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Abstract. 

An overview is given of work we have done in recent years on the semantics of concurrency, 
concentrating on semantic models built on metric structures. Three contrasting themes are discussed, 
viz. (i) uniform or schematic versus nonuniform or interpreted languages; (ii) operational versus 
denotational semantics, and (iii) linear time versus branching time models. The operational models 
are based on Plotkin's transition systems. Language constructs which receive particular attention are 
recursion and merge, synchronization and global nondeterminacy, process creation, and communica
tion with value passing. Various semantic equivalence results are established. Both in the definitions 
and in the derivation of these equivalences, essential use is made of Banach's theorem for contracting 
functions. 
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1. Introduction. 

We present an expository account of work we have been pursuing in recent 
years on the semantics of concurrency, concentrating on those models which are 
built on structures from metric topology. We shall exhibit semantic definitions 
for a variety of programming notions relating to concurrency, viz. recursion with 
merge (parallel execution in the interleaving sense), synchronization and global 
nondeterminacy, process creation, and communication with value passing. We 
hope to demonstrate the power of metric methods, both in the semantic defini
tions themselves and in the establishment of particularly succint derivations of 
equivalence results between operational and denotational semantic models. 
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Three contrasting themes will recur in our considerations (cf. [7] for a more 
elaborate treatment). First, there is the familiar distinction between operational 
and denotational semantics. The former will always be based on transition systems 
which are variations on the elegant systems of Hennessy and Plotkin ([16], [25], 
[26]). The latter will throughout be defined compositionally, with (unique) fixed 
points to deal with recursion. Such fixed points exist on the basis of Banach's 
theorem for contracting functions. In fact, this theorem is absolutely pervasive 
in our technical considerations: a good deal of our definitions and theorems 
ultimately rely on it. Second, we shall contrast uniform and nonuniform languages. 
The former are schematic in the sense that their elementary actions are uninter
preted, and the meanings rendered by our definitions involve entities with a 
strong flavour of formal language theory. More specifically, sets of (possibly 
infinite) words or tree-like objects are delivered. Nonuniform languages have 
interpreted elementary actions. They include notions such as (individual) vari
ables, assignments, states and state transforming functions. As we shall demon
strate, it requires additional tools to set up a framework in which one may 
merge such functions. Third, we shall be concerned with both linear time (LT) 
and branching time (BT) models. Typical examples are sets of words versus trees 
(with some further properties not stated here) over some alphabet A. In the 
former, moments of choice are abstracted away which are present in the latter. 
We recall the classical example of the LT set {ab,ac} versus the two different 
trees in BT: 

a 

b c 

The genealogy of the work described in the present paper is as follows: 
Ancestors are Nivat's work on mefric techniques in semantics ([23]) and Plotkin's 
work on resumptions in power domains ([24]). In (11] we described a general 
method to solve domain equations using metric techniques. [12] is an example 
of a specific semantic application. A substantial improvement on [ 11 J is given 
in [4] where the scope of the method in [11] was clarified and, even better, 
considerably generalized. A comparison of LT and BT models for recursion with 
merge was first made in [6]. In [10], [7] ·a systematic comparison of operational 
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and denotational models was developed, both for recursion and merge, for 
synchronization with (forms of) nondeterminacy, and for nonuniform languages. 
Somewhat simultaneously we have devoted a number of papers to the design of 
semantic models for the parallel object oriented language POOL ([2, 3, l]), 
dealing, besides with various other notions, with process creation. An essential 
step on the way to substantial simplification of the sometimes quite elaborate 
arguments in [10], [1] was performed in [18]. Here the full power of the tmique 
fixed point argument, not only in defining but also in comparing semantic 
models, was first exploited. 

In parallel to the metrically based semantic studies, we have also continued 
to work with models based on partial orders, were it only to relate order-theoretic 
models to metric ones. In addition, for the metric models as we use them, the 
requirement that all sets considered be closed is vital, and the metric theory 
fails when phenomena inducing nonclosed sets are encountered. Examples of 
comparative studies, in particular relating to the "elemental" combination of 
recursion with merge, are [8], [9]. An extensive application of order-theoretic 
tools, specifically to deal with fair merge (the result of which is in general 
nonclosed) is described in [19]. Another language notion which is not directly 
amenable to metric techniques is that of hiding (cf. [20]). Finally, we mention [21] 
where an order-theoretic counterpart of the topological notion of compactness 
is studied. 

More in general, the relationship between the metric and order-theoretic 
domain theory is a topic of much current research. A representative reference 
is [27]. 

We are at present investigating further applications of the metric method in 
semantics. Two prime examples are uniform (or "logicless") versions of logic 
programming, and more advanced concepts in object-oriented programming. 

2. Mathematical preliminaries. 

2.1. Notation. 

The phrase "let (x E )X be such that ... " introduces a set X with variable x 
ranging over X such that .... For X a set, £?ll(X) denotes the collection of all 
subsets of X, and 81',,(X) is the collection of all subsets of X which have 
property n. The notation f: X ..-. Y expresses that f is a function with domain 
X and range Y. We use the notation f {y/x }, with x EX and ye Y, for a variant 
off, i.e. for the function which is defined by 

f {y/x}(x') = {;(x') if x = x' 

otherwise 

If f: X-.. X and f(x) = x, we call x a fixed point of f. 

f 
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2.2. Metric spaces. 

From standard topology (e.g. [14], [15]) we assume known the notion of 
(ultra)metric space (M, d) with distance or (ultra)metric d. We use the notions of 
closed subset X of (M, d), of continuous mapping (Mi. di)-+ (M2 , d2 ), of com

pleteness of a metric space, and of isometry (~)between metric spaces (M 1,di) 
and (M2 ,d2 ). A mapping/: (Mi.di)-+ (M 2 ,d2 ) is called contracting whenever, 
for all x, ye MI> we have d 2(f (x),f (y)) ~ IX· di(x, y), with 0 ~IX < 1. If the same 
condition holds with IX = 1, we call f non distance increasing (ndi). Clearly, a 

. contracting or ndi mapping is continuous. A central role is played below by 

PROPOSITION 2.1 (Banach). Let f: (M, d)-+ (M, d) be contracting, and let (M, d) 
be complete. Then f has a unique fixed point x 0 and, for any y, x 0 = limdi(y), 
wheref0 = A.x·x,p+i =fop. 

