
II II

II II II II II

II II II II

II II II II II II II

II II II II II

II II II

II II
Cent rum

voor
Wiskunde

II en
lnformatica · .

Centre for Mathematics and Computer Science

D. Turi

Extending S-interpretations to logic programs with negation

Computer Science/Department of Software Technology Report CS-R8948 November

1989

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301662654?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

D. Turi

Extending S-interpretations. to logic programs with negation

Computer Science I Department of Software Technology Report CS-R8948 November

The Cen•re for Mathematics and Computer Science is a research institute of
the Stichting Mathematisch Centrum, which was founded on February 11,
1946, as a nonprofit institution aiming at the promotion of mathematics, com
puter science, and their applications. It is sponsored by the Dutch Govern
ment through the Netherlands Organization for the Advancement of Research
(N.W.O.).

Copyright © Stichting Mathematisch Centrum, Amsterdam

Extending S-lnterpretations to Logic Programs with Negation

Daniele Turi
Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

and
Department of Computer Science, University of Pisa,

Corso Italia 40, 56100 Pisa, Italy

S-lnterpretations together with the notion of s-truth are used in [FLMP] to define a least model semantics
that resembles very much the least Herbrand model semantics and that provides a strongly complete
declarative modelling for positive logic programming (ie Horn c lause logic + SLD-resolution). Defining cs
interpretations as sets of constrained atoms we extend s-interpretations to general programs (ie logic pro
grams with negation) . Chan 's constructive negation has inspired our definition and provides a procedural
support for the declarative framework we set up. In this, to define the notion of cs-truth, we introduce most
general disunifiers between conjunctions of atoms and cs-interpretatlons.

Stratified programs are general programs much related to positive ones. In [ABW] a f ixpoint construc
tion is introduced to produce a minimal Herbrand model which extends to stratified programs the least Her
brand model for positive programs. In [P1) an alternative characterization ol such model is given (perfect
Herbrand model) . Applying these two constructs to cs-modets we obtain the unique perfect cs-rnodel.

We end the paper conjecturing a strong completeness for our cs-semantics wrt Przymusinski 's inter
preter for stratified programs and constructive negation (SLSC-resolution).

1980 Mathematics Subject Classification (1985) : 68055, 6BT15.
1986 CR Categories : F.4.1, F.3.2.

I. BACKGROUND

1.1. S-Interpretations
The semantics based on s-interpretations (s-semantics) is a declarative semantics for positive logic

programming (ie Hom clause logic + SLD-resolution). It has been introduced in FALASCHI, LEVI,
MARTELLI AND PALAMIDESSI [FLMP] in order to provide a complete characterization for SLD
resolution computed answers, which are modelled only in part by all other declarative semantics.
Take the least Herbrand model semantics and its completeness result, for instance. Only the existence
of an SLD-answer-substi tution is characterized:

M p F 3Q ~ 3 SLD-answer-substitution for Q (I)

(where Mp is the least Herbrand model of the program P and Q is query a containing only positive atoms).

When queries in universal form are taken into consideration the least Herbrand model is misleading.
For instance, given the program P = p (a)~, we have Mp F Vx.p (x), thus completeness would imply
that the identity be an SLD-anwer-substitution to the query, while the only answer to it is {x l a }.
(This is also a modularity problem: when we add to P above a totally uncorrelated clause like q(b)~
we have that 'r/x .p (x) is not entailed by the least Herbrand model anymore.)

The no tion of logical consequence of the program provides a more accurate characterization:

P F VQO ~ 3 SLD-answer-substitution for Q which is more general than 0. (2)

The problem here is that not only the computed answers are logical consequences of the program, but
also all their possible instances. Thus, it would be more correct to take (2) as a soundness rather than
as a completeness result. Moreover, we miss here the constructivity which the immediate consequence
operator provides (with its least fixpoint) to the least Herbrand model semantics. Actually, as

Report CS-R8948
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2

suggested in PRZYMUSINSKI [P], this last problem can be overcome by adding Clark's Equational
Theory (CE1) to the programs. CET axiomatizes the unification algorithm's terms handling, so that
when added to a program Pit imposes a structure on its interpretations which allows a generalization
of the immediate consequence operator. There are more of these operators - one for each interpreta
tion of CET- and every minimal model of P+CET is the least fixpoint of one of them (1°'1pfw, with J
model of CE1). In terms of a program's logical consequences, the collection MIN (P) of minimal
models of P + CET has the same representative power as the entire collection of models for P. That
is, we can restate (2) as:

MIN (P) F 'r/Q(J ~ 3 SLD-answer-substitution for Q which is more general than 8. (3)

Notice that MIN(P) is, in general, an infinite collection.

