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PRESERVING ORDER IN A FOREST IN LESS THAN LOGARITHMIC TIME 

* P. van Emde Boas 
Mathematical Centre, Amsterdam, Netherlands / 
Mathematical Institute, University of Amsterdam 

ABSTRACT 

We present a data structure, based upon a strati­
fied binary tree, which enables us to manipulate on­
line a priority queue whose priorities are selected 
from the interval l ••• n, with an average and worst case 
processing time of ()(log log n) per instruction. The 
structure is used to obtain a mergeable heap whose time 
requirements are about as good. 

l • INTRODUCTION 

The main problems in the design of efficient algor­
ithms for set-manipulation result from the incompatible 
requests posed by the distinct operations one likes to 
execute simultaneously. Instructions for inserting or 
deleting or for testing membership of elements in sets 
require a data structure supporting random access. On 
the other hand instructions for computing the value of 
the smallest or largest element, or the successor or 
predecessor of a given element, require an ordered rep­
resentation. Finally instructions which unite two sets, 
so far, have only been implemented efficiently using a 
tree structure. 

An example of an efficient algorithm which resolves 
one of these conflicts is the well-known union-find al­
gorithm; its worst case average processing time per in­
struction has been shown to be of the order A(n) in 
case of O(n) instructions on an n-elements universe, 
where A is the functional inverse of a function with 
Ackerman-like order of growth (cf. [l], [97). 

The algorithms published until now to resolve the 
conflicting demands of order and random access all show 
a worst case processing time of O(log n) per instruc­
tion for a program of O(n) instructions on an n-elements 
universe which has to be executed on-line. Clearly we 
should remember that each instruction repertoire which 
enables us to sort n reals by issuing O(n) instructions 
needs an O(log n) processing time for the average in­
struction in doing so. However if the universe is as­
sumed to consist of the integers 0 •.. n-1 only, the in­
formation-theoretical lowerbound on the complexity of 
sorting does not apply; moreover it is known that n in­
tegers in the range I ... n can be sorted in linear time. 

Data structures which have been used to solve the 
conflict between order and random access are (among 
others) the binary heap, AVL trees and 2-3 trees. In 
AHO, HOPCROFT & ULU1AN [I] 2-3 trees are used to sup­
port the instruction repertoire INSERT, DELETE, UNION 
and MIN with a worst case processing time of order 
O(log n) per instruction. The authors introduce the name 
mergeable heap (resp. pr-i01'ity queue) for a structure 
supporting the above operations (excluding UNION). 

The ()(log n) processing time for manipulating pri­
ority queues and mergeable heaps sometimes becomes the 
bottleneck in some algorithms; as an example I mention 
TARJAN's recent algorithms to compute dominators in di­
rected graphs [10]. Consequently, if we can do the 
mergeable heaps more efficiently, the order of complex­
ity of this algorithm can be reduced. 

Another example is given by the efficient algorithm 
for generating optimal Prefix Code, which was published 
recently by PERL, GAREY & EVEN [5]. The factor log n 

appearing in the worst-case run-time is caused by the 
use of a binary heap for implementing a priority queue. 

In the present paper I describe a data structure 
which represents a priority queue with a worst case 
processing time of O(log log n) per instruction, on 
a Random Access Machine. The storage requirement is of 
the order O(n log log n). The structure can be used in 
combination with the tree-structure from the efficient 
union-find algorithm to produce a mergeable heap with 
a worst-case processing time of O((log log n) •A(n)) 
and a space-r~quirement of order O(n2). The possible im­
provements of the space requirements form a subject of 
continued research. 

I.I. Structure of the paper 

Section 2 contains some notations and background 
information, among which a description of the efficient 
union-find algorithm. In section 3 we present a "silly" 
implementation of a priority queue with an O(log n) pro­
cessing time per instruction, Reconsidering this imple­
mentation we indicate two possible ways to improve its 
efficiency to O(log log n). 

In section 4 we describe our stratified trees and 
their decomposition into canonical subtrees. Next we 
show how these trees can be used to describe a priority 
queue with an O(log log n) worst and average case pro­
cessing time per instruction. The algorithms for per­
forming the elementary manipulations on stratified trees 
are presented and explained in section 5. The algorithms 
are derived from a PASCAL implementation of our priority 
queue which was written by R. KAAS & E. ZIJlSTRA at the 
University of Amsterdam [8]. It is explained how the 
complete stratified tree is initialized using time 
O(n log log n). Section 6 discusses how the structure 
can be used if more than one priority queue has to be 
dealt with; the latter situation arises if we use our 
structure for implementing an efficient mergeable heap. 
Finally, in section 7, we indicate a few relations with 
other set-manipulation problems. 

Throughout sections 4, 5 and 6 identifiers typed 
in this different type font denote the values and 
meanings of the same identifiers in the PASCAL implemen­
tation. 

2. GENERAL BACKGROUNDS 

2.1. Instructions 

Let n be a fixed positive integer. Our universe will 
consist of the subsets of the set {l, ..• ,n}. For a set 
Sin our universe we consider the following instructions 
to be executed on S: 

MIN 
MAX 
INSERT (j) 
DELETE (j) 
MEMBER (j) 
EXTRACT MIN 

Compute the least element of S 
Compute the largest element of S 
S:=Su{i} 
S:=S\{j} 
Compute whether j E S 
Delete the least element from S 

EXTRACT MAX Delete the largest element from S 
PRECEDECESSOR (j): Compute the largest element in S < 
SUCCESSOR (j) Compute the least element in S > j 

*) Work supported by grant CR 62-50. Netherlands Organization for the Advancement of Pure Research (Z.W.O.). 



NEIGHBOUR (j): Compute the neighbour of j in S (see 

ALL MIN (j) 
ALL MAX (j) 

definition below). 
remove from Sall elements~ j 
remove from Sall elements~ j. 

(If an instruction cannot be executed properly, e.g. MIN 
if S = 0, an appropriate action is taken). 

The neighbour in Sofa number j E {l, ... ,n} is the 
element i E S such that i - 1 has the largest segment of 
significant digits in its binary development in common 
with j - l; if more than one element in S fits this des­
cription, the one among them which is the nearest to j 
in the usual sense is selected. 