2.3. Metric spaces of (sets of) words. 

Let A be a finite alphabet, let A*(A"') denote the collection of all finite 
(infinite) words over A, and let A"' = "' · A* u A"'. Let e denote the empty word. 
For each u e A 00 , u(n) is the prefix of u of length n, if this exists, and 
u(n) = u, otherwise. We define a metric don A 00 by putting d(u,v) = 2-n, where 
n = sup{k I u(k) = v(k)}. Thus, d(u,v) = i- 00 = 0 if u = v. We have 

PROPOSITION 2.2. (A 00 , d) is a complete ultrametric space. 

In (A 00 ,d) we have, e.g., that lim"u(n) = u. A typical closed subset of (A 00,d) 
is a*· b u {a"'}, whereas a*· bis not closed. Let Q = &'nc(A 00 ) denote the collec
tion of all nonempty closed subsets of A 00 • Let, for X e Q, X(n) = { u(n) I u e X}. We 
define a metric a on Q by putting a(X, Y) = r", where n = sup{k I X(k) = Y(k)}. 
For example, a({abc,ef}, {abcd,efg}) = i- 2 • We have 

PROPOSITION 2.3. (Q, a) is a complete ultrametric space. 

2.4. Domain equations and resumptions. 

We briefly recall the notion of a (metric) domain equation. The general· form 
of such an equation is 

(2.1) P ~ F(P) 

or, more precisely, (P, dp) = F((P, dp)), where the mapping F (technically a 
functor from the category of complete metric spaces to itself, but we do not have 
to be aware of this) is built up as follows: Fis either a constant (delivering 
some complete (A, d,.)), a transformation id11 which maps (M, d) to (M, ix· d) 
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for some real a, or composed from already given components by operations such 
as cartesian product, disjoint union, (restricted) function spaces, or the "closed 

subset of" mapping. We have no room to discuss details which are described at 
length in [11 J or [ 4] (see also (13] for the connecti9n between such P and 
spaces obtained through bisimulation from synchronization trees as, e.g., in (22]). 

It is sufficient to know that isometries such as 

(2.2) 

(2.3) 

(2.4) 

all have well-defined solutions as complete metric spaces. For examples, P as in 
(2.2) consists of p0 , all finite sequences (a1 (a2 , .• ., (an, Po) ... )), n > 0, and all 
infinite sequences (a 1 , (a2 , •.. , (a., ... ) ... )). Elements of each P are either finite 
(and then equal to p0 or in some P.+ 1 = ffe'(P.)), or infinite and then satisfy 
p = lim.p., with p. e P •. Occurrences of P in terms ... x P on the right-hand 
side of these equations justify the terminology of resumptions: For example, for 
peP with P as in (2.4), p(f p0 ) is a function which, when supplied with 
argument a EA turns itself into, among other things, some (b, p'). In later 
applications we shall read this with the connotation: process p maps a to b and 
then turns itself into process p' as resumption. 

For subsequent purposes, we note that, if the constant spaces (A, d..t), (B, d 8 ), ... 

are assumed to be ultrametric, then the solutions P (as in (2.2) to (2.4)) are also 
ultrametric. 

Example: Elements from Pas in (2.3) are, e.g., {(a,{(b,p0),(c,p0 )})} and 
{(a,{(b,p0)}),(a,{(c,p0)})}. These may be pictorially represented by the trees 
from section I. No such distinction is present in the set Q, where both 
objects are represented by the set { ab, ac}. 

3. Recursion and merge. 

The first language we consider is a simple extension of the traditional (uniform) 
sequential languages, obtained by adding the programming construct of parallel 
execution or merge s1 lls2 of the two statements s1 and s2 • By a traditional 
(uniform) language we mean here a language which has (uninterpreted) elementary 
actions taken from some alphabet A, sequential composition, nondeterministic 
choice and recursion. It is well-known that these four concepts put together in 
the customary way - the exact syntax follows in a moment - yield the 
expressive power of context-free languages, here taken in the general sense of 
languages over finite and infinite words over A. Thus, we may rephrase the object 
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of study in the present section as infinitary context-free languages extend.ell wttn 
merge or shuffle, where the latter notion is the standard operation of language 
theory. This combination of (basic notions with) recursion and merge was first 
studied in [6] (denotational LT and BT models) and [10, 7] (operational vs. 
denotational LT models). The presentation below essentially follows [18], though 

. c:iur returning here to the format of simultaneous recursion - rather than employing 
possibly nested µ-constructs - allows a considerably more concise treatment. 

We build the syntax starting from 

• a (not necessarily finite) alphabet A, with elements a, b, c, ... 

• a set &>vai of procedure variables xi. x2, •••• It will be convenient to 
assume that each program uses exactly the procedure variables in the initial 
fragment !'£ = {xi. ... , x.} of &>vai, for some n ~ 0. 

We start with 

DEFINITION 3.1 (Syntax). 

a (statements). The class (s E )2 1 of statements is given by 

s : : = a Ix I s1 ;s2 I s1 u s2 I sills2. with x E fl' 

b (guarded statements). The class (gE )2t of guarded statements is given by 

g ::=a lg;s 191 uu2 IB1llu2 

c (declarations). The class (D E ).@ ect" 1 of declarations consists of n-tuples 
D = x 1 <;:::.g1 , .•. ,Xn<;:::.9n or (Xi<;:::.g;);, for short, with xiefl' and g;E2t. 

d (programs). The class (t E )&>wp1 of programs consists of pairs t = (D Is). 
with DE!?}ed1 and SE21 . 

ExAMPLES. 

1. < 
x1 <;:::.a;x2 ub;x3 , 

x 2 <;:::. b u b;x1 u a;x3 ;x3, 

X3 <;:::.a u a; X1 u b; X2; Xi. 

lx1) 

2. (x <;:::.a; (bllx) I (cllx)) 

REMARKS. 

1. We find it convenient not to worry about the ambiguity in the syntax for 
2 1 (and the other langu~ges that we shall define in the sequel). If required, 
the reader may add parentheses around the composite constructs, or assign 
priorities to the operators. 
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2. All B; occurring in a declaration D = (x; <= g;); are required bo be guarded, 
i.e. occurrences of x E PI in B; are to be preceded by some g (which, by 
clause b, has to start with an elementary action). This requirement corre
sponds to the usual Greibach condition in formal language theory. 

3. We have adopted the simultaneous declaration format for recursion rather 
than the µ-formalism which features constructs such as, for example, 
cllµx[a;(µy[b 1 ;y;b2 ub3Jllx)]. As remarked already, the avoidance of 
(nested) µ-constructs allows for a simpler derivation of the main semantic 
equivalence result to follow. 

