
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

J.W. de Bakker, J.-J. Ch. Meyer, E.-R. Olderog

Infinite streams and finite observations
in the semantics of uniform concurrency

Depart111ent of Computer Science

Bibliotheek - .
CentrumvoorWiskun~e en lnfmmaiica

Amsterdam

(preliminary version)

Report CS-R8508 April

The Centre for Mathematics and Computer Science is a research institute of the Stichting
Mathematisch Centrum, which was founded on February 11 , 1946, as a nonprofit institution aim
ing at the promotion of mathematics, computer science, and their applications. It is sponsored by
the Dutch Government through the Netherlands Organization for the Advancement of Pure
Research (Z.W.O.).

Copyfight © Stichting Mathematisch Centrum, Amsterdam ,

Infinite Streams and Finite Observations

in the Semantics of Uniform Concurrency
(preliminary version)

J.W. de Bakker
Centre for Mathematics and Computer Science &

Free University, Amsterdam

J.-J. Ch. Meyer
Free University, Amsterdam

E.-R. Olderog
Christian-Albrechts-Universitat Kiel

Two ways of assigning meaning to a language with uniform concurrency are presented and compared. The
language has uninterpreted elementary actions from which statements are composed using sequential
composition, nondeterministic choice, parallel composition with communication, and recursion. The first
semantics uses infinite streams in the sense which is a refinement of the linear time semantics of De Bakker
et al. The second semantics uses the finite observations of Hoare et al., situated "in between" the
divergence and readiness semantics of Olderog & Hoare. It is shown that the two models are isomorphic
and that this isomorphism induces an equivalence result between the two semantics.

1980 Mathematics Subject Classification: 68B10, 68C01 '·· ~ .' "' ,,,.. "- L
1982CRCategories:0.3.1,F.3.2,F.3.3. 1.0"\ \,;y I 1 c"~j r ~'L 1 ~~
Key Words & Phrases: concurrency, denotational semantics, streams, uniform languages, o~ervations,
Smyth ordering, parallel composition, topological closedness.

Note:
1. The research of J.W. de Bakker is partially supported by ESPRIT project 415: Parallel Architectures

and Languages
2. This report will be published in the Proceedings 121h International Colloquium on Automata,

Languages and Programming

Report CS-IR8508
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

1

2

1. INTRODUCTION

Infinite streams of actions or states provide a natural and clear concept for describing the behaviour
of non-terminating concurrent processes [Br, Ni]. The supporting mathematics, however, tends to get
complicated even if some simplifying assumptions on the admissible sets of streams are possible [Br,
BBKM]. On the other hand, finite traces of actions or more generally finite observations like ready or
failure pairs typically require a rather simple mathematics to justify the semantic constructions [BHR,
FLP, OH2]. However, these constructions often seem more "ad hoe'' and less clear conceptually.
Also, finite observations are in general less expressive than infinite streams, for example in the
presence of fairness [He2, OH2].

Our paper now presents an interesting case where infinite streams and finite observations are
equally expressive in the sense of an isomorphism. We establish our results for a core language e of
uniform or schematic concurrency [BMOZ] involving uninterpreted atomic actions, sequential
composition, nondeterministic choice (local nondeterminism), parallel composition (merge) with
communication and recursion. Fore we introduce two versions of (denotational)linear time semantics
[BBKM].

The first semantics 6Dstr is based on finite and infinite streams of actions. 6Dstr refines the linear time
semantics LT developed in [BBKM] in that it deals more satisfactorily with recursion. This is achieved
by using a Smyth-like ordering on sets of streams. When developing the semantics 6Dstr we shall
carefully motivate the conditions of flatness and topological closedness for our powerdomain of
streams. In particular, topological closedness will be crucial for proving the continuity of the
semantic operators. Unfortunately, these proofs are rather complicated [Me, BBKM].
· The second semantics 6D0 bs fits into the specification-oriented approach to the semantics of

concurrent processes [OHI/2]- a generalization of the specific failure semantics in [BHR]. The starting
point for the approach is a simple correctness criterion for· processes: a process P satisfies a
specification S, denoted by PsatS, if every observation we can make about P is allowed by S. An
observation is a finitely representable information about the computational behaviour of processes.
Examples of observations are (finite) traces, traces with divergence information, ready pairs and
failure pairs leading to the (increasingly sophisticated) trace, divergence, readintpgs and failure
semantics for concurrent processes [OH2]. Our specific observation semantics 6Dobs for e can be seen
as "in between" the divergence and the readiness semantics of [OH2].