The neighbour of j is always to be found among the 
predecessor and successor of j, but it is difficult to 
tell in advance which of the two it will be. In section 
3 we explain in what "geometrical" sense the neighbour 
of j is indeed the element in S which is the nearest to 
j. For this moment we give the following 
Example: Let n = 16. S = {1,5,13,14}. The corresponding 
binary representations are 0000, 0100, 1100 and 1101. 
The neighbour of 4 (corresponding to 0011) equals 1 
whereas the neighbour of 15 (corresponding to 1110) 
equals 14, which is nearer in the usual sense to 15 as 
13. 

2.2. Priority queue~ 

A priority queue is a data structure representing 
a single set Sc {1, ... ,n} on which the instructions 
INSERT, DELETE, and MIN can be executed on-line (i.e. 
some arbitrary order and such that each instruction 
should be executed before reading the next one). Al­
though the priority queue is our main target, we men­
tion at this point that actually the complete instruc­
tion repertoire give,n above is supported on our data 
structure with a worst and average case processing time 
of O(log log n) per instruction (except for the last 
two instructions where the processing time is 
O(log log n) for each element removed). 

The complete list of instructions above will be 
called the extended repertoire hereafter. 

2.3. Union-find problem 

For arbitrary partitions IT= {A,B, ... } of {l , ..• ,n} 
we consider the following instructions: 

FIND (i) compute the set currently containing i 
UNION (A,B,C): Form the union of the sets A and Band 

give the name C to this union. 

There is no specific name for a data structure 
supporting these two instructions; the problem of man­
ipulating such a structure is known as the union-find 
problem. 

The well known efficient union-find algorithm uses 
a representation of sets by means of trees. Each node 
in a tree corresponds to a member of a set and contains 
a pointer which either points to the name of the set if 
the node happens to be the root of his tree, or to his 
father in the tree otherwise. A UNION instruction is 
executed by making the root of the smaller tree a direct 
son of the larger one (balancing). To execute a FIND 
instruction the nod,~ corresponding to the element asked 
for is accessed directly, and his pointers are followed 
until the root of his tree is found; in the mean time 
all nodes which are encountered during this process are 
made direct descendants of the root, thus reducing the 
processing time at subsequent searches. 

It has been established only recently how efficient 
the above algorithm is. Whereas its average processing 
time has been estimated originally as O(log log n) 
(FISHER [6]) and 0(1.og* n) (HOPCROFT & ULLMAN 171 and 
independently PATERSON (unpublished)), a final upper 
and lowerbound O(A(n)) has been proved by TARJAN [9]. 
Remember that log* n is the functional inverse of the 

22 3n function __,, i.e. log* n equals the number of ap-
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plications of the base-two logarithm needed to reduce 
n to zero. The function A(n) is a functional inverse of 
a function of Ackerman-type which is defined as follows: 
Define a by: a(O,x) = 2x; a(i,O) = O; a(i,1) = 2 for 
i ~ O; and a(i+l,x+l) = a(i,a(i+l,x)). Then we let 
A(n) = min{j I a(j ,j) ~ n}. 
(The above definitions differ only inessentially from 
the ones given by TARJAN). 

2.4. Mergeable heaps 

A mergeable heap is a data structure which supports 
the instructions INSERT, DELETE, MEMBER and MIN on sets 
which themselves can be united and searched, i.e. UNION 
and FIND are also supported. A mergeable heap may be 
obtained from the union-find structure by replacing the 
unordered collection of sons of a certain node by a 
priority queue where the "value" of a node equals the 
minimal element in the set formed by this node and its 
descendants. 

In such a representation the instructions are exe­
cuted as follows: 

UNION: The root-priority queue of the structure con­
taining the least number of elements is inserted in the 
root-priority queue of the other structure at the place 
corresponding to its least element. 

FIND: First one proceeds from the element itself "up­
wards" to find the root-priority queue of the structure 
to which it belongs. Next, going downwards from this 
root back to the element the priority queues along 
this path are disconnected by delete operations. The 
queues are then inserted in the root priority queue at 
the position of their (possibly modified) least element. 

MIN: By executing a min-instruction at the root-priority 
queue of a structure its least element will become 
known; a FIND instruction on this element will yield 
access to the location where it is stored. 

INSERT & DELETE: These operations are reduced to the 
priority queue insert and delete b_y first executing a 
FIND instruction. The same holds for MEMBER. 

In doing so the average processing time for an in­
struction becomes A(n) times the processing time for 
the priority queue instructions used. As long as the 
latter time is not reduced below O(log n) the proposed 
representation of a mergeable heap should be considered 
inefficient, since there are O(log n) structures known 
for mergeable heaps (2-3-trees with unordered leaves 
[l]). Using our new efficient priority queue the pro­
posed scheme becomes (as far as time is concerned) more 
efficient than the traditional ones. For the space re­
quirements the reader is referred to section 6. 

3. A "SILLY'' PRIORITY QUEUE WITH O(log n) PROCESSING 
TIME 

3.1. The structure 

The scheme described in this section is designed 
primarily in order to explain the ideas behind the op­
erations to be executed on the much more complicated 
structure in the next section. k 

We assume in this section that n = 2 . We consider 
a fixed binary tree of height k. The 2k = n leaves of 
this tree will represent the numbers 1 ... n in their 
natural order from left to right. The leaves thus rep­
resent the potential members of the set S. If we had 
counted from Oto n - 1 this order is nothing but the 
interpretation of the binary representation of a num­
ber as an encoding of the path from the root to the 
leaf; the binary digits are read from left to right 
where O denotes "go left" and 1 means "go right". 

To each node in the tree we associate three point­
ers, linking the node to its father and its left- and 
righthand son. Moreover each node has a one-bit mark 



field. 
A subset S s [! ... n] is represented by marking all 

the leaves corresponding to members of S, together with 
all nodes on the paths from these leaves to the root of 
the tree; see diagram I • 
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Diagram I. Example of a five-element set representation 

using mark bits. 

It is easy to see that, using this representation, 
the operations in the list in section 2 can be executed 
in time O(k) = O(log n) for each item processed. (Note 
that the operations ALLMIN and ALLMAX may remove more 
than one item.) 

We present the following sketches of algorithms: 

INSERT (i) 

DELETE (i) 

MEMBER (i) 
MIN (MAX) 

mairk leaf i and all nodes on the path 
from leaf i to the root, until you 
encounter a node which was already 
marked. 
unmark leaf i and all nodes on the path 
from leaf i to the root upto but not 
including the lowest node on this path 
having two marked sons. 
test whether leaf i is marked. 
proceed from the root to the leaves 
selecting always the leftmost (right-
most) present son. 