We proceed with the definitions leading up to the operational semantics for 
s e !!' 1 and t e &>wf1• It is convenient to extend !!' 1 with a special "empty state
ment" E which performs no action (it will obtain {e} as its meaning). We put 
!!''1 = !!'1 u {E}. The operational semantics is based on transitions (following 
the operational semantics techniques of Structured Operational Semantics, cf. 
[16, 25, 26]). Here, transitions are four-tuples in !!' 1 x Ax g&ect 1 x !!''i. written 
in the notation 

with s e !!' 1 , a e A, D E £1) .ect 1 , s' e 2''1• We present a formal transition system T1 

which consists of axioms and rules. Transitions which are given as axioms 
hold by definition. Moreover, a transition which is the consequence of a rule 
holds in T1 whenever it can be established that, according to T1 , its premise holds 
(or, in later sections, its premises bold). We shall employ below the following 
notational variants of the format of rules: We use 

to abbreviate 

Also, 

abbreviates 

11 is given in 

1-+ 213 
4-+ 516 

1-+2 1-+3 
and 

4-+5 4-+6. 

1-+ 1' 

2-+ 2' 

n -+n' 

1-+ 1' 1-+ l' 
2 -+ 2' ' · · ., n -+ n' · 
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DEFINITION 3.2 (transition system Ti). Let s, s', s E ,Sf i. a e A, De ~eel 1. 

a~DE 

s ~Ds'IE 
s ;s ~Ds' ;sis 

s ~Ds'IE 
s us~Ds'IE 
s us ~Ds'IE 

g ~os'IE . . 
a , I E , with x <= g m D 

X -+DS 

s ~Ds'IE 
slls ~os'llsls 
.Slls ~o.Slls'IS 

(Elem) 

(SeqComp) 

(Choice) 

(Ree) 

(ParComp) 

We next define how to collect the successive transitions s ~Ds', s' !!.+Ds", . .. , 
starting from some t = (Dis), into its operational meaning lD[t]. We use Q as 
introduced in section 2.3. 

DEFINITION 3.3. 

a. The mapping (!): r!Jw?- 1 -+ Q is given by 
(!)[(Dis)]= @D[s]. 

b. The mapping (!)D:.5f'1 -+ Q is given by: @D[E] = {e}, and for s =f E, 

@D[s] = u{a·@D[s'] ls~Ds'}, 

where the transitions are with respect to T1• Also, a · ... denotes the usual 
prefixing operation: a· {s} = {a},a· X ={a· u I u eX}, where a· u is assumed 
to be known. 

It may not be obvious that the function (90 is well-defined. This is in fact a 
consequence of the following 

LEMMA 3.4. Let the o per at or 4': ( .5f'1 -+ Q) --+ ( .5f'1 --+ Q) be defined as follows : 
For any 1F0 : .fe'1 --+ Q we put 4'(1F0 )(E) = {s}, and.for sf. E, 

<P(F0 )(s) = u{a· F 0 [s'] Is ~0 s'}. 

Then <P is a contracting mapping with <90 as its fixed point. 

PR.ooF. Clear from the definitions and Banach's theorem. • 
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ExAMPLE. lD[(x<=a;x ubjx)] = {aw} ua*·b. 

REMARK. As explained in [10], if we were to drop the guardedness restriction 
for the gi in D, the operational meaning of (Dis) (based on the definitions in 
[10]) is not necessarily a closed set, and definition 3.3 would not, in general, 
yield the desired result. (Definition 3.3 always gives closed sets as results.) 

The next step is the development of the denotional model. We now also 
define various semantic operators: Q x Q -+ Q, viz. the operators of union (' u' ), 
composition ('o') and merge ('JI'). 

DEFINITION 3.5. For each x E Q we wtite x. = {u EA 00 Ja. u EX}. 

a. X u Y equals the set-theoretic union of X and Y. 

b. Let op stand for o or II. Let <P be any ndi mapping: Q x Q -+ Q. Let 
<P0 P: (Q x Q-+ Q)-+ (Q x Q-+ Q) be defined as follows: 

cP (<P)(X)(Y) = { UaeA {a· <P(X0 )(Y) I X 0 f ~} U Y, 
0 UaeA {a· <P(X.)(Y) IX. f ~ }, 

4'1i(cl>)(X)(Y) = cP0 (</>)(X)(Y) u cP0 (</>)(Y)(X) 

c. We now put o =fixed point (4>0 ), II =fixed point (4>11). 

We have 

if 8 E Xa 
otherwise 

LEMMA 3.6. The operators u, o, II are well-defined and ndi (and, hence, continuous). 

PROOF. Clear for u. For the operators, another appeal to Banach's theorem 
together with some calculations in the style of Appendix B of [11] suffices. • 

The denotational semantic definitions employ the usual notion of environment. 
Let (ye )I' = 9v.a/t -+ Q be the set of environments, i.e. of mappings from 
procedure variables to their meanings. We define 

DEFINITION 3.7 (denotational semantics for 2'i, 9-wsii). Below we often suppress 
parentheses around arguments of fl.l;nctions. The mappings .,H: rff'wsi1 -+ Q and 
f}: ~ 1 -+ (I' -+ Q) are given as follows: 

a. .,H[ (DJs)] = f}[s ]YD, with YD as in clause b. 

b. YD= y{XdxiH=t• where y is arbitrary, and, for D = (xi<=Bi)i, we put 

(X1, ... ,Xn) =fixed point (4>1,. •• ,tPn) 

,, where cP1: Q"-+ Q is given by tP1(Yi) . .. (Y,,) = ~[gi]Y{l'f/xi};. 
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c. ~[a]y = {a},~[x]y = y(x),~[s 1 ops2]y = ~[si]yop~[s2 ]y, 
for op= ;, u,11 and op = o, u, II, respectively. 

ExAMPLES. ~[a;(b uc)]y = ~[(a;b) v (a;c)]y = {ab,ac}. 

513 

,,H[(x <= a;(b\\x) Ix)]= limiX;, where Xi+i =a· (bl\X;), and X0 eQ is arbitrary. 

The well-definedness of £?2 is a consequence of the guardedness requirement 
which ensures the contractivity of the <Pi, whence the fixed points in clause b 
exist: 

LEMMA 3.8. Assume the notation as in definition 3.7. For simplicity, we taken= 1. 

a. For each s e ft' 1, 

b. For each g e !i'L 

d(£?2[g]y{Yi/x},~[g]y{Y2 /x}) ~ t·d(Yi. Y2 ). 