The s-semantics encompasses all previous semantics, combining:
constructivity;
single model;
modularity;
(strong) completeness.

This is obtained by abstracting the infinite collection MIN (P) into a single structure - a 'supra
model' (s-model) for P. lbis s-model is a partially specified model, the presence of variables allowing
different mappings. Here is an example of s-interpretation:

Ex.AMPLE 1.1.
The s-interpretation

I = { p(f (x))}

stands for the whole fainily of interpretations

{ p(j (t)) }1 E D'

where D is any given domain for /.
For P =p(f (x))+-, I is a synthetic representation of MIN(P). D

A major point for the s-semantics is that it is based on natural generalizations of notions from the
Herbrand semantics. The Herbrand s-universe of a program P is simply the Herbrand universe of the
language of P extended with infinite variables. Since in LP variables are always closed (by the impli
cit universal quantification of each clause), a distinction between them is necessary only inside atoms:
p (x,y) is equivalent top (x,z), but different from p (x,x). Variables are thus grouped in equivalence
classes and Bi, the Herbrand s-base of P, is built up from the Herbrand s-universe modulo such
equivalence. S-Interpretations are then subsets (this is the original meaning of the prefix s, but we
definitely prefer supra) of the Herbrand s-base.

All the properties of Herbrand interpretations still hold for the s- extension: the s-interpretations of
a program (together with the usual set inclusion) form a complete lattice; every program has a least
Herbrand s-model; such leasts-model is both the intersection of alls-models and the least fixpoint of
the immediate s-consequence operator.

The definition of s-model requires a reformulation of the notion of truth:

IFs A if! 3 aE/ such that a is more general than A

IFs A i, ... ,An if! 3 ai, ... ,an El s.t. (ai, ... ,an) is more general than (A ,An)

3 8= mgu((A ,, ... ,An), (a , an))~ AOEI.

(By " E" we intend here a membership which takes variables redenominations into account, ie such

3

that p(x,y)E{ p (x,z)} and p(x,y)E;t { p(x,x)}. For any two atoms - or vectors of atoms - a 1 and a 2

we say that a 1 is more general than a2 when there exists a substitution 0 s.t. a 10= a 2 .)

With this we do not introduce an alternative logic but we simply provide a synthetic way to con
struct entire families of models for P+CET. To prove this we have first to define the immediate s
consequence operator - the elementary unit of s-model construction:

aET~(/) if! 3 A~Ah .. .,An in P

3 ai. ... ,an El 3 0 such that

O= mgu((A l>··•An), (ai. ... ,an))

a = AO

Every model in MJN(P) can be obtained as a 'projection' of Thw, the least Herbrand s-model of
P. By a 'projection' we intend here a single state application to an opportune redenomination of the
s-model, equivalent to the original one (for the definition of state see APT [A]). Such redenomination,
which we shall denote by "*", is necessary in order to pass at once from a set like { p (x) } to {
p (a), p (b) } . (In this particular case { p (x) }* could be { p (x), p (y) } with projecting state p:

p(x) = a and p(y) = b.)

THEOREM 1.2. Let P be a positive logic program.

'VJ model of CET 3 p over J such that T}.fw= (T~fwf p.

PROOF. See Theorem 3.4 in TURI [T]. 0

But the most important result for the s-semantics is its strong completeness theorem (for the proof
see [FLMP]):

M~ Fs QO ~ 0 is an SLD-answer-substitution for Q

(where Mi denotes P's least s-model).

