
Some Observations on

Redundancy in a Context

Frits W. Vaandrager
Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Let x be a process which can perform an action a when it is in state s. In this
article we consider the situation where x is placed in a context which blocks a
whenever x is in s. The option of doing a in state s is redundant in such a
context and x can be replaced by a process x' which is identical to x, except
for the fact that x' cannot do a when it is in s (irrespective of the context). A
simple, compositional proof technique is presented, which uses information
about the traces of processes to detect redundancies in a process
specification. As an illustration of the technique, a modular verification of a
workcell architecture is presented.

1. INTRODUCTION

We are interested in the verification of distributed systems by means of alge­
braic manipulations. In process algebra, verifications often consist of a proof
that the behaviour of an implementation JMPL equals the behaviour of a
specification SPEC, after abstraction from internal activity: T1(1MPL)=SPEC.

The simplest strategy to prove such a statement is to derive first the transi­
tion system (process graph) for the process IMPL with the expansion theorem,
apply an abstraction operator to this transition system, and then simplify the
resulting system to the system for SPEC using the laws of (for instance)
bisimulation semantics. This 'global' strategy however, is often not very prac­
tical due to combinatorial state explosion: the number of states of IMPL can
be of the same order as the product of the number of states of its components.
Another serious problem with this strategy is that it provides almost no
'insight' in the structure of the system being verified. It is impossible to use
the approach for the design of distributed systems, i.e. the stepwise construc­
tion of an implementation starting from a specification. This makes that there
is a strong need for proof methods with a more modular/compositional charac­
ter.

Partial support received from the European Community under ESPRIT project no. 432, An In­
tegrated Formal Approach to Industrial Software Development (METEOR).

238 F. W. Vaandrager

1.1. Afoduiarity and compositionality. For the purpose of verification, we are
interested in proof principles which transform a system locally, so that for a
correctness proof of a local transformation one does not have to deal with the
complexity of the system as a whole. A modular verification transforms an
expression T1(IMPL) gradually into SPEC by a sequence of local transforma­
tion steps. Consider, as an example, the case where IMPL represents the
parallel composition of components X 1, X 2 and X 3, where the actions in a set
H have to synchronise: IMPL = ()H(X1llX2\\X3). A possible step in a modu­
lar verification could be that X 1 and X 2 are replaced by Y 1 and Y 2. In that
case one has to prove that:

'l"J 0 ()H(Xi l\X2l\X3) = T1°aH(Y1 \IY2\\X3).

It is sufficient to prove that X1 \\X2 = Y1 11 Y2 • However, this will not be pos­
sible in general. It can be the case that processes X 1 llX2 and Y1 II Y2 are only
equal in the context T1°()H(· · · llX3). And even if the processes are equal,
then still it is often not a good strategy to prove this. If one shows that two
processes are equal, then one shows that they are interchangeable in any con­
text, not only in the context in which they actually occur. In order to bring
about successful substitutions, it is therefore desirable (or even necessary) to
incorporate information about the context in which components are placed in
correctness proofs of substitutions. A proof technique which allows one to do
this to a sufficiently large degree is called modular. It is also possible to use a
modular proof system the other way around. In that case one starts with a
specification, which is refined to an implementation by a sequence of transfor­
mation steps.

A proof rule is called compositional if it helps to prove properties of the sys­
tem as a whole from properties of the individual components. Compositional
proof rules are essential for modular verifications.

In this article we present a proof principle which can be used to enhance the
modularity of verifications. We claim that the principle captures a simple
intuition about the behaviour of concurrent systems, and moreover makes it
possible to give short, modular proofs in quite a large number of situations.

1.2. Example. We give a specification of a Dutch coffee machine similar to the
one described in [14]:

KM = 30c-(kof+choc)·zoem·KM.

After inserting 30 cents, the user may select 'koffie' or 'chocolade'. Dutch
coffee machines make a humming sound ('zoemen') when they produce a
drink. The behaviour of a typical Dutch user of such a machine can be
described by the recursive equation below:

DU = (kof + 30c·koj)·talk·DU.

Dutch people are widely known for their thrift, and they will never spend 30
cents for a cup of coffee if they can get it for free*. Synchronisation of actions

• Dutch users do not occur in [14). In the modelling as presented here, the thrift of the Dutch
user is not really taken into account: we can think of an environment where process DU performs

Some observations on redundancy in a context 239

is given bLy(kof,kof)=kof ,J1_30c, 30c)=30c* and y(choc,choc)=choc•. Let
H={kof, kof, choc, choc, 30c, 30c}. Consider the system 3H(DUllKM). It will
be clear that in this environment the thrift of the Dutch user makes no sense.
This behaviour is redundant...!!!:_ the given context. More 'realistic' is the
behaviour DU = 30c·kof-talk·DU, because 3H(DUllKM) = 3H(DUllKM).

1.3. Redundancy in a context. The example above is an instance of a situation
which occurs very often: a process x has, in principle, the possibility to per­
form an action a when it is in state s, but is placed in an environment
aH(... l[y) which blocks a whenever the process is ins. In situations like this,
the a-step from sis redundant in the context aH(· · · l[y). We want to have the
possibility to replace x by a component x, that is identical to x except for the
fact that x cannot do action a when it is in state s (irrespective of the context).
For a compositional proof of the correctness of this type of substitutions new
proof rules are needed. In this article we will show that in most situations par­
tial information about the (finite, sequential) traces of processes is sufficient to
prove that a summand in a specification is redundant and can be omitted.
The notion 'redundancy in a context' was introduced in [16]. The present arti­
cle can be viewed as a thorough revision of Section 6 from that paper.

1.4. Trace-specifications. It is argued by many authors (see for instance [5]),
that if one is interested in program development by stepwise refinement, one
needs to have the possibility of mixing programming notation with
specification parts. A natural way to specify aspects of concurrent processes,
advocated by [9, 14, 15, 17], is to give information about the traces, ready pairs
and failure pairs of these processes. This leads to the notation

x sat S

which expresses that process x satisfies property S. When we use the notation
in this article, S will always be a property of the traces of x. Without any
problem we can also include other information in S but we don't need that
here.

In recent years it has become abundantly clear that there are many notions
of 'process'. For instance, the idea that a process, in general, is the set of its
traces, ready pairs or failure pairs is just false, because these notions of process
do not capture features like real-time and fairness. Therefore we are interested
in proof rules which express 'universal' truths about processes, and which are
not tied to some particular model.

