
stichting

mathematisch

centrum

AFDELING ZUIVERE WISKUNDE

P. VAN EMDE BOAS

zw 55/75

~
MC

SEPTEMBER

PRESERVING ORDER IN A FOREST IN LESS THAN LOGARITHMIC TIME

Prepub I i cation

2e boerhaavestraat 49 amsterdam

BlBUOTHEEK MATHEMATISCH C,\i'il,
-AMSTERDAM-

PJUnted cu :t.he, Mclthema.uc.cu'.. Cen;tJr.e, 49, 2e. BoeJ1.haa.ve6.tJw.a;t, Am.o:t.eJ1.dam.

The. Mclthema:tic.cu'.. Ce.n;tJie., 6ounde.d :t.he. 11-th 06 Fe.bhuaJ1,y 1946, ,l6 a non­
phon,i..:t in.outt..Ltlon aiming clt :t.he. phomo.tion 06 pUhe. mclthema.uc..o and w
appUc.a.uon1.1. It ,l6 .opon.oohe.d by the. Ne.:t.he.J1.i.a.nd.6 GoveJ1.nme.nt thhough the.
Ne.:t.heJc.1.and-6 Ohganiza.uo n ooh the. Advanc.eme.nt O 6 PUhe. Re/2 e.Mc.h (z. w. 0) ,
by the. Munic.ipaUty 06 Am.o:t.e.hdam, by :t.he. Unive.Mily of, Am.oteJ1.dam, by
the. Fhe.e. Unive.Miltj clt Am.o:t.eJ1.dam, a.nd by indU.6.tJue/2.

AMS(MOS) subject classification scheme (1970): 68A20, 90BXX, 05C05

Preserving order in a forest in less than logarithmic time *)

by

P. van Emde Boas

KEY WORDS & PHRASES: Priority queue, mergeable heap, analysis of algorithm,

set manipulation, disjoint set-union algorithm,

binary tree

*) . . f . . d h s· h 1 This paper is not or review: it was presente at t e ixteent Annua
Symposium on Foundations of Computer Science, Berkeley, California.

BlBLIOTHEEK MA THEM/, 1
-AMSTERDAM-

,JI

PRESERVING ORDER IN A FOREST IN LESS THAN LOGARITHMIC TIME

* P. van Emde Boas
Mathematical Centre, Amsterdam, Netherlands /
Mathematical Institute, University of Amsterdam

ABSTRACT

We present a data structure, based upon a strati­
fied binary tree, which enables us to manipulate on­
line a priority queue whose priorities are selected
from the interval l ••• n, with an average and worst case
processing time of ()(log log n) per instruction. The
structure is used to obtain a mergeable heap whose time
requirements are about as good.

l • INTRODUCTION

The main problems in the design of efficient algor­
ithms for set-manipulation result from the incompatible
requests posed by the distinct operations one likes to
execute simultaneously. Instructions for inserting or
deleting or for testing membership of elements in sets
require a data structure supporting random access. On
the other hand instructions for computing the value of
the smallest or largest element, or the successor or
predecessor of a given element, require an ordered rep­
resentation. Finally instructions which unite two sets,
so far, have only been implemented efficiently using a
tree structure.

An example of an efficient algorithm which resolves
one of these conflicts is the well-known union-find al­
gorithm; its worst case average processing time per in­
struction has been shown to be of the order A(n) in
case of O(n) instructions on an n-elements universe,
where A is the functional inverse of a function with
Ackerman-like order of growth (cf. [l], [97).

The algorithms published until now to resolve the
conflicting demands of order and random access all show
a worst case processing time of O(log n) per instruc­
tion for a program of O(n) instructions on an n-elements
universe which has to be executed on-line. Clearly we
should remember that each instruction repertoire which
enables us to sort n reals by issuing O(n) instructions
needs an O(log n) processing time for the average in­
struction in doing so. However if the universe is as­
sumed to consist of the integers 0 •.. n-1 only, the in­
formation-theoretical lowerbound on the complexity of
sorting does not apply; moreover it is known that n in­
tegers in the range I ... n can be sorted in linear time.