EXTRACT MIN (EXTRACT MAX): min (max) followed by delete 
ALLMIN (j) : while MIN ,;; j do EXTRACTMIN od 
ALLMAX is definedaiialogously. - -
PREDECESSOR (j): proceed from leaf j to the root unti 1 

a node is encountered having j as a 
righthand side descendent where the 
lefthand son is marked. Proceed from 
this lefthand son to the leaves always 
taking the rightmost present son. 

SUCCESSOR (j) is defined analgously. 

Note that all instructions except PREDECESSOR and 
SUCCESSOR use the lowest marked node on the path from 
an unmarked leaf to the root or the lowest branchpoint 
(i.e. a node having both sons marked) on the path from 
a marked leaf to the root. An analogous instruction 
which does not climb beyond the lowest "interesting" 
node is the instruction 

NEIGHBOUR (j) proceed from leaf j to the lowest node 
such that the "other" son of this node 
is marked. If this other son is a left­
hand son then proceed from this node 
to the leaves always selecting the 
rightmost marked leaf; otherwise se­
lect always the leftmost marked leaf. 

If we represent the set furthermore using a doubly 
linked list, such that each marked leaf contains (a 
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pointer to) the corresponding entry in the list, a call 
of NEIGHBOUR followed by one or two steps in the list 
will be adequate to execute a call of PRECEDECESSOR or 
SUCCESSOR. 

From the descriotion of the instruction NEIGHBOUR 
it is clear in which sense the neighbour of a number j 
is the "nearest" present element to j; the neighbour 
has the largest possible number of common ancestors 
and in case this condition does not define the neigh­
bour unambigously the neighbour is the other descendent 
of the lowest common ancestor which has developed as 
near to j as oossible. 

3.2. Imorovements of the time efficiency 

It is clear from the above descriptions that our 
"silly" structure supports the extended repertoire with 
an O(log n) processing time per instruction. Using the 
doubly linked list as an "extra" representation INSERT 
and DELETE and NEIGHBOUR take time proportional to the 
distance in the tree traversed upon a call whereas MIN 
and MAX take constant time. 

The remaining instructions are "composite". This 
observation opens a way to improve the efficiency. The 
time saved by not climbing high upwards in the tree can 
be used to perform more work at a single node. For ex­
ample, if we decide to use at each node a linear list of 
present sons instead of a fixed number, we can easily 
accomodate for a tree with branching orders increasing 
from the root to the leaves without disturbing the O(k) 
processing time. Using a tree with branching orders 
2,3,4, ..• ,k which contains k! = n leaves, we can main­
tain a priority queue of size O(k!) in time O(k); the 
above set up yields therefore an O(log n/log log n) 
priority queue which is already better than we had be­
fore. 

There is, however, much more room for improvement. 
The operations which we like to execute at a single 
node are themselves priority queue operations. Conse­
quently using a binary heap we can accomodate for the 
branching orders 2,4,8, ••• ,2k, which yields a priority 

f . "(2k2/2) d h . . . queue o size 11 , an t e processing time is re-
duced to O(/log n). 

Note that in both modifications the space require­
ments remain of O(n), which is not true for the struc­
ture described in §4. 

According to the "divide and conquer" strategy, we 
should however use at each node the same efficient 
structure which we are describing. This suggests the 
following approach. The universe 11 •.. nl is divided in­
to /2i blocks of size /2i. Each block is made a priority 
queue of size /2i, whereas the blocks themselves form 
another priority queue of this size. To execute an 
INSERT we first test whether the block containing the 
element to be inserted contains already a present ele­
ment. If so, the new element is inserted in the block; 
otherwise the element is inserted as first element in 
its block and the complete block is inserted in the 
"hyper-queue". A DELETE instruction can be executed 
analogously. 

Assuming that we can implement the above idea in 
such a way that inserting a first and deleting the last 
element in a block takes constant time independent of 
the size of the block, the above description yields for 
the run-time a recurrence equation of the type T(n) ,;; 
,;; T(,1n) + I which has as a solution T(n) ,;; O(log log n). 

Another way to improve the "silly" representation 
which leads again to the same efficiency is conceived 
as follows. As indicated the "hard" instructions pro­
ceed by traversing the tree upwards upto the lowest 
"interesting" node (e.g. a branchpoint), and proceding 
downwards along a path of present node. 

If these traversals could be executed by means of 
a "binary search on the levels" strategy, the proces­
sing time is reduced from O(k) to O(log k) 
= O(log log n). A similar idea is involved in the effi-



cient solution of a special case of the lowest connnon 
ancestor problem given by AHO, ~OPCROFT & ULLMAN [2]. 

The reader should keep both approaches in mind 
while reading the sequel of this paper. 

4. A STRATIFIED-TREE STRUCTURE 

4.1. Canonical subtrees and static information 

In this ·section we let h be a fixed positive inte­
ger. Let k = 2h and n = 2k. We consider a fixed binary 
tree T of height k with root t having n leaves. 

For I ,; j we d!efine RANK (j) to be the largest num-

ber d such that 2d [ j and 2d+l % j. For example 
RANK (12) = 2 and RANK (17) = 0. By convention we take 
RANK (0) = h + I. d 

Note that for j > 0, RANK (j) = d and j - 2 > 0 
we have RANK (j) < RANK (j+2d) and RANK (j) < RANK (j-2d); 
moreover RANK (j+2d) # RANK (j-2d). 

The level of a node v in Tis the length of the 
path from the leaves of T to v; the rank of vis the 
rank of the level of v. Note that the rank of the leaves 
equals h + I, and the rank of the top equals h; all 
other nodes have lower ranks. The position of a leaf is 
the number in the set {J, ... ,n} represented by this 
leaf. The position of an internal node v equals the po­
sition of the rightmost descendent leaf of its left­
hand son; this number indicates where the borderline 
lies from the two parts resulting from splitting the 
tree along the path from v to the root. 

A canonical subtree (CS) of Tis a binary subtree 
of height 2d having as root a node of rank 2 d; the 
number dis called the rank of the CS. The subtree of 
a CS consisting of its root with all its left(right) 
hand side descendents is called a left(right) canonical 
subtree. 

