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The truncated—average limit and the Cesdro limit are independent

by

P. van Emde Boas

Abstract

In [1] J. van de Lune introduced the truncated—average limit of a
sequence of real numbers. By its definition this concept seems a general-
ization of the Cesd3ro limit. In fact the two limits are independent;
existence of one limit does not imply the existence of the other and

from the existence of both limits their equality cannot be concluded.



Let a = (an):_1 be a sequence of non-negative real numbers. We

define the functions g, ¢ and ¢ by

g(n,A)

nNe~—g

min (ak,A)

1
0=t

¢ (A) 1i%+£nf g(n,A) and ®(A) = 11%+§up g(n,A).

Clearly both ¢ and & are non-decreasing functions.
If lim ¢(A) = lim ®(A) = p < » then p is called the truncated-average
A—>00 A—)OO
limit (tal) of the sequence a. This concept was introduced by J. van de
Lune in [1].
For a convergent non—negative sequence one clearly has
lig g = tal(a), hence the tal generalizes the usual limit concept.
ot n
It is not difficult to show that the sequences a for which the tal
. . . + . .
1s defined form a vector lattice Et on which tal acts as a linear func~
tional. Consequently the tal can be extended to the complete vector space
Et = E: - E:. It can be shown that the positive elements in E_ are all
. . + t
contained in Et (cf. [1D).
The Cesdro-limit of a sequence a = (an):=l by definition equals
n
cs(a) = lim l( z a )
— n>e n k
k=1
whenever the limit on the right-hand side exists.
. 1 n .
1 Since for each A, g(n,A) S'H (zk=l ak) and, moreover, k&g g(n,A) =
== (XE=1 ak) one gets the impression that the two limit concepts are

related. Below it will be shown that actually the two concepts are logi=

cally independent.

Our result is based upon the following

Lemma 1. There exists a non-negative sequence a with cs(a) = 1 and

tal(a) = 0.

Proof. Define the sequence (an):=1 = a as follows:



2m + 1 if n = mz,

a
n

il
o

a

0 if n is not a square.

Consequently the sequence (an):=1 starts like

3,0,0,5,0,0,0,0,7,0,0,0,0,0,0,9,0,0,....

_ 1 ¢tn - - 12 _ = 2
Let bn = Zk=1 a . Clearly bn 1 whenever n.= k 1 and bn 1+ k
2 2

for n = k“, For k“ < n < (k+1)2 - 1 =%k + 2k one has 1 < bn <1 + %u

[ SR ]

bn = 1, so that the Cesdro limit of a exists and

=g O

Consequently %&g
equals 1.

To evaluate tal(a) we estimate min(an,A) by ) where

e, = A if n is a square,

c, = 0 if n is not a square.
1 2 A . .
Consequently g(n,A) < = A# {m l m- < n} == [/n]. Hence llgagup g(n,A) =
= 1i¥+gnfg(N,A)==O regardless of the value of A. This shows tal(a) = 0. [J

Let (an):=l = a and (bn):=1 = b be to non-negative sequences. The
sequence (cn):=] = ¢ is called a mixture of a and b if each initial seg-

ment of ¢ consists of all terms of two initial segments of the sequences
a and b. In such a case there exist two non—-decreasing integral sequences

(1k)k=1 and (Jk)k=1 such that i, + i, = k, and such that ¢, = a, 1iff

k ik

k
io> i, and c, = bj iff AN The number 6k = 1k/k indicates the

portion of terms in c, taken from the sequence a.

Lemma 2. Suppose that a and b are two sequences with tal(a) = tal(b) = p
(cs(a) = cs(b) = p), and let c be a mixture of a and b. Then tal(c)

exists and equals p. (cs(c)=p).

Proof. We prove this for the tal (the case for the Cesdro limit being

analogous). Since



B |—

ho~—g

min(ck,A) =

g_c_(n,A) ]

Kk
x Ix

l( min(a ,A) + 7 min(b ,A)> =
n kzl k k=1 k

0 By linsA) + (176 5 (j00),

one has

1i11111_>°i°nf g_c_(n,A) > mln(¢i(A),¢h(A))
and

1i%+gup gg(n,A) < maX(GEFA),QEKA))

and consedquently

lim ¢C(A) = lim @C(A) = tal(a) = tal(b). O

Aro  — Aro —

Theorem 3. There exist sequences x = (Xn):=l and y = (yn)oo such that

n=1
(1) tal(x) exists and cs(x) does not exist,
(ii) tal(y) does not exist but cs(y) exists.
Proof. Let a be the sequence constructed to prove lemma !. Let p be a

sequence with constant terms zero and let g be a sequence with constant
terms one. By the preceding lemma we have tal(x) = 0 for each mixture x
of a and p whereas cs(y) = 1 whenever y is a mixture of a and gq.

Let x be a mixture of a and p which is defined as follows: on the

interval (2n)! < i < (2n+1)! the terms of x are selected from p

X
<

(i.e. ji=ji—1+l)' On the interval (2n+1)! i < (2n+2)' all the terms of
x are taken from a.

Now

| =
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2
fi
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Since cs(a) = 1 one has

. oy _
11%+énf E-kzn X (11%4énf Gn) 1 =0

and

. 1 . _

11%+gup -y Z X (11%+gup en) 1 =1,
k<n

Consequently cs(x) is not defined. This proves (i).

To prove (ii) one constructs a similar mixture of a and q. [J
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