1.2. Logic Programs with Negation

(4)

To improve the expressive power of logic programming on finite domains and to make of logic pro
gramming an adequate formalism for knowledge representation a non-monotonic form of negation
(negation as failure) has been introduced: negative literals are allowed to appear in queries and, recur
sively, in bodies of program clauses (subqueries). SLD-resolution extended with the negation as
(fini te) failure rule (SLDNF-resolution) provides the computational mechanism for such programs
(general programs) and queries with negation. Unfortunately, recursion through negation, because of
its non-monotonic nature, may bring about writing ill-founded programs for which no consistent
interpretation can be found. As a consequence, a declarative modelling of the operational behaviour
of logic programs with negation is never complete, (unless we adopt a three-valued logic as in KUNEN

[K]). Moreover, a semantics like the least Herbrand model's cannot be given, for general programs do
not have a least Herbrand model, but a collection of minimal Herbrand models whose intersection is
not a model and whose union is inconsistent (in general).

When recursion through negation is forbidden the resulting programs are called stratified, since they
can be regarded as structured in 'strata', each stratum being a subprogram whose predicates appear
ing in negative literals are defined in some strictly lower stratum. The first stratum is thus a positive
program (eventually empty). The next strata can be regarded as positive programs which may use
negative information concerning some previously defined programs.

Procedurally, we define stratified logic programming as non-recursively nested positive logic pro
gramming together with negation as failure. Queries and subqueries may contain negative literals, but
SLD-resolution and negation as failure are never mixed, for strata cannot be ascended until the

•'!" : :"---=--

4

selected literal in the (sub-) query has been resolved. Przymusinski's SLS-resolution ([PJ) is the inter
preter which exploits this idea.

Also declaratively, stratified programs encompass positive ones. Although they have no least Her
brand modeL there is a particular minimal Herbrand model (pe1fect Herbrand model) which
corresponds to the intended meaning of the programs and which can be expressed via a fix.point con
struction very much resembling that for positive programs (see APT, BLAIR AND WALKER [ABW] and
PRzYMUSINSKI [P], or chapter 7 of APT [A]). Calling Mp the perfect Herbrand model for a stratified
program P, we can restate the completeness result (1) from the previous section as:

Mp 1= 3Q ~ 3 SLS-answer-substitution for Q

(where Q is a non-floundered query - see next chapter).

(I')

To complete the analogy with positive programs we may consider stratified programs extended with
CET. Then, if we call PERF(P) the collection of perfect models for P+CET, we have the following
completeness result, which extends (3) from the previous section:

PERF(P) I= 'VQO ~ 3 SLS-answer-substitution for Q more general than 0,

PERF(P) I= ...,3Q ~ SLS-resolution fails on Q.

Also here Q is assumed to be non-floundered.

2. PURPOSE

(3'a)

(3'b)

The aim of this paper is to extend the s-semantics to stratified programs, so to have an equivalent
for SLS-resolution of the completeness result (4). For such extension to be significant, not only the
strong completeness but also the other properties of the s-semantics (constructivity, single model and
modularity) should hold.

The major obstacle to our aim is the 'groundness' constraint which is imposed on negation as
failure by classical interpreters: a negative literal in a query or subquery is selected only if it is
ground. This is a procedural requirement which has no declarative modelling, so that classical com
pleteness results like (I') and (3') are always stated in terms of non-floundered queries, that is queries
whose negative literals are or become ground before selection. Since non-floundering is not decidable,
it is a major problem for logic programming in general. But to us, the restriction to ground negation
is a problem even independently of floundering: the s-semantics' power rests upon the use of non
ground atoms in the interpretations, so that there can be no sound extension for it when negative
literals are to be grounded.

The solution to these problems is Chan's constructive negation ([CJ), a sound way to implement a
non-ground negation as failure. Here are some examples of constructive negation:

Ex.AMPLE 2.1.
The program

p(a}~,

under constructive negation, answers to the query

~...,p(x)

with

[x:;af:a]. 0

ExAMPLE 2.2.

p~-.q(x)

q(j(x))~q(x)

q(O)~

~p

true. D

ExAMPLE 2.3.
Replacing the first clause in Example 2.2 with

p (x)~-,q(x)

we have

[x=FO, x=Ff (0), x=F/2(0), . . .]. D

ExAMPLE 2.4.

q(x,y,z)~p (x,x),p (y,y),-, p(x,y)

p(x,x)~

~q(x,y,z)

[x=foy]. D

We may sum up the main features of constructive negation as follows:
i) constructive negation subsumes (ground) negation as failure;
ii) it overcomes floundering;
iii) it is logically sound;

5

iv) it treats variables in negative literals in a 'default' manner - complementary to the treatment of
variables in positive literals.