Our main result is that both approaches to the semantics of e are isomorphic. This isomorphism
has various benefits in the mutual understanding of both approaches:

the concepts in 6Dstr have a natural translation into 6D0bs : for example, topological closedness in
6Dstr gets translated into prefix closedness in 6Dobs,
through this translation the constructions for 6Dobs become clear conceptually,
most important perhaps, proofs of continuity of the semantic operators in 6Dstr now become very
simple via the isomorphism to 6D0 bs, involving only the notion of domain finite relations on the
side of observations [OHl/2]. Thus through the idea of observation we can circumvent the
technically difficult continuity proofs of [BBKM, Me].

Our paper is backed up by the reports [Me] and [OH2]; the linking isomorphism result will be
proved fully in its final version.

2. THE LANGUAGE f.
part

Let A be a finite set of actions, with a ,b EA , * : A XA --?- A be a partial binary operation on A
called communication function, and Pvar be a set of process variables, with x JI ePvar. Then the set of

. (concurrent) processes e, with P ,Q ee, is given by the following BNP-syntax:

2.1. DEFINITION.

P ::= alP;QIPor QjPllQlxlµ.x[P]

3

2.2. REMARKS. Every action a EA denotes a process, the one which finishes (terminates successfully)
after performing a. P ; Q denotes sequential composition such that Q starts once P has finished.
P or Q denotes nondeterministic choice, also known as local nondeterminism [FHLR]. P II Q denotes
communication merge (cf. [BK]) where parallel composition is modelled by arbitrary interleaving plus
communication between those actions a of P and b of Q for which a*b is defined. For example, if
only b*c is defined, we will obtain the following equation in our semantics:

(a ;b)llc = a ;b ;c or a;c;b; or c ;a ;b or a ;(b*c).

Communication merge is inspired by [Mi2, BK, Wi], though we do not assume any algebraic property
of*.

By varying the communication function * , we can express more familiar notions of parallel
composition like shuffle (arbitrary merge) or merge with binary communication as in CCS[Mi].

Starting from actions a EA, the operators ;, or, and II can only define concurrent processes P with
finite semantic behaviour; infinite behaviours require processes P involving recursion, expressed here
by the µ-construct [dB].

3. 'fHE STREAM SEMANTICS 6j)str

Let ..L fiA. Then we define the set of streams Str(A), with u ,v ,w EStr(A), as follows [Br]:

3.1. DEFINITION. Str(A) =A* UA"'UA*.{..L}.

3.2. REMARKS. Str (A) includes the set A 00 =A • U A"' of finite and infinite words over A [Ni], called
here finished and infinite streams, respectively, and additionally the set A•. { ..L} of unfinished streams.
The linear time semantics LT of [BBKM] was entirely based on A 00

• The reason for including
unfinished streams u . ..L as well is that they allow a more satisfactory treatment of recursion (see
Proposition 3.28).

Let f: denote the empty (finished) stream, .;;;;; the prefix relation and < the proper prffix relation over
streams, and lu I the length of a stream u, with lu I= oo for infinite u 's. Additiotlally we use the
following approximation relation :

3.3. DEFINITION. u C v iff the following holds
if u is finished or infinite then u = v ,
if u is unfinished, i.e., of the form u =u' ..L, then u'o;;;;v.

3.4. Ex:AMPLES. a .;;;a ..L, a ..L 4 a, a ..L 4 ab but a 9; a ..L, a ..L C:: a, a ..L C ab.

Consider for a moment an arbitrary cpo (C, C c, ..Le) and a subset S CC.

3.5. DEFINITION. S is called flat if x C cY implies x =y for all x J' ES. If C \ {..Le} is fiat, the cpo
(C, C 0 ..Lc) itself is called fiat.