Clearly the complete tree is a canonical subtree 
of rank h; it is decomposed into a top tree of rank 
h - J and 2k/2 (= ✓ii) bottom trees of the same rank, 
which is in accordance with the "divide and conquer" 
approach of a "hyper-queue" of "subqueues" suggested 
in the preceding section. 

To any node v of T we associate the following sub­
trees which are called the canonical subtrees of v. Let 
d = RANK (v). 

UC(v): the unique canonical subtree of rank d having v 
as a leaf. 

LC(v): the unique canonical subtree of rank d having v 
as a root. 

Note that UC(v) is not defined if vis the root whereas 
LC(v) is not defined if vis a leaf of T. When d = 0, 
UC(v) and LC(v) consist of three nodes. Note moreover 
that the rank of the root of UC(v) and the rank of the 
leaves of LC(v) is higher than d. 

The left(right) canonical subtree of LC(v) is de­
noted LLC(v) (RLC(V)). LC(v) and the half of UC(v) con­
taining v together form the reach of v, denoted R(v). 
The dynamical information stored at v depends only on 
what happens within its reach. The reach of the top is 
the complete tree, whereas the reach of a leaf is the 
set of leaves. See diagram 2 for an illustration. 

Clearly the reach of an internal node v of rank d 
is a subset of some canonical subtree of rank d + I, 
denoted C(v). We say that v lies at the center-level 
of C(v); moreover, vis called the center of its reach 
R(v). 

For each node v and each j ,; h we denote by 
FATHER(v,j) the lowest proper ancestor of v having 
rank 2 j. Clearly FATHER(v,h) equals the root t of T, 
whereas FATHER(v,O) is the "real" father of v in T 
(provided v # t). At each node we have an array of h 
pointers father[O : h-1] such that father[il yields the 
rank - i father of v. Since FATHER(v,h) always yields 
the root of the tree this element doesn't need to be 
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included. These pointers enable us to climb along a 
path in the tree to a predetermined level in O(h) steps. 
Moreover, given the root of a cs U and one of its 
leaves, we can proceed in a single step to the center 
of the smallest reach containing the two which is en­
tirely contained within U. 

The static information at a node contains moroever 
its position and if it is an internal node its rank and 
level. The static information can be allocated and ini­
tialized in time O(n log log n); details will be given 
in the next section. 

-------- level 1 + 2d, rank-,. d 

rank < d 

level 1, rank d 

rank < d 

C(v) 

Diagram 2: The canonical subtrees of v. R(v) is the 
shaded area. 

4.2. Dynamical information 

The dynamical information at internal nodes is 
stored using four pointers 1 min, 1 max, r min and r max 
and an indicator field ub, which can assume the values 
plus, minus and undefined. At leaves the dynamical in­
formation consists of two pointers successor and prede­
cessor, and a boolean present. 

Let Sc {I , ... ,n} be a set which has to be repre­
sented in our stratified tree. We say that the leaves 
corresponding to members of Sand all their ancestors 
in the tree are present; the present nodes are exactly 
the nodes which were marked in our silly structure. A 
present node can become active and in this case its in­
formation fields contain meaninful information. The 
values of these fields of a non-active internal node 
are: 1 min = nil, 1 max= nil, r min= nil, r max= nil 
and ub =undefined.For a non-active leaf these values 
are predecessor= nil, successor= nil, present = false. 
For an active leaf v the meaning of these fields should 
be: 

predecessor: 

successor 
present 

points to the leaf corresponding to the 
predecessor in S of the number correspond­
ing to v if existent; otherwise predeces­
sor = ni 1. 
analogous for the successor 
true 

Remember that a branchpoint is an internal node 
having two present sons. 

Let v be an internal node, and denote the top of 
C(v) by t. If vis active its dynamical information 
fields have the following meaning: 

1 min: points to the leftmost present leaf of LLC(v) 
if such node exists; otherwise 1 min= nil. 

l max: idem for the rightmost present leaf of LLC(v) 
r min: idem for the leftmost present leaf of RLC(v) 
r max: idem for the rightmost present leaf of RLC(v) 
ub plus if there occurs a branchpoint in between 

v and t, and minus otherwise. 

If vis an active internal node it is present and 
consequently LC(v) contains at least one present leaf; 
this shows that it is impossible to have an active in­
ternal node with four pointers equal to nil. 

As suggested in the preceding section the time 



needed to insert a first or to delete a last element 
should be independent of the s~ze of the tree, This is 
realized by preventing present nodes from becoming ac­
tive unless their activity is needed. This is expressed 
by the following. 

Properness aondition: Let v be a present internal node. 
Then vis active if and only if there exists a branch­
point in the interior of the reach of v (i.e. there ex­
ists a branchpoint u E R(v) which is neither the top 
nor a leaf of C(v)}. 

A leaf is active if and only if it is present; the 
root is active iff the set is non-empty. 

(Actually the case where S = 0 is degenerate and 
leads to several programming problems, which were pre­
vented in practice by including n in Sas a permanent 
member.) 

If the internal node vis non-active but present 
then there is a unique path of present nodes going from 
the top t of R(v} t:o a unique present leaf w of C(v)_ 
contained in R(v}. In our approach we can proceed from 
t tow and backwards without ever having to visit v, 
making it meaningless to store information at v. 

If some canonical half-tree has two present leaves 
then all its present nodes at its center level are ac­
tive. Also if a node v of rank dis active then 
FATHER (v,d) is active as well. We leave the verifica­
tions of these assertions as an exercise to the reader. 

The set Sc {l, •.. ,n} is represented as follows. 
First the leaves corresponding to the elements of Sand 
all their ancestors are declared to be present. Next we 
compute using the properness condition which present 
nodes become active. Finally the dynamical fields of 
all active and non-active nodes are given their proper 
values. The resulting information content is called the 
representation the the set S. We leave it to the reader 
to convince himself that this representation is unique, 

(In our actual program the structure is initial­
ized at S = {n}, representations of all other sets be­
ing the result of execution of a sequence of instruc­
tions from the extended repertoire.) 

An example of a proper information content is 
given in diagram 3 (omitting the evident doubly linked 
list data). The symbol"-' denotes nil resp. undefined. 