Data structures which have been used to solve the
conflict between order and random access are (among
others) the binary heap, AVL trees and 2-3 trees. In
AHO, HOPCROFT & ULU1AN [I] 2-3 trees are used to sup­
port the instruction repertoire INSERT, DELETE, UNION
and MIN with a worst case processing time of order
O(log n) per instruction. The authors introduce the name
mergeable heap (resp. pr-i01'ity queue) for a structure
supporting the above operations (excluding UNION).

The ()(log n) processing time for manipulating pri­
ority queues and mergeable heaps sometimes becomes the
bottleneck in some algorithms; as an example I mention
TARJAN's recent algorithms to compute dominators in di­
rected graphs [10]. Consequently, if we can do the
mergeable heaps more efficiently, the order of complex­
ity of this algorithm can be reduced.

Another example is given by the efficient algorithm
for generating optimal Prefix Code, which was published
recently by PERL, GAREY & EVEN [5]. The factor log n

appearing in the worst-case run-time is caused by the
use of a binary heap for implementing a priority queue.

In the present paper I describe a data structure
which represents a priority queue with a worst case
processing time of O(log log n) per instruction, on
a Random Access Machine. The storage requirement is of
the order O(n log log n). The structure can be used in
combination with the tree-structure from the efficient
union-find algorithm to produce a mergeable heap with
a worst-case processing time of O((log log n) •A(n))
and a space-r~quirement of order O(n2). The possible im­
provements of the space requirements form a subject of
continued research.

I.I. Structure of the paper

Section 2 contains some notations and background
information, among which a description of the efficient
union-find algorithm. In section 3 we present a "silly"
implementation of a priority queue with an O(log n) pro­
cessing time per instruction, Reconsidering this imple­
mentation we indicate two possible ways to improve its
efficiency to O(log log n).

In section 4 we describe our stratified trees and
their decomposition into canonical subtrees. Next we
show how these trees can be used to describe a priority
queue with an O(log log n) worst and average case pro­
cessing time per instruction. The algorithms for per­
forming the elementary manipulations on stratified trees
are presented and explained in section 5. The algorithms
are derived from a PASCAL implementation of our priority
queue which was written by R. KAAS & E. ZIJlSTRA at the
University of Amsterdam [8]. It is explained how the
complete stratified tree is initialized using time
O(n log log n). Section 6 discusses how the structure
can be used if more than one priority queue has to be
dealt with; the latter situation arises if we use our
structure for implementing an efficient mergeable heap.
Finally, in section 7, we indicate a few relations with
other set-manipulation problems.

Throughout sections 4, 5 and 6 identifiers typed
in this different type font denote the values and
meanings of the same identifiers in the PASCAL implemen­
tation.

2. GENERAL BACKGROUNDS

2.1. Instructions

Let n be a fixed positive integer. Our universe will
consist of the subsets of the set {l, ..• ,n}. For a set
Sin our universe we consider the following instructions
to be executed on S:

MIN
MAX
INSERT (j)
DELETE (j)
MEMBER (j)
EXTRACT MIN

Compute the least element of S
Compute the largest element of S
S:=Su{i}
S:=S\{j}
Compute whether j E S
Delete the least element from S

EXTRACT MAX Delete the largest element from S
PRECEDECESSOR (j): Compute the largest element in S <
SUCCESSOR (j) Compute the least element in S > j

*) Work supported by grant CR 62-50. Netherlands Organization for the Advancement of Pure Research (Z.W.O.).

NEIGHBOUR (j): Compute the neighbour of j in S (see

ALL MIN (j)
ALL MAX (j)

definition below).
remove from Sall elements~ j
remove from Sall elements~ j.

(If an instruction cannot be executed properly, e.g. MIN
if S = 0, an appropriate action is taken).

