
CONTRASTING THEMES

IN THE

SEMANTICS OF IMPERATIVE CONCURRENCY

J.W. de Bakker 1l
Centre for Mathematics and Computer Science

Kruislaan 413
1098 SJ Amsterdam

The Netherlands

J.N. Kok 2>
Centre for Mathematics and Computer Science

Kruislaan 413
1098 SJ Amsterdam

The Netherlands

J.-J.Ch. Meyer
Subfaculteit Wiskunde en lnformatica

Vrije Universiteit
De Boelelaan 1081
1081 HV Amsterdam

The Netherlands

E.-R. Olderog
lnstitut tar lnformatik

Christian-Albrechts-Universitat
Olshausenstrasse 40-60

2300 Kiel 1
Federal Republic of Germany

J.I. Zucker 3>
Department of Computer Science

University of Buffalo (SUNY)
226 Bell Hall

Buffalo, New York 14260
USA

l)The research of J.W. de Balcker was partially supported by ESPRIT Project 415: Parallel Archi­

tectures and Languages.

2)The research of J.N. Kok was supported by the Netherlands Organization for the Advancement

of Pure Research (Z.W.O.), grant 125-20-04.

3)The research of J.I. Zucker was supported by the National Science Foundation under grant no.

MCS-8010728.

52

ABSTRACT

A survey is given of work performed by the authors in recent years concerning the

semantics of imperative concurrency. Four sample languages are presented for

which a number of operational and denotational semantic models are developed. All

languages have parallel execution through interleaving, and the last three have as

well a form of synchronization. Three languages are uniform, i.e., they have uninter­

preted elementary actions; the fourth is nonuniform and has assignment, tests and

value-passing communication. The operational models build on Hennessy-Plotkin

transition systems; as denotational structures both metric spaces and cpo domains

are employed. Two forms of nondeterminacy are distinguished, viz. the local and glo­

bal variety. As associated model-theoretic distinction that of linear time versus

branching time is investigated. In the former we use streams, i.e. finite or infinite

sequences of actions; in the latter the (metrically based) notion of process is intro­

duced. We furthermore study a model with only finite observations. Ready sets also

appear, used as technical tool to compare various semantics. Altogether, ten models

tor the four languages are described, and precise statements on (the majority of) their

interrelationships are made . The paper supplies no proofs; for these references to

technical papers by the authors are provided.

Contents:

1.Introduction

2. Mathematical Preliminaries

3.Shuffl.e and Local Nondeterminacy: Operational and Metric Denotational Semantics

4.Synchronization Merge and Local Nondeterminacy: Operational and Metric Denotational

Semantics

5.Synchronization Merge and Local Nondeterminacy: Two Order-Theoretic Models

6.Synchronization Merge and Global Nondeterrninacy: The Introduction of Branching Time

7.A Nonuniform Language with Value Passing

References

1980 Mathematics Subject Classification: 68B 10, 68CO 1.

1982 CR Categories: D.3.1, F.3.2, F.3.3.

53

l. INTRODUCTION

We present a study of a number of contrasting themes in the semantics of imperative con­

currency. Special attention will be paid to the mutual connections between on the one hand fun­

damental notions in concurrency, on the other hand various mathematical structures and associ­

ated tools used in building semantic models for these notions. Altogether, a large assortment of

such models will be displayed, and precise statements about their relationships will be made. The

paper surveys earlier work of the authors on these topics and discusses which sources have been

instrumental in its development.

Our paper concentrates on issues in imperative concurrency. Specifically, we shall discuss parallel

execution through interleaving (shuffle or merge) of elementary actions, synchronization and com­

munication, and (an elementary form of) message passing. These notions fit into the tradition of

concurrency concepts as initiated in the sixties by Dijkstra [Dij] with his cobegin-coend state­

ments, and continued in the seventies with the influential contributions by Hoare on CSP [Ho]

and Milner on CCS [Mi2].

Our first contrast is that between imperative and applicative concurrency. Imperative con­

currency is characterized by an explicit operator for parallel composition on top of the usual

imperative constructs such as elementary action and sequential composition. In applicative con­

currency the phenomenon of parallel execution usually appears within a functional context where

concurrency is implicit in the way in which arguments of functions are evaluated. (Blends of

these two styles in concurrency can be found as well, see e.g. ref. [ABKRl,2).) In order to keep

the size of our paper within reasonable bounds, we concentrate solely on imperative notions. Of

course, many of the structures and tools described below have more or less direct bearing upon

modelling of applicative concepts as well. A few references exemplifying this will be given

throughout the paper.

The second contrast concerns uniform versus non-uniform languages. Characteristic for the former

is that the elementary actions of the language are left atomic: no specification for these actions in

concrete terms of e.g., assignment or tests, or, more abstractly, in terms of state transforming

functions is provided. In other words, 'uniform' refers to an approach at the schematic level. As a

consequence, the semantic models for this case have much of the fiavor of the objects studied in

formal language theory. (Here we take formal languages in a wide sense: finite and infinite

words and tree-like structures are included. The essential common element is the consideration of

structured objects over a given alphabet of uninterpreted symbols.)

The nonuniform case extends the uniform one in that a specification of the elementary actions is

now supplied. The specific variety we discuss in our paper (section 7) is in fact quite simple:

only assignments, tests and send/receive actions are introduced. Further examples which we

shall not deal with below are test-and-set, (remote) procedure declarations and calls, critical sec­

tions, the ADA rendez-vous, to mention only a few of the more familiar ones. The important

difference with the uniform situation is that meanings of programs are no longer reminiscent of

formal languages, but are instead primarily of a functional nature, transforming in some way

states to (sets of) states. It should be emphasized, however, that on closer scrutiny the objects are

more complicated than the simple state transforming functions as abounding in sequential

54

semantics. In particular, a key role is now played by structures preserving in some way the his­

tory of the computation.

The third theme -which may be seen as the dominant one throughout the present investigation- is

the familiar distinction between operational and denotational semantics. Rather than go into a

prolonged discussion at this stage of the respective characteristics and merits of these approaches,

we shall let the methods as exhibited in the treatment below speak for themselves. Altogether, we

shall provide ten semantic definitions for four languages, viz. four operational and six denota­

tional ones. Furthermore, we shall supply detailed information on (the majority of) the respective

relationships which hold between these semantic definitions.
Our operational definition method is based on the transition systems technique of Hennessy and

Plotkin [HP] and Plotkin [Pl3,Pl4]. (For applications of these in soundness/completeness studies

in proof theory see [Apl,Ap2].) However, we have introduced some important variations: (i) the

inclusion throughout of infinite computations; (ii) the inclusion of recursion rather than iteration

-roughly in the sense in which context-free extends regular in formal language theory-, and (iii)

the coverage of both uniform and nonuniform languages (the papers cited all address nonuniform

concepts). Our operational treatment of the uniform case may in fact also be seen as an exten­

sion, with shuffle and synchronization, of the algebraic grammars generating languages with finite

and infinite words as studied by Nivat (e.g. [Nil]); later work by Nivat (e.g. [Ni2]) introduces an

approach to synchronization which is different from the one studied in our paper.

Our fourth contrast pertains to the diversity of mathematical structures which underly the deno­

tational models. We shall primarily use metric structures; order-theoretic domains play (an impor­
tant but) secondary role. This is somewhat different from the general situation in denotational

semantics, where order-theoretic domains are the preponderant tools. However, the metric

approach is particularly felicitous for problems where histories and computational traces of some

kind are essential, since for (finite and infinite) sequences a very natural distance and associated

metric(s) can be defined and exploited. Our interest in metric techniques was kindled by Nivat's

lectures on infinite words, infinite trees and infinite computations reported in [NII]. Detailed

references to subsequent applications we have made of his work follow below.

The next contrast concerns a subdivision within the order-theoretic models. In a setting where

nondeterminacy is present -either implicity by choices in interleavings or explicitly by language

constructs to be discussed in a moment-, it is natural to deal with sets of possible outcomes of

executing program constructs. Following the general denotational semantic methodology, we

have an interest in sequences of such sets as improving approximations to certain limits. (Recall

that in denotational semantics one has to make precise notions like limits, continuity of operators

and fixed points to deal with recursion.) These approximations require a definition of an ordering

on sets. Here again, we have a number of possibilities. Sometimes it suffices to work with what

may be called a naive order, viz. that of (reverse) set inclusion. On other occasions, one has

already an order available on the elements of the relevant domain, and now wants to define an

order on sets in terms of the order on elements. Traditionally, three such definitions are dis­

tinguished. We shall concentrate on one of them (the so-called Smyth order), but make a few
comparisons with other approaches as well.

55

A further major theme in our study is the distinction between local and global nondeterminacy

(sometimes also called internal versus external nondeterrninism). For s 1, s 2 two statements, we

shall distinguish between the choices s 1 U s 2 and s 1 + s 2, the first denoting local and the

second global nondeterminacy. In the first variety, if one of the s; is an action which wants to

communicate it may be chosen irrespectively of the presence of a communication partner for this

action in some parallel component. In the second (global) approach, an action which wants to

communicate is chosen only if it has been settled (by inspection of the global or external environ­

ment) that a suitable partner ready to communicate is indeed available. (This brief explanation is

elaborated in particular in section 6.1.) The choice for one of the two varieties of nondetermin­

ism has far-reaching consequences for the semantic models. Operationally, the transition system

dealing with global nondeterminacy is substantially more complicated than that for local non­

determinacy. Denotationally, an even more drastic step is taken: For local nondeterminacy, a

semantic model based on sets of (finite or infinite) sequences of actions, also called streams,

suffices. For global nondeterminacy, a more elaborated semantic model is needed. We shall

employ here a model where the complete history of possible choices at any time during the com­

putation is recorded in certain tree-like structures, also called processes. Following the terminol­

ogy of temporal logic (see e.g. [Pn]), the stream semantics is also called a 'linear time' model, and

the process semantics a '(full) branching time' model. For example, in a linear time model, we

shall encounter the set { ab,ac} as meaning for both the statements (a ;b) U (a ;c) and

a; (b U c). In the branching time models (a ;b) +(a ;c) and a ;(b +c) will obtain as meanings the

trees

a a

b c

and

a

b c

respectively. A rigorous development of the branching time model requires the solving of domain

equations in the style of Plotkin [Pll] or Scott [Sc]. We shall apply metric tools for this purpose

as first described in [BZ2].
The full branching time model has advantages in its generality and extensibility to nonumiform

languages. For a proper treatment of global nondeterminacy, models which are 'in between' the

56

linear time and branching time framework can also be used. This has been investigated in detail

by many authors. We mention in particular [BHR], [OH2], [BKO], and the survey [Pn] (which

also contains further references). In fact, a model with so-called ready sets, one of the variants

encountered there, plays a technical role in establishing the relationship between operational and

denotational semantics for our language with global nondeterrninacy.

The next theme on our list refers to the contrast between models incorporating infinite objects

versus models which involve only finite objects. Specifically, we shall contrast -for a language

with local nondeterminacy only- a model which uses finite and infinite streams, and a model

which uses only finite sequences of so-called 'observations'. For both models, we impose certain

restrictions on the sets which are possible outcomes of a computation. Both are then endowed

with a suitable cpo structure, and a theorem establishing their isomorphism is presented.

The final theme on our list concerns a syntactic notion: We distinguish between so-called guarded

and unguarded recursion. In the former, inner recursive calls are always preceded by some action,

in the latter this is not necessarily the case. The guardedness requirement has important techni­

cal consequences for the denotational models. (Transition systems take both varieties in their

stride.) In the metric models, guardedness is essential to obtain contractivity of the mappings

associated with recursive constructs, a comer stone of the fixed point approach in this setting. In

the order-theoretic approaches, guardedness is not a formal requirement, but we have to live with

a collapse of information in the outcome of an unguarded recursive term.

Our paper is organized in seven sections. Of these, the first one is the introduction you are now

reading, and section 2 collects some basic information on metric spaces, complete partially

ordered sets, and languages with finite and infinite words. Sections 3 to 7 constitute the main

body of the paper. There we introduce four languages:

Lo: shuffle and local non determinacy

(uniform, as yet no synchronization or communication)

L 1 :synchronization merge and local nondeterminacy

(uniform)

L2:synchronization merge and global nondeterminacy

(uniform)

L3:synchronization with value passing and global nondeterminacy

(nonuniform)

Operational and metric denotational models for these languages are developed in sections 3,4,6

and 7. Section 5 describes two order-theoretic models for the language L 1. The denotational

models in sections 3,4 and 5 are all linear time; in sections 6 and 7 branching time models are

introduced. In each section, precise statements are made on the relationship between the seman­

tics studied in that section. The only exception is section 7, where no more than a conjecture con­

cerning the relationship between operational and denotational semantics for L 3 is made.

Our paper gives a unified presentation of results we have obtained in recent years. Full details of

57

definitions and statements of theorems are provided, but (almost) no proofs are given. Instead

we supply pointers to the literature where these proofs can be found.

The primary sources for our paper are

- basic papers on the transition systems method
[HP!, Pl3,4]

- metric denotational model, linear time

[BBKM, BZ3]

- metric denotational model, branching time
[BZI,2,3,4]

- order-theoretic models, observations model
[Mel,2, OHl,2]

- relationship between operational and metric models

[BMOZl,2]

- relationship between order-theoretic models, both mutual and with a metric model
[BMOl,2,3]

The major theme of our paper being the various relationships between the models, our presenta­

tion owes most to the papers [BMOZ2] and [BM02].

It will be clear from the above what we see as the central topics of our paper. Naturally, there

are further interesting issues in the semantics of concurrency not explored in our paper. For

example, we do not treat the complex of notions around hiding, abstraction and observational

equivalence(s). Neither do we touch upon any of the extensive algebraic or category-theoretic

approaches to concurrency. Also we only address interleaving models: we do not deal with models

based on partial orders, trace theory in the sense of Mazurkiewicz [Ma], or Petri nets, let alone

with the interconnections between interleaving and partial order methods. As starting point for

the vast literature on these and related topics in concurrency we have neglected in our presenta­

tion, the reader may consult the two recent collections of papers [Ap3] and [BRW].

Connections to be explored in future work are (i) the relationship between our metric approaches

and the various metric models developed by Degano and Montanari (e.g. [DM] where one finds a

treatment of various versions of fairness, a notion outside the scope of our paper); (ii) the rela­

tionship between the metric and order-theoretic/categorical domain theory; (iii) non-trivial

order-theoretic models for unguarded recursion (cf. [Broll); (iv) models for applicative languages.

Acknowledgement. We are grateful to Jan Rutten, who has been of great help in preparing the

text of this paper.

f ·r
H··

' ~' i ~ .•
·l

58

2. MATHEMATICAL PRELIMINARIES

In this section we collect some basic definitions and properties concerning (i) metric spaces and

(ii) complete partially ordered sets. Both structures will play a role in the variety of denotational

models to be presented in sections 3 to 7. In addition, a number of notations and definitions

concerning languages with finite and infinite words are provided.

2.1. Elementary definitions.

Let X be any set. ~(X) denotes the powerset of X, i.e., the set of all subsets of X. ~ ... (X) denotes

the set of all subsets of X which have property · · · . A sequence x 0 ,x 1, • • • of elements of X is

usually denoted by <x;>i'°=o or, briefly, <x;>;. Often, we shall have occasion to use the limit,

supremum (sup), least upper bound (lub), etc. of a sequence <x;>;. We then use the notations

Um x;, or, briefly, lim; x;, sup; x;, lub; x;, etc. The notation f: X ~ Y expresses that f is a
l-+00

function with domain X and range Y. If X = Y and , for x E X , f (x) = x, we call x a fixed

point off

2.2. Metric spaces.

DEFINITION 2.1. A metric space is a pair (M,d) with M a set and d (for distance) a mapping

d: MXM--7[0, I] which satisfies the following properties:

a.d(x,y)=O iff x =y

b.d(x,y)=d(y,x)

c.d(x,y);;;;d(x,z)+d(z,y)

If clause a. is replaced by the weaker a': d(x,y)=O if x =y, we call (M,d) a pseudo-metric space.

DEFINITION 2.2. Let (M,d) be a metric space.

a.Let <x;>; be a sequence in M. We say that <x;>; converges to an element x in M called its

limit, whenever we have:

'</ E > 0 3 N '</ n > N [d(X,Xn) < E]

A sequence <x;>; in Mis a convergent sequence if it converges to x for some x E X

b.A sequence <x;>; is called a Cauchy sequence whenever we have

'</ E > 0 3 N '</ n,m > N [d(xn,Xm) < E]

c. The space (M,d) is called complete whenever each Cauchy sequence converges to an element in

M.

d.A subset X of a complete space (M,d) is called closed whenever each Cauchy sequence in X

converges to an element of X.

59

DEFINITION 2.3.

a.Let (M1,d 1) and (M2,d2) be two metric spaces. We call the spaces isometric if there exists a
bijection]: M1......,. M2 such that, for all x,y E M 1, d2(f(x), fl.y)) = d1(x, y).

b. Let (M 1, d 1) and (M 2, d 2) be two metric spaces. We call the function f : M 1,. M 2 continu­

ous, whenever, for each sequence <x;>; with limit x in M 1, we have that lim; f (x;) = j(x).

c. Let (M,d) be a metric space and f: M,. M. We call f contracting if there exists a real con­
stant c, O,,;;;c<l, such that, for all x,yEM, d(j(x), j(y)),,;;;; c. d(x, y).

REMARK In part a it is, in fact, sufficient to require f to be a surjection.

PROPOSITION 2.4.

a. Each contracting function is continuous.

b.(Banach's fixed point theorem). Let (M,d) be complete and f: M,. M contracting. Then f
has a unique fixed point, which can be obtained as the limit of the (Cauchy) sequence < x 0 ,

f(xo),f(j(xo)), · · · >,for arbitrary xo.

For each metric space (M,d) it is possible to define a complete metric space (M,d) such that
.... - _, ,...

(M,d) is isometric to a (dense) subspace of (M,d). In fact, we may take for (M,d) the pseudo-

metric space of all Cauchy sequences <x;>; in M with distance d(<x;>;,<y;>;) =
lim; d(x;,y;) which is turned into a metric space by taking equivalence classes with respect to the

- -
equivalence relation <x;>; = <y;>; iff d(<x;>;,<y;>;) = 0. Mis embedded into M by
identifying each x E M with the constant Cauchy sequence <x; >; with x; = x, i =O, 1, · · · in

M.

For each metric space (M,d) we can define a metric d on the collection of its nonempty closed

subsets, denoted by 6I'nc(M), as follows:

DEFINITION 2.5 (Hausdorff distance).