(The significance of the last property can be argued by those standard argumentations behind non
monotonic reasoning.)

Although it has been introduced to extend SLDNF-resolution, the constructive negation is a notion
of wider application. For instance, in PRZYMUSINSKI [P2] it is used to extend SLS-resolution. And it
is from such an interpreter (SLSC-resolution) that we expect completeness wrt to the semantics we
propose.

3. FRAMEWORK

3.1. CS-Interpretations
On the following definition we base our extension: a constrained atom (c-atom) is an atom together

with a conjunction of inequalities (constraint), which can eventually be empty. (For the definition of
'inequalities' see CHAN [C].)

ExAMPLE 3.1.
The following are c-atoms:

p (x)[x=foa, x=fob],

. .:.::::-~ ;__.;._. ---

6

p (f (x))[x=i:g(a)J,

q(f (x))['v'u.x*g(u)J,

p(a),

q(x). D

• :'_.- "-.-~ - --:-

Notice that we have not specified whether the constraint must be finite or not, but we believe this
depends on the application one has in mind.

A constrained s-interpretation (cs-interpretation) is then a set of c-atoms. Clearly, cs-interpretations
are those extensions of s-interpretations we are looking for. Actually, we should reduce them modulo
the equivalence class on the variables (compare with what below Example I.I), but the reader should
not be deceived by this understatement. For instance, it should not come as a surprise when we treat

{ p(x)[x=j6a]}

as equivalent to

{ p (x)[x=rf=a], p (y)[y=rf=a]}.

3.2. Constrained Substitutions and Unifiers
We now need to define c-substitutions as well as unifiers between atoms (of a program) and c-atoms

(of a cs-interpretation). We do not give a formal definition, but we show what most general unifiers
have to look like in this context. Referring to CHAN [CJ this should suffice to generalize.

f.xAMPLE 3.2.

mgu(p(a,x), p(y,f(z))['Vu.z=i:g(u)]) = {y = a, x = f(z)}['v'u.z=j6g(u)] . D

ExAMPLE 3.3.

mgu(p(a,x), p(y,f (y))('v'u.y*g(u)J) = {y = a, x = f (a)} . D

Notice that in Example 3.3 the constraint is dropped, since it is valid (under CET). Instead, the con
straint in Example 3.2 is just satisfiable.

EXAMPLE 3.4.
There is no mgu of

(p(g(a),x), p(y,z)['v'u.y=rf=g(u)J)

because when we apply

mgu(p(g(a),x),p(y,z)) = {y = g(a), x = z}

to

('v'u.y=rf=g(u)]

we obtain

['v'u.g(a)=i:g(u)J

which is clearly unsatisftab/e. D

To summarize, a most general unifier between an atom and a c-atom

7

does not introduce new constraints
can reduce or even delete a constraint if either a part or the whole constraint results valid under
'canonical' unification
exists iff the canonical unifier exists and satisfies the constraint in the c-atom.

3.3. Immediate Consequence Operator for CS-Interpretations
To find a proper definition for the immediate consequence operator is the core of the problem to

us: applying to it the same fixpoint construction as in APT, BLAIR AND WALKER (ABW] we shall
obtain the standard cs-model for stratified programs.

We put for a c-atom a, a cs-interpretation I and a general program P:

aET~5(1) if! 3 A-A t.··.,Am....,B1,. .. ,....,Bm in P

3 ai. ... ,an E/ 3 0 such that

O= mgu((A t.···•An),(ai.···•an))

3 1/ such that

11 = mgd((B i. .. .,Bm)O, I)

a = AO.,,

By mgd we intend most general disunifier - a cardinal notion to which we shall devote the rest of
this chapter.