PR.ooF. We use induction on the complexity of s and g. We give details of a 
few subcases for g: 

• g=g1;s: 
We use the abbreviation Y;' = ~[g1 ]y{ Y;/x} for i = 1, 2. Now 

d(~[g 1 ; s ]y{ Yifx }, ~[9 1 ; s ]y{ Y2/x}) = 

d( Y{ o .@[s ]y{ Yi/x }, Y2 ° ~[s ]y{ Y2/x} ). 

If Y{ f. Y2, we use the induction hypothesis and the fact that, in general, 

for Z 1 f. U 1. 

d(Z1 oZ2 , U1 o U2) ~ d(Z1, Ui). 

If Y{ = Y2, we use part a, and the fact that, for e f Z, 

d(Z o Z 2 , Z o U2) ;a! t· d(Z2, U2). 

• 9 = gi\\92: 
We use the abbreviations Y;i = ~[g;]'Y{lJ/x} for i,je{l,2}. Now 

d(~[91 \192]1'{ Yifx }, ~[91 \\92]1'{ Y2/x}) = 

d(Yu 11 Y21> Yu II ¥22) ~ 
max(d(Y11 , Y12 ),d(Y21> Y22)) ~ 
! · d(Yi. ¥2), 

where we have used that, in general, 

d(Zi\\Z2, U1 \\U2) ~ max(d(Zt> Ui),d{Z2, U2)), 

and the induction hypothesis (twice). • 
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The above definitions of the operational and denotational semantics have been 
tuned such that the proof of ()! = .A is now no longer a major undertaking (as 
it was in [10]). We follow the approach as in [18] (cf. [16], [5] for a similar 
approach in an order-theoretic framework) with the additional simplifications 
due to our replacing µ-constructs by simultaneous recursion. We prove 

THEOREM 3.9. For all t E &'wg:i. @[t] = .A[t ]. 

PRooF. Let us put !'Jv[s] = df.!'J[s]yv. By the definition of()! and lemma 3.4, 
it is sufficient to show that, for s E 2 1, (*): !'Jn[s] = <l>(!'Jn)(s). The proof proceeds 
in two stages; first for g E 21 and next for any s E 2 1. 

Stage 1. Take g E 2~. We prove (*) by induction on the complexity of g. 
We only treat the case that g = g 1 lig2, the other cases being simpler. We have: 

cf>(!'Jn)(gdlg2) = (def. <I>) 
U {a· !'Jv[s] I 91 Jlg2 ~vs} = (def. T1) 
LJ{a·!'Jn[s'llgz] lg1 ~ns'} v U {a·.@v[9ills"] 192~ns"} = (def . .@) 
U {a '(!'Jv[s']ll.@n[g2]) I 91 ~D s'} u 

U {a· (!'Jn[9i]ll.@v[s"]) I 92 ~ns"} = (ind. hyp.) 
U {a· (.@v[s']ll<l>(!'Jv)(92)) I gl ':.+vs'} u 

U {a· (cf>(.@v)(g1 )li.@n[s"]) I gz ~vs"} = (def.JJ, T,) 
<l>(.@v)(gi)Jl<l>(.@v)(g2) = (ind. hyp.) 
~D[gi]Jl~n[gz] = (def. .@) 
~n[911lgz]. 

Stage 2. Takes E 2 1. We prove(*) by induction on the complexity of s. All cases 
are as in stage 1, but for the cases = x, with x = X; E ~- We have 

<l>(.@0 )(x;)= LJ{a·.@n[s]Jx;~vs} = LJ{a·.@v[s]Jg;~ns} (with x;=9; in !'J) 
= (by stage 1, the desired result holds for g; E !ff) !'Jn[g;] = (by the fixed point 
property) .@n[x;]. • 

REMARK. Now that we have developed the appropriate metric semantics 
machinery, we can elaborate on the reasons why the concepts of fairness and 
hiding are not (directly) amenable to a metric approach. For fairness, note that 
a"'ll1.ir b"' = (a*bb*a)"', which is not a closed set. (It does not include, e.g., the 
limit a"'.) For hiding, note that, e.g., X = {a"b" In~ 1} u {a"'} is closed, whereas 
X hid a is not. (X hid a 2 b*, but b"' ~ X hid a.) 

4. Synchronization and global nondeterminacy. 

We discuss an extension of .st'1 with two new features. Firstly, we add a form 
of synchronization in the tradition of CCS [22] or CSP [17]. Secondly, we 
replace the nondeterministic choice (s 1 v s2 ) of section 3 by a new form of 
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nondeterminism, written as s1 +s2 • The latter is called global (sometimes also 
external) nondeterminism. In the presence of synchronization, the former variety 
is then called local. For an extensive discussion of these two notions we refer to 
[10] and the papers cited there. The interesting point with the notion of global 
nondeterminacy is that it needs some form of non-LT denotational semantics 
to make sufficient distinctions. For example, assuming that a, bare normal actions 
and c is a communication action (which requires a corresponding c in a parallel 
component to establish synchronization), we want to assign different denotational 
meanings to s1 =a ;(b +c) and s2 = (a; b)+ (a ;c).A simple LT model would not 
capture the operational intuition (which treats si.s2 differently, details follow), 
since it would deliver the outcome { ab, ac} in both cases (cf. the example following 
definition 3.7). 

We shall present below a branching time (BT) denotational model for !1'2 
which indeed provides the desired refinement to distinguish between ~[s 1 ] and 
~[s2[· 

The syntax and operational semantics for !t' 2 exhibit only minor differences 
with those for .!!' l · Firstly, we assume a subset (c E )C ~ A of communications, 
and assume moreover a mapping - : C -+ C, such that (writing c for - (c)) we have 
l = c. Finally, we postulate a special element re A '\,C which will be used as 
outcome for a successful synchronization between an action c and its counterpart 
c. Fot this we refer to the rule(s) Synch in definition 4.2. 

DEFINITION 4.1 (Syntax). Let A be as just described, and f!{ as in section 3. 

a (se!t'2). s ::=alxls1;s2 js1+s2 ls1jjs2,withxef!{. 

b (ge!t'~). g::=ajg;slg1+92lg11ig2. 

c (De~ect2 ). D = (x; ~g;);,x;ef!{,g;e!t'~. 

d (t e.9w92 ). t =(DI s), De~ect'2 ,s e !1'2. 

e !!'~ = !1'2 u {E}. 