0 

a b C 

LEVEL RANK LMIN Ll1AX RMIN RMAX UB 

t I 6 4 a C '\, '\, 

j 12 2 h h i i 
h 8 3 '\, '<, a b + 
i 8 3 '\, '\, C C + 
g 6 l d d e e 
d 4 2 a a '\, '\, + 
e 4 2 '\, '\, b b + 
f 4 2 '\, '\, '\, '\, 

Diagram 3: Example of a proper information content. 
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5. OPERATIONS ON THE STRATIFIED TREE STRUCTURE 

Once having described the representation of a set 
S by assigning values to particular fields in the stra­
tified tree, the next step is to indicate how the set­
manipulation operations mentioned in section I can be 
executed such that 
(i) a processing time of O(h) = O(log log n) is real­

ized; 
(ii) the structure of the representation is preserved, 

i.e. the properness condition should remain va­
lid. 
Moreover we must indicate how the static informa­

tion together with a legitimate initial state for the 
dynamic information can be created in the proper time 
and space (i.e. both of order n log log n). 

In this section we pay no attention to the self­
evident operations needed to manipulate the doubly link­
ed list structure formed by the leaves of our tree, Fur­
thermore we assume that always n E S; the driver will 
insert this element at initialization and will take 
care that this element is never deleted from S. 

5.1, Initialization 

Initialization takes place during a single tree­
transversal in pre-order, When a node is processed its 
father-pointers and its position, and in case of inter­
nal nodes its rank and level are stored in the appro­
priate field. The needed computations are based on the 
following relations: 
(i) the fathers of the top are nil; the fathers of a 

direct son v of a node w where RANK(w) = d satis­
fy 

FATHER (v,j) = w for j :,; d 
FATHER (v,j) = FATHER (w,j) for j > d. 

The node w is accessible during the processing of 
v by use of a parameter fath in the recursive pro­
cedure which executes the tree-transversal. 

(ii) the level of a node is one less that the level of 
its father 

(iii) the position of the leftmost node at level i > 0 

equals 2i-l the position of any other node at 

level i equals 2i + the position of the last node 
at level i processed before; the leaves are pro­
cessed in increasing order of their position 

(iv) the rank of a node depends only on the level, and 
can be stored using a pre-computed table of size 
k = log n. 

Once having pre-computed the needed powers of 2 by re­
peated additions, the above relations show how the sta­
tic structure is initialized without having "illegiti­
mate" instructions like multiplications and bit-manipu­
lations, in time ()(log log n) per node processed. Since 
there exist 2.n - I nodes this shows that the initiali­
zation takes time O(n log log n). The space 
O(n log log n) follows since the space needed for each 
node is O(log log n). 

Pre-computing of the ranks in time O(log n) using 
only additions is left as an exercise to the reader. 

5.2. Operations 

The extended instruction repertoire can be expres­
sed (disregarding the doubly linked list operations) in 
terms of three primitive operations insert, delete and 
neifhbour. Each of these operations is described by a 
linearly recursive procedure. The procedures are called 
upon the complete tree of rank h. If called upon a ca­
nonical subtree the procedures either terminate within 
constant time independent of the rank, or the procedure 
executes a single call of a top or bottom canonical 
subtree of rank one less preceded and followed by a se­
quence of instructions taking constant time independent 
of the rank. A call upon a subtree of rank O terminates 
without further recursive calls of the procedure. From 



the above assertions which can be veritied by inspec­
tion of the procedure bodies, it follows directly that 
the run-time of each procedure i:s ot order h = log log n. 
Concerning the preservation of the correct structure, I 
refer to the PASCAL implementation which has worked 
without errors. Moreeover I teel that the correctness of 
the algorithms can ·E,e proved using one of the more in­
formal approaches based on recursion-induction, but no 
such proof has been given till now; this approach was 
used successfully during the debugging stage of the de­
velopment of the implementation. To stimulate research 
in correctness proofs, I will award the prize of ten 
dollars (US $10.00) to the first person suDlllitting a 
convincing correctness proof of my procedures along the 
lines sketched above. 

In the execution of an algorithm we have fre·quent­
ly the situation that we have a CS with root t and leaf 
v and that we want to inspect or modify the fields at t 
in the direction of v, i.e. the left-hand fields at t 
if v is a left-hand descendent of t etc. To decide whe­
ther a certain descendant of t lies in the left- or 
right-hand subtree it is sufficient to compare the po­
sitions of the two nodes. We have in general: 

The descendant v oft is a left-hand descendant iff the 
position of v is not: greater than the position of t, 

Actually the position of a node was introduced to 
facilitate this easy test on the handiness of a descen~ 
dant. 

The procedures insert, delete and neighbour use 
the following primitive operations. 

myfields ( v, tl yields 

mymin (v,t) yields 

mymax (v,tl 
yourfields (v,t), yourmin 

yield 

a pointer to the fields at t 
in the direction of v. This 
pointer is of the type 
fieldptr. 
the value of the min-field at 
tin the direction of v 
(which happens to be a point­
er). 
analogeous for the maxfield, 
(v,t) and yourmax (v,t) 
the analogeous values of the 
field at tin the other direc-
tion. 

minof ( t J yields the leftmost value of the four 
pointed fields at t if tis 
active, and nil otherwise. 

maxof (t) yields the rightmost value analog-
eously. 

The type ranktp is the subrange 0 .• h. 

Finally the procedure clear gives the dynamic 
fields at its argument the values corresponding to the 
non-active state. The identifiers mentioned in the pro­
cedures mostly are of the type "pointer to node" (ptr) 
where "node" is a record-type containing the fields men­
tioned in the preceding sections. 

5.2.1. The procedure insert 

insert is a function procedure yielding as result 
the value of a pointer to the neighbour of the node be­
ing inserted. This neighbour is subsequently used for 
inserting the mode into the doubly linked list. (It 
should be mentioned that we tacitly have generalized 
the meaning of neighbour to the case of a CS which is 
not the complete tree.) 

insert has five parameters called by value; its 
procedure heading reads: 

function insert (leaf, top, pres: ptr, no branchpoint: 
boolean, order: ranktp): ptr, 

The meaning of the parameters is as follows: 

order: 

leaf: 

the rank of the CS on which the procedure is 
called 
the node to be inserted 

top: the root of the CS on which the procedure is 
ciilled 
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pres: a present leaf of the CS on which the procedure 
is called of the same handiness as leaf at top 

nobranchpoint: true iff leaf's side of the CS on which 
the procedure is called contains no branchpoint. 