3.6. PROPOSITION. (Str(A), C , ..L) is a non-flat cpo.

To provide meaning to concurrent processes P Ee we need (certain) sets of streams. Let q]'(Str(A))
denote the powerset of streams, with typical elements X, Y Eq]'(Str(A)). Then we will use the
following Smyth relation [Sm]:

3.7. DEFINITION. X C s Y if Vv EY 3u EX: u C v.

3.8. REMARK. X;;;:? Y implies X C s Y.

4

It is well-known that the Smyth relation C s is not antisymmetric and thus not a partial order on
non-flat domains like 0'(Str(A)) [Ba, Br]. Bill the Smyth relation is a pre-order which generates an
equivalence relation -s on 0'(Str(A)):

x s Y iff x C s Y and Y C s x
What are the sets identified by =s?

3.9. DEFINITION. mins(X)={v EXl--,3u EX: u C v /\u::/=v} is the set of minimal streams in X.
Then X-s Y if and only if mins(X)=mins(Y). Thus the sets mins(X) form a system of

representatives of the equivalence classes under =s· Note that mins(X) is flat.

3.10. DEFINITION. 0'1 (Str(A)) is the set of all flat subsets of Str(A).

3.11. PROPOSITION. 0'(Str(A))/-s is isomorphic to 0'1(Str(A)).

3.12. PROPOSITION. (0'1 (Str(A)), C s' {1-}) is a cpo.

The proof can be found in [Ba] (see [Me]). Next, we need some auxiliary operators on streams.

CONCATENATION u·v: For u,v EA 00 =A • UA"' the concatenation u · v is well-known from the theory
of infinitary languages [Ni]. We extend this definition to arbitrary streams by imposing the equation
1-·v = 1-.

COMMUNICATION MERGE u llv: Here we consider only finite streams u ,v EA• UA * • { 1- }. Then u llv is
a set of (finite) streams defined by

ullv = ull_vUv ll..uUulv

where recursively ell.v ={v }, 1-ll.v ={1-}, a·ull..v =a·(ull v) and aulbv =(a*b)·(ullv) provided a*b is
defined; in all other cases u Iv = 0. This finite recursive definition of II using lL and I is due to [BK].

To lift these definitions to flat sets of streams, we use the operator mins of Definition 3.9 and the
following notion of n -th approximation ulnJ, n ;;a.O, for streams u: ulnl=u if lu l<n and ulnl=u' 1- if
lul;;a.n and u':s;.u with lu'l=n. We extend this definition pointwise to subsets X<;;;;;Str(A) by putting
x(nJ= {ulnllu EX}. Now let X,Y E0'1(Str(A)).

SEQUENTIAL COMPOSITION

x;stry = mins({u·vluEX and VEY})

LOCAL NONDETERMINISM

X or Y = mins(XU Y)

PARALLEL COMPOSITION
For X,Y <;;;;A• UA * .{1-} (involving only finite streams) we set

xus'r y = mins({w EStr(A)l3u EX, v EY: w EU llv})

and for arbitrary flat X, Y <;;;;; Str (A) we work with semantic approximations:

3.13. THEOREM. The semantic operators

opstr: 0'1 (Str(A))X0'1 (Str(A))....,,0'1(Str(A))

5

with op E {; , or, 11} are both well-defined and C s -monotonic.

The proof is given in [Me]. Showing monotonicity is not trivial for; and II. To provide meaning to
recursive processes too, we will have to show that the semantic operators opstr are also continuous.

3.14. THEOREM. or1
r is continuous under Ls·

Unfortunately, the operators ;str and W'r are not continuous on arbitrary fiat sets of streams. To

rescue the continuity of ; and II, we will restrict ourselves to closed sets of streams.

3.15. DEFINITION. (Ba). X <;;;,Str(A) is closed if for every infinitely often increasing chain <un >n;;;.o

of unfinished streams in Str (A) the property

'r/n ;;;a.03vn EX: unC Vn
00

implies that the stream limit LJ Un EX.
n=O

At first sight this closedness property looks a bit technical, but it is not. We can show that it
coincides with the clear concept of topological closedness w.r.t. the following metric topology on
Str(A).