The point which is new in this article is that we use statements of the form
x sat S, i.e. information about the traces of processes, in proofs that processes
are equal in a sense different from (and finer than) trace equivalence. Thus we
combine the advantages of a linear trace semantics with the distinctive power
of finer equivalences.

an action 30c even though it has the possibility to perform an action kof instead. Preference of a
process for certain actions can be modelled by means of the 'priority operator' of [2).

240 F. W. Vaandrager

J.5. Workcell architecture. As an illustration of our technique, we present in
Section 5 of this article a specification and verification of a workcell architec­
ture, i.e. a system consisting of a number of workcells which cooperate in order
to manufacture a certain product. The verification is not only modular, but
also short when compared with the non-modular verifications of the same sys­
tem by Biemans and Blonk [4], and Mauw [13]. In the first steps of the
verification we remove the redundant summands in the process specification of
the workcell architecture. Often the information that some summand is redun­
dant has some importance of its own. It allows one to replace one component
by another which is simpler cq. cheaper. In our modular proof this informa­
tion becomes available as a by-product.

1. 6. Related work. This is not the first article which is concerned with modular
verification in the setting of process algebra. Work in this area has also been
done by Larsen and Milner [11, 12], and Koymans and Mulder [10]. We think
that our approach has basically two advantages when compared with this
work. The first advantage is that our approach is technically speaking much
simpler. People have strong intuitions concerning the trace behaviour of con­
current systems. Our proof rule makes it possible to use these intuitions quite
directly in verifications. The intuitions behind the techniques of [10-12] are
more involved and a lot of technical machinery is needed to formalize them.
Our approach is probably less general than the approaches of [10-12], but we
think that for almost all practical applications it can be used just as well.

The second advantage of our technique is that it is independent of the par­
ticular process semantics which is used. This in contrast to the work of [10-12],
which is tied heavily to bisimulation semantics. In the discussion below we
employ the laws of interleaved bisimulation semantics. However, we could just
as well work with the laws of failure equivalence, ready equivalence or trace
equivalence. Working with bisimulation semantics only makes our results
stronger. We conjecture that the proof rule based on trace-specifications, as
presented in this article, also holds in partial order semantics (see [7]). Prob­
ably the correctness proof of the workcell architecture which is presented in
Section 5, when reorganized a little bit, is also valid in partial order semantics.
It is a topic for future research to substantiate these claims.

2. Th.ACES AND TRACE-SPECIFICATIONS

A trace of a process is a finite sequence that gives a possible order in which
atomic actions can be performed by that process. A trace can end with the
symbol y (pronounce 'tick'), to indicate that, after execution of the last
atomic action, successful termination can occur. After some preliminary
definitions we give, in Section 2.3, axioms that relate processes to trace sets.

2.1. DEFINITION.

l. For any alphabet ~' we use ~· to denote the set of finite sequences over
alphabet ~. We write A. for the empty sequence and a for the sequence
consisting of the single symbol a E~. By a*<1', often abbreviated aa', we

Some obseNations on redundancy in a context 241

denote the concatenation of sequences o and a'.
2. Let o be a sequence and V be a set of sequences. We use notation o* V

(or aV) for the set {o*plpEV}, and notation V•a (or Va) for the set
{polpEV}.

3. By :ij:o we denote the length of a sequence a.

4. On sequences we define a partial ordering .:;;; (the pre.fix ordering) by:
a~p if and only if, for some sequence o', oa'=p. A set of sequences Vis
closed under prefixing if, for all o.;;;p, pE V implies that oE V.

5. A v =A U { y} is the set of atomic actions together with the termination
symbol. Elements from (A v)* are called traces or histories. 'T acts as the
identity over (A v)* and is therefore replaced by A when occurring in
traces.

6. T is the set of nonempty, countable subsets of T = A· U A** y' which are
closed under prefixing.

2.2. DEFINITION. Let a,bEA, V,WET, CJ,CJj,U2ET. We define the following
ACP-operators on trace sets*:
1. Sequential composition.

V-W ::= (VnA*) U {a1*a2 la1 yEV and a2EW}.
2. Parallel composition. VllW ::= {al3a1EV, a2 EW:aEa1lla2 }. The set

a1 lla2 of traces is defined inductively by:

_ {a(a1 llba2)Ub(aa1 lla2)Uy(a,b)(a1 lla2) if y(a,b)EA

aa1 llba2 - a(a1 llba2)Ub(aa1 lla2) otherwise

Allaa = aallA = a(Alla), AllA = {A}, v'lla =ally'= {a}.

Here y: A 8 XA 8~A 8 is a given function which describes the synchronisa­
tion between atomic actions. y is commutative, associative and has o as
zero-element.

3. Encapsulation. Let H c;;:A. aH(V) :: = Vn(A y1-H)*.
4. Abstraction. Let I <;:A. T1(V) : : = { r1(a) I aE V}. The function r 1 on traces

is given by:

{
'T1(a) if a EI

T1(a*a) = a*r1(a) otherwise

'T1(A) = A, r1(y') = y'.

5. Renaming. Let f:AT8_,.AT8 with j(r)=T and j(fi)=o. pj(V) ::=
{pj(a) laE V}. The function Pf on traces is given by:

* - v(a)*pfa) if f (a)=/=8
pj(a a) - l A otherwise

*The auxiliary operator lL cannot be defined on trace sets. For a discussion of this issue we refer
to [8).

242 F. W. Vaandrager

p;(A.) = A., P;(0 = Y·
6. Projection. Let n EN.

'1Tn(V) ::= {aeVnA* l#<J~n}U{ayEVl#a~n}t.
7. Alphabets. a(V) : : = { a(a)I aE V}. The function a: T-;.Pow(A) is given

by:

a(a*a) = {a}Ua(a), a(A.) = a(y') = 0.