At first glance the parameter pres seems to be un­
necessary since its value can be derived from the values 
of myfields(leaf, top). However in the case where the 
CS under consideration is a top-CS of a CS of next high­
er rank the fields at top refer to nodes at a level far 
below the level of leaf and consequently their values 
may be misunderstood. This danger (to be dealt with by 
"dynamic address translation" in the preliminary version 
of our data structure [ 3 ]) can not be solved using bit 
manipulation instructions on node-addresses since their 
run-time should be charged according to their length: 
log n, which clearly is prohibitive. Actually this "mis­
take" was responsible for the major bugs discovered dur­
ing the process of implementing our structure. 

A call of insert terminates without further recur­
sive calls if leaf's side of the CS under consideration 
does not contain a present leaf (pres= nil). Otherwise 
the nodes hl = FATHER (leaf, order-I) and 
hp= FATHER (pres, order-I) are computed. Now if 
nobranchpoint is true then hp is present without being 
active and special actions should be undertaken in this 
case. In this case hl is present iff hl = hp and depend­
ing on this equality either the bottom-call 

insert(leaf, hl, mymin (leaf, hl), true, order-1) 

or the top-call 

insert (hl, top, hp, true, order-1) 

is executed after having "activated" the right fields 
at hp and hl. 

In this situation the procedure delivers pres as 
its value. 

If nobranchpoint is false then hl is present iff 
it is active which is tested by inspecting its ub-field. 
If hl is active the bottom-call 

insert (leaf, hl, mymin (leaf, hl), mymin (leaf, hl) = 
mymax (leaf, hl), order-1) 

is executed and its value is yielded as the result of 
insert. Otherwise, the top-call 

insert (hl, top, hp, nobranchpoint, order-1 l 

is executed after having set nobranchpoint := (hpt.ub = 
minus) and having activated the fields at hl and hp. 
This call yields as a result the neighbour of hl in the 
top-tree in nb, and depending the outcome of a compari­
son between the positions of hl and nb the value of 
insert equals minof (nb) or maxof (nb). 

After these activities the fields at the top may 
have to be adjusted if the current call is a call on a 
bottom-CS, which is the case iff order equals the rank 
of top. From this point of view the complete tree has 
to be considered a bottom-CS, which explains why the 
levels are numbered from the leaves to the top instead 
of the reverse order as was done in the preliminary re­
ports on our structure [3,4]. 

The initial call of insert reads: 

insert (pt, root, mymin (pt, root), 
mymin [pt, root) = mymax (pt, root), hl 

where it is assumed that root is active and pt is not a 
present leaf. (These conditions are enforced by the dri­
ver.) 

We now give the complete PASCAL text of insert. 

BIBUOTHEEK MATHEMATISCH CENTRUM 
_ -AMSTERDAM--



function insert(leaf, top, pres ; ptr; 
nonbranchpoint : boolean1 order : ranktp) 

var hl, hp, nb : ptr; fptr : fieldptr; 

begin if pres= nil then 
begin fptr:= myfields(leaf, top); 

with fptrt do 
begin min:= leaf; max:= leaf end; 
if leaft.position <= topt.position then 
insert:= topt.rightt.min 

else insert:= topt.leftt.max 
end else 
begin hl:= leaft.fathers[order - 1]; 

hp:= prest.fathers[order - 11; 
if nobranchpoint then 

if hp<> hl then 
begin fptr:• myfields(leaf, hl); 
with fptrt do 

begin min:= leaf; max:= leaf end; 
fptr:= myfields(pres, hp); 
with fptrt do 

begin min:= pres; max:= pres end; 
hlt.ub:= plus; hpt.ub:= plus; 

ptr; 

nb: = insert ( hl, top, hp, true, order - 1 l ; 
insert:= pres 

end else 
begin fptr:• myfields(pres, hp); 
with fptrt do 

begin min:= pres; max:= pres end; 
hpt.ub:= m:inus; 
insert:= insert(leaf, hl, mymin(leaf, hl), 

true.order - 1) 
end 

else if hlt.ub <> undefined then 
insert:= insert(leaf, hl, mymin(leaf, hl), 

mymin(leaf, hl) = mymax(leaf, hl), order - 1) 
else 

begin fptr:= myfields(leaf, hl); 
with fptrt do 

begin min:= leaf: max:= leaf end; 
nobranchpoint:= hpt.ub = minus; 
hlt.ub:= plus; hpt.ub:= plus; 
nb:= insert(l1l, top, hp, 

nobranchpoint, order - 1); 
if hit.position c= nbt.position then 
insert:= minof(nbl else insert:= maxof(nb); 

end; 
fptr:= myfields(leaf, top); 

if topt.rank • order then with fptrt do 
if leaft.position < mint.position 

then min:= leaf else 
if leaft.position > maxt. position 
then max:= leaf 

end; 
end; 

5.2.2. The procedure delete 

The procedure delete yields no value. It has six 
parameters, the first three of which are called by val­
ue the others being called by reference (although 
cailing them by result should be as good; this i~ how­
ever not possible in PASCAL). The procedure heading 
reads: 

procedure delete (l,aaf, top : ptr; order : ranktp; 
var pres 1, pres 2 : ptr; 
var nobranchpoint : boolean); 

The meaning of the value-parameters is as follows: 

leaf: 
top: 
order: 

the leaf to be deleted 
the root of the CS considered 
the rank of the CS considered 

The remaining parameters have after a call of de­
lete the following meaning: 

pres 1, pres 2: 

nobranchpoint: 
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present leaves in the CS considered, 
one o~ thell) behlg the neighbour of leaf 
(see explanation below) 
true if! there occurs no branchpoint on 
the path from top to pres 1. 

A call of delete should make non-present leaf and 
its ancestors up to the lowest branchpoint but in doing 
of other nodes on different paths which were active may 
have to become inactive. As long as this holds 
nobranchpoint remains true. 

Proceeding downwards from the other son of the low­
est branchpoint as near as possible we arrive at the neigh­
bour; if we however select always the remotest present 
node we arrive at a node which might be called the ex­
trem~ of leaf in the tree. The extreme, as a "binary 
approximation" of leaf is as good as the neighbour, but 
in the usual sense it is as far away as possible. 