3.4. Most General Disunifiers
In order to provide the reader with a good insight, we shall proceed with examples. In the sequel,

B will stand for (Bi. .. .,Bm)O and fl will stand for (/31,. •• ,/Jm).

Roughly speaking, a disunification is a complemented unification. However, much care is needed
for the following reasons:

I) In general, complementing an mgu gives rise to more than just one mgd:

ExAMPLE 3.5.

mgu(p(x,y), {p(a,b)})= {x = a, y = b}

~two mgd's:

mgd 1 = (x=f=a]

mgd2 = {x = a}[y=;i=b] D

Notice that [x=;i=a] and [y=;i=b] overlap, thus an order is needed. In the sequel - again following
CHAN [C] - we shall always proceed as above, ie from left to right.

2) We first need to collect all possible unifications of B with c-atoms of I and then disunify global(y:

EXAMPLE 3.6.

mgd(p (x), { p (a),p (b)}) = [x=;i=a, x=;i=b]. D

. · .. - "~-::"' - · -

8

For this reason in the definition of Tf.S we put mgd(B, /).

3) It is possible to disunify only if there is not in I any vector of c-atoms /J more general than B:

ExAMPLE 3.7.

Neither p(f(x)) nor p(x) disunify with { p(y)}. D

4) Finally, we also have to take care that a combination of unifiers does not produce an empty sub
stitution when restricted to the variables of B:

ExAMPLE 3.8.

mgu(p(x), p(a))= {x =a}

mgu(p(x), p (x)[x:;6a]) = [x:i=a]

{x = a} U[x=rf:a] = c => p (x) does not disunify with {p (a), p(x)[x=rf:a]}. D

In order to deal with all mgu's between B and /J's in /, it is useful to define

mgu (B, /) = { 8: 3 /l <;,/ s.t. 8= (mgu (B,/l) I B)}

(where "IB" restricts the mgu's to the variables of B - the only variables we are interested in). If we
put

I j cs B iff -,3 /l<;;;,I s.t. /l is more general than B and

mgu(B, I) does not cover B

(where by covering we intend the property illustrated by Example 3.8, ie a combination of substitu
tions producing c) we have then that

3 mgd(B, /) ~ I j cs B.

After this, we can concentrate on the form mgd's must have. Two steps are enough:

i) When mgu(B, /)is a singleton, say {O}, with

O= { x 1 = r i. . .. , xh = rh }['V(s 1=rf:t1), ... , 'v'(sk=rf:tk)],

we have then that the set of all mgd's between B and I is determined by the 'complement' of fJ :

fJ = { ['V(x 1:;C:r1)],

{x 1= r1 }[V'(x2=rf:r2)],

{x1 = ki. ... ,Xh - 1 = rh - 1}['1'(xh=rf:rh)],

{x 1 = ri. ... ,xh=rh, s 1 =ti}

{x 1 = ri. ... ,xh = rh, s2 = t2}[V'(s 1¥:t 1)],

9

ii) When mgu(B, I) is a set S of many c-substitutions, the set of mgd's between B and I has to be
obtained by first complementing all c-substitutions of S independently and then putting together
the constraints of those who share the 'equality-part' :

ExAMPLE 3.9.

I == { p<J(u),a), p<J(u),b), p(u,v)[u=;6a], p(a,f(v))}

mgu(p(x,y), /) == { {x =f(u),y = a}, {x =f(u),y = b},
01 02

01 = { [Vu.x=fof(u)), {x =f(u)}[y=Fa)}

02 = { ['Vu.x=fo/(u)), {x = f(u)}[y=fob)}

83 == { { x == a} }

04 == { [x=foa), {x == a}['Vv.y=Ff(v))}

~three mgd's:

111 = f'lu.x=;6f(u), x =;6a)

112 = {x =f(u)}[y=foa, y=Fb)

113 = {x = a}['Vv.y=fof(v)]. D

[x=foa), (x = a, y ==f(v)}}

In general, for S set of c-substitutions, denoting by u, <11>· · · non constrained substitutions (ie sets
of equalities) and by µ, P.i.·· · constraints (ie sets of inequalities), we put:

- -uµ 1 • • • µ.1 E S ifJ 'Vµ. [(30 E S s.t. uµ.EO) ~ (3i E (I,/) s.t. µ. = µ;)].