2.3. The Trace Operator (TO). Let P be the sort of processes. The trace opera­
tor tr:P~ T relates to every process the set of traces that can be executed by
that process. The operator satisfies the axioms of Table 1. (a EA, x,y EP,
H,I<;,A,f:A 18 ~A-ro with/('r)=T and/(o)=o, and nEN)

tr(o) = {A.} TOI tr(ae(x)) = oe(tr(x)) T07
tr(T) = {A., y} T02 tr(T1(x)) = T1(tr(x)) T08
tr(a) = {A.,a,a y} T03 tr(p;(x)) = pj(tr(x)) T09
tr(x +y) = tr(x)Utr(y) T04 tr(?Tn(x)) = 7Tn(tr(x)) TOJO
tr(x-y) = tr(x)-tr(y) T05 a(x) = a(tr(x)) TOil
tr(xllY) = tr(x)lltr(y) T06

TABLE 1. Axioms for the trace operator

When calculating with trace sets we implicitly use ZF. This means that the
considerations of this paper are not of a completely algebraic nature. We res­
trict our attention to the models of the theory ACP.r with recursion and auxili­
ary operators that can be mapped homomorphically to the trace algebra. This
is no serious restriction because all 'interesting' process algebras are in this
class. A similar approach is followed in [1].

2.3.1. Examples.

tr(x) = tr(o+x) = tr(o)Utr(x) = {A.}Utr(x).

So ;\ is member of the trace set of every process.
(!)

tr(ax) = tr(a)·tr(x) = {A.,a,ay}·tr(x) = {A.,a} Ua*tr(x) =

= {A.}U{a}Ua*(tr(x)U{A.}) ={A.}Ua*tr(x).

Let X be given by the recursive equation X = aX.

tr(X) = LJ 7Tn(tr(X)) = U tr('ITn(X)) = LJ tr (an ·o)
n>O n>O n>O

(1)

(2)

(3)

t The w.-operators we define here, satisfy the same axioms as the ones defined in (6]: w.('r)=T,
wo(ax)=S, wn+1(ax)=a·w.(x), etc.

Some observations on redundancy in a context 243

= {/\}U{/\,a}U{A.,a,aa}U · · · = p,,a,aa, ... }.

The first identity in derivation (3) follows from the structure of lr and the
definition of the ?T n -operators on T.

2. 4. Trace-specifications. A trace-specification is a predicate. A trace­
specification S describes the set of traces which, when assigned to free
occurrences of a chosen variable a of type trace in S, make the predicate true:
{a IS}. The syntax for trace-specifications we have in mind is a first-order
language with integers, actions, traces, some simple functions like addition and
multiplication, taking the i-th element of a trace, #a, pf.a), equality predicates
for the integers, actions and traces, and quantification over integers and traces.
This syntax is almost equivalent to the syntax proposed in [14], except for the
fact that we moreover have multiplication. This increases the expressiveness of
our logic, and makes it for instance possible to define for each regular trace­
language L a predicate SL such that L = {a IS L}. In Section 4.5 it will be
argued that such predicates are useful. All predicates that we will use in this
article are definable in terms of the syntax which is described informally
above.

A process x satisfies a trace-specification S for trace variable a, notation

x sat,, S,

if

'rfaEtr(x): S.

Because in nearly all cases we will use a fixed trace-variable a, we often omit
the subscript o and write x sat S. In this article we regard x sat S merely as a
notation. The proofs take place on the more elementary level of the tr-operator
and trace sets. In [9] an elegant proof system is given which takes x sat S as a
primitive notion. This system contains for instance rules like

x sat S, x sat S' x sat S, S==>S'
x sat S /\S' x sat S'

2.4.1. Notation. Let aET, B CA and a EA.
1. a i B gives the projection of trace a onto the actions of B:

a i B = TA -B(a).
2. a1a denotes the number of occurrences of a in a:

{
#(at {a })-1 if a=a'y

a,j,a = #(a i {a}) otherwise

3. Even though our trace-specification language contains no alphabet opera­
tor, we can talk about alphabets in predicates: a:(a) <;B ~a i B =a.

244 F. W. Vaandrager

2.4.2. Example. The coffee machine from Example 1.2 satisfies

KM sat a(a)c;;,{kof,choc,30c,zoem }/\(oJ,kof ::so;; oJ30c).

The number of cups of 'koffie' produced by the machine is always less or equal
to the number of times 30 cents have been paid. The Dutch user however,
takes care that never more than 30 cents are paid in advance:

DU sat a(a)r;,{kof,30c,talk}/\(aJ,kof ~(oJ30c - l)).

2.4.3. Remark Sometimes we write a specification as S(a), to indicate that the
specification will normally contain a as a free variable. In that case we use the
notation S(te) to denote the predicate obtained from S(a) by substituting all
free occurrences of a by an expression te of sort trace, avoiding name clashes.

3. OBSERVABILITY AND LOCALISATION

The parallel combinator II is in some sense related to the Cartesian product
construction. In the graph model of [3], the set of nodes of a graph g llh is
defined as the set of ordered pairs of the nodes of g and h. Still the II-operator
lacks an important property of cartesian products, namely the existence of pro­
jection operators. It is not possible in general to define operators / and r such
that l(xl[y)=x and r(xl[y)=y. In this section we show that, if we impose a
number of constraints on the communication function, and on x and y, it
becomes possible to define an operator which, given the alphabet of x, can
recover x almost completely from x l[y:

'T'PP(a(x))(xl[y)·B = T·x·B.

The conditions on x and y make that x is observable, the operator PP(a(x)) local­
ises x in xlly.

3.1. Communication. For the specification of distributed systems, we mostly
use th~ read/ send communication scheme, or communications of type
y(kof,koj)=kof. Following [10), such communication functions will be
characterized as trijective. The assumption that communication is trijective will
simplify the discussion of this article.

3.1.1. DEFINITION. A communication function y is trijective if three pairwise
disjoint subsets R,S,Cc;;,A can be given, and bijections-:R-+S and 0 :R-+C
such that for every a,b,c EA:

y(a,b)=c ~ (aER/\b=a/\c=a 0
) V (bER/\a =b/\c=b0

).

In the rest of this article we assume that communication is trijective.

Some observations on redundancy in a context 245

3.1.2. Remark. Observe that a trijective communication function y satisfies the

following three properties, and that each y satisfying these properties is trijec­
tive (a,b,c,d EA):
1. y(a,a) = 8,

2. if y(a, b)=1=8 and y(a, c)=1=8 then b = c (y is 'monogamous'),
3. if y(a,b)=y(c,d)=/=8 then a =c or a =d (y is 'injective').
Observe further that a trijective y satisfies y(y(a,b),c)=8 ('handshaking').