The neighbour in Sofa number j E {l, ... ,n} is the
element i E S such that i - 1 has the largest segment of
significant digits in its binary development in common
with j - l; if more than one element in S fits this des­
cription, the one among them which is the nearest to j
in the usual sense is selected.

The neighbour of j is always to be found among the
predecessor and successor of j, but it is difficult to
tell in advance which of the two it will be. In section
3 we explain in what "geometrical" sense the neighbour
of j is indeed the element in S which is the nearest to
j. For this moment we give the following
Example: Let n = 16. S = {1,5,13,14}. The corresponding
binary representations are 0000, 0100, 1100 and 1101.
The neighbour of 4 (corresponding to 0011) equals 1
whereas the neighbour of 15 (corresponding to 1110)
equals 14, which is nearer in the usual sense to 15 as
13.

2.2. Priority queue~

A priority queue is a data structure representing
a single set Sc {1, ... ,n} on which the instructions
INSERT, DELETE, and MIN can be executed on-line (i.e.
some arbitrary order and such that each instruction
should be executed before reading the next one). Al­
though the priority queue is our main target, we men­
tion at this point that actually the complete instruc­
tion repertoire give,n above is supported on our data
structure with a worst and average case processing time
of O(log log n) per instruction (except for the last
two instructions where the processing time is
O(log log n) for each element removed).

The complete list of instructions above will be
called the extended repertoire hereafter.

2.3. Union-find problem

For arbitrary partitions IT= {A,B, ... } of {l , ..• ,n}
we consider the following instructions:

FIND (i) compute the set currently containing i
UNION (A,B,C): Form the union of the sets A and Band

give the name C to this union.

There is no specific name for a data structure
supporting these two instructions; the problem of man­
ipulating such a structure is known as the union-find
problem.

The well known efficient union-find algorithm uses
a representation of sets by means of trees. Each node
in a tree corresponds to a member of a set and contains
a pointer which either points to the name of the set if
the node happens to be the root of his tree, or to his
father in the tree otherwise. A UNION instruction is
executed by making the root of the smaller tree a direct
son of the larger one (balancing). To execute a FIND
instruction the nod,~ corresponding to the element asked
for is accessed directly, and his pointers are followed
until the root of his tree is found; in the mean time
all nodes which are encountered during this process are
made direct descendants of the root, thus reducing the
processing time at subsequent searches.

It has been established only recently how efficient
the above algorithm is. Whereas its average processing
time has been estimated originally as O(log log n)
(FISHER [6]) and 0(1.og* n) (HOPCROFT & ULLMAN 171 and
independently PATERSON (unpublished)), a final upper
and lowerbound O(A(n)) has been proved by TARJAN [9].
Remember that log* n is the functional inverse of the

22 3n function __,, i.e. log* n equals the number of ap-

2

plications of the base-two logarithm needed to reduce
n to zero. The function A(n) is a functional inverse of
a function of Ackerman-type which is defined as follows:
Define a by: a(O,x) = 2x; a(i,O) = O; a(i,1) = 2 for
i ~ O; and a(i+l,x+l) = a(i,a(i+l,x)). Then we let
A(n) = min{j I a(j ,j) ~ n}.
(The above definitions differ only inessentially from
the ones given by TARJAN).

2.4. Mergeable heaps

A mergeable heap is a data structure which supports
the instructions INSERT, DELETE, MEMBER and MIN on sets
which themselves can be united and searched, i.e. UNION
and FIND are also supported. A mergeable heap may be
obtained from the union-find structure by replacing the
unordered collection of sons of a certain node by a
priority queue where the "value" of a node equals the
minimal element in the set formed by this node and its
descendants.

In such a representation the instructions are exe­
cuted as follows:

UNION: The root-priority queue of the structure con­
taining the least number of elements is inserted in the
root-priority queue of the other structure at the place
corresponding to its least element.

FIND: First one proceeds from the element itself "up­
wards" to find the root-priority queue of the structure
to which it belongs. Next, going downwards from this
root back to the element the priority queues along
this path are disconnected by delete operations. The
queues are then inserted in the root priority queue at
the position of their (possibly modified) least element.