3.16. DEFINITION. The distance d: Str(A)XStr(A)~[0,1] is given by

d(u,v) = 2-min{nJu'"'~v1•1}

with the convention that 2- 00 =0.

3.17. EXAMPLES. d(qbc,aba)=i- 3,d(an ,a"')=i-n-I.

3.18. PROPOSITION. (Str(A),d) is a complete metric space.

Thus, we can talk of Cauchy sequences <Un > n ;;;.o of streams, their topological limits and of

topologically closed sets X <;;;, Str (A), i.e. where every Cauchy sequence <Un > n ;;;.o with Un EX has its

topological limit (which exists in Str(A)) inside X.

3.19. PROPOSITION. A subset X <;;;,Str(A) is closed if! X is topologically closed

3.20. EXAMPLES. X = {an ba"'ln ;;;a.O} U {a"'} is (topologically) closed, but Y = {an ba"'ln ;;;a.O} is not.
Note that Y typically arises through a fair merge of Y1={a"'} and Y2={b}. Hence notions like

fairness or eventuality are not expressible using only (topologically) closed sets of streams [He2, Me].

3.21. DEFINITION. ~ncf(Str(A)) is the set of all non-empty, closed and fiat subsets of Str(A).

The following lemma is crucial for the further development:

00

3.22. LEMMA. If <Xn >n;;;.O is a Cs-chain of sets Xn E~ncf(Str(A)), then LJ sXn=/=0.
- n=O

The proof is rather involved [Me]. We can now establish the following results:

3.23. PROPOSITION. (~ncj(Str(A)), L s,{..L}) is a cpo.

3.24. THEOREM. The operators ;str and W'r, when restricted to ~ncf(Str(A)), are continuous under C 8 •

6

The proof uses Lemma 3.2.2 and otherwise follows [BBKM]; the case of II is difficult.

3.25. REMARK. Lemma 3.22 and Theorem 3.24 do not hold, in general, for iefinite sets A of actions.
We can now define the denotational stream semantics 6Ds1r for e. The set of environments is given

by I'=Pvar ~<?Pncf(Str(A)), with yEf. Let, as before, X,Y range over <?Pncf(Str(A)), and let
y'=y{X Ix} be as y but with y'(x)=X. For a Cs -continuous function cf> from '?Pncf(Str(A)) to
<?Pncf(Str(A)) let µ.cf> denote its least fixed point.

3.26. DEFINITION. The semantic mapping

6Ds1r[· B: e~(r ~<?Pncf(Str(A)))
is given by:
(i) 6Ds1r [a](y) = {a}
(ii) 6Ds1r[P;Q](y) = 6Ds1r[P](y);str6Ds1r[Q](y)
(iii) 6Ds1r[PorQ](y) = 6Ds1r[P](y)or1r6Ds1r[Q](y)
(iv) 6Ds1r[PllQ](y) = 6Ds1r[P](y)W1r6Ds1r[Q](y)
(v) 6Ds1r[x](y) = y(x)
(vi) 6Ds1r[µ.x[P]](y) = µ.cf>P,y where cf>P,y = 'AX· 6Ds1r[P](y{X Ix}).

A process P Ee is called guarded in x whenever all occurrences of x in P are within subprocesses of
P of the form Q ;(... x ...). A process P is called guarded (cf. [Mil] or [Ni], where Greibach replaces
guarded) whenever, for each recursive subprocess µ.y [Q] of P we have that Q is guarded in y.

3.27. ExAMPLES. µx[a ;xorb] and µx[a ;(x lib)] are guarded; µ.x[x], µx[x ;a orb] and µx[x llb] are not.

3.28. PROPOSITION. In the semantics 6Ds1r all unguarded processes P (without free process variables) are
identified: 6Ds1r[P](y)= { ..l }.

This solution seems more attractive than the results in the linear time semantics LT of [BBKM].
For example, LT[µ.x[x]](y)=A 00 but (surprisingly) LT[µx[x;b]](y)=A"'.