Let (M,d) be a metric space, and let X, Y be nonempty subsets of M. We put

a.~'(x, Y) = infy E y d(x,y).

b.d(X, Y) = max(supx EX d'(x, Y) , supy E y d'(y,X)).

We have the following theorem which is quite useful in our metric denotational models:

60

PROPOSlHON 2.6.

Let (i\f,d) be a metric space and d as in definition 2.5.

is a metric space. ,

b.lf (M,d) is complete then ("P,,c(M),d) is complete. Moreover, for <X;>; a Cauchy sequence in

we have

Jim, X, :::: { lim, x; : x, E X;, <x;>; a Cauchy sequence in M }.

Proofs of proposition 2.6 can be found e.g. in [Du] or [En]. The proposition is due to Hahn

[Ha]: the proof is also repeated in [BZ2]. Useful information on topologies on spaces of subsets

can be found in [Mic].

We close this subsection with a few definitions and properties relating to compact spaces and sets.

First some terminology. A subset X of a space (M,d) is open if its complement M \ X is closed.

A subset Y is called dense in (M,d) if its closure Y (the least set containing Y) equals M. A

space (M,d) is called separable if it has a countable dense subset. An (open) cover of a set X is a

family of (open) sets Y,, i El, such that X <;;;; U; EI Y;.

DEFINITION 2.7. Let (M,d) be a metric space.

a.(M,d) is called compact whenever each open cover of M has a finite subcover.

b.A subset X of Mis called compact whenever each open cover of X has a finite subcover.

PROPOSITION 2.8.

a. Each closed subset of a compact space is compact.

b.lf X is compact and f is continuous then f (X) is compact.

c. X is compact iff there is a Cauchy sequence <X; >; (with respect to the metric of definition

2.5) of finite sets such that X = lim; X;.

d.If (M.d) is separable then (M,d) is compact whenever each infinite sequence <x;>i has a con­

vergent subsequence.

e. A subset X of a separable space (M,d) is compact whenever each infinite sequence <x >. ' ,.
x, EX, has a sub sequence converging to an element of X.

Remark. All metric spaces considered in sections 3 to 7 are in fact separable. Therefore, we may

take the properties of proposition 2.Sd,e as characteristic for compactness.

In the final definition and proposition of this subsection we suppress explicit mentioning of the

:netrics involved. For f a function : M 1 ~ M 2 we define f:GJnc(M 1) ~ GJnc(M 2) by

f(X)= U<x):x EX}. We have the following result from Rounds ([Ro]):

61

PROPOSITION 2.9.

Let f be a function from a compact metric space M 1 to a compact metric space M 2 • The follow­

ing three statements are equivalent:

a./is continuous.

b.f:6Ync(M 1) - 6Ync(M 2) is continuous with respect to the Hausdorff metric(s).

c.For XE6Ync(M1),f(X)E'!Pnc(M2) and, for <X;>; a decreasing (X;;;;?X;+ 1, i=O,l,2, · · ·)

chain of elements in t!I'nc(M 1) we have
A A

f(n;X;)= n;f(X;).

2.3. Complete partially ordered sets.

DEFINITION 2.10.

a.A partial order (po) is a pair (C,r:_) where C is a set and C a relation on C (subset of CXC)

satisfying

I xr:_x

2 if xr:_y andyCx then x =y
3 if xr:_y and YC z then xc_ z

If C satisfies only 1 and 3 it is called a preorder.

b.An (ascending) chain in (C,C) is a sequence <x;>; such that x;r:_x;+i, i=O,l, · · ·. The

chain is called infinitely often increasing if x;=;i::.x; + 1 for infinitely many i.

c. For X ~ C we call y EC the least upperbound (lub) of X if

1 Vx EX[xCyJ

2 'Vz EC[Vx EX[xr:_z]=:-yr:_z]

DEFINITION 2. l l. A complete partially ordered set (cpo) is a triple (C, C , ..L) with (C, C) a po and

..L EC such that

a. Vx E C[..l[. x]

b. Each chain <x; >; in C has a lub in C.

For "the cpo (C,C ,..l)" we often simply write "the cpo C". For lub; x; we also write LJ;x;.

DEFINITION 2.12 (continuity). Let C1 and C2 be cpo's.

a.A function f: c 1-c2 is called monotonic whenever for all xi.x2 E C2, if x 1c_x 2 then

f (x i)Cf (x2).
b.A function f : C 1-c2 is called continuous whenever it is monotonic and, for each chain

<x;>; in C1 we havef(U;x;) = LJ;f(x;).

62

PROPOSITION 2.13.
Let f be a continuous mapping from a cpo C into itself. f has a least fixed point µ,f=dfLJ;f(J_)

then

DEFINITION 2.14.
a.A subset X is called.fiat whenever, for all x,y E X, x[.y implies x =y.
b.A subset X of a cpo C is called closed whenever, for each infinitely often increasing chain

<x; >, of elements in C such that, for all i = 0, l, · · · . we have that x;[.y; for some y; E X, it

follows that U ;X; EX.

This definition of closed appears in [Ba] or [Ku]. We now introduce a number of preorders on

~Y(C), for (C, [.. .L) a cpo.

DEFINITION 2.15.

a. The Smyth preorder [.s: X[s Y ill"v:v E Y3x EX[x[y]

b.The Hoare preorder [H: X[.H Yiff'v'x EX3y E Y[x[.y]

c. The Egli-Milner preorder [EM: X[EM Y iff X[s Y and X[. HY.

None of the three preorders is, in general, a partial order. In fact, we may take the two sets

X:::: { x,y,z} and Y = {x,z} with x[y and y[z as a counterexample. In later sections we shall
encounter various special cases where the preorder is turned into a (complete) partial order by

additional requirements.

2. 4. Finite and infinite words.

We introduce some basic definitions and notations for languages consisting of finite and infinite
words. Let A be a finite alphabet, i.e., a finite nonempty set of symbols with a concatenation

operator.

Important remark. We emphasize that throughout the paper A is always assumed finite. At a

number of places this is an essential condition. In particular, certain continuity properties stated
in later sections do not hold when finiteness of A is not assumed.

DEFINITION 2.16. Let A be an alphabet. We use A* to denote the collection of all finite words
over A and A"' to denote the collection of all infinite words over A. We put

At =df A* U A"'.

We use£ for the empty word, a* for the set of all finite sequences of a's, and a"' for the infinite

sequence of a's. Analogously we use notations such as (ab)* or (ab)"', etc. We shall use

63

u, v, w, · · · to range over At and X, Y, · · · for subsets of At.

We next define the prefix order "~" on A t:

DEFINITION 2.17.

a. For u EA*, I u I denotes the length of u.

b.For u,v EA t we put u~v if there exists w such that u.w =v (see definition 2.18a). We call u a
prefix of v.

c. For u, v EA t, u(n) denotes the prefix of u of length n, in case I u I ~n. Otherwise, u(n)=u.
d.For Xc;;;A t, X(n)={u(n):u EX}.

Finally, we define the operators of concatenation(.) and shuffle (II) for words and sets of words:

DEFINITION 2.18.

a. u. v is defined as usual for u EA*, v EA t. Moreover, u. v = u for u EA w, v EA t.
b.X. Y={u.v:u EX,v EY}.

c. The shuffle u llv yields a subset of At defined in the following way: let A and A be copies of A
- - -

with A= {a:a EA} and A ={a :a EA}. Let h,h 1,h 2 be homomorphisms (with respect to ".")

such that, for each a EA, h(Q)=h(3)=a, h 1(a)=h 2(3)=a, h 2 (a)=h 1 ('3)=~- For u,v EA* we
define (cf. [HU], p.142)

u II v = { w I 3 w' E h- 1(w) [h1(w') = u, h1(w')= v] }.

If u or v belongs to A w we define

u llv = {w EAw I 3w' Eh- 1 (w)[h1(w')~u,h2(w')~v]}.

d.X II Y = U { u II v : u EX, v E Y }.

Remark. Note that, by clause c, for u or v in Aw, we have, since w EA"', that either h l (w') = u or
h 2 (w')=v.

Examples.

I. ab lie= { abc, acb, cab}.

2. awllbc={aw}Ua*bawUa*ba*caw.

Remark. For a reader interested in fairness (a notion not dealt with below): if we replace, in the
last formula of clause c, ~ by = (twice) we obtain the definition of the fair merge u lltv. For
example, awll;bc=a*ba*caw.

64

3. SHUFFLE AND LOCAL NONDETERMINACY: OPERATIONAL AND METRIC DENOTATIONAL SEMANTICS

3.1. Introduction and syntax.
Section 3 is concerned with the first (out of four) of the languages studied in our paper. We call
this language Lo and let s,t stand for typical elements of Lo. Elements s,t are also called (con­
current) statements. For the syntax of Lo we need two classes of terminal elements:

The class A, with typical elements a,b, · · · , of elementary actions. For A we take an arbi­

trary (but finite!) alphabet.
2 The class Stmv, with typical elements x,y, · · · , of statement variables. For Stmv we take

some infinite set of symbols: it is convenient to have an infinite supply of fresh statement
variables. Statement variables play a role in the syntactic construct for recursion as we shall

see in a moment.

We now give, in a self-explanatory notation,

DEFINITION 3.1 (Syntax for Lo)

s ::=a I s 1 ;s 2 I s1 U s2 I s1 II s2 I x I µ.x(s].

A statements is of one of the following six forms:

- an elementary action a.

- the sequential composition s 1 ; s 2 of statements s 1 and s 2.

- the nondeterministic choice s 1 U Sz, also known as local nondeterrninism [FHLR]: s 1 U s2 is
executed by executing either s 1 or s2 chosen nondeterministically.

- the concurrent execution s 1 II s2, modelled by the arbitrary interleaving (shuffle) of the elemen­
tary actions of s 1 and s2

- a statement variable x which is (normally) used in
- the recursive construct µx[s]: its execution amounts to execution of s where occurrences of x

in s are executed by (recursively) executing µ.x [s]. For example, with the definitions to be
proposed presently, the intended meaning of µ.x[(a ; x) U b] is the set a*.b U { a"' }.

Lo has no synchronization or communication. These will appear only in languages L 1 to L 3 . In
the absence of communication, nondeterministic choice is just arbitrarily choosing between s 1

and s2• Only in the subsequent languages the distinction between local and global nondeter­
rninacy becomes meaningful.

Lo is, indeed, a quite simple language. However, it does extend classical sequential (schematic)
languages with the shuffle operator and therefore induces several challenging problems. In fact,
we believe that the full operational and denotational semantics together with the proof establish­
ing their equivalence, as described in [BMOZ 1,2], has not been described before in the literature.
The remainder of this section is devoted to operational semantics (subsection 3.2), denotational

,, '

65

semantics in a metric style (subsection 3.3), and a brief description of the main steps in the
equivalence proof (subsection 3.4).

The primary source for section 3 is the paper [BMOZ 2], in particular its second section. A prel­

iminary version of this paper appeared in [BMOZ l].

3.2. Operational semantics.

We first introduce as semantic universe for both operational and denotational semantics for Lo

the set of streams over A (cf [Broll), defined in

DEFINITION 3.2 (streams). Let A be an alphabet and .l.. E;t:A. The set A sr of streams over A is

defined by

AS/ =df A* u A"' u A*.{.l.}

We assume the definitions of section 2.3, and use u, v, w to range over A sr and X, Y,... for subsets

of A sz. In addition, we postulate that .l.. u = .l.. for all u.

In (denotational) semantics, .l.. usually serves one (or both) of the following purposes:

1. It indicates incomplete information which may be filled in at a later stage of the computation

2. It indicates a nonterminating computation.

In the present context (of section 3) .l.. is used primarily for (an improper form of) nonterminat­

ing computations. Its role in the sense of (i) will follow in the order theoretic treatment (of L 1)

in section 5.

The operational semantics for Lo is based on the notion of a transition system. A transition

describes what a statement s can do as its next step. This concept of a transition dates back to

[Ke] and to automata theoretic notions [RS]. Following Hennessy and Plotkin [HP,Pl3,Pl4], a

transition system is a syntax-directed deductive system for proving transitions (see also

[Apl,Ap2]).

A configuration is a pair <s, w > or just a word w. A transition relation is a binary relation over

configurations [Ke]. A transition is a formula <s,w>-<s',w'> or <s,w>-w' denoting an

element of a transition relation. A transition system is a formal deductive system for proving

transitions, based on axioms and rules. Using a self-explanatory notation, axioms have the format
1-2 . 1-213 i-2, rules have the format 3_ 4 . Also, 1-213 abbreviates 1-2 and 1-3, and 4_ 5 l 6 abbre-

. 1-2 1-3 viates 4_ 5 and 4_ 6 .

For a transition system T, T ~ 1-2 expresses that transition 1-2 is deducible in the system T.

Then 1-2 is also called a T-transition. For a finite sequence 1-2-3- · · · -n of T­

transitions, we also write T ~ 1-* n. Finally, we shall allow several conclusions from one

66

premise in a transition rule. For example,

. i~2 1~2
abbreviates the two rules -- and --.

3~4 s~6

We now present the transition system To for L 0 • It will be convenient to extend the class of

statements Lo with an auxiliary statement E, satisfying the syntactic identities, for all s, w:

<E,w> =wand

E ; s = s ; E = s 11 E = E II s = s.

Moreover, we shall employ a notation for substitution. For s,t statements and x a statement vari­

able, we write s(t / x] for the result of substituting t for all free occurrences of x in s. The

notion of free (and bound) variable is taken with respect to the variable binding operator

µx. · · · . The usual precautions avoiding clashes of free and bound variables apply. For exam­

ple, we have µ..x[(a1;x) U (b;y)][(az;x)/y] = µ..x'[(a 1;x') U (b;az;x)], where x' is some

fresh variable.

We shall define To only for syntactically closed statements, i.e., for statements without free state­

ment variables. A similar condition applies to all subsequent transition systems of our paper.

WenowdefineTo. ForwEAw UA*.{J_}weput

<s,w>~w

and for w EA* we distinguish the following cases:

(elementary action)

<a,w>~w.a

(local nondeterrninacy)

(recursion)

<µ..x[s],w >~<s[µx[s]/ x],w >

(sequential composition)

<s1,w>~<s1,w'>

where s' may be E.

(shuffle)

Examples

<s1,w >-'><s',w'>

<s1 II s2,W>-'><s' II s2 ,w'>
<s2 II s1,w>-'><s2 II s' ,w'>

where s' may be E.

67

1. We prove <(a 1 ;a2)llb,£>-" <a2llb,a 1 >. We have, successively

(1) <a 1,£> -" a 1 (by elementary action)

(2) <a 1 ;a2,£> -" <a2,a 1 > (by (1) and seq. comp.)

(3) <(a 1 ;a2)llb, £> -'> <a2llb,a1 > (by (2) and shuffle)

2. <µ.x[(a1;x)Ub],f>-" <a1;µ.x[(a1;x)Ub]Ub,£>-"

<a1;µ.x[(a1;x)Ub],f>-'> <µ.x((a1;x)Ub],a1>-" · · ·

by application of recursion, local nondeterminacy, elementary action + sequential compo­

sition, ... , respectively.

Note that every rule in T 0 has only one premise. Thus every deduction of a transition

<s, w >-'>w' I <s', w'> (*)

starts from a single axiom. Moreover, for different deductions of (*), these axioms may differ,

but they will all be instances of the same scheme. Thus, if (Ax) is the name of this scheme, we

call (*) an Ax-transition in T 0 .

Examples.

(i) <a ;s, w >-'><s, wa > is an elementary action transition.

(ii) <µ.x[x]llµy[y],w>-'><µ.x[x]llµy[y],w> is a recursion-transition (though there are two

different deductions of this transition, one starting from µ.x [x] and the other from µy [y]).

Note. In example (i) and often below, we omit the concatenation operator for easier readability.

We now proceed with the definition of the operational semantics 190 for Lo based on T 0 . We

define 190 as a mapping

190 : Lo -" §

with§= 'iP(A 51). Following a semantic tradition, for sELo we write 190[s] rather than simply

0(s) for the result of applying the function 00 to s. The definition of 190 is given in

DEFINITION 3.3. Lets EL 0 be without free statement variables. We put w El90[s] iff one of the

following two conditions is satisfied (always taking <so, wo > = <s, £>):

l There is a finite sequence of T 0-transitions

68

2 There is an infinite sequence of T0 -transitions

and w =(supnwn).J_, where sup is taken with respect to the prefix order,,;;;, see section 2.4.

Remark. It is not difficult to show that, if <s. w > --> <s', w'> then w ,,;;;w'. This justifies the

clause w = (supn wn)· J_ in clause 2. If <wn >n is infinitely often increasing then supn Wn EA"' and,
hence, w = supn Wn. Otherwise, there exists some n such that Wn + k = wn, k = 0, 1, 2, · · · , and
w = wn· J_. Here we see the role of J_ in modelling improper non termination.

Examples.

l'lo[(a 1 ;a 2)[[a3] = {a1a 2a3, a1a3a2. a3a1a2}.
l'lo[,u.x[(a;x)Ubl]= a*.bU{a"'},

l'lo[,u.x [(x ;a) U b]] = b.a* U { J_ }.

Note that systems such as To are used to deduce one step transitions 1->2. Sequences of such
transitions are used only to define l.'10[• · ·].

We postpone till section 3.4 the statement of various fundamental facts about l'lo which, besides
being of importance in their own right, will in particular be applied in the comparison between
operational and denotational semantics.

3.3. Denotational Semantics.

The operational semantics l'lo for Lo is global in the following sense: to determine l'lo[s] we first
have to explore the T 0-transition sequences for all of s and only then we can retrieve the result
190 [s]. Further, in T 0 and thus in (90 recursion is dealt with by syntactic copying. We now look

)r a denotational semantics 6D0 for L 0• A denotational semantics should be compositional or
amomorphic, i.e. for every syntactic operator op in Lo there should be a corresponding operator

op 'Do satisfying

6DQ[s I op s2] = 6DQ[s 1] op "Do 6Do[s2]

and it should tackle recursion semantically with the help of fixed points. This of course requires a
suitable structure of the underlying semantic domain.

For 6Do we shall use metric spaces as semantic domain. (For the subsequent language L 1 we shall
develop denotational models based both on metric and on order-theoretic structures.) Our
approach is based on the papers [BBKM] and [BZ2]; related technical results appear in [BZ3].

For metric preliminaries see section 2.2. An important technical restriction is that we define 0D0

only for guarded statements (definition 3.4). The reason for this is that the metric treatment of
recursive constructs is only valid under this requirement. As we shall see in section 5, order-

69

theoretic methods are (slightly) more adequate for the general case.