MIN: By executing a min-instruction at the root-priority
queue of a structure its least element will become
known; a FIND instruction on this element will yield
access to the location where it is stored.

INSERT & DELETE: These operations are reduced to the
priority queue insert and delete b_y first executing a
FIND instruction. The same holds for MEMBER.

In doing so the average processing time for an in­
struction becomes A(n) times the processing time for
the priority queue instructions used. As long as the
latter time is not reduced below O(log n) the proposed
representation of a mergeable heap should be considered
inefficient, since there are O(log n) structures known
for mergeable heaps (2-3-trees with unordered leaves
[l]). Using our new efficient priority queue the pro­
posed scheme becomes (as far as time is concerned) more
efficient than the traditional ones. For the space re­
quirements the reader is referred to section 6.

3. A "SILLY'' PRIORITY QUEUE WITH O(log n) PROCESSING
TIME

3.1. The structure

The scheme described in this section is designed
primarily in order to explain the ideas behind the op­
erations to be executed on the much more complicated
structure in the next section. k

We assume in this section that n = 2 . We consider
a fixed binary tree of height k. The 2k = n leaves of
this tree will represent the numbers 1 ... n in their
natural order from left to right. The leaves thus rep­
resent the potential members of the set S. If we had
counted from Oto n - 1 this order is nothing but the
interpretation of the binary representation of a num­
ber as an encoding of the path from the root to the
leaf; the binary digits are read from left to right
where O denotes "go left" and 1 means "go right".

To each node in the tree we associate three point­
ers, linking the node to its father and its left- and
righthand son. Moreover each node has a one-bit mark

field.
A subset S s [! ... n] is represented by marking all

the leaves corresponding to members of S, together with
all nodes on the paths from these leaves to the root of
the tree; see diagram I •

·*· ft
I -t ' . * ~

/. \'+ ~

/ i
f ~
f J\

,,.>f l \
(fa •

11 / \
~ ~: ¼

't
~

,{,. "t

')· l .\

\'t::~

··r
-+,

°'1;

,\ ,, t

f \
Diagram I. Example of a five-element set representation

using mark bits.

It is easy to see that, using this representation,
the operations in the list in section 2 can be executed
in time O(k) = O(log n) for each item processed. (Note
that the operations ALLMIN and ALLMAX may remove more
than one item.)

We present the following sketches of algorithms:

INSERT (i)

DELETE (i)

MEMBER (i)
MIN (MAX)

mairk leaf i and all nodes on the path
from leaf i to the root, until you
encounter a node which was already
marked.
unmark leaf i and all nodes on the path
from leaf i to the root upto but not
including the lowest node on this path
having two marked sons.
test whether leaf i is marked.
proceed from the root to the leaves
selecting always the leftmost (right-
most) present son.

EXTRACT MIN (EXTRACT MAX): min (max) followed by delete
ALLMIN (j) : while MIN ,;; j do EXTRACTMIN od
ALLMAX is definedaiialogously. - -
PREDECESSOR (j): proceed from leaf j to the root unti 1

a node is encountered having j as a
righthand side descendent where the
lefthand son is marked. Proceed from
this lefthand son to the leaves always
taking the rightmost present son.

SUCCESSOR (j) is defined analgously.

Note that all instructions except PREDECESSOR and
SUCCESSOR use the lowest marked node on the path from
an unmarked leaf to the root or the lowest branchpoint
(i.e. a node having both sons marked) on the path from
a marked leaf to the root. An analogous instruction
which does not climb beyond the lowest "interesting"
node is the instruction

NEIGHBOUR (j) proceed from leaf j to the lowest node
such that the "other" son of this node
is marked. If this other son is a left­
hand son then proceed from this node
to the leaves always selecting the
rightmost marked leaf; otherwise se­
lect always the leftmost marked leaf.

If we represent the set furthermore using a doubly
linked list, such that each marked leaf contains (a

3

pointer to) the corresponding entry in the list, a call
of NEIGHBOUR followed by one or two steps in the list
will be adequate to execute a call of PRECEDECESSOR or
SUCCESSOR.