The transition system T2 is given in 

DEFINTION 4.2. The transition system T2 contains Elem, SeqComp, Ree and 
ParComp from T1 . Moreover, it contains the rules (s, s', s, si. s2, s" e !t' 2. a e A, 

c EC, DE ~iid 2) 

s ~Ds'IE 
s+s .a+Ds'IE 
s+s ~Ds'jE 

C I f II 
S1 -+DS ,S2 -+DS 

s1lls2 4Ds'lls" 

(GloCho) 

(Synch 1 ) 
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S1 ~DE,s2 ~DE 
S1 lls2 4v E 

REMARKS. 

1. By Elem, we now also have that c ~DE. 

2. (In contrast to [10].) The rules in T1 and T2 for 'u' and '+',respectively, 

have the same form. The difference will become manifest when we define 

(!JD for sin 2 2 • 

In order to define (!) for f!ho51 2 , we provide a slight variation on the set Q 
used in section 3. We introduce a new symbol {J f{: A, modellingfailure, and we put 

A[' = A* v A"' u A*· b. Thus, Af extends A 00 by adding all finite sequences 

over A to which [) is appended. Furthermore, we put R = &PnAA;'). We shall 

again use X, Y to range over R, and use the notation X a as before. (Note, 

however, that elements in Xa now may end with b.) We give 

DEFINITION 4.3 (operational semantics for &Pw512 , 2"2 ). 

a. @:f!i'w?2 ~R is given by @[(Dis)]= lPv[s]. 

b. (!JD:!i''z ~R is given by: @D[E] = {s}, and for sf E, 

where the transitions are with respect to T2 • 

As in section 3, (!JD may be shown to be well-defined by a contractivity 
argument. 

EXAMPLE. @v[a;(b+c)] = {ab},lDv[(a;b)+(a;c)] = {ab,ab}. 

The denotational model for ft' 2 assumes a domain (p E )P of branching time 
processes (cf. section 2.4) satisfying the isometry 

(4.1) 
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Here we assume the discrete metric on A. Typical processes are 

• the "nil process" p0 and the empty process</> (the empty set), corresponding 
to the LT objects {e} and {Cl}, respectively, 

• {(a, { (b, Po>}), (a, { (c, Po)})}, which is different from 
{(a,{(b,p0),(c,po)})}, 

• the infinite process p = lim.p., where Pn+ 1 = {(a, p.), (b, p.) }. 

We recall from section 2.4 that P is a complete ultrametric space, and that 
elements of P are either finite or satisfy p = lim.p"' for p. fiQite. We draw 
attention to the difference between {Cl} ER and rp E P. There is no problem in 
incorporating </> into P. In particular, we have that d({(a,p1)}, {(a,p2)}) 

= t · d(Pi. P2) holds, even for p1 or p2 equal to </>. (This follows from the use 
of id 112 (P) on the right-hand side of (4.1 ).) On the other hand, since a·</> = </>, 
including </> into R would invalidate the contractivity property d(a · X I> a· X 2 ) 

= t· d(X i. X2). 
We next define the semantic operators op: P x P-+ P, for op E { u, 0 , II}, as 

natural variations on those of definition 3.5. 

DEFINmON 4.4. 

a. p u q = p, if q = Po. 
p u q = q, if p = Po· 
Otherwise, p u q equals the set-theoretic union of the sets p and q. 

b. Let op stand for o or II. Let </> be any ndi mapping: P x P -+ P. Let 
4>0 P: (P x P-+ P)-+ (P )( P-+ P) be defined as follows: 

4> (</>)(p)(q) = {q, if P =Po 
0 {(a,q,(p')(q)) l(a,p')ep}, otherwise 

where <$'1 : P x P -+ P is given by 

<P (p )(q) = { < t, q,(p')(q')) I (c, p') e p, (c, q') e q} 

c. We now put o =fixed point (4>0 ), II =fixed point (4>11 ). 

We have again that the operators u, o, II are well-defined and ndi (and, henee, 
continuous). 

The denotational definitions are now easy variations on the ones in section 3. 
Let (ye )I'2 = ~-+ P. Now .It :9-wp2 -+ P and~: !l'2-+ (I'2-+ P) are defined in 
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DEFINITION 4.5 (denotational semantics for !t' 2, fY!w? 2 ). 

a. .lt[<Dls)] = ~[s]'J'D. 

b. YD = y{pJx;}7 =" where, for D = <x; = g);, we put 

<P 1o ••• , Pn) =fixed point ( <P1, ... , <Pn) 

with <Pi: P"--" P is given by, for j = 1, ... , n, <Pi(qi) ... (q.) = !?!1[gi]y{q;/x;};. 

c. ~[a]y ={(a, p0)}, fiiJ[x]y = y(x), 
~[s 1 ops2 ]y = ~[si]yopfi1J[s2 ]y, for op= ;, u, II and 

op = o, u, II. respectively. 

EXAMPLES. !'![a; (b +c)]y = {<a, { (b, Po), (c, Po)})}, 
!'t[(a;b)+(a;c)]y = {(a,{(b,p0 )}),<a,{(c,p0 )})}, 

.K[(x =a; (bllx)lx)] = lim;p;, where P;+ 1 = {(a, { (b, Po)} llP;) }. 

We see that ~[s ]y contains traces of unsuccessful communications which are not 
present in l!JD[s]. For example, !?#[c]y = {(c,p0)}, CPD[c] =b. Moreover, the 
elements delivered by ~[s ]y are branching time objects (in P) and the elements 
delivered by l!Jn[s] are linear time objects (in R). We therefore define an 
abstraction operator abs: P --" R which links the two meanings: given an 
argument p, abs deletes (c, ... ) branches from p, and collapses the branching time 
structure into the set of all "paths" in the process p. 

DEFINITION 4.6 (abstraction). We define abs as fixed point of the contracting 
mapping 'Pabs: (P ~ R) ~ (P--" R) given as follows: Let l/J e P--" R. Writing 
liiabs as shorthand for lJ'abs(l/J), we put 

fiiabs(Po) = {a}, 

and, for p f Po. 

- {{Ci},if{al(a,p')ep,a~C} =c/> 
l/Jabs(P) = U {a· t/l(p') I (a, p') e p, a~ C}, otherwise. 

REMARK. The well-definedness of abs relies on the finiteness of A, cf. [6]. 

It can now be shown that 

THEOREM 4.7. For each te&>wp2 , (!)[t] = (abso.K)[t]. 

We omit the proof which is an extension of that of theorem 3.9. Details are 
given in [18]. 
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5. Process creation. 

We now turn to the study of a simple uniform language with processt creation 
as central feature. We couch the notion of process creation in the framework 
of the language 2 3 (with induced .9'wg:3 ). This language is like 2 1 (or 
&>wpi), but with the construct of merge replaced by the construct new(s): 
execution of new(s) creates a new process with body s, to be executed in parallel 
with the already existing processes. (A more precise definition follows in a 
moment.) 

