (l:-+ Pl'compacr(H' id1;2(P')))

determining P' as possible "linear time" alternative for P. This discussion will in
particular have to clarify the role of '·' versus 'x' in a nonuniform context.

The operational semantics are given in

DEFINITION 6.4 (operational semantics for Pl'wf4 , !t' 4).

a. @ :&wp4 -+ P is given by @[(Dis)]= C9v[s].

b. (9 D : !t' 4 __,. P is given by :

@v[s] = A.a.({(a', lDv[s']) I (s, a) -'>v(s', a')) u {(a', p0) I (s, a) -'>v a'});

where the transitions are with respect to T4 •

REMARK. Just as in definition 4.3, lDv does not take into account transi
tions stemming from failing communications, signalled here by the format
(s, a) -+v (s', o)jo with o ELI.

For P as in (6.1), we can define the usual operators u, o, jj. We restrict
ourselves to the definition of II, here involving the auxiliary operators II.. and j.

DEFINITION 6.5. Let P be as in (6.1), and let (X e)&' abbreviate
&'campaci(H x id112(P)). We define the operator II as fixed point of 11> 11 : (P x P __,. P) __,.
-+ (P x P-+ P), where, for <P e P x P __,. P and <P ndi, lf>11 (qi) = "1·$11 is given by

-...----

METRIC SEMANTICS FOR CONCURRENCY.

{
p, if q =Po

cP11(P)(q) = q, if P =Po
),a.(t/)i.(p(a))(q) u $i.(q(a))(p) u t/> 1,,,(p(a))(q(u)))

where cPu._: f!J x P -+ f!J is defined by

t/>i.(X)(q) = {(17, cp(p')(q))l('7. p') EX},

and t/> 1,,,: f!J x f!J -+ f!J is defined by

$1,,,(X}(Y) = {(a{ix/v},cp(p')(q'))l(c?v,p')eX,(c!ix,q')e Y or vice versa}.

527

We are now ready for the defintion of .A[t] and ~[t]. Let (ye)I'4 =ff-+ P,
let .A: f!h.ofJ4 -+ P and ~: !t' 4 -+ (I' 4 -+ P). We give

DEFINITION 6.6 (denotational semantics for !t' 4 , !?Ju,v4).

a. .A[(Dls)] = ~[s]Yv·

b. Yo is as usual.

c. ~[v:= e]y =A.a. {(a{1X/v},p0)}, with et= [e](a), ~[c?v]'l' = A.u.{(c?v,p0)},

~[c !e]y = A.a. { (c !et, p0) }, with et = [e](a),
~[if b then s1 else s2 Ji] = A.a.if [b](a)= tt then ~[s 1]yu else ~[s2]ya .fi.
and
~[x]y,!'}[s 1 ~s2]y for~= ;, u, II, as usual.

One last step is necessary before we can formulate our final result. We define
the abstraction mapping abs: P-+ P", where P" satisfies

(6.3)

by putting abs =fixed point ('I' abs), with 'I' abs: (P -+ P") -+ (P -+ P") defined by :
For 1/1 E P-+ P", 'I' abs(I/I) = JJ.Iµ abs is given by

l#abs(Po) =Po,
and, for p f p0 ,

l#abs(P) = A.a . .}l(p(a))

and

i#(X) = {(a, l/l(p')) I (a, p') EX}.

Note that the last clause deletes pairs (b, p') from X.

We finally have:

THEOREM 6.7. For each tef!JwfJ4 , l!J[t] = (abso.fi)[t].

PRooF. By the usual contractivity argument. •

528 J. W. DE BAKKER AND J.-J. CH. MEYER

Acknowledgements.

The work would not have been possible without the essential contributions
of the Amsterdam concurrency group and its affiliates. We acknowledge

in particular the work of Joost Kok and Jan Rutten who first realized the

crucial role of contractivity arguments in comparing concurrency semantics.
Pierre America, Ernst-Rudiger Olderog and Jeff Zucker have worked together
with us on the papers [10], [l], both of which were instrumental for the

present paper.

REFERENCES

I. P. America and J. W. de Bakker, Designing equimlent semantic models for process creation, in
Proc. Advanced School on Mathematical Models for the Semantics of Parallelism (M.

Venturini Zilli, ed.), LNCS 280, Springer, 1987, pp. 21-80 (to appear in Theoretical Computer
Science).

2. P. America, J. W. de Bakker, 1. N. Kok and J. J. M. M. Rutten, Operational semantics of a
parallel object-oriented language, 13th ACM Symposium on Principles of Programming
Languages, St. Petersburg, Florida, January 13-15, 1986, pp. 194-208.

3. P. America, J. W. de Bakker, J. N. Kok and J. J. M. M. Rutten, Denotational semantics of a
parallel object-oriented language, Report CS-R8626, Centre for Mathematics and Computer
Science, Amsterdam, 1986. To appear in Information and Computation.