We now present the definition of guarded (cf. also [Mi2], or [Nil] where Greibach replaces

guarded). Intuitively, a statement s is guarded when all its recursive substaternents µx[t] satisfy

the condition that (recursive) occurrences of x in t are semantically preceded by some statement.

More precisely, we have

DEFINITION 3.4. (guarded statement)

a. We first define the notion of an occurrence of a variable x being exposed ins. The definition is

by structural induction on s:

I x is exposed in x.

2 If an occurrence of x is exposed in s 1, then it is exposed in s 1 ;s2, s 111s 2, s2lls 1, s1 Us2,

s2 Usi, and in µy[si] for x4y.

b.A statement is defined to be guarded if for all its recursive substatements µx [t], t contains no

exposed occurrences of x.

Examples.

I In the statement x ;a U b ;x, the first occurrence of x is exposed, and the second is not.

2 µx [a ;(x lib)] is guarded, but µx [x], µ,y [y lib], and µy [µx[y]] (as well as any statement contain­

ing these) are not.

We now proceed with the definition of 6))0• The first step is to turn the set Ast into a metric

space by defining a distanced : A si XA si ->[0, l] as follows:

DEFINITION 3.5. For u,v EAs1 we put

d(u,v)=2-sup{n lu(n)=v(n))+I

with the understanding that 2- 00 =O.

Remark. Note that d(u, v)=2-n + 1 iff u, v exhibit their first difference in the n-th position.

Example. d(aba i,aba2)=2-3+I = ±,d(an ,aw)=2-n. We have

PROPOSITION 3.6.

(A si ,d) is a complete and compact metric space.

The proof can be found, for example, in [Nil]. We next define a distance don subsets X, Y of

Ast in

DEFINITION 3.7. For X, Y EAs1 we put

d(X, Y)=2-sup{n:X(n)=Y(n))+l

70

with 2- 00 as before, and X(n), Y(n) as in definition 2.17.

Let §nc denote the set of all nonempty closed subsets of Ast. An example of a closed set is

a*.bU{aw}. However, a*.b is not closed since the Cauchy sequence <ai.b>; does not have its

limit a" in a*.b. We have (cf. definition 2.5, proposition 2.6 and [BBKM]):

PROPOSITION 3.8.

a. (§nc•d) is a complete metric space.

b. d coincides with the Hausdorff distance on §nc induced by the distance d on Ast as

defined in definition 3.5.

• •"Do •n., ll"ilo . ki We now define the semantic operators ; , U and on §nc· (For ease of notation, we s p

superscripts 6Do if no confusion arises.)

DEFINITION 3.9.

a.X,Y~A*UA*.{..1.}. For X;Y=dfxy (concatenation) and XUY (set-theoretic union) we

adopt the usual definitions (including the clause l..u = ..1. for all u). For XII Y (shuffle or

merge) we introduce as auxiliary operator the so called left-merge IL (from [BK!]). It enables a

particularly simple definition of II by putting

XII Y =(XILY)U (YILX)

where IL is given recursively by XILY = LJ {u1LY:u EX} with ~iLY=Y, (a.u)iLY=a.({u}llY)

and .l. lL Y = { ..1.}.

b.X, Y E§nc where X, Y do not consist of finite words only. Then

X op Y=limi(X(i) op Y(i))

for op E {;,U,11}.

Examples

I. {al a2,a3 }!Lb =(a ia21L {b })U (a3 IL{b })=

a J.({ a2} II { b}) U { a3b} = {a i a1b,a1 ba2,a3b }.

2. { ab ..1. }II { c} = { cabl.,acb l.,abc l.,ab ..1. }.

3. a"'llb"=limn(anllb")={a,b}w.

The operators are well-defined and continuous, as stated in

PROPOSITION 3.9.

a. The operators ;, U, II preserve closedness.

b.The operators ;, U, II coincide on §nc X§nc with the operators as defined in definition 2.18.

c. The operators ;, U, II are continuous mappings: Snc X§nc--+§nc·

Most of this can be found in [BBKM]. Further and related information is contained in

[BZ2,BZ3,Ro].

71

We proceed with the definition of "Do. We introduce the usual notion of environment which is

used to store and retrieve meanings of statement variables. Let f 0 =Stmv->§nc be the set of

environments, and let yEf0 . We write y'=dfy<X /x> for a variant of y which is like y but

with y'(x)=X. We define

in

DEFINITION 3.10.

6Do[a](y)= {a}.

2

3

4

6Do[s 1 op "Vo s2](y) = 6Do[s i](y)op 'Do 6Do[s2](y).

6Do[x](y)=y(x).

6Do[,u.x[sl](y)= lim;X;, where X0 ={.l-} and X;+J = 6] 0[s](y<X; / x >).

Example. "Do[,u.x[(a ;x)U b J](y)=lim;X;, where Xo = {l-}, X; + 1 =6Do[(a ;x) U b](y<X; / x >)=

a.X;U{b}. Hence,X1= {a 1..L}U {alb:j,,;;;,i-1},andlim;X;= {a"'}U a*b.

Definition 3.10, in particular its clause 4 is justified by

PROPOSITION 3.11.

For guarded s, the function <t> = 1'.X.6Do[s](y< X / x >) : §nc->§nc is contracting.

The proof is an inessential variation on the results in Appendix B of [BZ2]. Thus, by proposition

2.4, <t> has a unique fixed point which is obtained as limit of the Cauchy sequence <X; >; as in

the definition. The choice of X 0 = {J_} is for definiteness; it is also convenient in the proof of

the result i:J0 =6Do (section 3.4).

For syntactically closed statements we write 01J0[s] instead of 6])0 [s](y). Since GD0[s] is a set of

(linear) streams, GDo is called a linear time semantics (cf. [BBKM]). Such a semantics may consti­

tute the basis for a linear time temporal logic for L 0 , cf. [Pn].

3.4. Equivalence of 0o and 6Do.

The following theorem can be established:

THEOREM 3.12. (90 [s] =GDo[s] for each syntactically closed and guarded s EL0 .

Theorem 3.12. is the first main result of [BMOZ 1,2]. We shall sketch here the outline of its

proof by presenting its basic constituent lemmas. The full story is described in the original

paper.

LEMMA 3.13. 00 behaves compositionally and satisfies the fixed point property:

a.0Q[s1 op s2]= 0o[si]lop"iloeo[s2].

b.0o[µ.x[s]]= 0Q[s[µ.x[s)/ x]].

72

Part a. involves a lot of technical work for op= II; part b. is direct from the definitions.

LEMMA 3.14. Consider the recursive statement µ.x [s]. Let 0 be an auxiliary statement with associ­

ated auxiliary transitions (added to To) <0,w>-w..L, <O;s,w>-<0,w>,
<Olls,w>-<0,w>, <sllO,w>-<0,w>. Lets<0>=dfo,s<n+l)=s[s<n> /x]. We have

The proof is complicated and requires an elaborate analysis of transition sequences and their

truncations for recursive constructs.

LEMMA 3.15. For each guarded s, 0o[s] is a closed set.

Examples. For the guarded s 1=µ.x[(a;x)Ub], 0o[s 1] equals the closed set a*.b U {a"'}. For the

unguarded s2=µ.x[(x;a)Ub], 0o[s2] equals the nonclosed set b.a*LJ{J_} (this set does not con­

tain its limit point b.a"').

The proof of lemma 3.15 relies on the following fact:

LEMMA 3.16. For each guarded s,w,a there are only finitely many production sequences

<s,w >--l>* <s',wa >

(for some s').

Remark. Statement s2 from the above example may be used to show that guardedness is neces­

sary here.

Finally, we have the basic lemma relating 00 and 6D0 :

LEMMA 3.17. Let { x I• • • • ,xn} be the set of free statement variables in s. Let t 1 , • • • , tn be syn­

tactically closed statements. Then if

0o[t;] =X; , i =I, · · · ,n

then

From this lemma -which is proved by structural induction on s- theorem 3.12 follows by taking

for s a syntactically closed statement.

73

4. SYNCHRONIZATION MERGE AND LOCAL NONDETERMINACY: OPERATIONAL AND METRIC DENOTA­

TIONAL SEMANTICS

4.1. Syntax and operational semantics.

For L 1 we introduce some structure to the finite alphabet A. Let C C:A be a subset of so-called

communications. From now on let c range over C and a,b over A \ C. Similarly to CCS [Mi2]

or CSP [Ho] we stipulate a bijection -:c-c with c=c which for every c EC yields a matching

communication c. There is a special action rEA \ C denoting the result of a synchronization of

c with c [Mi2]. As syntax for s EL 1 we give now:

DEFINITION 4.1.

Apart from a distinction between communications and ordinary elementary actions, the syntax of

L1 agrees with that of L 0. The difference between L 1 and Lo lies in a more sophisticated

interpretation of s 1 iis2 to be presented soon.

The introduction of communications is responsible for the fact that a statement s may now fail.

In particular this happens when a communication is executed (See, however, the remark at the

end of subsection 4.1.) We first extend our stream domain Ast with an element for failure: Let

8 ft. A U { J_} be an element indicating failure with 8. w =8 for all w. The set of streams or words

is extended to

with u,v,w now ranging over As1(8). The transition system T 1 consists of all axioms and rules of

T 0 extended with

<s,w >-w for w EA"' UA*. {8,1-},

and for w EA* with:

(communication)

(an individual communication fails)

(synchronization)

(synchronization in a context) (*)

(*) This rule (from [BMOZ2]) corrects an inadequate treatment of synchroniza­
tion in T 1 of [BMOZI).

<(s1 ;s)lls2,w >-'><(s';s)lls",w'T>
<(s 1 lls)lls2, w >-'><(s'lls)lls'',w'T>
<(slls 1)lls2, w >-'><(slls')lls'',w'T>
<s1 ll(s2;s),w >-'><s'll(s";s),w'T>
<s1 ll(s2 lls),w >-'><s'll(s"lls),W'T>
<s 1 ll(slls2), w >-'><s'll(s lls"), W'T>

74

where s' or s" or both may be E and where the premise of the rule describes a

synchronization-transition between s 1 and s2 such that s' stems from s 1 and s" stems from s 2•

The last rule requires some explanation. First consider a transition of the form

<s 1 lls2, w >-'><s', w'>.

An occurrence of a substatement s of s' is said to stem from s 1 (or s 2) if whenever s 1 and s2 were

coloured 'blue' and 'green' respectively, then s would be exclusively coloured 'blue' (or 'green').

Note that the concept of colouring is just a convenient way of tracing occurrences in

configurations changed by transitions. For example, in the transition

<(c ;s 1)ll(C;s2),w >-'><s 1 lls2,w'T>

S1 stems from c;s1 and S2 stems from c;sz.
Next note that as in To we can talk of an Ax-transition for some axiom Ax of T 1. In particular,

a transition of the form

<s 1 lls2, w >-'><s', w'T> (*)

is called a synchronization-transition between s 1 and s2 if any deduction of (*) starts with a syn­

chronization axiom

<c llc, w >-'>w'T

such that s 1 has the same colour as c and s2 has the same colour as c. In contrast, a transition

<s 1 lls2, w >-'><s'lls'', w'> (**)

is called a local transition if any deduction of (**) starts with an axiom of the form <s, w >--?w'

such that s is a substatement of either s1 or s 2. (Note: the "II" shown in (**) is introduced by

the shuffle rule, not the synchronization rule, and so s2 =s" ors 1 =s'.)

Examples.

1. <(c ;s')ll((c llC);s"), w >-'><s'll(c ;s"), wT> is a synchronization-transition between s 1 = c ;s' and

s2 =(cllC);s".

2.<(c;s')ll((cllC);s"),w>-'><(c;s')lls",wT> is a local transition involving only the second argu­

ment s2 =(cllC);s" of the top-level II operator.

Analogously to l9o we base an operational semantics 191 on T 1. l91 is a mapping l91 :L 1 --?§(8)

with §(8)=0'(A 31 (8)), and l9 1[s] is defined exactly the same way as l90[s] in section 2.2.

75

Examples.

1. We show <((clla);b)llc,£> ~ <a;b,-r>:

(1) <cllc,£> ~ <EllE,-r> (synchronization)

(2) <(clla)llc,£> ~ <allE,-r> (synchr. in a context, (1))

(3) <((clla);b)llc,£> ~ <(a ;b)llE,-r> (synchr. in a context, (2))

2. 01[d={8}, 01[cllc:B={8,-r}, 01[(a;b)U(a;c)]= e1[a;(bUc)]= {ab,ao}.

From the second example we see that under 01 communications c always create failures whether

or not they can synchronize with a matching communication c. Also the two statements

(a;b)U(a;c) and a;(bUc) obtain the same meaning by 01• This is characteristic for local non­

deterrninacy s 1 Us2 where the choice of s 1 or s 2 is independent of the form of the other com­

ponent s2 or s 1 respectively. A more refined treatment will be provided in section 6.

Remark 1. It is possible to do away with occurrences of 8 in sets 01 [s] in the case an alternative

for the failure is available. Technically, this is achieved by imposing the axiom

{o}UX=X, X=j=.0 (*)

In the above example applying the axiom would turn the sets {8}, {8,-r}, and {ab,a8} into {8},

{-r} and {ah}, respectively. (For the latter case we take {ab,a8} = a.({b}U{o}) = a.{b} =

{ab}.) The reader is, of course, free to impose (*) throughout section 4. Our reason for not

doing this is that our main result relating 01 and 6D1 does not depend on it. For both 01 and 6D1,

(*) may or may not be imposed simultaneously without affecting the result of section 4.3.

Remark 2. Clearly, by taking C= 0 the semantics 01 coincides with the previous 00 .

4.2. Denotational semantics.

This is as in section 3.3, but with the definition of II extended to include both shuffle and com­

munication, in the following way: the operator II : §nc(8)X§nc(o) ~ §nc(8) is defined by

1. For X, Y c;A * UA *. { .l,8} we define

XllY=(XILY)U(YILX)U(XI Y) where
(i)XiLY= LJ {utLY:uEX}, where .liLY={.l}, olLY={o}, eiLY= Y, (a.w)ILY=a.({w}llY)

(ii)XIY=LJ{ulv :uEX,vEY}, where (c.u1)l(C.v1)= -r.({ui}ll{v1}) and uiv=0, for u,v

not of this form

2. For X or Y with infinite words, we define

XII Y =limn(X(n)ll Y(n))

where X(n), Y(n) are, as before, the set of all n-prefixes of elements in X and Y.

Example. {ac }ll{bc} = {ac }IL{hc} u {bc}IL {ac} u {ac} I {be}=

a.({c}ll{bc})Ub.({c}ll{ac})U 0 = a.(({c}IL{hc})U({bc}IL{c})U(c jbC))Ub.(· · ·)=

a.({ cbc} ub.({c}ll{c })U 0)Ub.(· · ·)= {acbc,abcc,abcc,ab-r} u {bcac,bacc,bacc,ba-r}.

76

Remark. The definition of XII Y just given is a smooth extension of the one given in section 3.3.

A definition based on the technique with (inverse) homomorphisms as in section 2.4 would be

much less perspicuous.

The definition of 6D1 is now as follows: Let f1 =Stmv-.§nc(8), and let yEf1. We define

lll

DEFINITION 4.2.

I 6D1(a](y)= {a}, (for a EA \ C)

2 6D1[c](y)={c}, (for cEC)

3-5 as clauses 2-4 in definition 3.10. The convention about dropping y for syntactically closed s

in 6D1[s](y) is again adopted.

It is important to observe that 6j)1 [s] delivers no 8 (for any s). The compositional definition of

6D1[s 1 lls2] does not allow to define 6D1[c] as {8}! In fact, s 1 lls2 would then miss the opportunity

to synchronize between its two operands. More will be said about this in the next section.

4.3. Relationship between 01 and 6D1.

Here we do not simply have that

(*)

holds for all guarded statements s EL 1. As a simple counterexample take s =c. Then

0 1[c]={8} but 6D1[s]={c}. Even worse, we can state:

LEMMA 4.3. There does not exist any denotational (implying compositional) semantics 6D satisfy­

ing(*).

The proof is based on

LEMMA 4.4. 01 does not behave compositionally over II, i.e. there exists no "semantic" operator

such that

holds for all (guarded) s1,si EL1

PROOF Consider s1 =c and s2=c in L1. Than ~Ms1]= 01[s2]= {8}. Suppose now that ll'D

exists. Then {8}= 01[s1lls1]= e,[s1]11 6001[s1]= l91[s1]ll'De1[s2]= 01[s1lls2]= {8;r}.

77

Contradiction. 0

We remedy this not by redefining T 1 (which adequately captures the operational intuition for
L 1), but rather by introducing an abstraction operator a 1 : §(8)->§(8) such that

(**)

holds for guarded s EL 1 . We take a 1 = restr § which for W E §(8) is defined by

restr§(W)= {w I w E W does not contain any c EC}

U {w.8 I 3c',w'EA 51 (o):w.c'.w'E Wand w does not contain any c EC}

Informally, restr§ replaces all unsuccessful synchronizations by failure or deadlock. It thus
resembles the restriction operator in CCS [Mi2].

But how to prove (**)? Note that we cannot prove (**) directly by structural induction on s
because a1 =restr§ does not behave compositionally (over II) due to lemma 4.4. Our solution to
this problem is to introduce a new intermediate operational semantics ~! 1 * such that we on the one
hand show

by purely operational, i.e. transition based arguments, and on the other hand show

for guarded s analogously to (.90 [s] =6Do[s] in section 3.4. Combining these two results we will
obtain the desired relationship(**).

For (9 1 * we modify the transition system T 1 into a system T 1 * which is the same as T 1 except
for the communication axiom which now takes the form:

(communication*)

<c, W >->W.C

We base (9 1 *on T 1 *just as we based 19 1 on T 1•

Examples. (9 1*[c]={c}, t9 1*[cllC]={cc,cc,T}, 19 1*[(a;b)U(a;c)]= 19 1*[a;(bUc)]= {ab,ac}.

We first establish

THEOREM 4.5. 19 1 [s] =restr§ (191 * [s]) for every s EL I·

The proof uses the following lemma which states the link between the underlying transition

78

systems Ti and Ti*.

LEMMA 4.6. For alls ELi. s'ELi U{E} and w,w'E(A \ C)*:

(i)T1r <s,w>-+<s',w'> iffT1*r <s,w>-+<s',w'>
(ii)Tir <s,w>-+<s',wo> iff3cEC:Ti*r <s,w>-+<s',wc>

For the proofs of lemma 4.6 and theorem 4.5 we refer to [BMOZ2]. Next we discuss:

THEOREM 4.7. t:li *[s]=6Di[s] for every syntactically closed and guarded s EL1.