3.2. Observability. We are interested in the behaviour of a process x when it is

placed in a context · · · l[y. In order to keep things simple, we will always

choose x and y in such a way that x is observable in context with y: every

action of xl[y is either an action from x, or an action fromy, or a synchronisa­

tion between x and y. In the last case we moreover know which action from x

participates in the synchronisation. Below we give a formal definition of this
notion of observability.

3.2.1. DEFINITION. Let B CA be a set of atomic actions. Bis called observable

if for each triple a, b, c EA with y(a, b) = c at most one element of {a, b, c} is a
member of B.

Let for A], A1 cA: A I IA2 = {y(a1,a2)EA I a1EA1,a2 EA2}. From the fact
that a set B of actions is observable, we can conclude that B n B I A = 0 .
Because y is injective, we know in addition that y has an 'inverse' on BIA: for

each cEB IA, there is exactly one b EB such that an a EA exists with
y(a,b) = c. In this case we write b = yfi 1(c).

3.2.2. DEFINITION. Let x,y be processes. Process x is called observable in con­

text · · · l[y, if a:(x) is observable, and a:(y) is disjoint from a:(x) and a:(x)IA.

If a process x is observable in a context · · · l[y, then one can tell for each

action from x llY whether it is from x, from y, or from x and y together. In the

last case one can also tell which action from x participates in the communica­

tion. Observe that the fact that x is observable in context · · · l[y does not

imply that y is observable in context · · · llx.

3.3. Localisation. The 'localisation' of actions from x in a context · · · l[y as
described informally above, can be expressed formally by means of renaming

operators. In the literature other definitions of the noti~ns observability. and
localisation can be found (see [l] and [16]). In the ch01ce of the defirutions,

there is a trade-off between the degree of generality (the capability of operators

to localise actions) and the length of the definitions.

3.3.1. DEFINITION. Let B CA be observable. The localisation function v(B):

A 76~A .. s is the renaming function defined by: la if a EB U { r,8}

v(B)(a) = yfi 1(a) if aEB.IA

r otherwise

246 F. W. Vaandrager

3.3.2. Example. The communication function in Example 1.2 is trijective.
Furthermore a(D U) = { kof, 30c, talk} is observable. Process DU is observable
in the context · · · llKM. DU is however not observable in the context
· · · ll(DUllKM). The expression

PP(, a(DU)) 0 a H(DUllKM)

denotes the process corresponding to the behaviour of the Dutch user in a con­
text aH(· · · llKM). We derive:

Pv<.a(DU)) 0 aH(DUllKM) =

= Pv<.a(DU))(30c* ·kof* ·(talk·zoem + zoem·talk)·aH(DUllKM))

= 30c·kof(ta/k·T+T·ta/k)-pv(,a(DU))oaH(DUllKM)

= 30c·koftalk·pv(,a(DU)) 0 aH(DUllKM)

Hence Pv<.a(DU)) 0 aH(DUllKM) and DU satisfy the same guarded recursion equa­
tion. Application of the Recursive Specification Principle (RSP) now gives that
both processes are equal.

3.3.3. Remark. It may seem that one needs the T-law T2 (TX =Tx + x) in the
verification above. Surprisingly we can perform the verification using only the
T-law TI (XT=x):

kof(talk·T+T·talk) = kof(Tlltalk) = kofTll_talk = kofll_talk = koftalk.

In fact we claim that all the verifications in this article can be done using the
T-law TI only. So we also do not need the law T3 (a(Tx+y)=a(Tx+y)+ax).

3.3.4. THEOREM. Let p,q be closed terms with p observable in context .. llq. Then
ACP.,.+RN+AB ~ -r·Pv<.a(p))(pllq)·o = T-p·o.

PROOF. Easy. D

3.3.5. THEOREM. Let x,y be processes, with x observable in context .. lly. Then
we can prove using the axioms TO that: tr(Pv<.a(x))(xlly))Ctr(x).

PROOF. Using the axioms from Table 1, we rewrite the statement we have to
prove into:

Pv<.a(tr(x)))(tr (x)lltr (y)) C tr (x).

Because tr(x), tr(Y)ET, it is sufficient to prove that for every V, WET with
a(V) observable and a(W) disjoint from a(V) and a(V)IA:

Pv<.a(V))(Vll W) CV.

First we apply the definition of the merge-operator on trace sets:

Pv<.a(V))(VllW) = Pv<.a(V))({a13vEV, wEW:aEvllw}).

Some observations on redundancy in a context 247

The theorem is proved if we show for all v E V and w E W that:

Pv(a(V))(v llw) CV.

We prove a slightly stronger fact: Let v =v 1 *v 2 E V and let w E W. Then:

VJ *Pv(a(V))(v2 llw) CV.

The proof goes by means of simultaneous induction on the structure of v2 and
W.

Case 1: v2 = y
V1*Pv(a(V))(yllw) = VJ*Pv(a(V))({w}) = VJ*{Pv(a(V))(w)}CvJ*{A.,y}CV

Here we use that V is closed under prefixing.

Case 2: w = y
V1*Pv(a(V))(v2\l'I/) = V1*Pv(a(V))({v2}) = V1*{Pv(a(V))(v2)} = V1*{v2} = {v}CV

Case 3.1: v2 = ;\en wEA •

V1*Pv(a(V))(Allw) = V1*Pv(a(V)/{w}) = V1*{Pv(a(V))(w)} = V1*{A} = {v}CV

Case 3.2: v2 = ;\en w = w 1 V
V 1 * Pv(a(V))(A\\w J 'l/)=v J *Pv(a(V))({ w J}) = v J *{Pv(a(V))(WJ)} =v J *{A}= { v} CV

Case 4.1: v 2 EA • en w = ;\

V1*Pl'(a(V))(v2l\A.) = V1*P>(a(V))({v2}) = VJ*{Pv(a(V))(v2)} = V1*{v2} = {v}CV

Case 4.2: v2 = V3 yen w = ;\
VJ *Pv(a(V))(v 3 y\I;\)= VJ *Pv(a(V))({ V3}) =VJ* {Pv(a(V))(v3)} =v I*{ V3} = {VJ *V3} CV

(Vis closed under prefixing.)

Case 5.1 : v 2 = av 3 , w = bw 1 en y(a, b) = 8

V1 *Pl'(a(V))(av3llbwJ) = VJ *Pv(a(V))(a(v3 l\bwJ)Ub(av3 llwi))

= VJ *a*Pv(a(V))(v3 \\bwJ)Uv1 *Pv(a(V))(av3llw1)C V

(Apply induction hypothesis.)