4. THE OBSERVATION SEMANTICS 6j)obs

4.1. Background.
Motivated by the failure semantics of [BHR], a new approach to the semantics of concurrent
processes has been developed in [OHl/2]. It is called "specification-oriented" because it starts from
the following simple concept of process correctness: a process P satisfies a specification S,
abbreviated P sat S, if every observation we can make about P is allowed by S. The idea is that by
varying 'the. structure of observations we can express various types of process semantics and process
correctness in a uniform way.

The principles of specification-oriented semantics are:
an observation is a finitely representable information about the operational behaviour of
processes,
therefore the set of possible observations about a process enjoys some natural closure properties
with respect to certain predecessor and successor observations,
sets of observations are ordered by the nondeterminism ordering (reverse set-inclusion) [BHR],
this ordering leads to a simple mathematics, in particular a very simple continuity argument for
the language operators.

Let us now start with an example of a semantics- not treated in[OH2]- which fits into this
framework. We use two distinct symbols y, j flA to define the following set Obs (A) of observations,

with h EObs(A):

4.2. DEFINITION. Obs(A) =A* UA • ·{ y,j}.

4.3. REMARKS. Here observations are finite traces or histories over A and the extra symbols y and l
representing successful termination [BHR] and divergence [OH2], respectively. Divergence j stands for
an infinite internal loop of a process generated by an unguarded recursion like µx [x]. Thus in spite of
their finite representation, not all observations can be made effectively; a similar concession is also
present in the concept of testing due to [dNH].

As for streams we let f denote the empty history and ~ the prefix relation between histories. Apart
from ~ we do not introduce any further relation on Obs (A) which would correspond to C on
Str(A). Let qf(Obs(A)) denote the powerset of Obs(A), with H Eqf(Obs(A))).

4.4. DEFINITION. H c;;,Obs(A) is called saturated iff the following holds:
(i) H includes the minimal observation, i.e. fEH,
(ii) H is prefix closed, i.e.

h EH and h'~h imply h'EH

(iii) H is extensible, i.e.

hEH\A*·{y} implies 3aEA U{y,i}: haEH

(iv) H treats divergence as chaos, i.e.

hjEH and h'EObs(A) imply hh'EH.

4.5. REMARKS. These closure properties are (partly) motivated by looking at saturated H's as the sets
of possible observations about a concurrent process:
(i) As long as the process has not yet started, we only observe the empty history f,

(ii) Whenever we have observed a history h , also all its prefixes h' are observable.
(iii) Only histories h y indicate the successful termination of the observed process; for all other

histories h some extension aEA U { y,i} is certain to happen, but we do not know which one,
by looking at h .

(iv) Identifying divergence h j after a history h with the chaotic closure h · Obs (A) cannot be
explained operationally, rather it originates from the desire to ban diverging processes from
satisfying any reasonable specification. This idea is familiar from Dijkstra's weakest.
precondition semantics where a diverging program will not achieve any postcondition [PI].

Properties (i), (ii) are typical conditions on traces to be found in [BHR, FLP, OHI/2]. Property (iii)
is a new "linear version" of the extensibility condition in the readiness [OH2] or failure semantics
[BHR]. Property (iv) is typical for a simple, but proper treatment of divergence [OH2]; without j
unsatisfactory results occur [BHR] akin to those in the LT semantics [BBKM] (cf. end of Section 3).

4.6. DEFINITION. qpsa1 (0bs(A)) is the set of all saturated subsets of Obs(A).
On qfsar(Obs(A)) we introduce the following nondeterminism order C N [BHR]:

4.8. PROPOSITION. (qfsa1(0bs(A)), ;;;), Obs(A)) is a cpo.

Proving the cpo property for qfsa1(0bs(A)) is much simpler than for qpncf(Str(A)): cf. Lemma 3.22.
But what is _the relationship between qpncf(Str(A)) and qpsa1 (0bs(A)) anyway? This is the topic of the
next section.

8

5. THE ISOMORPHISM BETWEEN STREAMS AND OBSERVATIONS
We wish to relate the cpo's (<?Pncf(Str(A)), s,{_l_}) and (0'801 (0bs(A)),;;J,Obs(A)). To this end we
define a mapping '1', first as

'1': Str(A)~'?P(Obs(A)).