We first encountered the notion of process creation during our study of the 
semantics of POOL, a parallel object-oriented language. In [2, 3] we have 
designed operational and denotational semantics for POOL, and in [1] we 
massaged these definitions such that the equivalence of the two semantics for 
process creation could be shown. What follows below is a new presentation, 
which could be simplified considerably thanks to another application of a con
tractivity argument. 

We assume A and :!(' as in section 3. (For simplicity, this section has no 
(c e )C ~A, and 'u' again replaces '+'.) 

DEFINITION 5.1 (Syntax). 

a (se£'3 ). s::=a/x/s1 ;s2 /s1 us2 /new(s),withxe!l' 

b (se£'3). g::=h/91;92191U92/new(g) 
(h EH). h : : = a I h; s I h1 u h2 , 

C (DE !?)ect' 3 ). D = (x; <= 9;);, X; E !!', 9; E £'~, i = 1, ... , n. 

d (te&'w.?3 ). t = (D/s),De,qj).ect'3,se£'3 . 

REMARK. The complications in the definition of (g e )~ are caused by the 
following phenomenon: We want to make sure that occurrences of x in 9 are 
guarded by some statement which starts with an elementary action a. Without 
the precaution as taken in clause b (i.e., adopting a syntax for .2"';, analogous 
to .'l"{, of the form g ::= a/9;slg1 u92 /new(g)), a statement new(a);x would 
qualify as guarded. As we shall see later, the intended meaning of new(a); x 
is the same as that of the unguarded (£' 1 -)statement a/Ix, allowing execution 
of x before a. This would violate the desired contractivity of the function(s) 
associated with the declarations; hence, the need for the more involved 
definition. 

Before providing the formal semantic definitions, we first present an informal 
explanation of process creation. The execution of s is described in terms of a 

t The programming notion of "process" as studied in section 5 has nothing to do with the 
mathematical notion of "process" appearing in section 4. 
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dynamically growing number of processes which execute statements in parallel 
in the following manner (all steps are with respect to some given D): 

1. Set an auxiliary variable i to 1 and set s1 to s, the statement to be executed. 
A process, numbered 1, is created to execute s1• 

2. Processes 1 to i execute in parallel. Process j executes si (1 ~ j ~ i) in the 
usual way in case si does not begin with some new(s') statement. 

3. If some process j (1 ~ j ~ i) has to execute a statement of the form new(s'), 
then the variable i is set to i + 1, si is set to s', and a new process with 
number i is created to execute s;. Process j will continue to execute the part 
after the new(s') statement. Go to step 2. 

4. Execution terminates if all processes have terminated their execution. 

We proceed with the formal semantic definitions. We use a somewhat extended 
transition formalism which involves constructs defined in 

DEFINITION 5.2. 

a. The set (r E )9'e? of sequents is defined by r : : = Eis; r, with s e Ii' 3 • 

b. The set (Cl e )&at of parallel constructs is defined by Cl : : = rI> .. . , r m n ~ 1. 

Transitions in 13 are elements of r?ai x Ax ~ect3 x &'at, written in the notation 

a ' C! -+o Cl · 

We shall often encounter instances of transitions written as ... , r, ... ~D ••• , r', ... . 
Here r (r') is a component of(! (Cl'1 and the notation implies that all terms at the 
dots ( ... ) are unaffected by the transition. Mutatis mutandis, such notation also 
applies to transition rules. 

DEFINITION 5.3 (transition system T3 ). 

a ... , a; r, ... -+0 •• • , r, ... 

. . . ,s1; (s2; r), ... ~D Cl 

... , (s 1 ;s2 );r, ... a.+D (! 

. .. ,s;r, ... ~D Cl 

... , (s uS);r, ... a.+D (! 

... , (s us);r, ... ~0 (! 

g . a ... , ,r, ... -+o(l "h . D 
---------"'----'- , Wlt X <= g 1D 
... ,x;r, ... 11+0 (! 

(Elem) 

(SeqComp) 

(Choice) 

(Ree) 
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... , r, ... , s; E ~De 
... , new(s); r, ... 14D e 

521 

(New) 

Note that in the rule (New), if the transition in the consequence has n components 
on its lefthand side, then the transition in the premise has n + 1 components on 
its left-hand side. 

EXAMPLE. new(a; new(b, c)); d; E !!.+D d; E, new(b; c); E £+D 
d; E, E, c; E !!..D E, E, c; E ~DE, E, E. 

The operational semantics associated with T3 is described in 

DEFINITION 5.4. 

a. {P: f!J'w?3 -+ Q is given by <P[ (Dis>] = <PD[s; E]. 

b. {PD: f!J'a2-+ Q is given by: 

[ ] {{e}, if e = E,E, ... ,E 
{PD (! = u {a. @D[e'] I(! ~De'}, otherwise, 

where the transitions are with respect to T3 . 

REMARK. Well-definedness of {PD follows as usual. 

We continue with the denotational definitions. Let Q and the operators u, II be 
as in section 3 ("o" plays no role here). Besides the usual environments, we also 
introduce the set of socalled continuations ~on/ which, in the present setting, 
coincides with Q. We have, altogether, the following domains and functions: 

(X E )Q, (X E )~on/= Q 
(y E )I' 3 = f!l:-+ (<Ion/-+ Q), e E <Ion/-+ Q 
.A: f!J'w?3 -+ Q 
fJ: !L' 3 -+ (I' 3 -+ (<{font-+ Q)) 

with .A and !iJ defined in 

DEFINITION 5.5. 

a. .A[ (Dis>] = fJ[s ]YD{e}. 

b. YD = y{eifxiH = 1. where, for D = (x; <;:::. gi)i, we put 

<e1 .... ,en> =fixed point (<Pi.···· <Pn) 

with <P1 : (<l.091/-+ Q)"-+ (<lont-+Q)is given by '1>1(e'i) ... (e~) = fJ[g1]y{ej/xjh, 
for j = l, .... ,n. 
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c. ~[a ]yX = a· X, ~[x ]yX = y(x)X, gjj[s1; s2 ]yX = ~[s1 ]y(~[s2]YX), 
~[s 1 u s2 ]yX = (gjj[si]yX) u (~[s2]YX). 

d. ~[new(s)]yX = (gjj[s]y{e})llX. 

As usual, our main task is to relate {J) and A. We shall prove 

THEOREM 5.6. For all t ef!J>wr;3, (l)[t] = jf[t]. 