Case 5.2: v2 = av 3, w = bw 1 en y(a,b)EA

v 1*Pv(a(V))(av3 \lbw J) = v J *Pv(a(V))(a(v 3 \lbw J) U b(av3 \\w J) U y(a,b)(v3llw1))

248 F. W. Vaandrager

= v 1 *a*PP(a(V))(v3llbw1) U v 1*PP(a(V))(av3llw1) U

U v 1*a*PP(a(V))(v3 llw 1) C: V

(Apply induction hypothesis.) D

Notice that the (;;-sign in Theorem 3.3.5 cannot be changed into an =-sign. If
tr(y) contains no traces ending on y, then tr(PP(a(x)J(xlly) will also contain no
such traces, even if they are in tr(x).

3.3.6. THEOREM. Let x,y be processes, with x observable in context .. l[y, and let
H c;;;A. Then we can prove using the axioms TO that: tr(PP(a(x)) 0 oH(xl[y))(;;tr(x).

PROOF. Just like we did in the proof of Theorem 3.3.5, we reformulate the
statement. Let V, WET with a(V) observable, and a(W) disjoint from a(V)
and a(V) IA. We have to prove:

PP(a(VJJ 0 aH(VllW)C V.

For X, YET we have that aH(X)sX and Xc;;;Y ~ pj{X)Cpf..Y). Hence

P>(a(VJ) 0 aH(Vll W) SP>(a(VJJ(Vll W).

From the proof of Theorem 3.3.5 we conclude:

P>(a(V)J(VllW)C:V. D

The following corollary of Theorem 3.3.6 plays an important role in this article
because it allows us to derive a property of a system as a whole from a pro­
perty of a component (this is the essence of compositionality).

3.3. 7. COROLLARY. Let x,y be processes, with x observable in context .. l[y, let
Hc;;;A andsupposef=v(a(x)). Ifx satS(a), then:

Pf'OH(xl[y) sat S(a)

and consequently

aH(xl[y) sat S(p/a)).

3.4. REMARK. The formal definitions of the notions 'observable' and 'localisa­
tion' in this section are quite complex. The definitions are much simpler if one
works with the synchronisation-merge llA of Olderog and Hoare [15] instead of
the parallel combinator II of ACP. In fact the whole discussion of this article
can be simplified considerably if one uses the llA -combinator. The main reason
for this is that the combinator corresponds quite directly with logical conjunc­
tion of trace-specifications (see [14]).

Still, one cannot say that llA is a better operator than II in general. The syn­
chronisation format of the II-operator is very flexible and often allows for
elegant specifications. An unpleasant property of the llA -operator is that it is

Some observations on redundancy in a context 249

not associative (in general (xllsy)llcz =I= xll8 (yllcz)). We think that the opera­
tors 11 and llA are both very useful and that therefore notions like 'observable',
'localisation' and 'redundancy in context' should be worked out for both.

4. REDUNDANCY IN A CONTEXT

We want to prove, in a compositional way, that in a given context a summand
in a specification can be omitted. We will restrict ourselves in this article to
the case where the summand occurs in a 'linear' equation.

4.1. DEFINITION. Let E = {X=tx I XE VE} be a recursive specification. A
set CC VE of variables is called a cluster if for each XEC, tx is of the form:

m n

~ak-xk + ~ Y1
k=I /=I

for actions akEA,., variables XkEC and Y1EVE-C. Cluster C is called iso­
lated if variables from C do not occur in the terms for the variables from
VE-c.

4.2. DEFINITION. Let E = {X=tx I XEVE} be a recursive specification and
let C be an isolated cluster in E. Let X0,Xi,X2 EC, a EA,. and Jet aX2 be a
summand of tx1 • Let E' be obtained from E by replacing summand aX 2 in
tx1 by a 'fresh' atom t. Write p=<Xo I E> and p'=<Xo I E'>. Let y be a process
with p observable in context .. l[y. Let HCA. The summand aX 2 of p is redun­
dant in the context aH(.. l[y) if:

tr(P>(al,p)) 0 aH(p llY)) n { aa I at Etr(p')} = 0.

4.2.1. Comment. One can say that the set {aa lotEtr(p')} is the contribution
of summand aX2 to tr(p). Theorem 3.3.6 gives that tr(PP(a<,p)) 0 aH(pl[y)) is also
a subset of tr (p). If summand aX 2 is redundant, this means that all behaviours
of p of the form 'go from state X 1 with an a-step to state X 2' are not possible
if p is placed in the context aH(.. l[y).

We give an example which shows why we require in Definition 4.2 that clus­
ter C is isolated._ Assume a trijective communication Junction y with
y(a,a)=a* and y(b,b)=b*. Assume further that H={a,a,b,b} en /={a*,b*}.
Consider the following recursive specification E:

Xo = aXo + X 1

X 1 = b·T1°aH(Xolla·c)

In this system X 0 forms a cluster which is not isolated. We derive:

Xo = aXo + b·c-/3.

From this equation it is easy to see that X0 is observable in context .. llb. We
have:

250 F. W. Vaandrager

Pv(a(X0)) 0 0H(Xo\lb) = b·c·fJ.

If the condition in Definition 4.2 that C is isolated would be absent, then the
summand aX0 would (by definition) be redundant in context 3H(.. \lb). How­
ever, the summand cannot be omitted: outside the cluster it plays an essential
role!

We can now formulate the central proof principle of this article:

A redundant summand can be omitted.

Below we formally present this principle as a theorem.

4.3. THEOREM. Let p=<Xo IE> and q-<Yo IF>, with E and F guarded recur­
sive specifications, and p observable in context .. liq. Let H c;A. Let C be an iso­
lated cluster in E with Xo,X 1,X2EC, a EA.,. and aX2 a summand of tx1 • Let E'
and E be obtained from E by resp. replacing aX 2 by a fresh atom t, and omitting
it. Let p' <Xo \E'> and "P=<Xo I E>. Suppose that ACP.,. + RDP + RN +
PR + TO proves that summand aX2 is redundant. Then: ACP.,. + RDP + RN
+ PR + AIP- .. oH(pllq) = aH(]Jllq).