Its proof has the same structure as that of '00[s]=6Do[sil' (theorem 3.12). In fact, the lemmas

3.14 to 3.17 also hold for ei *, 6Di and Li instead of t:lo, 6Do and Lo, with identical proofs. We

therefore mention here only the proof that e1 * behaves compositionally over II (thereby extending

lemma 3.13). More precisely, it can be shown

As an auxiliary tool we need a result recalling Apt's 'merging lemma' in [Ap2]:

T1 * r<sills2, w >-+<s'lls",wr> where the considered transition is a synchronization between

s1 and s2 such that s' stems from s 1 and s" stems from s 2

iff

The proofs of lemma 4.9 and, especially, of lemma 4.8 take a lot of work for which we refer, once

more, to [BMOZ2]. By combining theorems 4.5 and 4.6 we finally obtain our desired result:

THEOREM 4.10 e1 [s] =restrs(6Jl1 [s]) for every syntactically closed and guarded s EL I·

79

5. SYNCHRONIZATION MERGE AND LOCAL NONDETERMINACY; TWO ORDER-THEORETIC MODELS

5.1. Introduction.

In this section we describe two further denotational semantics for L 1• The first is based on
order-theoretic notions for the stream domain Ast, introducing an order both on streams and on
(certain) sets of streams. This model is included in our presentation firstly since it fits into the
tradition of denotational semantics of using order-theoretic models (see, e.g. [dB] or [St]),
secondly since it provides a slight improvement over the metric case in that at least some -though
not very informative- meaning is assigned to unguarded statements. Thirdly, the order-theoretic
stream model is motivated since it provides a nice isomorphism with our second order-theoretic
model. This one is based solely on (sets of) finite observations. It fits into the specification
oriented approach to the semantics of concurrent statements [OH 1,2], a generalization of the
specific failure semantics of [BHR]. An observation is a finitely representable piece of informa­
tion about the computational behaviour of a process. Examples of observations are (finite)
traces, traces with divergence information, ready pairs and failure pairs leading to the (increas­
ingly sophisticated) trace, divergence, readiness and failure semantics for concurrent statements
[OH2]. The specific observation semantics to be presented in section 5.3 can be seen as 'in
between' the divergence and readiness semantics of [OH2].

In section 5.4 we establish the relationships between the metric and the two order-theoretic
models. Let us introduce, for the remainder of section 5, the following notation: for the three
respective denotational meanings of statement s EL J. we write ')T(J[s] (rather than the previous
6D1 [s]) for the metric denotational meaning of s, Si[s] for the order-theoretic meaning referring
to the stream model (Si for Smyth which is the order to be employed (cf. definition 2.15)) and
g' [s] for the order-theoretic meaning referring to the finite observations model. The following
results relating the various semantics are available:

1 Fors EL 1, s syntactically closed and guarded, ".Jll[s] = ~[s].
2 The stream model equipped with the Smyth order is isomorphic with the finite observations

model equipped with the order of reverse set-inclusion.

3 For each syntactically closed s El 1, ~[s] = ~Hs].
We shall provide pertinent definitions and an outline of the proofs of these results, together with
a few general facts relating order and metric which also have somewhat wider scope.

The main sources for section 5 are the papers [BMOl] (preliminary version) and [BM02] (full
version). These in tum rely heavily on the papers [Mel,Me2] and [OH2]. A few new results are
furthermore taken from [BM03].

80

5.2 The order-theoretic stream model.

We first define an order on As1 ==A*UAwUA*.{J_}. (We use Ast rather than As1(8) since 8

appears only in operational meanings or after abstraction, a notion not studied in section 5.) We
use the following terminology for elements u in A "1 :

- u is finite iff u EA*
- u is infinite iff u EA w

- u is unfinished iff u EA*. { J_}

We now give

DEFINITION 5.1. u[. v iff

- u is finished or infinite then u=v

- if u is unfinished, i.e. of the form u =u' J_, then u'.;;;;v.

Examples. a J_[. a, a J_[. ab, a" J_C a w, but ar:f,,. a .L

PROPOSITION 5.2.
(Ast,[., J_) is a cpo.

We next introduce, for u EA st, the[. -truncation u [n] (which is a variation on the ,;;;;-prefix u (n))

as follows: if JuJ,;;;;n we put u[n]=u, if JuJ:;.n and Ju'J,;;;;u is such that [u'J =n we put
u[n]=u' L Moreover, we define X[n]= { u[n]:u EX}.

We recall from section 2.3 the definition of Smyth (pre) order: X[. s Y iff "Iv E Y3u E X[u[. v].
For example, X[. s Y when X J Y (J denoting set-containment). [. s is not antisymmetric and
therefore, in general, not a partial order. However, the Smyth preorder generates an equivalence
relation _ 5 : x-5 Yiff X[.sYand Y[.sX. What are the sets identified by-5 ?

DEFINITION 5.3. M!Ns(X)= {v EX:,3u EX[u[. v!\u=;t=v]} is the set of minimal streams in X.

Then X=sY iff M!Ns(X)=M!Ns(Y). Thus, the sets MIN5 (X) form a system of representatives
of the equivalence classes under - s. Note that MIN s is flat: recall definition 2.13a and the
notation 6.Yj(· · ·) for the flat subsets of

PROPOSITION 5.4.

a. 0'(A st) / =s is isomorphic to 6J j(A st).
b.(0'j(As1),[.s,{..l}) is a cpo.
The proof of part b can be found in [Mel,Me2].

Notation. For the least upper bound of a Smyth-ordered chain of sets <Xi>i we shall write
Us,iX;.
The cpo 6J j(A st) will be the starting point for our order-theoretic stream semantics. In order to

81

be sure that we stay within our domain, we provide an adapted version of the operators of con­
catenation, union and merge which ensures that the outcome is always a flat set:

DEFINITION 5.5. Let op E { ; , U , II }, and let op:;; stand for the operators adapted to the
Smyth framework.
a.For X, Y s;A* UA*.{J-} we define X;f> Y =M!Ns(X. Y), where. is the operation as defined in

section 3.

XU'i> Y=M!Ns(XU Y) where U is the set-theoretic union.
Xllf> Y = mins(X II Y) where II is as defined in section 4.

b.For X and Y with infinite words we define
Xopf> Y= Us.n(X[n]op:'i>Y[n])

Example. Take X={J_}, Y={ab}. Then XUY={J_,ab}, XllY={..L,aJ_,ab..L}. However
XU 5 Y=Xll5Y={..l}.

PROPOSITION 5.6.

The semantic operators

opf> : 0' .1iA st) X qp ;(A st)~0'JAst)

with op E { ; , U , II }, are well defined and monotonic.

For the proof see [Mel,Me2]. Showing monotonicity is not trivial for ; and 11- To provide mean­
ing to recursive constructs as well, we will have to show that the semantic operators op"' are con­
tinuous. For U 1i> this is easily seen. Unfortunately, the operators ;;;, and lls, are not continuous
on arbitrary flat sets of streams.

Counterexamples. Take X = {a"'} and

Xn={uEa*:lu I ~n},n~O

Clearly, <Xn>n is a :?-chain and, hence a Cs chain. Note that Us,nXn= 0, whereas both
LJs,n(Xn;SX)~0 and LJs,n(Xn11SX)~0. Thus

LJs,n(XnOP::; X)~(LJs,nXn)op" X

for both op E{;, II }.

To rescue the continuity of ;s, and II:;; we shall restrict our domain to (nonempty) closed and flat
sets of streams. We recall the definitions of closed in a metric setting (definition 2.2d) and in a
cpo setting (2.14b). Fortunately no confusion arises since we have

LEMMA 5.7. Consider the set of streams A 81 =(As1,c,J_,d) simultaneously as a metric space and
as a cpo. A subset X \;;;Ast is d-closed whenever it is C -closed.

82

Let l!Pncf(A s1) stand for the set of all nonempty closed and fiat subsets of A si. The following

lemma is crucial for the further development:

LEMMA 5.8. If <Xn>n is acs-chain of sets in l!Pncj(As1) then Us,nXn#0.

The proof is rather involved [Mel,Me2]. We can now establish the following results:

PROPOSITION 5.9.
('!P,,cj(A s1},(::;: 5 , { .1. }), where "closed" is with respect to the metric d as before, is a cpo.

2 The operators ;:ii and lls, when restricted to l!Pncj(A sl) are continuous under CS·
The proof uses lemma 5.8 and otherwise follows [BBK.M]; the case of ll:ii is difficult.

Remarks
I. Lemma 5.8 and proposition 5.9.1 do not hold, in general, for infinite sets A of actions.

2. Instead of using the Smyth order Cs it is also possible to use the Egli-Milner order c_ E.M.

In fact we have that ('8111cj(A'1),C:E.M,{.l.}) is a cpo. This is a result from [Ba]; here for the

completeness already the restriction to closed sets is necessary. An advantage of the Egli­

Milner model is that continuity of the operators holds independently of the finiteness of A.

We here prefer the Smyth order because it is isomorphic to the finite observations model

to be described in a moment. For both cpo's (i!Png(A s1),C 5 , { .1.}) and

(l!Png(As1),C:£.M,{.l.}) it would be interesting to sort out the precise relationship with the

general powerdomain constructions of Plotkin [Pll], Smyth [Sm] or Scott [Sc], et al. We

expect that our Smyth order based cpo is isomorphic to the general Smyth powerdomain

over Ast, assuming the (usual) finiteness of A. Closed sets are then compact and the ele­

ments of '!Pncj(A si) are candidates for a set of representatives of the elements in the general

Smyth powerdomain. For the Egli-Milner order and its related general Plotkin power­

domain further analysis is needed.

We are now in a position to define the first order-theoretic denotational semantics for s EL 1•

Let, in the standard way, the set of environments r now be given by f=Stmv-'!Png(As1), and let
yEf.

DEFINITION 5.10. The semantic mapping iii : L 1-(r -'!P,,cfA s1)) is given by
1. a;[a](y)={a}, iii[c](y)={c}

2. a;[s1 op s2](y)= ~[s1](y)op:iiiii[s2](y)
3. ~[x](y)=y(x)

4. ~[p.x[s]](y)= Us,,,X,,, where Xo= {.l.}, X,, + 1 =~[s](y<Xn / x>).

The reader should observe that, contrary to the domain of the function ~= 6D1 of section 4.2, we

have here defined :ii[sD for alls ELI> thus including the unguarded statements as well. However,

this is not too informative. It is, in fact, not difficult to show:

83

PROPOSITION 5.11.

Fors EL l closed, we have ~[s](y)= { ..L} iff sis unguarded.

Example. ~[µ.x [x]] =~[µ.x[a llx j] = ~[µ.x[(x ;a)Ub j] = { ..L }.

Remarks

We needed flat sets to turn C::. s into an order. Therefore, we flattened all outcomes of the

operators op~, with the above effect for unguarded s.

2 The result ~[s]={..L} for unguarded s should be contrasted with the outcome of ~l;[s],

i=O,l. For example, as we saw in section 3.2, eo[µ.x[(x;a)Ubj]= {..L}Uba*, a result

which is clearly far more satisfactory. Broy [Brol] has developed a denotational semantics

for guarded and unguarded statements (in Lo) which yields the same result as our 190 • How­

ever, his semantics uses three consecutive steps for obtaining the result and is based on a

domain with several orderings. It is, as far as we know, still an open problem whether there

exists some direct way, based upon a domain with one ordering, to assign a denotational

meaning, say 'X, to s such that t9[s]=~s] for all syntactically closed s (in Lo or L 1).

3 Though somewhat lacking in content, the outcome of ~[s] for unguarded s is more attractive

than the result in the linear time semantics of [BBKM]. This uses a simplified order­

theoretic model, viz the cpo (0'nc(A f), ;;d ,A f) where :J is set-containment. The underlying

mathematics is somewhat simpler, but this model has the disadvantage that counterintuitive

results are deliverd for unguarded statements. E.g., LT[µ.x [x]](y)=A t but (surprisingly)

LT[µ.x[x ;b J](y)=A "'. Moreover, it lacks the advantage of the model based on C::. S• viz. that

it is isomorphic to the observation model we now present:

5.3. The finite observations model.

Motivated by the failure semantics of [BHR], a new approach to the semantics of concurrent

statements has been developed in [OH 1,2]. It is called "specification oriented" because it starts

from the following simple concept of correctness for (concurrent) statements: a statement satisfies

a specification S, abbreviated s sat S, if every observation we can make about s is allowed by S.

The idea is that by varying the structure of observations we can express various types of seman­

tics and correctness in a uniform way.

The principles of specification-oriented semantics are:

- an observation is a finitely representable unit of information about the operational behaviour of

statements

- therefore the set of possible observations about a statement enjoys some natural closure proper­

ties with respect to certain predecessor and successor observations

- sets of observations are ordered by nondeterminism ordering (reverse set-inclusion) [BHR]

- this ordering leads to a simple mathematics, in particular a very simple continuity argument for

the language operators.

Let us now start with an example of a semantics -not treated in [OH 2]- which fits into this

l
I

84

framework. We use distinct symbols -J, j <f. A to define the following set Af0 of observations,

with h EAf0 :

DEFINITION 5.12. Af0 =A*UA*.{l/,i}

Observations are finite traces or histories over A and the extra symbols y and i, representing

successful termination [BHR] and divergence [OH 2], respectively. Divergence i stands for the

infinite internal loop of a process generated by unguarded recursion like µ.x [x]. Thus, in spite of

their finite representation, not all observations can be made effectively; a similar concession is

also present in the concept of testing due to [dNH].
Just as with streams we let c denote the empty history and ~ the prefix relation between his­

tories. Apart from ~ we do not introduce any further relation on Af0 which corresponds to C
on As1• Let '!J'(Af0) denote the powerset of Af0 , with HE'!J'(Af0).

DEFINITION 5.13. H r;;;;Af0 is called saturated if the following holds:

1. H includes the least observation, i.e. c EH

2. His prefix closed, i.e. h EH and h'~h imply h'EH.

3. His extensible, i.e. h EH\ A*.{V} implies 3aEA U{y,i}:haEH

4. H treats divergence as chaos, i.e. hjEH and h'EAf0 imply hh'EH.

These closure properties are (partly) motivated by looking at saturated H's as the sets of possible

observations about a concurrent statement:

I. As long as the statement has not yet started, we only observe the empty history c.

2. Whenever we have observed a history h, also all its prefixes are observable.

3. Only histories h y' indicate the successful termination of the observed statement; for all

other histories h some extension a EA U { -J, j} is certain to happen, but we do not know

which one, by looking at h.

4. Identifying divergence hj after a history h with chaotic closure h.Af0 cannot be explained

operationally. Rather, it originates from the desire to ban diverging processes from satis­

fying any reasonable specification. This idea is familiar from Dijkstra's weakest precondi­

tion semantics where a diverging program will not achieve any postcondition [Pl2].

Properties (i), (ii) are typical conditions on traces to be found in [BHR,FLP,OH 1,2]. Property

(iii) is a new 'linear' version of the extensibility condition in the readiness [OH2] or failure

semantics [BHR]. Property (iv) is typical for a simple but proper treatment of divergence [OH2];

without i unsatisfactory results occur [BHR] akin to those in the LT semantics of [BBKM] (cf.

remark 3 at the end of section 5.2 above).

DEFINITION 5.14.

a '!Psa1(Af0) is the set of all saturated subsets of A.

b.The nondeterrninism order C- on '!Psa1(Af0) is defined by H 1c_-H 2 iff H 1 --;JH2•

PROPOSITION 5.15.

('8'sa1(Af0), -;;;J,Af0) is a cpo.

85

Remark. Finiteness of A is necessary for proposition 5.15. For example, let

A;= { a;,a; + J, · • · },i =O, 1, · · · be infinite alphabets, and consider the chain of saturated sets

Ao*:?A1*:! · · · . Then n;A;*={e}, which is not a saturated set since {e} does not satisfy
the extensibility property.

The relationship between (0'ncfAs1),Cs,{J_}) and (0'sa1(Af0), ;;;i,Af0) will be completely settled in

section 5.4. In fact, we shall exhibit a continuous isomorphism between the two cpo's. Before

coming to this we proceed with the introduction of the finite observations semantics §: We first

introduce the familiar operators op "i, op E { ;, U, II}, where the superscript §'indicates that we now
work in the domain 0'sa1(A fo).

DEFINITION 5.16.

a. H 1;~1H2=

{ h 1:h1 EH 1 and h 1 does not contain y} U

{h1h2:h1 yEH1 andh2EH2}U

{h1h:h1jEH1 and h EAf0)

b. H1 u"iH2 = H1 UH2

c. H1ll"!H2= {h:3h1EH1,h2EH2 [hEh1llh2]} where h1llh2= (h11Lh2)U(h2),l­
h1)U(h1 lh 2), and where e1Le={e}, (ah1)1Lh2=a.(h1llh2), y1Lh2={h2}, j1Le=A 0 ,

(eh 1) l(Ch2) =T.(h 1 llh2) and, finally, h 11Lh 2 = 0 and h 1 I h 2 = 0 for all h 1,h2 not of the
indicated form.

In the finite observations model a fundamental result is available which substantially simplifies

the continuity proofs of the above operators. This result is in fact quite general and independent

of the specific structure of the observations. Consider two sets X, V and a relation R c;;; X XV.

Then R induces an operator

on the subsets of X by taking for every X c;;; X the pointwise image under R, i.e.

opR(X)={y EV:3x EX[xRy]}

PROPOSITION 5.17 [0H2].

The operator opR is ;;.!-monotonic. Moreover, if R is domain finite, i.e. for every y E'tr' there

exist only finitely many x EX with xRy, then opR is also ;;;)-continuous.

We now have

86

PROPOSITION 5.18.

The operators op 'if, op E { ;, U, II} are monotonic and continuous.

We discuss only the proof for ;'if (U'if is easy, 11'8' is a slight variation). Take 'X=Af0 xAf0 ,

Y=Af0 • Now we look for a domain finite relation R ~X XY such that

where [· · · denotes restriction to · · · .

R can be read off from ;".J as follows: (h 1,h1)Rh iff

1. h 1 does not contain y, h1 =£and h =hi. or

2. h 1 ends in y and h =(h1 \ i./).h2, or

3. h 1 endsint,h2=£andhE(h 1 \ t).Af0 •

Here h 1 \ y and h 1 \ t result from h 1 by removing from h 1 the symbols y and t, respec­

tively. Clearly, R is domain finite, and we can apply the above fundamental result to obtain :;)­

continuity.

Remarks

In the observation semantics the continuity proof for the operators op".J could be reduced to

a simple test on domain finiteness. In the stream semantics (order-theoretic version) the

operators op'&, op E {;,II} would fail such a test. For example, the infinite stream a"' can ori­

ginate from infinitely many pairs of streams u, v in the sense of both u. v =a w and u 11 v =a"'.

