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The truncated-average limit and the Cesaro limit are independent 

by 

P. van Emde Boas 

Abstract 

In [l] J. van de Lune introduced the truncated-average limit of a 

sequence of real numbers. By its definition this concept seems a general­

ization of the Cesaro limit. In fact the two limits are independent; 

existence of one limit does not imply the existence of the other and 

from the existence of both limits their equality cannot be concluded. 



Let a 
00 

=(a) be a sequence of non-negative real numbers. We 
n n=l 

define the functions g, ~and~ by 

n 
g(n,A) = I 

n k=l 
min 

HA) = lim inf g(n,A) n-+oo and ~(A)= lim sup g(n,A). n-+oo 

Clearly both~ and~ are non-decreasing functions. 

If lim ~(A)= lim ~(A)= p < 00 then pis called the truncated-average 
A-+oo A-+oo 

limit (tal) of the sequence_!. This concept was introduced by J. van de 

Lune in [1]. 

For a convergent non-negative sequence one clearly has 

lim q = tal(a), hence the tal generalizes the usual limit concept. 
n-+oo n 

It is not difficult to show that the sequences.! for which the tal 

is defined fonn a vector lattice E; on which tal acts as a linear func­

tional. Consequently the tal can be extended to tee complete vector space 
+ + 

E = E - E. It can be shown that the positive elements in Et are all 
t t t + 

contained in Et (cf. [1]). 
00 

The Cesaro-limit of a sequence _a = (a ) by definition equals 
n n=l 

cs(_!) 
1 n 

= lim -( I ak) 
n-+oo n k=l 

whenever the limit on the right-hand side exists. 

Since for each A, g(n,A) ~ i (l~=l ak) and, moreover, 1~ g(n,A) = 

= n <I~=l ak) one gets the impression that the two limit concepts are 

related. Below it will be shown that actually the two concepts are logi­

cally independent. 

Our result is based upon the following 

Lemma I. There exists a non-negative sequence a with cs(!:.)= I and 

tal (,!) = 0. 

00 

Proof. Define the sequence (a) = a as follows: n n=l 



{ 
an = 2m + 1 

a = 0 
n 

00 

if 

if 

Consequently the sequence (an)n=l starts like 

3,0,0,5,0,0,0,0,7,0,0,0,0,0,0,9,0,0, •••• 

2 
n = m , 

n is not a square. 

Let b = -
n n I~=l ak. Clearly bn = 1 whenever n.= k2 - 1 and bn = 1 + f 

k2 s n s (k+l) 2 ~ 1 = k2 + 2k one has 1 s b < 1 + ! n - k 0 
for n = k2 • For 

Consequently lim .!. b = 1, so that the Cesaro limit of a exists and n-+oo n n 
equals 1. 

To evaluate tal(!_) we estimate min(a ,A) by c where 
n n 

{ :: : ~ if 

if 

n is a square, 

n is not a square. 

2 

Consequently g(n,A) S .!_A# {m I m2 < n} = ! [fu]. Hence lim sup g(n,A) = n n n-+oo 
= lim inf g(N,A) = 0 regardless of the value of A. This shows tal(!_) = O. D n• oo 

00 

= a and (b) = b be to non-negative sequences. The n n=l 
= c is called a mixtuPe of!_ and.£_ if each initial seg-

ment of c consists of all terms of two initial segments of the sequences 

a and b. In such a case there exist two non-decreasing integral sequences 
00 00 

(ik)k=l and (jk)k=l such that ik + jk = k, and such that ck= aik iff 

ik > ik-l and ck= bj iff jk > jk-l" The number 8k = ik/k indicates the 
. f . k k f h portion o terms in£, ta en rom t e sequence!:• 

Lemma 2. Suppose that a and bare two sequences with tal(!_) = tal(.£_) = p 

(cs(!_)= cs(.£_)= p), and let c be a mixture of a and b. Then tal(£) 

exists and equals p. (cs(£_)=p). 

Proof. We prove this for the tal (the case for the Cesaro limit being 

analogous). Since 



one has 

and 

g (n,A) 
C 

1 n 
= - l min(ck,A) = 

n k=l 

ik 
= .!.. ( l min(ak,A) + 

n k=l 

lim sup g (n,A) ~ max(~a(A),~b(A)) 
n-+00 C 

and consequently 

lim q, (A) 
A-+oo .£ 

= lim ~ (A) 
A• oo C 

= tal(~) = tal(l). • 

00 00 

Theorem 3. There exist sequences~= (xn)n=l and x_ = (yn)n=l such that 

(i) tal(x) exists and cs(x) does not exist, 

(ii) tal(x_) does not exist but cs(x_) exists. 

Proof. Let~ be the sequence constructed to prove lemma 1. Let.£. be a 

sequence with constant terms zero and. let .s, be a sequence with constant 

terms one. By the preceding lemma we have tal(~) = 0 for each mixture x 

of~ and.£. whereas cs(x_) = I whenever z. is a mixture of~ and S· 
Let~ be a mixture of~ and.£. which is defined as follows: on the 

interval (2n)! ~ i < (2n+I)! the terms of x are selected from.£. 

(i.e. j.=j. 1+1). On the interval (2n+t)! ~ i < (2n+2)! all the terms of 
l. 1.-

x are taken from a. 

Now 

I 
n k~n 

= e 
n 

l. 
n =-
n . I 

i k . n ~1. 
n 

3 



4 

Since cs(~) = one has 

lim inf I x. - ( lim inf e ) • I = 0 
n-+«> n k~n k - n-+«> n 

and 

lim sup I x. = (lim sup 0 ) • = I, 
n-+«> n k~n K n-+«> n 

Consequently cs(~) is not defined. This proves (i). 

To prove (ii) one constructs a similar mixture of a ands_. D 
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