PROOF. Omitted. The proof uses a bisimulation model generated by Plotkin
like action rules. It is proved that the (infinitary) axiom system ACP.,. + RDP
+ RN + PR + AIP- is sound and complete for processes represented by a
guarded specification. Consequently it is enough to prove that 38 (pllq) and
38 (]Jllq) are bisirnilar. The proof that the obvious candidate for a bisimulation
between these processes indeed is a bisimulation uses the fact that every trace
of actions in the transition system of an expression p is also a (provable) ele­
ment of tr (p). D

4.4. Remark. A surnmand which can be omitted is in general not redundant.
In every context the second summand of the equation

X=aX+aX

can be omitted, even if it is not redundant. At present we have no idea how a
'reversed version' of Theorem 4.3 would look like.

4.5. Proving redundancies. Now we know that a redundant summand can be
omitted, it becomes of course interesting to look for techniques which allow us
to prove that summands are redundant. The following strategy works in most
cases.

Let E, C, X 0 , etc., be as given in Definition 4.2. In order to prove that the
summand is redundant, it is enough to show that for some predicate S(o):

p' sat'v'o':o=o't ~ S(o'a) and

Pv(a<p)) 0 3H(p l[y) sat -,S(o).

Some obseNations on redundancy in a context 251

If the cluster C is finite, then {aalatetr(p')} is a regular language and can be
denoted by a predicate in the trace-specification language of Section 2.4. Con­
sequently we can in such cases always express that a summand is redundant.

4.6. Example. We return to Example 1.2 and show how the statement

3n(DUllKM) = 3H(DUllKM)

can be proved with the notions presented in this section. KM is observable in
context DUii .. , and DU is observable in context .. llKM. The specification of
DU contains no isolated clusters, but using RSP we can give an equivalent
specification where the set of variables as a whole forms an isolated cluster
(DU=UD).

UD = 30c·UD 1 +kof-UD2

UD1 = kofUD2

UD 2 = talk·UD

TABLE 2. Specification of DU

In Example 2.4.2 we already observed that:

KM sat aJ,kof :i;;;apOc.

Because of Corollary 3.3.7 we also have:

PP(a(KM)) 0 3H(UDllKM) sat aJ,kof :i;;;upOc.

The alphabet of process 38 (UDllKM) contains no actions kof or 30c, because
these actions are in H. This implies that occurrences of these actions in traces
from tr(PP(a(KM))o38 (UDllKM)) 'originated' (by renaming) from actions kof
and 30c *. Hence:

3n(UDllKM) sat aJ,kof .s;;; apOc*.

But since the alphabet of an(UD llKM) contains no actions kof and 30c, this
implies:

PP(a(UD)) 0 3n(UDll.KM) sat aJ,kof :i;;; a!JOc.

Define UD' by:

Of course we have

UD' = 30c·UD'1 +t

UD'1 = kofUD'2

UD'2 = talk·UD'

252 F. W. Vaandrager

UD' sat Va': a=a't =} (a'kof)Jkof > (a'koj)t30c.

This shows that the second summand in the equation from UD is redundant.
D

In the example above, we gave a long proof of a trivial fact. The nice thing
about the proof is however that it is compositional and only uses general pro­
perties of the separate components. This makes that the technique can be used
also in less trivial situations where the number of states of the components is
large.

In the sequel we will speak about redundant summands of equations which
are not part of a cluster. What we mean in such a case is that the correspond­
ing system of equations can be transformed into another system, that a certain
summand in the new system is redundant, and that the system which results
from omitting this summand is equivalent to the system obtained by omitting
the sumrnand in the original system that was called 'redundant'.

5. A WORKCELL ARCHITECTURE

In this section we present a modular verification of a small system which is
described in [4, 13].

One can speak about Computer Integrated Manufacturing (CIM) if comput­
ers play a role in all phases of an industrial production process. In the CIM­
philosophy one views a plant as a (possibly hierarchically organized) set of
concurrently operating workcells. Each workcell is responsible for a well­
defined part of the production process, for instance the filling and closing of
bottles of milk.

In principle it is possible to specify the behaviour of individual workcells in
process algebra. A composite workcell, or even a plant, can then be described
as the parallel composition of a number of more elementary workcells. Proof
techniques from process algebra can be applied to show that a composite
workcell has the desired external behaviour.

In general, not all capabilities of a workcell which is part of a CIM­
architecture will be used. A robot which can perform a multitude of tasks, can
be part of an architecture where its only task is to fasten a bolt. Other possi­
bilities of the robot will be used only when the architecture is changed. A large
part of the behaviours of workcells will be redundant in the context of the
CIM-architecture of which they are part. Therefore it can be expected that the
notions which are presented in the previous sections of this article, will be use­
ful in the verification of such systems.

5.1. Specification

5.1.1. The external behaviour. We want to construct a composite workcell
which satisfies the following specification.

some observations on redundancy in a context 253

N
SPEC ~ rl(n)-SPECn·SPEC

n =O

SPEC0 = sO(r) SPEcn+I = slO(proc(pl))·SPEC

TABLE 3. Specification of a composite workcell

Via port 1, the workcell accepts an order to produce n products of type
proc(p 1) and to deliver these products at port 10. Here O~n ~N for a given
upperbound N>O. After execution of the order, the workcell gives a signal r
at port 0, and returns to its initial state (r = ready).

5.1.2. Architecture. The architecture of the system that has to implement this
specification is depicted in Figure 1.

1. t 0

WA WB
FIGURE l

There are four components: Workcell A (WA), Workcell B (WB), the Tran­
sport service T, and the W orkcell Controller WC.

5.1.3. Workce/l A. By means of a signal n at port 2, Workcell A receives the
order to produce n products of type p 1. The cell performs the job and
delivers the products to the Transport service T at port 8. Thereafter a mes­
sage r is sent at port 3, to indicate that a next order can be given.

N

WA ~ r2(n)·XA n

n =O

XA. o = s 3(r)-WA XAn+I = s8(pl)·XAn

TABLE 4. Specification of Workcell A

254 F. W. Vaandrager

5.1.4. Workcel/ B. By means of a signal n at port 4, Workcell B receives the
order to process n products. B receives products from a set PROD at port 9.
An incoming product p is processed and the result proc(p)EPROD is delivered
at port 10 (proc = processed). Thereafter a message r is sent at port 5 and the
workcell returns to its initial state. We assume that p 1 EPROD.