Thus finite observations are crucial here.

2 Another advantage of finite observations is that we can define the operators, in particular 11~1,

without reference to any semantic approximation of its arguments -unlike the stream opera­
tor II~ where we put

XII'& Y= Us,,,(X[n]II Y[n])

We can now define the denotational finite observations semantics 'if. Again we use environments

yEf, but now taking fas Stmv-l!Psai(Af0).

DEFINITION 5.19. The semantic mapping

'!f: L 1 ~(f -l!Psa1(Af0))

is given by

1. '!f [a](y) = { £,a,a y}, and similarly with c replacing a.
2. '!f[s1 op s2](y)= '!f[si](y) op '8''!f[s2](y)
3. '!f[x](y)=y(x)

4. '!f[µx[s]](y)= Lls,11 X,,, where Xo =Af0 and X,, + 1 ='!f[s](y<X,, / x>).

87

5.4. Relationship between metric and order-theoretic semantics.

We begin with two important general results relating order-theoretic and metric concepts.

PROPOSITION 5.20.

a.Let <Xn>n be a Cs-chain of sets in '?YncJAs1). Then <Xn>n is also a Cauchy-sequence in

(qinc(A sr),d)

b.Assume <Xn >n is both a Cs-chain in qinc}A sr) and (hence) a Cauchy-sequence in

(qinc(A st),d). Then

The proofs of these two statements are given in [BM03]. Compactness (thanks to the finiteness
of A) of (Ast ,d) is an important tool.

We now address the relationship between ".m[s] and ~[s]. By the restriction in the definition of

01l[s], this relationship is meaningful only for s guarded.

Two subquestions have clearly to be settled. Firstly, what is the relationship between the opera­

tors op"Jrl(=o/fJ') and op~ and, secondly, how do the outcomes of 01l[s] and ~[s] relate for s a

recursive statement. As to the first subquestion, we recall that, in general, Xop 0IL Y does not

deliver a fiat set whereas Xop~Y does. (Example: {l..}ll":m.{ab}= {...L,a l..,abl..} 9'={...L}=
{...L}ll~{ab}.)

The next proposition settles the questions:

PROPOSITION 5.21 [BM03].

a.For X, Y Eqinc(As1), MINs(Xop":m.Y)=MINs(X)o/' MINs(Y)

b.Assume s guarded. Let var(s)={x1, ... ,xn}·

If

MIN(X;)= Y;, i = I, ... ,n

then

Part a is by definition satisfied for X, Y without infinite elements, and uses proposition 5.20b for

X or Y with infinite elements. The proof of part b is by induction on the complexity of s, using

part a and proposition 5.20b once more.

COROLLARY 5.22. For closed and guarded s, 01l[s] =iii[s].

The proof follows from the proposition (take n=O) and the easily established fact that, for closed

and guarded s, 01l[s] c;A * U A w.

88

We next tum to the second relationship and investigate the connection between ~[s] and qf[s].

Since these deliver outcomes in different domains, we cannot simply expect equality. Rather, we

have to provide a more detailed analysis. First we establish the connection between

('!Pncj(A st},[:_ s. {J-}) and (<3'sar(Af0),;;; ,Af0). In fact, we have an important theorem which states

that the two cpo's are isomorphic. Let the mapping qr : A s1-.0>(Af0) be defined as follows: For

u EA* and v EA"' let

'l'(u)= {h EA* :h o;;;u} U {u V}
'Y(v)= {h EA* :ho;;;v}

'Y(u ..l)= {h EA* :hE;;u} U {uh :h EAf0 }

Remark. A finished stream u is translated to the set of all its prefixes plus u\/ with y signalling

successful termination of u, an infinite stream is translated into the set of all its finite prefixes,

and an unfinished stream u..L is translated into the set of all prefixes of u plus the chaotic clo­

sure u.Af0 of divergence uj.

We extend qr pointwise to the mapping

by defining

'l'(X)= U i'(w)
wEX

Examples. i'({ab })= { £,a,ab,ab \/}, i'({ a"'})= {an In ;;;.Q}, i'({ ..L })=Af0 •

We now state

'THEOREM 5.23. i' is a continuous isomorphism from the cpo ('ii>ncj(As1),Cs.{..L}) onto the cpo
('!Ps01(Af0), ;J ,Af0), i.e. '1' is a bijection, yields '1'({ ..L}) =Af0 , it strongly preserves the partial ord­
ers:

x c s y iff 'lr(X) d 'l'(Y)

for all x, y E'!Pncj(As1) and, finally, for <Xn >n a c s-chain in '!Pncf,A SI) we have

i'(lJs,nXn)= nn 'Y(Xn)

The proof is described in [BM02].

Remarks. '!Ync_t{.A •1) has been constructed through a chain of clear domain theoretical notions:

streams, sets of streams, Smyth order, flatness, continuity, topological closure, non-emptiness.

The introduction of '!Psa1(Af0) with its saturation property may seem more ad hoe. But the

theorem tells us that '3'sa1(Af0) can in fact be viewed as a special representative of the general

89

construct <3'nc.t<A s1). This provides us with a new mutual understanding of the closedness proper­

ties in both domains: topological closedness on streams corresponds to taking all finite prefixes as

observations, flatness of sets of streams corresponds to the chaotic closure on observations, non­

emptiness of sets of streams does not simply correspond to the fact that saturated sets of observa­

tions include e, but that in addition they are extensible. Whereas the nonemptiness of (lubs of)

sets of streams is a global property, the extensibility of observations is a local property where

every observation h e';A *. { y} can be locally extended by another a EA U { y, t}. This issue of

'global' vs. 'local' hints at why it is more difficult to prove the cpo property for <3'ncfA 31) than for

~sa1(Af0).

We conclude this section with the theorem expressing equality of ~ and qr when applied to s EL 1.

An important step is that o/ is compatible with the language operators:

PROPOSITION 5.24.

For op E { ;, U, II} and X, Y E<3'nq(A st) we have

o/(X op iii Y) = o/(X) op "J o/(Y)

The proof is, again, given in full in [BM02]. Finally we have the desired result as

COROLLARY 5.25. For every s EL1 and yEStmv-+<3'ncfA 31),

o/(~[s]{y))= qr [s](o/oy)

The proof follows by induction on the complexity of s, using proposition 5.24 and the continuity

of '1'.

90

6. SYNCHRONIZATION MERGE AND GLOBAL NONDETERMINACY: THE INTRODUCTION OF BRANCHING

TIME

6.1. Introduction and operational semantics.

The central notion of section 6 is that of global nondeterminism. We introduce the language L1

which is like Li. but for the replacement of the latter's local nondeterminism (s 1 Us2) by global

nondeterminism, denoted bys 1 + s2 (the notation "+" is from CCS [Mi2]).

Section 6 first brings the operational semantics for L 2 in terms of the transition system T2.

After the introduction of T2 we also provide some explanatory comments on the difference

between global and local nondeterminism. Next we present the (metric) denotational semantics

for L 2. An essential difference with the denotational semantics for Lo and L 1 is that we no

longer employ the stream domain Ast but instead a domain which consists of tree-like objects,

our so called processes. As we shall see, a process is a commutative (or unordered) tree with sets

rather than multisets for successors of nodes (thus respecting the property that "+" is absorptive:

s +s =s), and with a certain closure property. Trees exhibit branching behaviour: a typical

example is the distinction between

a

and

a a

Note that these two are identical as to their sets of paths ({ ab i.ab 2 } in both cases). This may

explain the terminology 'Branching Time' (BT) for this denotational model. Branching time

models preserve the moment of choice (first perform a, then choose between b 1 and b2 versus

choose between a and then b 1 or a and then b2). Therefore, they are in particular pertinent in

cases where deadlock is possible: consider the two statements a;(b+c) and (a;b)+(a;c) in a

context where c has no matching communication c in a parallel statement. We shall design our

model such that the first statement shows no deadlock (the failing c has an alternative b) and the

second statement does have a deadlock possibility: After the choice for a ;c, once a is executed no

further action is possible. By way of contrast, we recall that for L 1 (with U replacing +) we

91

obtain in both cases as outcome { ab,a8} or, after possible simplification (cf. remark I in section
4.1), just { ab } .

The operational model still employs (sets of) sequences of actions. Thus, we have to be prepared

for substantially more effort to relate (92 and % than with (9; and 6D;, i =O, I. Section 6.3 is

devoted to this relationship. Just as for L 1 we define an abstraction operator a 2 such that (*)

82 =a2°%. However, both the definition of a2 and the argument establishing(*) are much more

involved than the corresponding ones for L 1. We shall in fact introduce two intermediate seman­

tics, one operational ((92 *) and one denotational (% *) and, in addition, four auxiliary operators

which play a role in the analysis of a2• The definition of (92 * is in particular interesting since it

employs a version of the notion of ready set as encountered in papers such as [BHR, FLP, OHI,

OH2, RB]; more detail will be supplied in section 6.3. The definition of % * also refers to the

model of ready sets, thus enabling a fairly direct proof that 82 * = 6Di *. The remaining work has

then to be spent on relating (92 and (92 *, and 6Di and % *. Especially the latter connection

requires a solid effort (to be found in [BMOZ2]).

The BT framework as presented in section 6.2 is a central notion in the research on modelling

concurrency. It builds on the synchronization trees of CCS [Mi2], though the care we spend on

the metric derivation of the defining domain equation is an issue not addressed in [Mi2]. (Early

work of Milner such as [Mil,MM] approaches domain equations for (communicating) processes

in the style of Plotkin [Pll] or Smyth [Sm].) In the work of Rounds et al ([GR,Ro]) the relation­

ship between metric spaces and synchronization trees is further pursued. Moreover, the work of

Rounds also introduces an order on processes. Its definition takes us into the realm of Scott's

Information Systems ([Sc]), a territory with many ramifications left unexplored in our paper.

Extensive investigations of processes with algebraic means have been reported by Bergstra, Klop

and coworkers. We mention only [BKl, BK2, BK3]; in these and further papers a large variety

of process algebras is defined and many applications are described.

After these introductory remarks we now present the syntax for L 2 . Again, we uses to range

over L 2 •

DEFINITION 6.1

We now describe the transition system T2• T2 is like TJ. but without the axioms for local non­

determinacy and for communication (<c, w >-w8). Instead we have as new rules

(global nondeterrninacy)

[µ-unfolding]

<s1,w>-<s',w>
<s1 +s2,w>-<s'+s2,w>
<s2 +s1,w >-<s2+s',w >

92

Here the word on the right-hand side of the premise is equal to the word on the left-hand

side (=w). This implies that the premise (and hence the conclusion) is a recursion transition.

[selection by action]

<s1,w>-<s',w'>

<s1 +s2,w >-<s',w'>
<s2 +sJ.w>-<s',w'>

Here w'=wa (and hence the premise is an elementary action transition) or w'=wT (and hence

the premise is a synchronization transition). Also s' may be E.

[selection by synchronization]

<s 1 llsz, w >-<s', WT>
<(s1 +s)lls2,w>-<s',wT>
<(s +s1)lls2,w >-<s',wT>
<s1 ll(s2 +s), w >-<s', WT>
<s1 ll(s+s2),w>-<s1,wT>

where s' may be E and where the premise of the rule describes a synchronization transition

betweens 1 and Sz.

Note. We emphasize that the synchronization in a context rule(s) of T 1 remain valid.

Remarks. The essential difference between T 1 and T 2 is how communication is treated in the

presence of nondeterminacy. For example, the L 1 -statement

a Uc

involving local nondeterminacy may choose /1 on its own" between a and c, i.e. in terms of T 1 -

transitions we have

<aUc,w>-<a,w>,

<aUc,w>-<c,w>.

The first alternative yields

whereas a communication can always deadlock in T 1 :

Contrast this behaviour with that of the L2-statement

93

a +c

involving global nondeterminacy. The only transition possible is

<a +c,w>-wa

(we say that the first alternative of a +c is selected by the action a). In particular, a communica­

tion c in isolation does not produce anything in T2 . Only in cooperation with a matching com­

munication c in another parallel component, c may produce a synchronization-transition:

<(a +c)llc,w>-wr

(we say that the second alternative of a +c is selected by the synchronization of c with C).

This form of nondeterminacy is typical for languages like CSP [Ho], ADA [Ad] and Occam [In].

There the elementary action a corresponds to passing a true Boolean guard and the synchroniza­

tion of c with c corresponds to matching communication guards in two parallel components. In

the abstract setting of uniform concurrency global nondeterminacy has first been discussed by

Milner [Mi2]. However, Milner takes from the very beginning a communication axiom

corresponding (in our setting) to

(*) <c, w >-we.

This enables him to state very simple transition rules for global nondeterminacy. We prefer not

to adopt Milner's approach for T 2 because (*) does not correspond to the operational idea of

CSP, ADA or Occam where a communication c proceeds only if a matching communication c is
available.

Finally, note that in the case of a µ-term, global nondeterminacy + allows us to unfold the recur­

sion before selecting any alternative. For example,

<µ.x[a]+c,w >-<a +c,w >-wa

holds in T2.

We continue with the description of the operational semantics l92 for L 2 . (')2 is a mapping

l'l2:L 2-§(o) with §(o) = 6P(A 51(o)) as for L 1. The definition of wE'92 [s] is as for 00 and 01,

but with an additional third clause:

3. If there is a finite sequence of Ti-transitions

such that no further transition <sn,wn>-<s',w'> is deducible in T 2 , we deliver w =wno as

an element of 02[sl

The pair <sn, wn > in 3 is called a deadlocking configuration. Such configurations do not exist

under T 0 or T 1. The following examples mark the differences from 01.

Examples. l92[d={8}, l92[cllC]={r}, l92[(a;b)+(a;c)]={ab,a8}, 0i[a;(b+c)]={ab}. Because

it is important to see the difference between the last two examples, we shall show how they are

94

derived:

(i) '92[(a;b)+(a;c)]={ab,a8}.

Proof Note that

<a ;b,£>-'><b,a >~ab

and

are deducible. So by selection by elementary action we obtain also

<(a ;b)+(a;c),f>-'>ab

and

<(a ;b)+(a ;c),t>-'><c,a >.

So, since no further deductions can be made from <c,a>, we get, by the definition of '92:

'9i[(a ;b)+(a ;c)] = { ab,a8}.

(ii) '92[a;(b +c)]={ab}.

Proof First note that

<a ;(b +c),f>-'><b +c,a >.

Since we have that

<b,a>~ab,

we also have

<b +c,a >-'>ab,

and therefore

<a ;(b +c),t>-'>ab.

Since we cannot deduce anything from <c,a >, ab is all we can deduce for <a ;(b +c),£>.

Consequently, '9i[a ;(b +c)] = { ab }.

Thus with global nondeterminacy +,the statements s 1=(a;b)+(a;c) and s 2 =a;(b+c) get

different meanings under e2• The difference can be understood as follows: Ifs 1 performs the ele­

mentary action a, the remaining statement is either the elementary action b or the communication

c. In case of c, a deadlock occurs since no matching communication is available. However, if s 2

performs a, the remaining statement is b + c which cannot deadlock because the action b is

always possible. Thus communications c create deadlocks only if neither a matching communica­

tion c nor an alternative elementary action b is available.

95

6.2. A branching time denotational semantics.

We follow [BZ1,BZ2,BBKM] in introducing a branching time semantics for L1. Let, as usual, J..

!l A and let A J_ be short for AU { J_ }. Again, we assume a special element -r in A. Let the

metric spaces (IP>n,dn), n ;;a.O, be defined by

where the metrics dn will be defined in a moment. Let IP>.,= LJ n IP n. Elements of IP., are called

(finite) processes, and typical elements are denoted by p,q, · · ·. Processes p,qEIPn are often

denoted by Pn,qn, · · · . For p El?., we call the least n such that p E IP>n its degree. Note that each
process is a set; hence, a process has elements for which we use x,y, · · · (not to be confused

with x,y EStmv).

Examples of processes:

1. {J_}, {[a,{J..}]}, {[a,{bi}],[a,{b2}]}, {[a,{b1,bi}]}.

2. Po= { 1- }, p; + 1 = ([a,p;],[b,p;]}, i =O, 1, · · · .

For each p (E I?.,) we define its n-th projection p (n) EI? n as follows:

p(n)={x(n):x Ep}, n =0,1, · · ·

x(n)=x, ifxEAJ_, n=O,l, · · ·

{
a n =O

[a,p'](n) = [~,p'(n -1)], n = 1,2,

Examples of projections:

1. Let p ={[a, { b I}],[a, { b1}]},q ={[a, {b 1,b2 }]}.
Then p(O)={[a,{bi}](O),[a,{b2 }](0)}={a} = q(O) = {[a,{bi,b2}](0)}, and p(l)=p,

q(l)=q.

2. Let p 0 ={1-}, p;+ 1={[a,p;],(b,p;]}. Then p 0 (k)={1-}, k=O,l, ·· ·, and

p;+1(0)={a,b},p;+1(k+l) = {[a,p;(k)],(b,p;(k)]}.

We can now define dn by

{
O, ifp'o=p"o

do(p'o,p"o) = 1, if p'o=l=P"o

d (p ' ")_ 2-sup{k:p'"+1(k)=p",+ 1(k)}+l
n + I n + I ,p n + I -

with 2- 00 = 0 as before.

On IP>., we define the metric d by putting d(p,q)=dn(p,q) if n = max (degree (p),degree (q)).

Example.

Letp,q,p; be as in the example about projections. Then d(p,q)=f, d(p;,p;+1)=2-;.

96

We now define the set IJl> of finite and infinite processes as the completion of IJl>.., with respect to d.

A fundamental result of [BZ2] is that we have the equality (more precisely, the isometry)

1?='3'c1osed(A_1_ U(A XIP'))

Finite elements of I? are the processes in the examples just given. An infinite element of IP' is,

e.g., the process p which satisfies the equation p = {[a,p],[b,p]}. An explicit definition of this pro­

cess would be: p =lim;p;, p 0 ={..l}, p;+ 1 ={[a,p;],[b,p;]}. Processes are like commutative trees

which have in addition sets rather than multisets for successors of nodes and which satisfy a

closedness property. An example of a set which is not a process is

{a, [a, {a}],[a, {[a, {a})}], ···}in the case that this set does not include the infinite branch of a's.

Note that an attempt to obtain such an object as limit of finite approximations would 'automati­

cally' include the infinite branch. (Cf. the LT case, where lirn; {al lfs;;;i} includes, besides a* also

the limit point a"'.) Another example of an infinite process is the following: Take p 0 = {a},

PI ={[a,pol}. p;+2={[a,p;],[a,p;-il}. Then p =lim;p;=lirn;q;, where q0 ={a}, q;+ 1 ={[a,q;]}.