Now, we can finally give the formal definition of mgd: for a c-substitution 11 we put

11 == mgd(B, I) ifJ I J' cs B and 11Emgu(B, I).

4. THEOREMS

4.1. CS-Models
In the previous section we have defined when a vector (conjunction) of atoms is not 'cs-true'. Here

we simply complement such definition in order to define when an atom or a conjuction of atoms is
true in a cs-interpretation:

I Fcs A iff either 3 a c;;;J such that a is more general than A

or mgu(A ,I) covers A

I Fcs A l> ····An ifJ either 3 ai. ... ,an E l s.t. (al>···· an) is more general than (A i. ···•An)

or mgu((A i.···•An),J) covers (A h ·· ·•An)

It is easy now from the definition of immediate cs-consequence to extend to cs-interpretations the
notion of true program clause:

10

4.2. Standard CS-Model for Stratified Programs

3 O= mgu((A h···•An),(ah···•an))

3 11 = mgd((B1> ... ,Bm)O, I)

~ a = Afhi

In this section we generalize to cs-interpretations the fixpoint construction which in APT, BLAIR
AND WALKER [ABW] is used to produce the intended model of a stratified program. We shall borrow
both structure and notation from Chapter 7 of APT (A] to which we refer the reader for the necessary
background. In the rest of this chapter we consider a general program P stratified by

P = P 1 U · · · U Pn.

What we need is to prove that, for each i = l, ... ,n, Tf..5 is finitary and growing and that the sequence
rg, ... ,1)~ is local (compare with (A]). The reader should be familiar with the definition of finitary
operator (see eg LLOYD [L]) and then it should be clear that also for cs-interpretations the immediate
consequence operator is finitary. Tf,~ is said growing when

'VI,J,M I cJ CM c1),5 1tw(l) ~ Tf,,5 (J)c1},5 (M).

The double arrow stands for cumulative powers, whose definition (again from APT [A]) for any opera
tor Ton a complete lattice is as follows:

T'ftO(l) = I

T'ft(k + lXJ) = T(T1tk(l))U T1tk(I)

T1tw(l) = U T'ftk(l).
k <w

LEMMA 4.1. (Compare with Lemma 7.13 in APT [A].) Tf..5 considered as an operator on the complete lat
tice{/:/ CB~5 } is growing.

PROOF. We will show that if I CJ CM C Tf,,5 1tw(l) then 7),5 (J) CZ T~s (M) leads to a contradiction.
For every a belonging to Tf,,s (J) we have that

3 ah···· an EJ 3 O= mgu((A h···•An),(ah···•an))

3 11 = mgd((BJ.···•Bm)O, J) such that a = Afhi.

Since J C M then aJ. ... ,an belong to M too, so that a does not belong to M only if

71=f=mgd((B1, .. . ,Bm)O, M).

That is, only if either

M l=cs (B 1>···•Bm)O

or

(a)

(b)

Stratification implies that predicates appearing in negative literals of P; are defined in some stricly

11

lower strata, thus they cannot appear in heads of clauses of P;. Therefore, the set of atoms occurring
in negative literals of P; is the same in I and in r<f,,5 'fl'w(J), thus (by hypothesis) the same in J and in
M. But for either (a) or (b) to hold there must be some atoms in M which are not in J and that have
same predicate symbols as some of the B/s, for j = l, ... ,m. Here is the contradiction and the end of
the proof. D

The sequence T'j.5 , ••• ,Tf.5 is said local when, for i = 1, ... ,n,
I •

Here by M;, for i = 1, ... ,n, we intend the 'cs-equivalent' of the fixpoint construction for P's standard
model. That is:

M1 = TJ.;1tw(0)

Mi = TJ.;'fl'w(M1)

M,, = 1)5 'fl'w(M,, - 1).

In the sequel we put:

M'j.5 = M,,.