N
WB = Lr4(n)·XB"

n=O

XB 0 = s 5(r)-WB L r9(p)·s IO(proc(p))XB"
pePROD

TABLE 5. Specification of Workcell B

5.1.5. Transport service T transports products in PROD and behaves like a
FIFO-queue. Products are accepted by T at port 8. Transport commands. tc
are given to T at port 6. The number of products accepted by the transport
service should not exceed the number of transport commands which have been
received by more than one. Each time a product leaves Tat port 9, a signal
s7(ar) is given (ar = arrival). Variables in the specification below are indexed
by the contents of the transport service: aEPROD* and p,qEPROD.

Tx = r6(tc)·(L r8(p)-TP)+ L r8(p)-r6(tc)·TP
pePROD pePROD

T"q = r6(tc)-(L r8(p)·TP"q)+ L r8(p)·r6(tc)·TP"q +s9(q)·s7(ar)·T"
pePROD pePROD

TABLE 6. Specification of Transport service

5.1.6. Workcell Controller We is the boss of components WA, T and WB.
From his superiors (via port 1), we can get the order to take care of the
manufacturing of n products proc(p 1). In order to execute this order, WC
sends a stream of commands to his subordinates, receiving progress reports
from these subordinates in between. When the controller thinks that the task
has been completed, he generates a signal sO(r).

N
we L rl(n)·s4(n)·Xcn

n=O

XC0 = rS(r)·sO(r)·WC Xcn+I = s2(1)-r3(r)-s6(tc)-r7(ar)·XCn

TABLE 7. Specification of Workcell Controller

Some observations on redundancy in a context 255

5.1.7. II}= {nlO:o;;;;;n:o;;;;;N}U{r,tc,ar}UPROD is the set of objects which can
be communicated in the system, and I? = {O, 1, .. ., 10} is the set of port-names
used. Communication takes place following the read/ send-scheme:

y(rp(d),sp(d)) = cp(d) for p el?, dell}

and y yields 8 in all other cases. Important sets of actions are:

H = {rp(d),sp(d)l2~p:o;;;;;9 and deD} and

I = {cp(d)i2,.;;;;;p:o;;;;;9 and deD}.

The implementation as a whole can now be described by:

5.2. THEOREM (CORRECTNESS IMPLEMENTATION).

ACPT + SC + RDP + PR + AIP- + AB + CA I- T1(IMPL) = SPEC.

PROOF. In seven steps we transform T1(IMPL) to SPEC. Before we start with
the 'real' calculations, we show in the first three steps that in the specifications
of components WA, T and WB, a large number of summands can be omitted.
Notice that communication is trijective and that each component of IMPL is
observable in context with the other components.

First we use that the only command which is given by the controller to
Workcell A is a request to produce a single product p I. Tbis means that:

IMPL sat a~c2(n) = 0 for n:;t=l.

Consequently

PJl(_a.(WA))(IMPL) sat a~r2(n) = 0 for n:;t=l.

Using the approach of Section 4.5, together with Theorem 4.3, we obtain that
all the summands in the specification of WA which correspond to the accep­
tance of a command different from r2(1) are redundant. We have

IMPL = 3n(WCllWAllT:>.llWB),

where WA is given by:

l.--W--:4-=-r2_(_1)--s-8(p-l)--s-3(-r)--W--:A--.1

Hence:

(step 1)

Also component y:>. is clearly a candidate for simplification. With some simple

256 F. W. Vaandrager

trace-theoretic arguments we show that nearly all summands in the
specification of r>-- are redundant. -

The only product which is delivered by WA at port 8 is p 1. This means
that:

IMPL sataJc8(p) = 0 forp-=/=pl. (l)

From the behaviour of component we we conclude:

IMPL sat atc6(tc) ~ aJc3(r). (2)

Further we deduce from the behaviour of WA:

IMPL sat aic3(r) ~ atc8(p 1). (3)

From (2) and (3) together we conclude that the number of transport com­
mands at port 6 is less or equal to the number of products p l that are handed
to the transport service at port 8:

IMPL sat atc6(tc) ~ atc8(p 1). (4)

From the specification of WA we learn that A does not deliver products
without being asked for:

IMPL sat atc8(p 1) ~ aic2(1). (5)

Further it follows from the specification of We that the number of commands
given to A by the controller, never exceeds the number of ar-signals with more
than one:

IMPL sat atc2(l) ~ atc7(ar) + 1. (6)

From (5) and (6) together we conclude:

IMPL sat aJc8(p 1) ~ atc7(ar) + 1. (7)

From formulas (1), (4) and (7) it follows that nearly all summands in the
specification of r>-- are redundant.

T1°3H(WellWA llT>.llWB) = T1°3H(WellWA llTll WB) (step 2)

where T is given by:

T = r8(p l)·r6(tc)·s9(p l)·s7(ar)·T

The transport service delivers at port 9 only products of type p 1. Therefore all
summands in the specification of WB which correspond to the acceptance of
another product, are redundant.

T1°3H(WellWAllTllWB) = ,-1°aH(WellWA llTllWB)
where WB is given by:

(step 3)

Some observations on redundancy in a context

N -n
WB = ~ r4(n)-XB

n =O

XB0 = s 5(r)· WB XBn+I -n = r9(p 1)-s lO(proc(p 1))-XB

We will now 'zoom in' on components WC, WA and T. Define:

H' = {ry(d),sp(d)lpE{2,3,6,7,8} and dE[J)} and

I'= {cp(d)lpE{2,3,6,7,8} anddED}.

Application of the conditional axioms CA gives:

257

T1°oH(WCll WA llTll WB) = T1°os(TJ' 0 oH'(WCll WA llT)ll WB). (step 4)

Let Wbe given by:

N
w ~ r l(n)-s4(n)· wn

n =O

W° = r S(r)-sO(r)· W Wn + l = 'T"S 9(p 1)- Wn

We prove that W=Tr 0 ow(WCll WA llT), by showing that process
T1·0 ow(WCll WA llT) satisfies the defining equations of W.