Thus the branching structure of the p; 'collapses' in its limit lim;p;.

Remark. We observe that the collection of all finite and infinite trees over A .l (where ..l occurs

only at the leaves) modulo Park's equivalence of strong bisimulation, i.e. without special treate­

ment of T ([Pa]) is isomorphic to IP'.

The empty set is a process and takes the role of o. Note that in the previous linear time frame­

work (LT) 0 cannot replace 8 since by the definition of concatenation (for LT) we have a. 0 = 0

which is undesirable for an element modelling failure. (An action which fails should not cancel

all previous actions.) In the present branching time framework, {[a, 0]} is a process which is

indeed different from (and irreducible to) 0.

The following operations on processes are defined: we first take the case that both processes are

finite. Then we use induction on the degree(s) of the processes concerned:

concatenation °: p 0 q={x 0q:xEp}, where j_oq=..l, aoq=[a,q], [a,p']oq=[a,p'oq] and similar

clauses with c replacing a.

union U: p U q is the set-theoretic union of p and q.

merge II: pllq=(pllq)U(q1LP)U(plq) where pllq={xll_q:xEp}, ..lll_q=..l, all_q=[a,q],

[a,p']llq=[a,p'llq] and similar clauses with c replacing a.

Moreover,p I q = U {x IY :x Ep,y Eq}, where

[c,p'] I [C,q']={[T,p'llq']}

[c,p'l I c=ffr,p']}

c I (C,p'J={[r,p']}

c I c={r}

97

and x I y = 0 for x,y not of one of the above four forms.

For p or q infinite we have (since P is defined by completion of Pw) that p =limnPm q =limn%•

Pn and qn finite, n =0,1, ···,and we definep op q =limn(pn op q,.), op E{o, U,11}.

Examples

I. Concatenation: { .l} op

{[a,{b}]o{c},[a, 0]o{c}}

{[a,{[b, {c}]}],[a, 01}.

{.lop}= {.l}, 0op=0, {[a,{b}],[a,0l}o{c}

{[a, { b }o{ c}],[a, 0]} {[a, { bo{ c }}], [a, 0]}

Letpo={a},p;+t ={[a,p;]}. Then, for any q, (lim;p;)oq = lim;(p;oq) = lim;{[a,p;oq]}

{[a,lim;(p;oq)]} (cf.the continuity result of the next proposition). Hence, (lim;p;)0 q=lim;p;.

2. Union:pU0=0Up=p. Also, {[a,{b 1}]} U {[a,{b2}]} = {[a,{b1}],[a,{b2}]} (rather

than {[a, { b i.b2}]} which is not the union of any two nonempty processes).

3. Merge: For brevity, we here write for a process {[a,p],[b,q], · · · }: a.p'+b.<(+ · · · ,

with p',q' abbreviations for p,q, · · · . Then

(a.c)ll(b.C)=

a.(b.(c.c+C.c+r)+c.b.C)+

b.(a.(c.c + c.c +r) + C.a.c).

Continuity of the process operators is expressed in

PROPOSITION 6.2.

Let p =lim;p;, q =lim;q; (with p;,q; not necessarily finite). Then paq=lim;(p; 0 q;), and similarly

for u,11.

For the proof of this statement see [BZ2].

It is now straightforward to define 6iJi: guarded L2-+(f2-+i?), where f2 =Stmv-+i?, by following

the clauses in the definition of GDo, 6D1• Thus, we put

iJD.i[a](y)= {a}

iJD.i[c](y)= { c}

"lli[s 1 op s2]('y)= iJD.i[s 1](y)op"U:z6Di[s2](y)

for op E {;,+,II}, where ;"U:z =0 , + 6il:i = U, llGD:i =II.

iJD.i[x](y)=y(x)

6D2 [µ.x [s)](y) = lirn;p;

where po= { J_} and p; + 1 =%[s](y<p; Ix>).
Examples

98

1. %[(a ;b) +(a ;c)llC](y)= (in the abbreviated notation just introduced)

a.(b.c +C.b)+a.(c.c +C.c +r)+c.(a.b +a.c).

2. %[µ.x[a ;x J](y)= lim;p;, where po== { J_ }, p; +I= {[a,p;]}.

3. %[µ.x[(a;x)+bl](y)==lim;p;, wherepo={_l_},p;+J =={[a,p;],b}.

4. %[µ.x[(a llx) + b JD(y) is undefined by unguardedness.

Mutatis mutandis, the contractivity results for 6LJo,6D1 hold again.

6.3. Relationship between 02 and 6D2.

For a suitable abstraction operator a:2 we shall show that

holds for all guarded s EL 2 . We define a:2 :1Jl>-;.§(8) in two steps (recall that a EA \ C).

I.First we define a restriction mapping restrp :IJl>-;.IJl>. For p EI?"' we put inductively:

restrp(p)=={a I a Ep}

U {[a,restrp(q) I [a,q] Ep}

restrp(p) = lirnn(restrp (pn))

(*)

Example. Let p="Di[(a+c)ll(b+C)]= 6D2[(a;(b+C))+(c;(b+C))+

(b;(a +c))+(C;(a +c))+rl Then restrp(p)={[a, {b}],[b, {a}],r} = 6D2[(a;b)+(b;a)+r].

. Then we define a mapping streams : IP-.§nc(8). For p EIP w we put inductively:

streams(p)={a la Ep}U{c jcEp}U

{ a.streams(q) I [a,q] Ep} U {c. streams (q) I [c,q] Ep}, if p:r!= 0

={8}, ifp=0

Note that a.streams (q) and c.streams(q) are themselves sets of streams. For p EI? \ IP w we

have p = limnPn, with Pn EI? n and we put

streams(p) = limn(streams (pn))

Note that limn is taken with respect to the metric on §nc(B) (see section 3.3).

Example. With p as above we have streams(p)= {ab,ac,cb,cc,ba,bc,ca,cc,r} and

streams (restrp (p)) = { ab,ba, r }.

99

Finally we put

a2 =streams 0 restrp

in (*). Similarly to a1, we cannot prove (*) directly by structural induction on s because a2 does

not behave compositionally. Thus again the question arises how to prove (*)? Note that here

things are rather more difficult than with l91[s]==a1(6D1[s]) because the semantic domains of 191
and 6D1 are quite different: linear streams vs. branching processes.

Our solution to this problem is to introduce
- a new intermediate semantic domain IR

- a new intermediate operational semantics l9i* on IR

- a new intermediate denotational semantics 6D:z * on IR

and then prove the following diagram:

a2 = streams•restrp

= restrR 0 readies

readies

where restrR and readies are two further abstraction operators.

6.3.1. The intermediate semantic domain IR.

We start with the intermediate semantic domain. To motivate its construction, let us first demon­

strate that a simple stream-like variant of 192 is not appropriate as intermediate operational

semantics l9i * here. Indeed, if we base 0i * -similarly to 191 *- on a transition system obtained by

just adding the axiom

<c,W>-7W.C

to T2, we cannot retrieve l9i from 192*. As a counterexample consider the programs

s 1 =(a;c1)+(a;c2), s2==a;(c 1 +c2) and s==c1. Then l9i[s11ls]= {aT,ac5}:;6 {aT}= l92[s2lls],

but, 192*[s 11ls]= 192*[s211s]. Thus whatever operator a we apply to 192*[.], the results for sills

and s 2 11s will tum out to be the same. Thus we cannot retrieve l9i from 192*-

To solve this problem, we introduce for 0i * a new semantic domain, which, besides streams

w EA •1, also includes a very weak information about the local branching structure of a process.

This information is called ready set or deadlock possibility; it takes the form of a subset X of C,

the set of communications, and may appear (locally) after every word w EA* of successful

100

actions. Informally, such a set X after w indicates that after w the process is ready for all com­

munications c EC and that deadlock can be avoided only if some communication c EC can syn­

chronize with a matching communication c in some other parallel component. Thus X can be

seen as a "more informative 8". This view is confirmed by the fact that there will be no ready set

X after w if the process can do an elementary action a EA \ C and thus avoid deadlock on its

own. With some variations this notion of a ready set appears in the work of

[BHR,FLP,0Hl,OH2,RB].

Formally, we take .::\='3l(C) and define the set of streams with ready sets as

Ard =Ast UA* :.::\

where A* :D. denotes the set of all pairs of the form w :X with w EA* and X E.::\. For X E.::\, let

X = {c I c EX}. As intermediate domain we take the ready domain

Just as we did for A st and Ast (8) we can define a metric d on A rd and a corresponding metric d
on IR. This d turns the collection 1Rnc t;;;;IR of closed non empty subsets of Ard into a complete

metric space (IRnc,d).

6.3.2. The intermediate operational semantics 0i *.

We now turn to the intermediate operational semantics '92 * on JR. It is based on the following

transition system T 2 * which consists of all axioms and rules of T 2 extended (for w EA*) by:

(communications*)

<c, W >-7W.C

(ready sets [or: deadlock possibilities])

<c,w >_,.w:{c}

<s1,w>_,.w:X

<s I ;s2,W >--7W :X

<SJ,W>--7w:X, <s2,W>--7w:Y

<s1 +s2,w>_,.w:(XUY)

<SJ,W>--7w:X' <s2,W>-7w:Y

<s1 llsz,w>_,.w:(XU Y)

(*) Rule (ii) was incorrectly omitted in [BMOZI].

(i)

(*)(ii)

(iii)

(iv)

101

where Xn Y= 0.

Axiom (i) introduces ready sets or deadlock possibilities, and rules (ii)-(iv) propagate them. In
particular, rule (iii) says that s 1 + s2 has a deadlock possibility if s 1 and s 2 have, and rule (iv)

says that s1 lls2 has a deadlock possibility if both s 1 and s 2 have, and no synchronization is pos­
sible.

The intermediate operational semantics

is defined in terms of T2* just as 192 was defined in terms of T 2. In particular, w:XEl92 *[s] iff
there exists a sequence of T 2 *-transitions

Examples.

(i) l92*[a;(b+c)]={ab,ac}. Proof We explore all transition sequences in T 2* starting in
<a ;(b +c),£>:

I <a,l>-loa (elementary action)

2 <a ;(b +c),l>-lo<b +c,a > (sequential composition using 1)

3 <b,a >_,.ab (elementary action)

4 <c,a >_,.ac and <c,a >_,.a:{ c} (communication*)

5 <b +c,a >_,.ab, <b +c,a >_,.ac (global nondeterminacy using 3 and 4) No more transi­

tions are deducible for <b +c,a >.

6 Thus <a ;(b +c),£>_,. <b +c,a >-loab or _,.ac are all the transition sequences starting in

<a ;(b +c),l>

This proves the claim. D

(ii) 192 *[a;b+a;c]={ab,ac,a:{c}}. Proof Here we only exhibit all possible transition

sequences in T 2 * starting in <(a ;b) +(a ;c),€>:

<a ;b +a ;c,£>_,.<b,a >_,.ab

D

Remark. Note that we can prove <a ;b +a ;c, l>_,.<c,a > and <c,a >_,.a:{ c }, and therefore

<a;b+a;c,€>...'..a:{c}. However, we have <a;(b+c),£>_,.<b+c,a>, but we cannot prove
<b+c,a>_,.a:{c}. (By rule (iii) of ready sets this would only be the case if we could prove,
besides <c,a >_,.a :{c}, also <b,a >_,.a :X for some X c;;{c}. Since the only possibilities for X
are 0 and { c }, this cannot be proved.) Consequently, <a ;(b +c),£>f a:{ c }.

102

6.3.3. The imem1ediate denotational semantics ''l\i *.

We start by defining semantic operators ;'~·, and li"v,• on Rnc· (Again we omit super-

scripts "'Dz* whenever possible.) Let W1.W2 ERnc• w,wI>w2 EAs1•

a.W1,W2 i;-;;A*UA*.(_L)UA*:A Then

where

W1 :W2={w1.w2 lw1 E W1 and w2 E W2}

U{w1:Xjw1:XEW1}

U{w1.w2:X I w1 E W1 and w2:XE W2}

W1+W2={wjwEW1 U W2}

U{dXU Y)j£:XEW1 and e:YE W2 }

U{w:XJw#eandw:XEW1 U W2}

• W11LW2 = LJ {w11LW2:w1 EWi} with £1LW2 = W2,
(a.wi)!LW2= a.({wi}llW2), _L!LW2= {_L}, (l:X)!LW2= 0,
((a.w):X)1LW2 =a.({ w :X}ll W2).

• W1 I W2 = U {(w 1 I w2):w1 E W1 and w2 E W2} with

c.w'IC.w"= T.({w'}ll{w"}), and w1 I wz = 0 for wi.w2 not of this form.

•W1#W2= {€:(XUY)I cXEW1 and €:YEW2 and xnY=0}.
b.W1,W2 ERnc and W 1,W2 contain also infinite words. Then extend the previous definitions

by taking limits in Rnc·

Now we define

with f2 * = Stmv-.IRnc• in the usual way (but note the clause for% *[c](y)!)
I 0~*[a](y)={a}, o~*[c](y)={c,l:{c}}

2 "D:i*isi op s2](y)= "Dz*[si](y) op 'Di* 6~*[s2](y)
3 6Dz*[x](y)=y(x)

4 6D:i *[µ.x[s]](y)= lim; W;, where W 0 = { J_} and W; + 1 = 61l2 *[s](y< W; / x >).

103

6.3.4. Relating 192 and 192 *, 6Di and 6Di *, and 02 and ODi.

The relationship between 192 and 02 * is similar to that between 01 and 01 * in section 3.4. In fact,

we shall prove:

THEOREM 6.3. l92[s] =restrR(02 *[s]) for every s EL2.

Here restrR : IR-§(8) is a restriction operator similar to restrs : §(8)-§(8) of section 4.3. For

W E IR and w EA st we define

restrR (W) = { w I w E W does not contain any c EC}

U {w.8 I 3X Ell such that w :X E Wand w does not contain any c EC}

For theorem 6.3 we need the following result concerning the transition systems T2 and T2*.

(Compare lemma 4.6.)

LEMMA 6.4. For alls EL2, s'EL2 U{E} and w,w'E(A \ C)*:

(i) T2r<s, w >-<s',w'> iff T2 *r<s, w >-<s', w'>
(ii) <s, w > is a deadlocking configuration for T2 iff 3X c;;;c :T2 *r<s,w >~w :X

Proof See [BMOZ2].

Intuitively, lemma 6.4(ii) says that the ready set rules (i)-(iv) of T2* are complete for detecting

deadlocks. Using lemma 6.4 it is not difficult to prove theorem 6.3.

The relationship between 6Di and 6Di * is given by an abstraction operator readies : IP""'Rnc· Let

-for the duration of this definition only- a,b range over all of A (and not just over A \ C). For

p={ai. ... ,am,[bi,qi], ... ,[bn.%]} E IP., we put inductively

readies(p)= {a i. ... , am}

U{b1.readies(q1)ij=1, ... ,n}

U{t::X !where X={ai. ... ,am,b1, ... ,bn} <;;;C}

Example. Let a EA \ C (and ci,c2 EC). Then readies({[a, {c1,c2}]}) = a.readies({ci.c2})

a.{c1,c2,£:{ci.c2}} = {aci.ac2,a:{ci.c2}}.

ForpEIP \IP"' wehavep=limnPn withpnEIPn,andweput

readies (p) =limn (readies (pn))

where limn is taken (as before) with respect to the metric on 1Rnc·

104

THEOREM 6.5. 6])2 *[s] =readies("Di.[s]) for all syntactically closed and guarded s EL2.

The proof follows from:

THEOREM 6.6. The operator readies :IJl>~IRnc is continuous and behaves homomorphically,i.e. for

op E{+,;,11} andp,p'EIJl>

readies(p op~ p')=readies(p) op GD-i* readies(p')

holds.

Proof. The proof is given in [BMOZ2].

Next we state

THEOREM 6.7. 192 *[s] ="Di *[s] for every syntactically closed and guarded s EL2.

Again, its proof follows the structure of that for "t90[s]=6Do[s]" (theorem 3.12). In particular,

the lemmas 3.14, 3.15, 3.17 remain valid for 02*, %.* and L2 instead of 19o, 6Do and Lo. Thus it

oil remains to show compositionality of t9i *, analogously to lemma 3.13 but now involving the ready

domain IR and global nondeterminacy + .

LEMMA 6.8. For opE{+,;,11} and si.s2EL2 the equation t9i*[s1 ops2]= 02*[s1] opGD-i*

t9i *[s2] holds.

For the proof -which involves a substantial amount of work- we again refer to [BMOZ2].

We finally prove the desired relationship between t9i and % (cf. (*) at the beginning of this sec­

tion 6.3). First we need one more lemma.

LEMMA 6.9. For every p El? the equation streams(restrp(p))=restrR(readies(p)) holds.

Now we are prepared for the main result on L 2 :

THEOREM 6.10. With a.2 =streams0 restrp the equation 02[s] = a2(6D2[s]) holds for all syntacti­
cally closed and guarded s EL2 •

PROOF. Theorem 6.3 states 02[s] = restrR (02*[s]) for s EL2, theorem 6.4. states 6D2 *[s] =

readies("Di.[s]) for syntactically closed and guarded s EL2 , and theorem 6.7 states 02 *[s] =

%.*[s] for syntactically closed and guarded s EL2• Thus we obtain 02[s]=

restrR (readies(6Dz[s]). Using lemma 6.9 completes the proof of this theorem. D

--

105

7. A NONUNIFORM LANGUAGE WITH VALUE PASSING

7.1. Introduction.

We devote the final section of our paper to the discussion of a nonuniform language. Elementary

actions are no longer uninterpreted but taken as either assignments or tests. Communication

actions c, c are refined to actions c?v and c !e (with v a variable and e an expression), and suc­

cessful communication now involves two effects: (i) synchronization (as in the languages L 1' L 2)

and (ii) value passing: the (current) value of e is assigned to v. Thus, we have here the synchro­

nous handshaking variety of message passing in the sense of CCS or CSP.

We shall introduce a language L 3 which embodies these features and present its operational and

denotational semantics 193 and 6D3 . Nonuniformity of L 3 calls for the notion of state in both

semantic models: they now deliver sets of streams or processes over state transformations, not

overr uninterpreted actions as in the previous sections. As a consequence the formulation of the

relationship between 193 and % requires additional effort. In fact, we shall only state a conjecture

as to the connection between 193 and % in the style of the previous sections.