For u EA• and v EA"' let

i'(u) = {hEA"lh~u} U {uy'}

i'(v) = {hEA*lh~v}
i'(u_l._) = {hEA*lh~u} u {uhjhEObs(A)}.

5.1. REMARKS. A finished streams u is translated into the set of all its prefixes plus u v' with v'
signalling successful termination of u, an infinite stream is translated into the set of all its finite
prefixes, and an unfinished stream u _L is translated into the set of all prefixes of u plus the chaotic
closure u·Obs(A) of divergence uj.

We extend '1' pointwise to a mapping

'1': <?P(Str(A))~<?P(Obs(A))

by

i'(X) = U i'(w).
weX

5.2. EXAMPLES. '1'({ ab })= {£,a ,ab,ab y'}, '1'({ a"'})= {an In ;;;.O}, '1'({ _L })= Obs(A).

5.3. THEOREM. '1' is an isomorphism from the cpo ('?Pncf(Str(A)), s ,{ _L}) onto the cpo
(<?Psat (Ohs (A)), ;;J ,Ohs (A)), i.e. '1' is bijective, yields '1'({ _L}) =Ohs (A) and strongly preserves the partial
orders:

XC s Y if! i'(X);;Ji'(Y)

for all X ,Y E<?Pncf(Str(A)).

5.4. REMARKS. <?Pncf(Str(A)) has been constructed through a chain of clear domain-theoretical
notions: streams, sets of streams, Smyth relation, flatness, continuity, topological closure, non
emptiness. The introduction of 0'801 (0bs(A)) with its saturation property may seem more ad hoe. But
the theorem now tells us that 0'801 (0bs(A)) can in fact be viewed as a special representation of the
general construction '?Pncf(Str(A)).

This provides us with a new mutual understanding of the closedness properties in both domains:
topological closedness on streams corresponds to taking all finite prefixes as observations, flatness of set
of streams corresponds to the chaotic closedness on observations, non-emptiness of sets of streams does
not simply correspond to the fact that saturated sets of observations include £, but that in addition
they are extensible.

Whereas the non-emptiness of (lubs of) sets of streams is a global property, the extensibility of
observations is a local property where every observjition h ~A* { j} can be locally extended by another
a EA U { y',j}. This issue of "global" vs. "local" hints at why it is more difficult to prove the cpo
property for <?Pncf(Str(A)) than for <?Psai(Obs(A)).

9

6. THE OBSERVATION SEMANTICS 6j)ohs: CONTINUED

Let us now continue with the observation semantics 6Dohs . For the operators of 6D0 hs we could well
provide indirect definitions using the previous isomorphism. But it will be more illuminating to
discuss direct definitions because the ordering ;J on sets of observations allows a very simple,
uniform proof of (monotonicity and) continuity.

In fact, this uniform argument can be explained independently of the specific structure of
observations. Consider two sets X, Y and a relation R c;; X X Y. Then R induces an operator

opR: <?Jl(X)~<?J>(Y)

on the subsets of X by taking for every X c;; X the pointwise image of X under R, i.e.

opR(X) = {y eYl3x eX: xRy }.

6.1. LEMMA [OH2]. The operator opR is ;J-monotonic. Moreover, if R is domain finite, i.e. if for every
y eY there exist only finitely many x eX with xRy, opR is also :!-continuous.

Let us demonstrate the use of the lemma in the case of sequential composition. First we define the
corresponding semantic operator

;obs: <?Psai(Obs(A))X'!Psat(Obs(A))~<?Psat(Obs(A))

as follows:

Hi;0
bs H 2 = {hilhieHi and h 1 does not contain y}

U{hih2lhiyeHi and h 2eH2}

U{hihlhifEHi and h eObs(A)}

Well-definedness of ;ohs has to be checked separately. But monotonicity and continuity of ;ohs follow
from the general Lemma 6.1. Taking X =Ohs (A) X Obs (A) and Y = Obs (A) we look for a domain
finite relation R c;; X X Y such that

(*) ;obs = opRt'!Psa1(0bs(A))X<?Psar(Obs(A)).