~ N ~

TJ' 0 ow(WCll WA llT) = ~ r l(n)-s4(n)·Tr 0 oH.(XCn II WA llT)
n =O

'TJ' 0 ow(XC0 11 WA llT) = r5(r)-sO(r)·TJ' 0 ow(WCll WA llT)

,.1' 0 0H'(Xcn+ 11IWAllT) =

= TJ'(c 2(1)·oH'(s 3(r)·s 6(tc)·r 7(ar)-Xcn lls 8(p l)·s 3(r)-WA II T))

= T"'TJ'(c 8(p l)·o w(s 3(r)·s 6(tc)-r7(ar)·Xcn lls 3(r)- WA llr 6(tc)·s 9(p 1)-s 7(ar)-T))

= ,..,..'Tr(c 3(r)-o w(s 6(tc)·r7(ar)-Xcn II WA llr 6(tc)-s 9(p 1)·s7(ar)-T))

= T"Tr(c6(tc)-ow(r7(ar)-XCn II WA lls 9(p 1)-s 7(ar)·T))

= T"Tr(s9(p l)"Ow(r7(ar)·Xcn II WA lls 7(ar)-T))

= n9(p l}Tr(c7(ar)·ow(XcnllWA llT))

= n9(pl)·Tr 0 ow(XCnllWAllT)

We have now derived:

T1°os(Tr 0 ow(WCll WA llT)ll WB) = T1°oH(Wll WB). (step 5)

258 F. W. Vaandrager

Let V be given by:

N
V ~rl(n)-Vn

n=O

Yo = 1 .. sO(r)-V vn +I = 'T'S IO(proc(p l))· vn

We show that r1oaH(Wll WB) satisfies the defining equations of V.
_ N N -m

T1°aH(WllWB) = ~rl(n)·r1°aH(s4(n)'Wnll(~ r4(m)-XB))
n =O m =O

N -n ·
= ~rI(n)·rJ(c4(n)'aH(WnllXB))

n =O

N -n
= ~ r l(n)·r·r1°aH(Wn llXB)

n =O

'T'T1°aH(W° llXB0) = n1(c5(r)·aH(s O(r)· Wll WB)) 'T·sO(r)·T1°aH(Wll WB)
-n+I -n

T·T1°aH(wn+ 111xB) = 'T·T1(c9(pl)·aH(WnllslO(proc(pl))·XB))

= T'S IO(proc(p l))·T1°aH(WnllXBn)

(here we use that T(Txl[y)=T'Txlly=Txlly=T(xl[y)). From the above deriva­
tion it follows that:

'T1°aH(WllWB) = v (step 6)

We show that SP EC satisfies the defining equations of V.
N

SPEC = ~rl(n)·(T·SPECn·SPEC)
n =O

T"SPEC0·SPEC = T·sO(r)·SPEC

'T'SPEcn +1·SPEC =T'S lO(proc(p 1))-(T·SPECn·SPEC)

Hence:

V = SPEC. D (step 7)

This example shows that a combination of trace-theoretic arguments and the
use of alphabet calculus makes it possible to verify simple systems in a compo­
sitional and modular way.

Some observations on redundancy in a context 259

ACKNOWLEDGEMENTS

I would like to thank the participants of the PAM seminar, especially Jos Bae­
ten, Jan Bergstra and Hans Mulder, for their comments on earlier versions of
this article.

REFERENCES
I. J.C.M. BAETEN, J.A. BERGSTRA (1988). Global renaming operators lil

concrete process algebra. Information and Computation 78(3), 205-245.
2. J.C.M. BAETEN, J.A. BERGSTRA, J.W. KLOP (1986). Syntax and defining

equations for an interrupt mechanism in process algebra. Fundamenta
Informaticae IX(2), 127-168.

3. J.C.M. BAETEN, J.A. BERGSTRA, J.W. KLOP (1987). On the consistency of
Koomen's Fair Abstraction Rule. Theoretical Computer Science, 51(112),
129-176.

4. F. BIEMANS, P. BLONK (1986). On the formal specification and
verification of CIM architectures using LOTOS. Computers in Industry
7(6), 491-504.

5. E.W. DIJKSTRA (1976). A Discipline of Programming, Prentice-Hall, Engle­
wood Cliff.

6. R.J. VAN GLABBEEK (1987). Bounded nondeterminism and the approxi­
mation induction principle in process algebra. F.J. BRANDENBURG, G.
VrnAL-NAQUET, M. WIRSING (eds.). Proceedings STACS 87, LNCS 247,
Springer-Verlag, 336-347.

7. R.J. VAN GLABBEEK, F.W. VAANDRAGER (1987). Petri net models for
algebraic theories of concurrency. J.W. DE BAKKER, A.J. NIJMAN, P.C.
TRELEAVEN (eds.). Proceedings PARLE Conference, Eindhoven, Vol. II
(Parallel Languages), LNCS 259, Springer-Verlag, 224-242.

8. R.J. VAN GLABBEEK, F.W. VAANDRAGER (1988). Modular Specifications in
Process Algebra - With Curious Queues, CWI Report CS-R882l, Centre
for Mathematics and Computer Science, Amsterdam. Extended abstract
to appear in Proceedings of the METEOR Workshop on Algebraic Methods:
Theory, Tools and Applications, LNCS, Springer-Verlag.

9. C.A.R. HOARE (1985). Communicating Sequential Processes, Prentice-Hall.
10. C.P.J. KOYMANS, J.C. MULDER (1989). A Modular Approach to Protocol

Verification using Process Algebra. This volume.
11. K.G. LARSEN (1986). Context-dependent Bisimulation between Processes,

Ph. D. Thesis, Department of Computer Science, University of Edinburgh.
12. K.G. LARSEN, R. MILNER (1987). A complete protocol verification using

relativized bisimulation. Tu. OTIMANN (ed.). Proceedings 14th ICALP,
Karlsruhe, LNCS 267, Springer-Verlag, 126-135.

13. S. MAuw (1989). Process Algebra as a Tool for the Specification and
Verification of CIM-architectures. This volume.

14. E.-R. OLDEROG (1986). Process theory: semantics, specification and
verification. J.W. DE BAKKER, W.-P. DE ROEVER, G. ROZENBERG (eds.).
Current Trends in Concurrency, LNCS 224, Springer-Verlag, 442-509.

15. E.-R. OLDEROG, C.A.R. HOARE (1986). Specification-oriented semantics

260

for communicating processes. Acta lnformatica 23, 9-66.
16. F.W. V AANDRAGER (1986). Verification of Two Communication Protocols

by Means of Process Algebra, CWI Report CS-R8608, Centre for
Mathematics and Computer Science, Amsterdam.

17. J. ZWIERS (1988). Compositionality, Concurrency and Partial Correctness:
Proof Theories for Networks of Processes, and their Connection, Ph.D.
Thesis, Technical University Eindhoven.