The proof uses an auxiliary function CD: f!l>ai --. Q defined by 

• G"v[ri, ... ,rn] = Cv[r1]1! ... llCv[rn], 

• Cv[E] = {e},Cv[s;r] = gjj[s]rv(Sv[r]). 

We shall show that the following holds: 

CLAIM. 

{ {e}, if fl = E, E, . .. , E 
CD[fl] = U {a· SD[fl'] I fl f!+v fl'}, otherwise. 

Once this claim has been established, we are done: By the usual argument, it 
implies that S v[fl] = f!J v[fl] ; hence, in particular, 

(!)[(Dis)]= (l)v[s;E] = CD[s;E] = gjj[s]yD{e} = A[<Dls)]. 

The claim is proved by showing that Cv satisfies (*): 'l'(Sn) = cB'n. where 'l' is 
defined, for each .~0 ef!J>az--. Q, by 

'l'(ff )( )={{e},ifQ=E, ... ,E 
D (l U{a· .'FD[e'] I (l !!+De'}, otherwise. 

We prove (*) by induction on the complexity of fl = r 1 , ••• , r m• which we define 
as the entity (k, c(e )), where k ~ 0 is the number of unguarded occurrences of 
some xi (1 ~ j ~ n) in some ri (l ~ i ~ m). Moreover, c{fl) is defined as 
c(ri)+ ... +c(rm), where c·(E) = 0, c(s;r) = c(s)+c(r), and c(a) = c(x) = 1, 
c(s1 ;s2) = c(s1 u s2) = l +c(si)+c(s2), c(new(s)) = 1 +c(s). (We recall here that 
x does occur unguarded in, e.g., new(a);x;E.) We order the entities (k,c) by 
putting (k, c) < (k', c') whenever k < k' or k = k' and c < c'. 

Stage l. We first consider the case that complexity((}) = (0, ... ). If e = r, (l' 

we show that cP(S D)(r, e') = tf n[r, (11
] by an argument similar to that in section 3, 

stage 1 of the proof of theorem 3.9. Here we use, in addition, that, if 
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then complexity(gi) < complexity(Q2). If Q = r, we distinguish various subcases. 
If r = E, the claim is obvious. If r = s; r', we argue by case analysis on the 
structure of s. We discuss two typical subcases: 

• s = s1 ;s2. Then 
4>(cfn)((s1 ;s2);r) = 

LJ{a·Sn[e] I (s1 ;s2);r .'!+ne} = (def. T3 ) 

u {a· Sn[e] I S1; (s2 ;r) .'!+De}= 
(since c(s1 ; (s2; r)) < c((s1 ; s2); r), we may apply the ind. hyp.) 
S n[s 1 ; (s2; r)] = (def. S D• ~) 
c9'n[(s1 ;s2);r]. 

• s = new(s'). 
tl>(cfv)(new(s);r) = 
LJ{a·Sn[e] I (new(s);r.'!+ve} = (def. T3 ) 

LJ{a·Sn[e]lr,s;E.'!+ne} = 
(since c(r,s;E) < c(new(s);r), we may apply the ind. hyp.) 
Sv[r,s; E] = (def. Sn) 
@" v[r]llS n[s; E] = (def. @• D• ~) 

(~[s]rn{e} )ll&n[r] = 
~[new(s)]Yn(@''n[r]) = 
c8' n[ new(s); r]. 

Stage k + 1. Assume that (*) holds for any e with at most k unguarded 
occurrences of some x;. Now consider a e with /< + 1 unguarded occurrences. 
All cases are as before, but for the case {} = r, r = s; r',s = X;, for some x;EEl'. 
Then 

tl>(Sv)(x;;r') = 
LJ{a·Sn[e] lx;;r' .'!+ne} = (def. T3) u {a. Sn[e] I g;;r' .'!+u e} (with X; <= 9; in D) = 

(since g; is guarded, we may apply stage k) 

Sn[g;;r'] = 
<B' n[x;; r'], where the last equality holds by the definition of !'J. • 

We conclude this section with two 

REMARKS. 

1. It has been shown by IJ. J. Aalbers berg and P. America (personal communi
cation) that the expressive powers of II and of new( ... ) are incomparable: 
There exists t 1 e f!l'wSJ 1 such that for no t 3 e (!l>wSJ3 , c'.O[t i] = lD[t3], and 
vice versa. 

2. In [1], process creation is also considered in a nonuniform setting, in the 
sense of, e.g., the language of the next section. 
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6. Communicztion with value passing. 

We conclude our list of four specimen languages analyzed with metric tools 
with a discussion of a nonuniform language 2 4 which is best seen as an extension 
of 2 2 from section 4. The atomic actions of 2 4 are no longer uninterpreted 
symbols a from some alphabet A, but, instead, assignments v := e, for v an 
individual variable and e an expression, and communication actions c ?v 01 c !e. 
Also, booleans b are introduced appearing as tests in conditional statements. 
Accordingly, the semantic models now incorporate states, i.e. mappings from 
individual variables v to elements oc in some set V of values. 

We first collect some syntactic preparations. We introduce the set (ve)J"ndv 
of individual variables and (c e )C of channels. Channel names c appear in the 
communication actions c?v and c !e. Synchronization of two such actions is 
defined similarly to that of c, c in section 4. In addition, however, at the 
moment of successful synchronization the assignment v : = e takes place. 
Assuming that c?v occurs in some component s1, and c!e in a component s2 

of the parallel statement s1 lls2 , the current value of e is transmitted by the sender 
s2 over the channel c to the receiver si. where it is (instantaneously) assigned to 
the variable v. Furthermore, we introduce the syntactic classes (e e )Sxft of 
expressions and (be )tll.oot of booleans. For simplicity, we assume some 
elementary syntax for r!xfz and PA.oot, and leave this unspecified here. We only 
postulate that no complications such as side-effects or nontermination arise in 
the evaluation of some e or b. 

We now give 

DEFINITION 6.1. Let PI= {xi. ... , xn} be as before. 

a. (s e 2 4 ). 

s: := v := e I c?v I c!e Ix I if b then s1 else s2 ft I s1 ;s2 I sills2 , with x e?I. 

b. (g e 2! ). g : : = v : = e I c ?v I c !e I g ; s I if b then g 1 else g 2 ft I g 1 I lg 2 • 

c. De~ed4, tef/Jwf4 are formed from se.!£4 and ge2! as usual. 

REMARK. For simplicity, 2 4 has no form of nondeterminism. 