After a call of delete pres 1 and pres 2 are the 
neighbour and the extreme of leaf ordered according to 
their positions (i.e. pres 1t.pos ~ pres 2t.pos). 

delete terminates without inner call if the lowest 
branchpoint equals top; at this time pres 1 and pres 2 
are initialized with the values yourmin(leaf, top) and 
yourmax(leaf, top) and nobranchpoint is made true if 
these two values are equal. 

Updating of these values proceeds depending on whe­
ther the call just terminated was a top or a bottom call 
(which is known to the current incarnation of delete). 
If the last call was a top call then 
pres 1 := minof(pres 1); pres 2:= maxof(pres 2) and their 
equality is tested again to decide whether nobranchpoint 
should remain true; if so the node formerly pointed at 
by pres 1 is disactivated. 

If the last call was a bottom call the ub field at 
the former top and the pointers away from pres 1 at this 
node are inspected to decide whether there occurs a 
branchpoint at or above this node; if not the former top 
is disactivated. 

The fields at the current top are adjusted only 
when the current call is a bottom call. 

The initial call to delete reads: 

delete(pt, root, h, pres 1, pres 2, nobranchpoint); 

The driver makes sure that pt is a present leaf which is 
not the unique present leaf. The complete text of delete 
is given below. 

procedure delete(leaf, top : ptr; order : ranktp; 
var pres1,pres2: ptr; var nobranchpoint : boolean); 

var fptr : fieldptr; hl, hp : ptr; 

begin fptr:= myfields(leaf, top); 
with fptrt do if min= max then 

begin min:= nil; max:~ nil; 
pres1:= yourmin(leaf, top); 
pres2:= yourmax(leaf, top); 
nobranchpoint:= pres1 = pres2 

end else 
begin hl:= leaft.fathers,order - 11; 

if minof(hll = maxof(hll then 
begin delete(hl, top, order - 1, 

pres1, pres2, nobranchpointl; 
clear(hl); hp:= pres1; 
if nobranchpoint then hpt.ub:= minus; 
pres1:= minof(pres1); pres2:= maxof(pres2); 
if nobranchpoint then 

if (pres1 = pres2) then clear(hp) 
else nobranchpoint:= false 

end else 
begin delete(leaf, hl, order - 1, 

pres1, pres2, nobranchpoint); 
if nobranchpoint then 

if (hlt.ub = minus) 
and (yourmin(pres1, hll = nil) 

then clear(hl) 
else nobranchpoint:= false 

end; 



end; 

if topt.rank = order then 

end 

if min leaf then min:= pres.1 else 
if max = leaf then max:·= pres2 

5.2.3. The procedure neighbour 

The function neighbour has five parameters which 
are called by value. Their meaning is about equal to the 
meaning of the paralllleters in insert, however pres is 
replaced by the pair prnin and prnax. 

neighbour may be called both for present and non­
present leaves. This is justified by the fact that with­
out expensive bit-manipulation on the positions it is 
impossible to decide whether the neighbour is the pre­
decessor or the successor of the given argument. 

prnin and prnax are the left and rightmost present 
leaf on leaf's side of the CS under consideration. 

neighbour terminates without an inner call in the 
following cases: 
(i) pmin = nil; now the neighbour resides on the other 

side of the tree 
(ii) prnin = prnax = leaf; idem 
(iii) leaf lies outside the interval prnin - pmax; in 

this case neighbour yields the nearest of the two 
in the usual sense without needing to investigate 
the inner structure of the tree. 

The short-cut (iii) is unique to the procedure 
neighbour. If none of these situations occurs a recur­
sive call is performed. This inner call is a top call 
if either the node hl at the center level in between 
leaf and top is not present (which in these circum­
stances is equivale.nt to non-active) or if leaf is the 
unique present descendent of hl; otherwise a bottom call 
is executed. 

The initial call of neighbour reads: 

neighbour[pt, root, rnyrnin[pt, root), rnyrnax[pt, root), hl 

If called upon an empty tree or on the unique pre­
sent leaf neighbour yields nil as its result; the driver 
takes care that these degenerate cases are looked after. 

The text of neighbour is given below: 

function neighbour[leaf, top, prnin, prnax : ptr; 
order ranktp) : ptr; 

vary, z, nb, hl : ptri pos : 1 .. n; 

begin pos:= leaft.position; 
if [prnin = nil) 

or [(prnin = prnax) and [prnin leaf)) then 
if pos <= topt.position 
then neighbour:= yourrnin[leaf, top) 
else neighbour:= yourrnax(leaf, top) 

else if prnint.position > pos then neighbour:= prnin 
else if prnaxt.position < pos then neighbour:= prnax 
else 
begin hl:= leaft.fathers[order - 17: 

y:= rninof[hl); z:= rnaxof[hlli 
if [[y = zl and [y = leaf)) 

or [hlt.ub = undefined) then 
begin nb:= neighbour[hl, top, 
prnint.fathers[order -1], prnaxt.fathers[order -17, 

order - 1); 
if hlt.position < nbt.position 
then neighbour:= rninof[nbl 
else neighbour:= rnaxof(nb) 

end 
else neighbour:= neighbour[leaf, hl, 

end 
end; 

rnyrnin(leaf, hl), rnyrnax(leaf, hl), order - 1) 

5.2.4. Some remarks concerning the procedures 

(l) The procedures insert, delete and neighbour all 
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have the property that their innermost call is a bottom 
call, where we consider the co~plete tree to be a bot­
tom tree as well, This observation is due to KMS & 
ZIJLSTRA [SJ. 
(2) At a node of rank d the father pointers of rank ;, d 
are never inspected by the procedures, This results from 
the fact that their values are preserved in the stack of 
local variables of the envelopping recursive calls; in 
particular during ad-th order call the d-th rank father 
of all nodes within the CS under consideration (exclud­
ing top) is passed on in the parameter top. By omitting 
the space needed for these pointers one might reduce the 
storage requirements by a constant factor. 

6. APPLICATIONS OF THE STRATIFIED TREE 

In this section we discuss the topics of the repre­
sentation of off-size priority queues (i.e. n not of the 

h 
form 22 ), and the problem of manipulating a large number 
of equal size priority queues at once. The problem of 
reducing the storage requirements in the latter case 
without losing the O(log log n) processing time is left 
unsolved. 