The operational semantics 03 for L 3 is based on a fairly straightforward nonuniform version of

the transition system for the uniform language L 2 • It thus owes much to the original papers of

Hennessy and Plotkin [HP,Pl3,Pl4] which all address nonuniform languages. Our emphasis on the

uniform case in the preceding sections is inspired on the one hand by the pioneering work of

Milner on CCS [Mi2], on the other hand by the theory of formal languages over infinite words

as developed by Nivat et al (e.g. [AN, Nil]). As the operational semantics for L 3 shows, the uni­

form case provides a very helpful step towards a full analysis of the nonuniform case. For the

denotational semantics [BZ2] is the primary source. Our attempt to relate 193 and 6D3 follows the

general plan of [BMOZ2] and has clearly influenced both definitions.

The language L 3 is a quite simple case of a non uniform language with parallelism and communi­

cation. Some of the more advanced concepts in nonuniform languages are not covered here, for

example 'mixed guards' involving both Boolean and communication parts as in CSP and

OCCAM, or the ADA rendez-vous. However, we are confident that both operational and deno­

tational techniques presented below are adaptable to these and similar concepts. Some evidence

for this is provided by the investigations of the ADA rendez-vous in [BZ4] and the language

POOL (a Parallel Object-Oriented Language, see [Am]) in [ABKRl,2]. There the techniques

developed below are applied, albeit with various substantial refinements and extensions.

We now present the syntax of L 3 • We use three new syntactic categories, viz.

- the set Var, with elements v, w, of individual variables

- the set Exp, with elements e, of expressions

- the set Bexp, with elements b, of boolean expressions.

106

We shall not specify a syntax for Exp or Bexp. We assume that (boolean) expressions are of an
elementary kind; in particular, they have no side effects and their evaluation always terminates.
Statement variables x,y, · · · are as before, as are the communications c EC. The latter now

appear syntactically as part of value passing communication actions c?v or c !e.

DEFINITION 7.1 (syntax for LJ).

We observe that 'isolated' booleans appear as statements. For the reader who has not seen such
a syntax before we list a few well-known constructs with their equivalent counterparts in L 3 :

- skip,..,.. true (the identically true boolean expression)

- if b then s 1 else s 2 fi,.,,... (b;s 1)+(-.b;s2)

- while b do s od """' µx [(b ;s ;x) + ...,b] (x not free in s)
- do b I ~s I D ... D bn-'>Sn od ,,.,,.. µ.x [(b l ;s l + ... + bn ;sn);x +(-,b l ;\ ... 1\---,bn)], x not free

in S J, ..• , Sn.

In the next two subsections we shall define operational and denotational semantics for L 3 .

7.2. Operational semantics for a nonuniform language.

For both operational and denotational models the notion of state is fundamental. Elements v, w

in Var will have values a,[3 in a set V, and a state is a function which maps variables to their
(current) values. Accordingly, we take for the set of states 2: the function space

2:= Var-'>V

and we use a,a', · · · for the elements of 2:. It is thus meaningful to write a(v) =a. For states a

we use a variant notation just as for environments y (cf. definition 3.10), and we write
a' = df a< a / v > for a state which is like a but such that o-' (v) = a. We shall also employ a special
failure state 8 with 8!:;l2:, and we shall write 2:~ for 2:U{8}. (For the moment we have no occa­

sion to use a (nonterrninating) state J_.) For expressions e and booleans b we postulate a simple
semantic evaluation mechanism, details of which we do not bother to provide. The values of e

and bin state a will be denoted simply by [e](a) and [b](a), respectively. Here [e](a) is an ele­
ment of V and [b](a) of the set of truthvalues {tt,ff}. Thus, in particular, [true](o)=tt for all

aE2:.

The configurations as used in the transition system are now of the form <s, a> or simply a. As
before we use the auxiliary statement E satisfying the identities <E, a> =a and

E ;s =s ;E =Ells =s 11£ =s.

We now present the transition system T 3 . It is quite similar to T2, but for the axioms (assign­
ment), (test) and (communication) dealing with the special nonuniform cases. However, we exhi­

bit the system in full detail in order to be precise about the effect of having, throughout, a rather

107

than w as a component of configurations.

Lets EL3. We put <s,8>_,,8 and, for a=f8, the following axioms and rules hold:

(assignment)

<v: = t, a>-'>a<[e](a) / v >

(test)

<b, a>-'><J, if [b](o)=tt

(communication)

<c ?v lie !e, a>-'><true,a<[e](a) / v > >

(recursion)

<µx[s],a>-'><s [µx[s J / x],a>

(sequential composition, shuffle)

where s 2 may be E.

(communication in a context)

<(s 1 lls)ils2,<J>-'><(s'lls)lls",a'>

<(s lls 1)lls2,a>-'><(s lls')lls",a'>

<s 1 ll(s 2 ;s),a>-'> <s'll(s";s),a'>

<s 1 ll(s2 lls),a>-'><s'll(s"lls),a'>

<s 1 ll(s lls)i,a>-'> <s'll(s lls)",a'>

where s',s" or both may be E and where the premise of the rule describes a comrnunication­

transition betweens 1 and s2 such that s' stems from s 1 and s" stems from s 2.

(selection)

[selection by JL-unfolding]

where the premise is a recursion-transition

[selection by action]

108

where the premise of the rule is an assignment-transition or a test-transition or a

communication-transition, and where s2 may be E

[selection by communication]

where the premise of the rule describes a communication-transition betweens 1 and s 2 .

Remarks

I.Observe the role of true in the axiom for communication (which, by the axiom for tests,
amounts to a skip action). It is included to obtain the effect of a silent step, mirroring the r in

the uniform setting. Moreover, the definition of 'stem from' should be updated in such a way
that occurrences of true as introduced by the communication axiom stem from each of the
statements c?v, c !e on the left-hand side. (We can then choose whether to read true as true II E
or E II true, in case we want to apply the rule fot communication in a context.)

2.Each test which is false in the current state and each individual communication (c?v or c!e)
fails in the sense that no transition is defined for such a pair <s, a>. In a moment we shall
see how 03 handles this case by delivering 8 (as for L 2).

109

We proceed with the definition of 03 • The relationship between 03 and T 3 is slightly different

from that between 0; and T;, i=0,1,2. Whereas T; and 0;, i..,;;2, all involve streams, we here have

the situation that T 3 only refers to (single) states whereas 03 as defined below involves again

streams (of states). Thus, the presentation of T 3 is close to the original work in [HP, Pl3, Pl4].

Of course, we might have adopted a simpler domain for (the outcome of) 03 as well. However,

we prefer the present approach since we expect that 03 as in definition 7 .2 is amenable to a com­

parison with 6D3 (as defined in section 7.3) which follows closely the 02 - 6Di correspondence from

section 6. (Another alternative we have not adopted is to burden the definition of T 3 by using

streams of states rather than single states in the components of configurations.)

For 03 we first need the usual stream definition:

~s1 (8)=~* u~"' U~*.{o}

Let p range over ~s1 (8). As always, we put 8.p=o for all p. Let, as before, §(8) =df 'iP(~s1 (8)) be

the collection of all subsets fo ~·1 (0). We define the mapping

03 : (syntactically closed) L 3 -7(~6-7§(o))

as follows

DEFINITION 7.2. Lets EL 3. We put 03[s](8)= {o}, and, for a=j=B, let <so,ao> =df <s, a>.

I.We put a0a1 • • • ana' E 03[s](o) if there is a finite sequence of T3-transitions

2.We put o0o1 • • • on8E 03[s](o) if there is a finite sequence of T3-transitions

with sn=l=E such that no transition <sn,on >-7<s',a'> is deducible in T3

3.We put o0o1 ···on··· E 03[s](o) if there is an infinite sequence of T3-transitions

Examples

l.03[v:=O](o)={oo<O /v >}

03[(v: =0)\\(v: = l ;v: =v + l)](a)= { oo<O / v >a< 1 / v >o<2 / v >,

aa< 1 / v >a<O / v >o<1 / v >, ao< l / v >o<2 / v >o<O / v > }.

2.03[µ.x[x]](o)= { oo · · · }, 03[µ.x[(v: =v + 1 ;x)]](o<O / v >)=

{ o<O / v >o<O / v >a< 1 / v >a< I / v >o<1 Iv >o<2 / v > · · · },

3.03[(v >O;v: =2)+(v:s;;;O)](o< l / v >)= { o< 1/v>o<1 / v >o<2 / v >}

03[v:s;;;O](o< 1 /v >)= {o< l / v >8}

4.03[c?v\lc!3](o)= {ooo<3 /v >}

110

Remark. Note that, contrary to the situation for Lo to L 2, we have no means to distinguish
proper nonterrnination (delivery of an infinite stream) from improper termination (delivery of an
unfinished stream, for terminology cf. section 5). Another way of looking at this phenomenon is
that we have, by our use of (the effect of) a skip transition at each procedure call, effectively

turned each recursive construct into a guarded one.

7.3. Denotational semantics for a nonuniform language.

We provide a branching time denotational semantics for L 3• We again use a domain of
processes, in the sense as encountered in section 6, as meanings for statements s EL 3 . However,
processes are now more complicated entities. In particular, processes depend on states: rather
than using the what may be called uniform domain equation of section 6:

P ='8'c1osed(A J. U(A XP)), (*)

we shall adopt (a modification and extension of) the basic nonuniform equation

(**)

Using techniques which are a natural extension of those sketched in section 6.2, we can solve
(**). The extension involves the definition of a distance between p,q as functions. This is defined
simply by d(.p,q)=sup,,d(p(a),q(a)). Again, P is obtained by defining the finite processes Pn,

n = 0, 1, ... and by taking P as the completion of U n P n with respect to the metric d.

Before presenting more of the details on the use of these nonuniform processes in the definition
of 6D3[s], it may be useful to devote a few words to the necessity of a domain in this style of(**)
(Plotkin [Pll] calls the elements of this domain resumptions) for the denotational semantics of a
nonuniform language with merge. Consider by way of contrast a nonuniform sequential
language, and two simple statements s 1=(v 1:=0;v2:=v1+l) and s2=(v2:=2). In order to
determine the meaning of s 1 ;s2, we determine the state-transforming functions (in ~~~)
<j>=6D[s 1] and ,P=6D[s2], and then form the functional composition cp0 o/= 11.a.,P(<J>(a)). Also, <I> is
made up from the functions <1>1 , <Pi, i.e. <t>= <Pi 0 </>1 , where </>1 = 6D[v 1 : = O], and <Pi = 6D[v 2: = v 1 + 1].
It is important to realize that, in order to determine <J>0 o/, the fact that <I> is composed from the
two functions q:.1, <Pi is no longer relevant. The situation is different, however, when we want to
define the meaning of s 1 lls2. Here we assume -to be somewhat specific; variations are possible
depending on what operations are taken as indivisible- that the intended meaning of s 1 !Is 2 equals
the meaning of the sum (v1:=0;v2:=v 1 +l;v2:=2) + (v 1:=0;v2:=2;v 2:=v 1 +l) +
(v2:=2;v1:=0;v2:=v1+l). Now we observe that, once cp=6D[s 1] and ,P=GJ)[s 2] have been
determined, we cannot form the semantic merge <Pll,P, since the way <P was obtained from q:.1,cfJ2 is
necessary for the determination of the merge , but lost in cp. In summary, state transforming func­
tions cannot be merged since they do not contain information on the way they are built up from
elementary components. Two ways out appear. The first would be to apply a two stage process

, 11

in order to obtain Gj)[s 1 lls2]. Firstly, decompose s 1,s2 into elementary actions

a1=(v1: =O), ... ,a3: =(v2: =2). Then merge a 1 ;a 2 and a 3 as uniform constructs, and after

completion of this determine the meaning of each uniform process obtained in this way as a state

transformation. We do not adopt this approach since we do not like such a two stage procedure

and, more importantly, since the reduction to the uniform case is problematic or intractable as
soon as a more advanced flow of control is encountered. We have in mind notions such as test

and set, critical sections or, more ambitiously, communication or dynamic process creation in
languages such as POOL.

The second way out is the solution we adopt below. The meaning of sis an entity (nonuniform

process) p depending on a state a, and when applied in a yields a new state <J' and a continuation

p' (or, in general, a set of such pairs [o',p']). A statement such as s 1 above obtains as its meaning

6D[si]= p1= Xa.{[o<O/vJ.Xa.{a<a(v 1)+I/v2>}]}. Clearly,p 1 is a semantic object which

has preserved the information on how it was built up, and we may expect to be able to define a

semantic merge on such objects (cf. definition 7.3).

We continue with the development of the denotational semantics for L 3 -for which we shall from
now on use the familiar notation 6D3- based on a domain similar to (**) above. In fact, we shall

use an equation which is somewhat more complex. As minor variation, we find it advantageous

at this place to use a nil process p 0• This process is not the meaning of any statement, but serves

to provide a more unified structure to our processes and, in this way, facilitates the definition

below of the various process operators. (Technically, p 0 may be seen as labelling the leaves in
the 'process tree'.) We thus start from the modification from(**):

Secondly, and more importantly, we have to cater for (synchronization and) communication. Two

steps are taken here. First, we extend the possibilities for p(<J) from a set of pairs [a',p'] (elements

of <iI'c1osed(~XP)) to an enlarged set <iI'c1osed((~XP)U(CX • · ·)),where C is the set of communi­
cation actions with elements c, and the · · · is a structure, yet to be filled in, coping with the

additional value transmitting function of c ?v and c !e.

Now supplying the details, we shall use the domain defined by the equation

P ={po} U(~-+gic1osed((~XP)U(C X((V-+P)U(VXP))))) (***)

where elements </> in V -+P denote processes depending on an argument o: in V, and elements in

VXP are pairs [o:,p]. Objects [c,</>] appear in the meaning of c?v, and objects [c, [o:,p]] in the

meaning of c!e. More specifically, c?v has as effect the assignment of an, as yet unknown, value

o: to v. Accordingly, we deliver a function </> which, when given some o:, returns process </>(a)
which performs the assignment. Usually, it is slightly more complex since <f> -and, thus, <P(o:)- not

only describes the effect of the assignment of o: to v, but has, in addition, accumulated the mean­

ing of the statements executed after c?v.

----------------------~

112

Also, c !e has as effect that the value of e is determined (in the current state) and kept in store for

the (handshake) transmission to the receiving variable v on 'channel' c. The process p in the pair

[a,p] describes the continuation after c !e. The actual communication and associated value pass­

ing take place in the definition of p liq and X I Y given below. Failing attempts at communication

receive the usual treatment, cf. the models for L 1,L 2 : they remain as traces of unsuccessful

attempts and are, if desired, cleaned away by a suitable restriction operator (as we shall define

below as well).

From now on, we consider processes p EP, with Pas defined in(***). We next define the opera­

tors 0 , U, II upon them. We recapitulate the various (semantic) sets and the variables ranging

over them, and introduce, for convenience, a few auxiliary sets:

p EP

cEC

a,/3E V

X, Y E0'c1osed((2:XP)U(C X(V->P) U (VXP)))

x,yEX

AE~U VUC

p EP U(V-4P)U(VXP)

We first define the operators for finite processes:

DEFINITION 7.3.
a.Concatenation. p 0°p =pop 0 =p. For p=/=po, p 0 q= Aa.(p(a)0 q), X 0 q = {x 0 q Ix EX}, </>0 q=

Ao:.(<P(a)oq), (A,p]oq= [;\,poq]

b. Union. p0 Up= p Upo = p. For p,q=/=po we put p Uq= Aa.(p(a)Uq(a)).

c. Merge. p 0 llp= pllpo= p. For p,q=/=po we put

- pllq= Aa.((p(a)llq)U (q(a)llp)U (p(a)\"q(a))).

- Xllq= {xllq:x EX},

[A.,p]llq= [A.,pllq],

<Pllq= A.a.(<P(a)liq).

- X\"Y= U{x\"y:xEX,yEY},

(c,</>]\ 0 [c, [o:,p]J= {[a,<J>(a)llp]},

x \ aY = 0, for x,y not of the above form.

Definition 7.3 is extended in the usual way for p or q infinite.

113

We are now, at last, in the position to define the denotational meaning for s EL 3 • We do not

require s to be guarded here, since guardedness is achieved automatically by the 'silent step' at

procedure call in the same way as in the operational model. Let f=Stmv~P, and let yEf. We

give

DEFINITION 7.4.

1. 0·Mv: =d(y)= .\a.{[a<[d(a) / v >,po]}
VD3[b](y) = .\a.if [b](a) then {[a,po]} else 0 fi

3. 6D3[c ?v](y) = .\a. {[c, .\a.A.a. {[a<a / v >,po]}]}

4. 0D3[c !e](y)= .\a.{[c, [[e](a),po]]}

5. 6ilJ[s 1 ;s2](y) = 6D3[s 1](y)0 %[s2](y)

6ilJ[s1 +s2](y)= %[s1](y)U ®3[s2](y)

6D3[s1 lls2](y)= %[s1](y)ll 0v3[s2](y)

6.6ilJ[x](y)= y(x)

7.%[µx[s]](y)= lim;p;, where (po =po and) p; + 1 = .\a. {[a,%[s](y<p; / x >)]}

Examples (we omit they-arguments)

I.%[(v1 :=O;v2: =v 1 + l)ll(v2: =2)] =dfp=

Xa. {[a<O/v 1>, Xa.{[a<a(v1)+l/v2>,

.\~. {Fa<2 I v2 >,po]}]}],

Xa. {[a<a(v I)+ 1 I v2 >.po]}]} l
}.

Below, we shall discuss how to obtain from this p its state transforming effect p + : the processes

Xa. · · · , .\~. · · · are 'ready to execute', and an additional mechanism has to be invoked in

order to start their execution.

2.Let s 1 = c?v, s 2 = c !2. We determine 61l3[s 1 lls2] =df p, where p =p 1 llp2, p; =%[s;].

p 1 = A.a. {[c, .p]}, where <j>= .\a.Xa. {[o<a / v >,po]}.

P2 =.\a.{[c, [2,po]]}.

PI llp2 = .\a.((p1(a)llp2)U (p2(a)llp1)U (p1(a) loP2(a))),

p 1 (a)llp2 = {[c, .Pllp2]} = {[c, .\a.(<f>(a)llpz)J},

p2(a)llp 1 = {[c, [2,po]llp 1]} = {[c, [2,p 1]]},

p 1(a)I0P2(a)= {[a,.p(2)llpo]} = {[a,Xa. {[o<2 / v >.po]}]}

Altogether, we obtain for p:

.\a. {[c, .\a.(.p(a)llp 2)],[c, [2,p i]],[a,.\a. {[0<2 / v >,po]}]}

In a moment we shall see how we may get rid, by applying the function restrp, of the [c, · · ·]

114

parts in this outcome.

We conclude this section, with, firstly, a discussion on the relationship between 03 and %, and,
secondly, on the definition of the yield p + of a process p, retrieving its state transforming func­

tion.