Some semantic preparations are contained in 

DEFINITION 6.2. 

a. (cxe )Vis the set of values, {tt,jf) is the set of truth-values. 

b. (u e )!' = J"ndv _. V is the set of states. 

c. ('1 e )H = .r u LI, where 
(be)LI = {c?vlceC,veJ"ndv} u{c!cxlceC,cxeV}. 
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d. For e e Sxjt, [e ](a) denotes its value in state a; for be :!loo!, [b](a) denotes 
its truth-value in state a. 

REMARKS. 

1. The reader may always take 71.. for V to give some realistic flavour to our 
considerations. 

2. The set H serves technical purposes in the definitions below. For given input 
a, computations yield elements 17 e H as output. These may be distinguished 
into "normal" '1 e E and "abnormal" '1 e LI, where the latter results from one
sided (and therefore failing) attempts at synchronization c?v or c!e. 

We proceed with the definition of the transition system 74. This time, transitions 
are fivetuples in !£'4 xExt)ecl4 x!i'4 xH or four-tuples 2 4 xExt)ecl4 xH, 
written as 

(s, a) -+v (s', 17), 

(s, a) -+v 17, 

respectively. T4 is defined, applying a self-explanatory style of abbreviating rules, in 

DEFINITION 6.3. 

(v := e,a)-+va{oc/v}, where~= [e](a) 

{
(c?v, a) -+v c?v 

< 1 ) 1 , where IX= [e](a) 
c .e, a -+v c .IX 

(if b then s1 else s2 ft, a) -+v (s', 1'/)ll'/ 

where si = si(s2 ) in case [b ](a) = tt(jf) 

(s, a) -+v (s', 17) 117 
(s; s, a) -+D (s'; s, 17) l(s, 17) 

(s, a) -+v (s', 17)117 

(sllS, o) -+D (s'llS, 17)l(s, t/) 
(SJls, o) -+D (Slls', 17)l(s, t/) 

(s1, a) -+D (s', c?v), (s2, a) -+D (s", c!ll) 

(s1lls2, a) -+D (s'lls", u{1X/v}) 

(Ass) 

(JndCom) 

(Cond) 

(SeqComp) 

(ParComp) 

(Synch) 

and the three obvious variations in cases', s" or both are missing 
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(g, a) _,.D (s', 11>111 "th . D 
------ , WI X <= g In 
(x, a) _,.D (s', 11>!11 

(Ree) 

Before we define c'D[t] and mv[s] we first introduce the process domain P as 
solution of 

(6.1) P ~ {Po} U (l:-+ Pl'compacr(H X id112(P))), 

with the discrete metric on l: and H. 

REMARKS. 

1. In (6.1 ), Pl'compack ) denotes all compact subsets of ( · ). This is necessitated 
by the fact that the "alphabet" H is, in general, infinite (contrary to the 
finite A in section 4 ). 

2. We leave for another occasion discussion of the equation 

(6.2) P' ~ {e} U (l:-+ Pl'compacr(H' id1;2(P'))) 

determining P' as possible "linear time" alternative for P. This discussion will in 
particular have to clarify the role of '·' versus 'x' in a nonuniform context. 

The operational semantics are given in 

DEFINITION 6.4 (operational semantics for Pl'wf4 , !t' 4 ). 

a. @ :&wp4 -+ P is given by @[(Dis)]= C9v[s]. 

b. (9 D : !t' 4 __,. P is given by : 

@v[s] = A.a.({(a', lDv[s']) I (s, a) -'>v(s', a')) u {(a', p0 ) I (s, a) -'>v a'}); 

where the transitions are with respect to T4 • 

REMARK. Just as in definition 4.3, lDv does not take into account transi
tions stemming from failing communications, signalled here by the format 
(s, a) -+v (s', o)jo with o ELI. 

For P as in (6.1), we can define the usual operators u, o, jj. We restrict 
ourselves to the definition of II, here involving the auxiliary operators II.. and j. 

DEFINITION 6.5. Let P be as in (6.1), and let (X e )&' abbreviate 
&'campaci(H x id112(P)). We define the operator II as fixed point of 11> 11 : (P x P __,. P) __,. 
-+ (P x P-+ P), where, for <P e P x P __,. P and <P ndi, lf>11 (qi) = "1·$11 is given by 
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{ 
p, if q =Po 

cP11(P)(q) = q, if P =Po 
),a.(t/)i.(p(a))(q) u $i.(q(a))(p) u t/> 1,,,(p(a))(q(u))) 

where cPu._: f!J x P -+ f!J is defined by 

t/>i.(X)(q) = {(17, cp(p')(q))l('7. p') EX}, 

and t/> 1,,,: f!J x f!J -+ f!J is defined by 

$1,,,(X}(Y) = {(a{ix/v},cp(p')(q'))l(c?v,p')eX,(c!ix,q')e Y or vice versa}. 
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We are now ready for the defintion of .A[t] and ~[t]. Let (ye )I'4 =ff-+ P, 
let .A: f!h.ofJ4 -+ P and ~: !t' 4 -+ (I' 4 -+ P). We give 

DEFINITION 6.6 (denotational semantics for !t' 4 , !?Ju,v4 ). 

a. .A[(Dls)] = ~[s]Yv· 

b. Yo is as usual. 

c. ~[v:= e]y =A.a. {(a{1X/v},p0)}, with et= [e](a), ~[c?v]'l' = A.u.{(c?v,p0)}, 

~[c !e ]y = A.a. { (c !et, p0 ) }, with et = [e ](a), 
~[if b then s1 else s2 Ji] = A.a.if [b ](a)= tt then ~[s 1 ]yu else ~[s2 ]ya .fi. 
and 
~[x]y,!'}[s 1 ~s2 ]y for~= ;, u, II, as usual. 

One last step is necessary before we can formulate our final result. We define 
the abstraction mapping abs: P-+ P", where P" satisfies 

(6.3) 

by putting abs =fixed point ('I' abs), with 'I' abs: (P -+ P") -+ (P -+ P") defined by : 
For 1/1 E P-+ P", 'I' abs( I/I) = JJ.Iµ abs is given by 

l#abs(Po) =Po, 
and, for p f p0 , 

l#abs(P) = A.a . .}l(p(a)) 

and 

i#(X) = {(a, l/l(p')) I (a, p') EX}. 

Note that the last clause deletes pairs (b, p') from X. 

We finally have: 

THEOREM 6.7. For each tef!JwfJ4 , l!J[t] = (abso.fi)[t]. 

PRooF. By the usual contractivity argument. • 
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