R can be read off from ;0bs as follows:
(h hh2)Rh itf
(i) hi does not contain y, h1=£ and h =hi> or
(ii) hi ends in v' and h =(hi\\/')· h2, or
(iii) hi ends in f, h1=£ and h e(hi \ f)· Obs(h)

Here hi\ v' and h 1 \ t result from hi by removing from hi the symbols v' or f, respectively.
Clearly, this R is domain finite. Thus Lemma 6.1 implies:

6.2. PROPOSITION. The operator ;obs is monotonic and continuous under ;J.

The discussion of the remaining operators will be brief. Local nondeterminism is just set-theoretic
union

Hiot'bs H 2 =Hi UHz.

ot'hs is well-defined and (by Lemma 6.1) monotonic and continuous under ;J. Parallel composition is
defined by

Hillobs H2 = {hl3hiEHJ> hzEH2: h Ehillh2}

where hillh 2 is a set of observations given, similarly to the stream definition in Section 3, by

hilih2 = hillh2Uh2llhi Uhilh2

10

with t:ll_t:={t:}, ah 1ll.h2=a·(hdlh2), yll.h2={h2}, jll_t:=Obs(A) and with ah1lbh2=(a*b)·(hdlh2)
provided a*b is defined; in all other cases hill.h 2= 0 and h 11h2= 0. Lemma 6.1 yields:

6.3. PROPOSITION. The operator llobs is well-defined, monotonic and continuous under ";;;;}.

6.4. REMARKS. In the observation semantics the continuity proof for the operators ;abs, or°bs, llabs
could be reduced to a simple test on domain finiteness. In the stream semantics the operators ;str and
11str will fail such a test. For example, the infinite stream a"' can originate from infinitely many pairs
of streams u ,v in the sense of both u·v =a"' and u llv =a"'. Thus finite observations are crucial here.

Another advantage of finite observations is that we can define the operators, in particular llabs,
without reference to any semantic approximation of its arguments - unlike the stream operator wrr
where we put

in the general case.
We can now define the denotational observation semantics "Dabs for e. Again we use environments

yEf, but now w.r.t. f=Pvar-»'@s01 (0bs(A)).

6.5. DEFINITION. The semantic mapping

"Dabs[·]: ~(f-»'@sa1(0bs(A)))

is given by
(i) 6Dabs[a](y) = {t:,a,a y}
(ii) "Dabs[P;Q](y) = "Dabs[P](y) ;abs6Dabs[Q](y)
(iii) 6Dabs[PorQ](y) = 6Dabs[P](y)or°bs6Dabs[Q](y)
(iv) "Dabs[PllQ](y) = 6Dabs[P](y)llobs6Dabs[Q](y)
(v) 6Dabs[x](y) = y(x)
(vi) 6Dabs[µ.x[P]](y) = µ,'Pp,-y where 'PP,y = AH. 6Dabs[P](y{H Ix}).

7. THE ISOMORPHISM BETWEEN STREAMS AND OBSERVATIONS: CONTINUED
Here we wish to link the stream semantics 6Ds1r with the observation semantics "Dabs. Recall that 'I' is
the cpo isomorphism from '@ncf(Str(A) onto '@s01 (0bs(A)).

7.1. THEOREM. For every language operator op E{; , or, II} of e and all X,Y E'@ncf(Str(A))

..Y(X opstr Y) = ..Y(X)opabs..Y(Y)

holds.

7.2. COROLLARY. For every concurrent process P Ee and environment yE'@var-»'@ncf(Str(A))

'1'(6Ds1r[P](y)) = 6Dabs[P](..Y 0 y)

holds.

Together with theorem 5.3 the corollary says that the denotational semantics 6Ds1r and "Dabs are
isomorphic.

11

8. CONCLUDING REMARKS
We have not included any notion of global nondeterminism like + [Mil] or 0 [BHR] nor any notion
of deadlock like stop [BHR] or Jj [BK] in e. This restriction allows us to work with a linear time
approach in the form of streams or linear histories. It is a topic for further research to investigate
whether our results can be extended to non-linear approaches like failure [BHR] or branching time
semantics [BZ].