6.1. Off-size priority queues 

Let n be an arbitrary number and select h such that 

22h-l < n ~ 22h. Using the rank-h stratified tree to re­
present a priority queue of size n seems prohibitive 
since both its size and its initialization time are of 

order h. 22h which might be about as large as n2 • log log n. 
To prevent this space explosion we can either eliminate 
bottom-subtrees or levels from the the rank-h tree. 

6.1.1. Elimination of lower subtrees 

In this approach all lower CS of rank h - I which 
have no leaves corresponding to numbers~ n are neither 
allocated nor initialized. In practice this means that 
the right-hand side of the tree is never used as long 

as n < 22h/2. If the driver takes care about degenera­
cies the procedures of the preceding section work cor­
rectly without notifying that a large part of the tree 
is not physically present. The overhead in time and 
space is bounded by a constant factor 3. 

6.1.2. Elimination of levels 

Let k = r1og nl. A binary tree of height k is di­
vided into a top tree of height rk/27 and bottom trees 
of height Lk/2J, which trees are divided themselves 
analogously. This leads to a canonical decomposition 
where certain rank-O levels are not physically present. 
Once having pre-computed the function which attaches a 
rank to each level (which can be solved in time 
O(log n. log log n)), the algorithms of the preceding 
section can be used without modifications. The needed 
overhead factor in time and space is bounded by a con­
stant factor 2. 

6.2. Representation of many priority queues 

If one has to represent several priority queues it 
makes sense to separate the static and dynamical infor­
mation in the nodes. The static information is about e­
qual for each queue. More in particular, using an "ad­
dress plus displacement" strategy, where the position 
of a node is used as its address, one has access to each 
node whose position is known. Since all nodes are acces­
sed by father pointers from below, or by the downward 
pointers from the dynamical information, it is suffi­
cient to have available a single pre-computed copy of 
the static information in a stratified tree. For each 
queue involved in the algorithm a O(n) size block of 
memory, directly accessible by the position of a node, 
should be allocated for the dynamical information. 



Using the above strategy we arrive at the 
O(n log log n. A(n))-time, O(n2).-space representation 
of a mergeable heap promised in the introduction. It is 
clear that the larger part of the space required is ne­
ver used, and luckily there is a well-known trick which 
allows us to use this much s•pace w:j.thout initializing 
it [I]. Still it is a. reasonable question whether SOJI)e 
dynamical storage allocation mechanism can be designed 
which will cut down the storage requirement to a more 
reasonable level. 

A direct approach should be to allocate storage 
for a node at the time this node is activated. This me­
thod, however, seems to be incorrect. One must be able 
to give the correct answer to questions of the follow­
ing type; "Here I am considering a certain CS with root 
top and some leaves pres and leaf, where pres is pre­
sent and leaf is not,. Let hl be the ancestor of leaf at 
the center level. To decide whether hl is active, and, 
if so, where it is allocated," Inspection of the ances­
tor at center level of pres will yield the correct an­
swer only if pres is actually the neighbour of leaf; 
this however is not guaranteed in our algorithm. 

The same problem arises if one first tries to com­
pute the neighbour of leaf. Consequently it seems ne­
cessary to reserve a predetermined location to store 
hl which can be accessed knowing the position of hl in 
the CS under consideration and having access at its 
root. 

The following approach yields a representation of 
a mergeable heap in space O(n./n) without disturbing 
the O(log log n) processing time. Consider a rank d 
tree. As long as its left or right-hand side subtree 
contains not more than one present leaf, all necessary 
information can be stored at the root of the tree. If 
at a certain stage a second leaf at the same side must 
be inserted, the complete storage for the top tree is 
allocated as a consecutive segment, and a pointer at 
the root is made to refer to its initial address. In 
particular the nodes at the center level now have been 
given fixed addresses which are accessible via the root, 
The center-level nodes themselves are considered to be 
the roots of bottom trees of rank d - I which are treat­
ed analogously. In this manner a call of insert will 
allocate not more than O(/n) memory cells, whereas 
neighbour does not use extra memory and delete may re­
turn the space for a top tree if both sides of its en­
velopping CS have be,m exhausted except of a single 
leaf. 

The initial address of the current relevant stor­
age segment is given as a new parameter to the proce­
dures whose value is passed on to an inner call, unless 
all enveloppiES calls are bottom calls. 

The O(nln) bound on the used memory for the merge­
able heap algorithm is obtained by noting that at each 
intermediate stage the information contents are equal 
to one obtained by executing not more than n insert 
instructions. 

We complete this section by noting that the stor­
age requirements may be further reduced by replacing 
the binary division of the levels by an r-ary one for 
r > 2, which might r.asult for each E > 0 in an 
O(n log log n • A(n))-time, O(nl+E)-space representa­
tion of a mergeable heap. 

7. REDUCIBILITIES AMONG SET-MANIPULATION PROBLEMS 

The on-line manipulation of a priority queue, 
which is also known as the on-line insert-extract min 
problem, is one out of a multitude of set manipulation 
problems. Each of these problems has moreover a corres­
ponding off-line variant. In the off-line variant the 
sequence of instructions is given in advance and the 
sequence of answers should be produced, the programmer 
being free to choose the order in which the answers are 
given. 

Clearly, each on-line algorithm can be used to 
solve the off-line variant, but the converse does not 
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hold. 
In [3] we have investigated the reducibilities 

among the on-line and off-line versions of the insert­
extract-min-, union-find- and insert-allmin problems. 
Here we say that a problem A can be reduced to a prob­
lem B if an alogirthm for B can be used to design an al­
gorithm for A having the same order of complexity, If 
moreover A and Bare both off-line problems it should 
be possible to translate an O(n)-size A problem on a 
O(n)-size structure into an O(n)-size B problem on a 
O(n)-size structure in time O(n). 

It has been shown by HOPCROFT, AHO & ULLMAN that 
the off-line insert-extract min problem is reducible to 
the on-line union-find problem [2], The author has shown 
that the off-line union-find problem is equivalent to 
the off-line insert-allmin problem [3]. Together with 
the "natural" reduction of on-line insert-allmin to on­
line insert-extractmin these reducibilities are repre­
sented in diagram 4 (the acronyms denoting the problems 
discussed). 

ONUF 

~II 
OFUF 

---------<I ONIEM 

~0-NI-AM~I 

~I ·~I 
;, 

I I OFIAM OFIEM 

nloglogn 

n A(n) 

Diagram 4: Reducibilities among set-manipulation 
problems 
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