4. P. America and J. J. M. M. Rutten, Solving reflexive domain equations in a category of complete
metric spaces, in Proc. of the Third Workschop on Mathematical Foundations of Programming
Language Semantics (M. Main, A. Melton, M. Mislove and D. Schmidt, eds.), LNCS 298,
Springer, 1988, pp. 254-288.

5. K. Apt and G. Plotkin, Countable nondeterminism and random assignment, JACM 33(4), (1986),
724-767.

6. J. W. de Bakker, J. A. Bergstra, J. W. Klop, and J.-J. Ch. Meyer, Linear time and branching time
semantics for recursion with merge, TCS 34 (1984), 13 5-156.

7. J. W. de Bakker, J. N. Kok, J.-J. Ch. Meyer, E.-R. Olderog, and J. I. Zucker, Contrasting themes
in the semantics of imperative concurrency, in Current Trends in Concurrency: Overviews and

Tutorials (J. W. de Bakker, W. P. de Roever, G. Rozenberg, eds.), LNCS 224, Springer (1986),
51-121.

8. J. W. de Bakker and J.-J. Ch. Meyer, Order and metric in the stream semantics of elemental
concurrency, Acta Informatica 24 (1987h 491-511.

9. J. W. de Bakker, J.-J. Ch. Meyer, and E.-R. Olderog, Irifinite streams and finite observations in
the semantics of uniform concurrency, TCS 49 (198n 87-112.

10. J. W. de Bakker, J.-J. Ch. Meyer, E.-R. Olderog, and J. I. Zucker, Transition systems, metric

spaces and ready sets in the semantics of uniform concurrency, Joumal of Comp. Syst. Sci. 36
(1988), 158-224.

11. J. W. de Bakker and J. I. Zucker, Processes and the denotational semantics of concu"ency,
Inform. and Control 54 (1982h 70-120.

12. J. W. de Bakker and J. I. Zucker, Processes and a fair semantics for the ADA rendez-vous, in:
Proc. lOth ICALP (J. Diaz ed.h LNCS 154, Springer (1983), 52-66.

13. J. A. Bergstra and J. W. Klop, A convergence theorem in process algebra, Report CS-R8733,
Centre for Mathematics and Computer Science, Amsterdam, 1987.

14. J. Dugundji, Topology, Allen and Bacon, Rockleigh, N.J. 1966.
15. R. Engelking, General topology, Polish Scientific Publishers 1977.
16. M. Hennessy and G. D. Plotkin, Full abstraction for a simple parallel programming language, in:

Proceedings 8th MFCS (J. Becvar ed.), LNCS 74 Springer (1979), 108-120.

METRIC SEMANTICS FOR CONCURRENCY 529

17. C. A. R. Hoare, Communicating Sequential Processes, Prentice-Hall lnt., Englewood Cliffs, New
Jersey, 1985.

18. J. N. Kok and J. J. M. M. Rutten, Contractions in comparing concurrency semantics, Report CS
R8755, Centre for Mathematics and Computer Science, Amsterdam, 1987, to appear in Proc.
ICALP 1988.

19. J.-J. Ch. Meyer, Merging regular processes by means ofjixed point theory, TCS 45 (1986), 193-
260.

20. J.-J. Ch. Meyer and E.-R. Olderog, Hiding in stream semantics of uniform concurrency, Report
IR-125, Free University, Amsterdam, 1987.

21. J.-J. Ch. Meyer, and E. P. de Vink, Applications of compactness in the Smyth powerdomain of
streams, in: Proc. TAPSOFT '87 (H. Ehrig, R. Kowalski, G. Levi, U. Montanari, eds.), LNCS
249, Springer (1987~ 241-255.

22. R. Milner, A calculus for communicating systems, LNCS 92, Springer, 1980.
23. M. Nivat, Jrifinite words, irifinite trees, infinite computations, in: Foundations of Computer Science

111.2 (J. W. de Bakker, J. van Leeuwen, eds.), Mathematical Centre Tracts 109, Amsterdam
(1979~ 3-52.

24. G. D. Plotkin, A powerdomain construction, SIAM Journal of Computing, Vol. 5, No. 3 (1976),
452-487.

25. G. D. Plotkin, A structural approach to operational semantics, Report DAIMI FN-19, Comp.
Sci. Dept., Aarhus Univ., 1981.

26. G. D. Plotkin, An operational semantics for CSP, in: D. Bj0mer (ed.): Formal Description of
Programming Concepts II, North-Holland (1983~ 199-223.

27. M. B. Smyth, Quasi uniformities, reconciling domains with metric spaces, in Proceedings of the 3rd
Workshop on Mathematical Foundations of Programming Language Semantics (M. Main, A.
Melton, M. Mislove and D. Schmidt, eds.), LNCS 298, Springer, 1988, pp. 236-253.