REFERENCES

[Ba]

[dB]

[BBKM]

[BZ]

[BMOZ]

[BK]

[BHR]

[Br]

[FHLR]

[FL]

[Hel]

[He2]

[Me]

[Mil
[Mi2]
[dNH]

[Ni]

[OHl]

[OH2]

R.J.R. BACK, A Continuous Semantics for Unbounded Nondeterminism, Theoret. Comp. Sci.
23 (1983) 187-210.
J.W. DE BAKKER, Mathematical Theory of Program Correctness (Prentice Hall
International, London, 1980).
J.W. DE BAKKER, J.A. BERGSTRA, J.W. KLOP, J.-J. CH. MEYER, Linear Time and Branching
Time Semantics for Recursion with Merge, TCS 34 (1984) 135-156.
J.W. DE BAKKER, J.I. ZUCKER, Processes and the Denotational Semantics of Concurrency,
Inform. and Control 54 (1982) 70-120.
J.W. DE BAKKER, J.-J. CH. MEYER, E.-R. OLDEROG, J.I. ZUCKER, Transition Systems,
Infinitary Languages and the Semantics of Uniform Concurrency, to appear in: Proc. 17th
ACM STOC, Providence, R.I., 1985.
J.A. BERGSTRA, J.W. KLoP, Process Algebra for Synchronous Communication, Information
and Control, 60 (1984), pp. 109-137.
S.D. BROOKES, C.A.R. HOARE, A.W. ROSCOE, A Theory of Communicating Sequential
Processes, J. ACM 31 (1984) 560-599.
M. BROY, Fixed Point Theory for Communication and Concurrency, in: D. Bj0mer (Ed.),
Formal Description of Programming Concepts II (North-Holland, Ai;nsterdam, 1983)
125-146.
N. FRANCEZ, C.A.R. HOARE, D.J. LEHMANN, W.P. DE ROEVE~, Semantics of
Nondeterminism, Concurrency and Communicating, JCSS 19 (1979) 290-308.
N. FRANCEZ, D.J. LEHMANN, A. PNuELI, A Linear History Semantics for Languages for
Distributed Programming, Theoret. Comp. Sci. 32 (1984) 25-46.
M.C.B. HENNESSY, Synchronous and Asynchronous Experiments on Processes, Report CSR-
125-82, Dept. of Comp. Sci., Univ. of Edinburgh, 1982.
M.C.B. HENNESSY, An Algebraic Theory of Fair Asynchronous Communicating Processes,
Manuscript, Dept. of Comp. Sci., Univ. of Edinburgh, 1984.
J.-J. CH. MEYER, Fixed Points and the Arbitrary and Fair Merge of a Fairly Simple Class of
Processes, Tech. Report IR-89/IR-92, Free University, Amsterdam, 1984.
R. MILNER, A Calculus of Communicating Systems, LNCS 92 (Springer, Berlin, 1980).
R. MILNER, Calculi for Synchrony and Asynchrony, Theoret. Comp. Sci. 25 (1983) 267-310.
R. DE NICOLA, M.C.B. HENNESSY, Testing Equivalences for Processes, TCS 34 (1984) 83-
134.
M. NIVAT, Infinite Words, Infinite Trees, Infinite Computations, Foundations of Computer
Science Ill. 2, Mathematical Centre Tracts 109 (1979) 3-52.
E.-R. OLDEROG, C.A.R. HOARE, Specification-oriented Semantics for Communicating
Processes, in: J. Diaz (Ed.), Proc. lOth ICALP, LNCS 154 (Springer, Berlin, 1983) 561-
572.
E.-R. OLDEROG, C.A.R. HOARE, Specification-oriented Semantics for Communicating
Processes, Tech. Monograph PRG-37, Prog. Research Group, Oxford Univ., 1984 (to
appear in Acta Informatica).

12

[PI] G.D. PLOTKIN, Dijkstra's Predicate Transformers and Smyth's Power Domains, in: D.
Bj0mer (Ed.), Abstract Software Specification, LNCS 86 (Springer, Berlin, 1980) 527-553.

[Sm] M.B. SMYTH, Power Domains, JCSS 16 (1978) 23-26.
[Wi] G. WINSKEL, Synchronisation Trees, TCS 34 (1984) 33-82.