As stated already in the introduction of section 7, we have no firm results on the relationship
between (93 and 6D3. However, it is not too farfetched to state a conjecture relating 03 and % .
We first define a restriction operator restrp: p__.,p in the usual way: For finite p,

restrp(po)=po,

restrp(A.a.X):::: A.a.restrp(X)

restrp(X)= {[a,restrp(p')]:[a,p'] EX}.

For infinite p, restrp is defined in the usual way by taking limits.

Next, we define streams: P \ {p 0 } ---" (2:-'>§(o)) by (finite case only presented; we have no occa­

sion to use strearns(po)):

strearns(A.a. X) =A.a. (a.strearns(X))

strearns(X)= U {strearns(x):x EX}, X=fa-0

={8}, X=0

strearns([a,p])= a.strearns(p(a)), p =fa.po

streams([a,po])= {a}

strearns([c, .p])=strearns([c, [a,p]]) = { o}

Note in particular the clause for strearns([a,p]), p=Fpo. We do not concatenate a with
streams (p). Rather, we deliver a concatenated with the application of streams to the result of
applying p to a. (This is another example where a process, ready to execute, is made to start its
execution.)

We now conjecture, for each syntactically closed s:

In order to settle the conjecture, it will be necessary to investigate to what extent the argument of
section 6.3, in particular the use of ready sets, can be carried over to a nonuniform setting.

As last topic we discuss the yield p + of any (non nil) process p. The yield of a process retrieves
its state transforming function. For example, let s=v 1 : = O;v 2 : = v 1 +I. For p = 6D3 [s] we obtain

115

p =l\(1.{(<1<0IvI>,p1]}

p1 =Xo.{[a<a(v1)+ I /v 2 >,p0]}

By the definition below, for given input state CJ, p + (<1) yields output state <J<O / v 1 ><I/ v2 >.

This can be understood as follows: Assume that p is applied to some a. Then the intermediate

state 01=a<O/v 1 > is delivered, together with the continuation p 1• Note that p 1 is not (yet)

applied to a1• Now this application of p 1 to a1 -and, in general, of subsequent continuations p; to

corresponding states CJ;- is the purpose of the yield definition. All processes which are ready to

execute -but which have suspended their application in view of a possible interleaving action

from a parallel component- are made to execute through a cascade of applications triggered by

the yield definition. A complication is due to the possible presence of an infinite path in the

'proces tree'. In this case we want to deliver the bottom state as output corresponding to this

path. This requires a suitable limit concept for which we take (a simple version of) the Egli­

Milner cpo structure. First a few auxiliary definitions. We reinstall J_ (with J_ rt. };8), this time

as a state indicating nontermination. Let us put ~.L =~8 U {J_}. We define an order on ~.l by

putting: a1 C. a2 iff a1 = J_ or a1 = <J2. Let 5 = '!J'(}; .l), and let T 1, T 2 E 5: We define T 1 C. TT 2 iff
J_ ET1 and T 1 t:;;,T2 or T 1 =T2• (This is in fact the Egli-Milner order from definition 2.15c.)

Then (5,C. T• { J_}) is a cpo.

We now give

DEFINITION 7.5. The mapping + : P \ {p 0 }~(};~~ is given by

p + ='Aa.p(a)+

where lJ T is the lub in (5,C. T• { J_}) and x<n > is defined as follows:

x<O> ={J_}

Examples

x<n+I> = LJ {x<n+l>:x EX}

[a,po]<n +I> ={a}

[c,. ··]<n+l>={6}

[a,p]<n+I> =p(a)<n> ,p-::J=po

I.Let 1" be some function: ~~};, and let p be such that it satisfies the equation:

p =A.a. {[a,po],[¥-(a),p]}

p(a)+ is obtained as lub of the sequence

'·~· .. ·· ..
,'f

~

116

x<O> ={l..}

x<I> = LJ {[o,po]<l>,[l/i(o),p]<l>}

= U {{o},p(i/J(o))<O>}

={o,l..}

x<2> = u {[o,po]<2> ,[1/i(o),p]<2>}

= U {{o},p(l/i(o))<l>}

= U {{a},{[1/J(o),po],[1/i(l/i(o)),p]}<l>}

= {o,i/i(a),l..}

x<3>= ...

Hence, we obtainp(a)+ = Unx<n> = {l..,a,i/i(o),1/J(i/i(o)), · · · }. The +-operator unwinds the

process p in a; the crucial step in the definition is [a,p i<n +I> = p(o)<n >. We observe that

computations for p in o which determine an infinite path in the 'process tree' contribute l.. to

the outcome.

2.Let p= A.o.{[o<O / v 1 >, Xo. {(U<a(v 1)+ I /v 2 >, A.~.{tu'<2 / v2 >,p 0]}]}. (This is part of the

process obtained in the first example after definition 7.4.) We show how to calculate p (o)+.

Let

p1=dfA<Y.{[a<'O(v1)+1 /v2>,p2]}

P2 =dfA~.(Fa<2 /v2>.po]}

We have p(o)+ = Unx<n>, where

x<O> ={l..}

x<I> = LJ {[o<O /v1 >,pi]<\>}

= U {p1(o<O /v1 >)<O>}

= {l..}

x<2> = ... ={l..}

x<3> = u {[o<O Iv I >,p il<3>}

= U {p1(o<O /v1 >)<2>}

= LJ {p2(o<O /v1 ><o<O / v1 >(v 1)+ I/ v2 >)<l>}

= U{p2(o<O/v1><1/v 2>)<1>}

117

This brings our discussion of the semantics of L 3 and, at the same time, of various contrasting
themes in the semantics of imperative concurrency, to an end.

, .. s~

118

References

[Ad] ADA, The Programming Language ADA, Reference Manual, American National Stan­

dards Institute, Inc. ANSI/MIL-STD-1815A-1983, LNCS 155 Springer, 1983.

[Am] P. AMERICA, Definition of the programming language POOL-T, ESPRIT project 415,

Doc. Nr. 0091, Philips Research Laboratories, Eindhoven, June 1985.

[ABK.Rl] P. AMERICA, J.W. DE BAKKER, J.N. KOK, J.J.M.M. RUTIEN, Operational semantics of

a parallel object-oriented language, CS-R85!5, Centre for Mathematics and Computer

Science, 1985.

[ABKR2]

[Apl]

[Ap2]

[Ap3]

[AN]

[Ba]

[dB]

[BBKM]

[BKo]

P. AMERICA, J.W. DE BAKKER, J.N. KOK, J.J.M.M. RUTTEN, Denotational semantics of

a parallel object-oriented language, in preparation.

K.R. A.PT, Recursive assertions and parallel programs, Acta Inf. 15 (1981) 219-232.

K.R. A.PT, Formal justification of a proof system for communicating sequential processes,

J. Assoc. Comput. Mach., 30 1 (1983) 197-216.

K.R. APT (ed.), Logics and Models of Concurrent systems, Springer, 1985.

A. ARNOLD, M. NIVAT, Metric interpretations of infinite trees and semantics of non­

deterministic recursive programs, Theor. Comp. Science 11 (1980) 181-206.

R.J. BACK, A continuous semantics for unbounded nondeterminism, Theoret. Comp. Sci.

23 (1983) 187-210.

J.W. DE BAKKER, Mathematical theory of program correctness, Prentice Hall Interna­

tional, London, 1980.

J.W. DE BAKKER, J.A. BERGSTRA, J.W. KLoP, J.-J. CH. MEYER, Linear time and

branching time semantics for recursion with merge, TCS 34 (1984) 135-156.

J.W. DE BAKKER, J.N. KoK, Towards a uniform topological treatment of streams and

functions on streams, in: Proc. 12th ICALP (W. Brauer, ed.), LNCS 194, Springer

(1985), 140-148.

[BMOl] J.W. DE BAKKER, J.-J. CH. MEYER, E.-R. 0LDEROG, lnfinte streams and finite observa­

tions in the semantics of uniform concurrency, in: Proceedings 12th ICALP (W. Brauer,

ed.), LNCS 194, Springer (1985) 149-157.

[BM02] J.W. DE BAKKER, J.-J. CH. MEYER, E.-R. OLDEROG, Infinite streams and finite observa­

tions in the semantics of uniform concurrency, Report CS-R8512, Centre for Mathemat­

ics and Computer Science, 1985. (full version of [BMOI]).

[BM03] J.W. DE BAKKER, J.-J. CH. MEYER, E.-R. OLDEROG, Hiding discriminates between order

and metric in the stream semantics of concurrency, Report CS-R85 .. , Centre for

Mathematics and Computer Science, to appear.

[BMOZl] J.W. DE BAKKER, J.-J. CH. MEYER, E.-R. 0LDEROG, J.I. ZUCKER, Transition systems,

infinitary languages and the semantics of uniform concurrency, in: Proceedings l 7th

ACM STOC, Providence, R.I. (1985) 252-262.

[BMOZ2] J.W. DE BAKKER, J.-J. CH. MEYER, E.-R. 0LDEROG, J.I. ZUCKER, Transition systems,

metric spaces and ready sets in the semantics of uniform concurrency, preprint SUNY at

Buffalo, 1985 (full version of BMOZl), to appear.

l

[BZI]

[BZ2]

[BZ3]

[BZ4]

[BKl]

[BK2]

[BK3]

[BKO]

119

J.W. DE BAKKER, J.I. ZUCK.ER, Denotational semantics of concurrency, in: Proceedings

14th Assoc. Comput. Mach. Symp. on Theory of Computing (1982) 153-158.

J.W. DE BAKKER, J.I. ZUCKER, Processes and the denotational semantics of concurrency,

Inform. and Control 54 (1982) 70-120.

J.W. DE BAKKER, J.I. ZUCKER, Compactness in semantics for merge and fair merge, in:

Proceedings Workshop Logics of Programs, (E. Clarke & D. Kozen, eds.) Pittsburgh,

LNCS 164 Springer (1983) 18-33.

J.W. DE BAKKER, J.I. ZUCKER, Processes and a fair semantics for the ADA rendez-vous,

in: Proceedings lOth ICALP (J. Diaz, ed.) LNCS 154, Springer (1983) 52-66.

J.A. BERGSTRA, J.W. KLoP, Process algebra for synchronous communication, Informa­
tion and Control, 60 (1984) 109-137.

J.A. BERGSTRA, J.W. KLoP, Algebra of communicating processes with abstraction, TCS

37 (1985) 77-121.

J.A. BERGSTRA, J.W. KLoP, Algebra of communicating processes, in: Proceedings CWI

Symposium (J.W. de Bakker, M. Hazewinkel, J.K. Lenstra, eds.), CWI Monographs,

North-Holland, Amsterdam, to appear.

J.A. BERGSTRA, J.W. KLoP, E.R. OLDEROG, Readies and failures in the algebra of com­

municating processes, CWI Report CS-R85 .. , Amsterdam, 1985.

[Be] E. BEST, Relational semantics of concurrent programs (with some applications), in:

Proceedings IFIP TC2 Working Conference (D. Bjflmer, ed.), North-Holland,
Amsterdam (1982) 431-452.

[Br] S.D. BROOKES, On the relationship of CCS and CSP, in: Proceedings lOth ICALP (J.

Diaz, ed.), LNCS 154, Springer (1983) 83-96.

(BHR] S.D. BROOKES, C.A.R. HOARE, A.W. ROSCOE, A theory of communicating sequential

processes, J. ACM 31 (1984) 560-599.

[BRW] S.D. BROOKES, A.W. RoscOE, G. WINSKEL (eds.), Seminar on Concurrency, LNCS

197, Springer, 1985.

[Broll M. BROY, Fixed point theory for communication and concurrency, in: Formal Descrip­

tion of Programming Concepts II (D. Bjflmer ed.), North-Holland, Amsterdam,

(1983) 125-146.

[Bro2] M. BROY, Applicative real time programming, in: IFIP Information Processing 83

(R.E.A. Mason, ed.) North-Holland, Amsterdam, (1983) 259-264.

[DM] P. DEGANO, U. MONTANARI, Liveness properties as convergence in metric spaces, Proc.

16th ACM STOC (1984) 31-38.

[Du] J. DUGUNDJI, Topology, Allen and Bacon, Rockleigh, N.J. 1966.

[Dij] E.W. DIJKSTRA, Cooperating Sequential Processes, in Programming Languages (F.

Genuys, ed.), Academic Press, 1968.

[En] R. ENGELKING, General topology, Polish Scientific Publishers 1977.

(FHLR] N. FRANCEZ, C.A.R. HOARE, D.J. LEHMANN, W.P. DE ROEVER, Semantics of nondeter-

minism, concurrency and communication, JCSS 19 (1979) 290-308.

[FLP] N. FRANCEZ, D.J. LEHMANN, A. PNUELI, A linear history semantics for languages for

[GR]

[Ha]

[He!]

[He2)

[Ho]

[HP]

[HU]

[In]

[Ke]

[Ku]

[Ma]

[Mel]

[Me2]

[Mic)

[MM]

[Mill

[Mi2]

[Mi3]

[dNH]

[Nil)

[Ni2)

[OHI]

120

distributed programming, TCS 32 (1984) 25-46.

W.G. GOLSON, W.C. ROUNDS, Connections between two theories of concurrency: metric

spaces and synchronization trees, Inform. and Control 57 (1983) 102-124.

H. HAHN, Ree/le Funktionen, Chelsea, New York, 1948.

M.C.B. HENNESSY, Synchronous and asynchronous experiments on processes, Informa­

tion and Control 59 (1983) 36-83.

M.C.B. HENNESSY, An algebraic theory of fair asynchronous communicating processes,

Manuscript, Dept. of Comp. Sci., Univ. of Edinburgh, 1984.

C.A.R. HOARE, Communicating sequential processes, Comm. ACM 21 (1980) 666-677.

M. HENNESSY, G.D. PLOTKIN, Full abstraction for a simple parallel programming

language, in: Proceedings 8th MFCS (J. Becvar ed.), LNCS 74 Springer (1979) 108-

120.

J.E. HOPFCROFT, J.D. ULLMAN, Introduction to automata theory, languages and compu­

tation, Addison-Wesley, Reading, Mass., 1979.

INMOS LTD., The Occam Programming Manual, Prentice-Hall International, London,

1984.

R. KELLER, Formal verification of parallel programs, Comm. Assoc. Comput. Mach. 19

(1976) 371-384.

R. KUIPER, An operational semantics for bounded nondeterminism equivalent to a deno­

tational one, IFIP TC2-MC Symp. on Algorithmic Languages (J.W. de Bakker & J.C.

van Vliet, eds.) North-Holland, Amsterdam (1981) 373-398.

A. MAZURKIEWICZ, Concurrent program schemes and their interpretations, DAIMI, PB

78, Aarhus University, 1977.

J.-J. CH. MEYER, Fixed points and the arbitrary and fair merge of a fairly simple class of

processes, Tech. Reports IR-89/IR-92, Free University, Amsterdam, 1984.

J.-J. CH. MEYER, Programming calculi based on fixed point transformations: semantics

and applications, dissertation, Free University of Amsterdam, 1985.

E. MICHAEL, Topologies on spaces of subsets, Trans. AMS ~ (1951) 152-182.

G. MILNE, R. MILNER Concurrent processes and their syntax,]. ACM 26 (1979) 302-
321.

R. MILNER, Processes: a mathematical model of computing agents, in: Proceedings

Logic Coll. 73 (Rose & Shepherdson, eds.) North-Holland, Amsterdam, 1983.

R. MILNER, A calculus of communicating systems, LNCS 92, Springer, 1980.

R. MILNER, Calculi for synchrony and asynchrony, TCS 25 (1983) 267-310.

R. DE NICOLA, M.C.B. HENNESSY, Testing equivalences for processes, TCS 34 (1984)
83-134.

M. NIVAT, Infinite words, infinite trees, infinite computations, Foundations of Computer

Science III. 2, Mathematical Centre Tracts 109 (1979) 3-52.

M. NIVAT, Synchronization of concurrent processes, in Formal Language Theory (R.V.
Book, ed.), Academic Press, New York (1980) 429-454.

E.-R. OLDEROG, C.A.R. HOARE, Specification-oriented semantics for communicating

[OH2]

[Pa]

[Pll]

[Pl2]

[Pl3]

[Pl4]

[Pn]

[Ro]

[RB)

[RS]

[Sc]

[Sm]

[St)

[Wi]

121

processes, in: Proceedings IOth ICALP (J. Diaz, ed.), LNCS 154 Springer (1983) 561-

572.

E.-R. OLDEROG, C.A.R. HOARE, Specification-oriented semantics for communicating

processes, Tech. Monograph PRG-37, Prog. Research Group, Oxford Univ., 1984 (to

appear in Acta Informatica).

D. PARK, Concurrency and automata on infinite sequences, Proceedings, Theor. Comp.

Sci. (P. Deussen, ed.), LNCS 104, Springer, 1981.

G.D. PLOTKIN, A powerdomain construction, SIAM J. Comp. 5 (1976) 452-487.

G.D. PLOTKIN, Dijkstra's predicate transformers and Smyth's powerdomains, in:

Abstract Software Specification (D. Bjomer ed.), LNCS 86, Springer (1980) 527-553.

G.D. PLOTKIN, A structural approach to operational semantics, Report DAIMI FN-19,

Comp. Sci. Dept., Aarhus Univ. 1981.

G.D. PLOTKIN, An operational semantics for CSP, in: Formal Description of Program­

ming Concepts II (D. Bjomer ed.) North-Holland, Amsterdam (1983) 199-223.

A. PNUELI, Linear and branching structures in the semantics and logics of reactive sys­

tems, in: Proceedings 12th ICALP (W. Brauer, ed.), LNCS 194, Springer (1985) 15-32.

W.C. ROUNDS On the relationships between Scott domains, synchronization trees and

metric spaces, Report Univ. of Michigan CRL-TR-25-83, 1983.

W.C. ROUNDS, S.D. BROOKES, Possible futures, acceptances, refusals, and communicat­

ing processes, in: Proceedings 22nd Symp. Found. of Comp. Sc. IEEE (1981), 140-149.

M.O. RABIN, D.S. SCOTT, Finite automata and their decision problems, IBM J. Res.

3:2, 1959.

D.S. SCOTT, Domains for denotational semantics, Proceedings 9th ICALP (M.Nielsen

& E.M. Schmidt, eds.) LNCS 140, Springer (1982) 577-613.

M.B. SMYTH, Power domains, JCSS 16 (1978) 23-26.

J. STOY, Denotational semantics: The Scott-Strachey approach to programming language

theory, MIT Press, Cambridge, Mass, 1977.

G. WINSKEL, Synchronisation trees, TCS 34 (1984) 33-82.