We do not prove the following lemma, since it is the 'cs-equivalent' of Lemma 7.14 in APT [A] and
similar arguments as in the previous proof can be applied:

LEMMA 4.2. The sequence of operators TJ.;, ... , TJ.; considered on the complete lattice {/ :/ <;B'j.5 } is
local. D

By Corollary 7.10 and Lemma 7.11 in APT [A] it follows then that M'j.5 is a minimal fixpoint and
prefixpoint of Tf,5 • Thus to prove that it is a minimal cs-model for P it suffices to prove that:

LEMMA 4.3. For any cs-interpretation I and a191 general program P

I Fcs p ifJ T'j.5 (1) <; /

PROOF. We simply adapt the proof of Lemma 6.1 in FALASCHI, LEVI, MARTELLI AND PALAMIDESSI
[FLMP] to cs-interpretations:

I Fcs P ifJ VA ~A i. ... ,A,,,-,B i. ... ,-,Bm in P V ai. ... ,a,, E/ s.t.

By all this :

THEOREM 4.4.

ifJ Va s.t. 3 A ~A i. ... ,A,,,..,B i. .. .,-,Bm in P

3 a 1,. •• ,a,, E/ 3 O= mgu((A 1,. . .,A,,),(a1,. . .,a,,))

3 ri = mgd((B 1,. • .,Bm)8, I) and a = AtJri.

~aE/

ifJ T'j.5 (1) <;1. 0

... :_ ,,~ _: ::_-__ -

12

Mf,S is a minimal cs-model for P. 0

4.3. Peifect CS-Models
To further the similarity between Mp and Mf,s we have to prove that Mf,S is the unique perfect

cs-model of P.
Perfect models are a class of minimal models for general programs which has been introduced in

PRZYMUSINSKI [PI] to provide a characterization of Mp independent from the chosen stratification.
Their definition is based on the following notion of preference (.;;;;;) between interpretations:

I 1-s;;f 2 if! 'Va E/ 1\ I2 ==> 3/3E/2 \ I1 s.t. a>/3.

Here, > stands for any well founded ordering for the atoms of the interpretations, which are assumed
to be sets of atoms (but not necessarily ground). Atoms whose predicate are defined in a stratified
program have a natural ordering: a>/3 when in all possible stratifications the predicate in a is defined
in a strictly higher stratum than the predicate in /3.

We say that a (cs-) model is peifect when there is no other (cs-) model preferable to it. To prove
that Mf,S is the unique perfect cs-model for P we shall again follow APT [A), giving the cs-equivalents
of its Lemmata 7.18ii), 7.19 and 7.20.

LEMMA 4.5.

VI,J <;;;, B~s J .s;;J, J o;;;; /==> I = J.

PROOF. Same as for Lemma 7.18ii) in APT (A]. 0

Let us now put

P; = P 1 U ·· ·U P;

and, for every N model of P

N ;= N n Bf,,s.

Notice that M ;= Mf,s n Bf,,s.

LEMMA 4.6. (Compare with Lemma 7.19 in APT (A].) Let N be a cs-modelfor P. Then for all i = 1, .. .,n

we have M ;.s;; N;.

PROOF.
By induction on i.

i = I) Since P 1 is a positive program M 1 is its least Herbrand model.

i -+i + I) Here it is convenient to follow the construction of M; ·d and induce on it :
cc

M · 1 = u Thps ~k(M·)
, ~ k = O , , , II I

k = O)

a E M ; \ N ;- t ==> ali/.N;

==> 3/3EN; \ M; and a > /3

==> fJ Ii/. M; _ 1 (b y stratification).

k-+k + I) Let us put M = Tf..~ , 'ftk(M;).

aETf,,5 ,(M) \ M => 3At-A1> .. .,A,,....,Bl> .. .,....,Bm in P; - 1

3 a1,. .. ,a1EM 3IJ = mgu((A 1,. •• ,A1),(al> ·· ··a1))

3 11 = mgd((B 1,. • .,Bm)fJ, M) such that a = AfJ.,,.

Since N; -.- 1 is a model of P; + 1 we have that if a does not belong to it then either

3j E [l,/] s.t. a1 fl.N; + J

or

3j E [l ,m] s.t. N ; -.- 1'FcsB18.,,

13

(a)

(b)

In case (a) holds then there is a f3 in N; + 1 and not in M; + 1 such that a1 >/3. But then, by
stratification, a>/3.

In case (b) holds then there must be a f3 in N;-.- 1 which is more general than B 1811, thus with the
same predicate symbol. Oearly, /3 cannot belong to M; 1 and, again by stratification, a>/3. This
concludes the proof. 0

LEMMA 4.7.

'tl/,J CB~5 , Vi = l,. . ., n, I; ~J; => /Q.

PROOF. Same as for Lemma 7.20 in APT [A]. 0

We can then conclude:

THEOREM 4.8.

M~5 is the unique perfect cs-model for P.

PROOF. By Lemrnata 4.5, 4.6 and 4.7. 0

5. CONCLUSION
Defining cs-interpretations as sets of constrained atoms we have extended s-interpretations to gen

eral programs. Through the notion of most general disunifier an extension of the immediate conse
quence operator has also been given, so that a fixpoint construnction producing the unique perfect
cs-model of stratified programs has been possible. This extends the results in APT, BLAIR AND
WALKER [ABW] and in PRZYMUSINSKI [PI].

To complete our extension still two results are missing. One is that every perfect model for a
stratified program P together with CET - ie every model in PERF(P) - can be obtained as a projec
tion of the unique perfect cs-model of P. This amounts to a simple generalization of Theorem 1.2 and
we do not prove it here.

The other missing result is one of strong completeness of our cs-semantics. We expect it to hold
wrt an interpreter like Przymusinski's SLSC-resolution (for which the 'PERF(P)-semantics' is com
plete, but not strongly). It should sound as follows:

CONJECTURE 5.1.

MV 'Fcs Qfhi ~ er, is an SLSC-answer-substitution for Q. O

--------------------------------------- -------

14

ACKNOWLEDGEMENTS
This work was conducted during my stay at the Centre for Mathematics and Computer Science of

Amsterdam, where, under the supervision of Professor Krzysztof R. Apt, I wrote my Master thesis, of
which this paper is the last part. The same acknowledgements as in TURI [T] (the rest of the thesis)
are due here. To those I wish to add just few words:

I have learned of the s-semantics from Professor Roberto Barbuti (University of Pisa) who also sug
gested me to extend it so to model stratified programs.

I would like to thank Dr Catuscia Palamidessi for her encouragement when I met the first obstacles
and I was very close to give up the whole enterprise.

REFERENCES
[A] K.R. APT, Introduction to Logic Programming, Technical Report No. CS-R8826, Centre for

Mathematics and Computer Science, Amsterdam, 1988, to appear as a chapter in Handbook
of Theoretical Computer Science, J. van Leeuwen managing ed., North-Holland.

[ABW] K.R. APT, H.A. BLAIR and A. WALKER, Towards a Theory of Declarative Knowledge, in:
Foundations of Deductive Databases and Logic Programming (Minker, J., ed.), Morgan
Kaufmann, Los Altos, 1988, 89-148.

[CJ D. CHAN, Constructive Negation Based on the Completed Database, in: Proc. 5th International
Conference and Symposium on Logic Programming, (Kowalski, R.A. and K. Bowen, eds),
The MIT Press, Cambridge, Mass., 1988, 111-125.

[FLMP) M. FALASCHI, G. LEVI, M. MARTELLI and C. PALAMIDESSI, Declarative Modeling of the
Operational Behaviour of Logic Languages, Theoretical Computer Science, vol. 70, 1989.

[L] J.W. LLOYD, Foundations of Logic Programming, Second Edition, Springer Verlag, 1987.
[P] T. PRZYMUSINSKI, On the Declarative and Procedural Semantics of Logic Programs, Journal of

Automated Reasoning, vol. 5, No. 2, 1989.
[PI] T. PRZYMUSINSKI, On the Declarative Semantics of Deductive Databases and Logic Programs,

in: Foundation of Deductive Databases and Logic Programming, (Minker, J., ed.), Morgan
Kaufmann, Los Altos, 1988, 193-216.

[P2] T. PRZYMUSINSKI, On Constructive Negation in Logic Programming, Draft paper.
[T] D. TuRI, Logic Programs with Negation: Classes, Models and Interpreters, Technical Report

No. CS-R8943, Centre for Mathematics and Computer Science, Amsterdam, 1989.