From the descriotion of the instruction NEIGHBOUR
it is clear in which sense the neighbour of a number j
is the "nearest" present element to j; the neighbour
has the largest possible number of common ancestors
and in case this condition does not define the neigh­
bour unambigously the neighbour is the other descendent
of the lowest common ancestor which has developed as
near to j as oossible.

3.2. Imorovements of the time efficiency

It is clear from the above descriptions that our
"silly" structure supports the extended repertoire with
an O(log n) processing time per instruction. Using the
doubly linked list as an "extra" representation INSERT
and DELETE and NEIGHBOUR take time proportional to the
distance in the tree traversed upon a call whereas MIN
and MAX take constant time.

The remaining instructions are "composite". This
observation opens a way to improve the efficiency. The
time saved by not climbing high upwards in the tree can
be used to perform more work at a single node. For ex­
ample, if we decide to use at each node a linear list of
present sons instead of a fixed number, we can easily
accomodate for a tree with branching orders increasing
from the root to the leaves without disturbing the O(k)
processing time. Using a tree with branching orders
2,3,4, ..• ,k which contains k! = n leaves, we can main­
tain a priority queue of size O(k!) in time O(k); the
above set up yields therefore an O(log n/log log n)
priority queue which is already better than we had be­
fore.

There is, however, much more room for improvement.
The operations which we like to execute at a single
node are themselves priority queue operations. Conse­
quently using a binary heap we can accomodate for the
branching orders 2,4,8, ••• ,2k, which yields a priority

f . "(2k2/2) d h . . . queue o size 11 , an t e processing time is re-
duced to O(/log n).

Note that in both modifications the space require­
ments remain of O(n), which is not true for the struc­
ture described in §4.

According to the "divide and conquer" strategy, we
should however use at each node the same efficient
structure which we are describing. This suggests the
following approach. The universe 11 •.. nl is divided in­
to /2i blocks of size /2i. Each block is made a priority
queue of size /2i, whereas the blocks themselves form
another priority queue of this size. To execute an
INSERT we first test whether the block containing the
element to be inserted contains already a present ele­
ment. If so, the new element is inserted in the block;
otherwise the element is inserted as first element in
its block and the complete block is inserted in the
"hyper-queue". A DELETE instruction can be executed
analogously.

Assuming that we can implement the above idea in
such a way that inserting a first and deleting the last
element in a block takes constant time independent of
the size of the block, the above description yields for
the run-time a recurrence equation of the type T(n) ,;;
,;; T(,1n) + I which has as a solution T(n) ,;; O(log log n).

Another way to improve the "silly" representation
which leads again to the same efficiency is conceived
as follows. As indicated the "hard" instructions pro­
ceed by traversing the tree upwards upto the lowest
"interesting" node (e.g. a branchpoint), and proceding
downwards along a path of present node.

If these traversals could be executed by means of
a "binary search on the levels" strategy, the proces­
sing time is reduced from O(k) to O(log k)
= O(log log n). A similar idea is involved in the effi-

cient solution of a special case of the lowest connnon
ancestor problem given by AHO, ~OPCROFT & ULLMAN [2].

The reader should keep both approaches in mind
while reading the sequel of this paper.

4. A STRATIFIED-TREE STRUCTURE

4.1. Canonical subtrees and static information

In this ·section we let h be a fixed positive inte­
ger. Let k = 2h and n = 2k. We consider a fixed binary
tree T of height k with root t having n leaves.

For I ,; j we d!efine RANK (j) to be the largest num-

ber d such that 2d [j and 2d+l % j. For example
RANK (12) = 2 and RANK (17) = 0. By convention we take
RANK (0) = h + I. d

Note that for j > 0, RANK (j) = d and j - 2 > 0
we have RANK (j) < RANK (j+2d) and RANK (j) < RANK (j-2d);
moreover RANK (j+2d) # RANK (j-2d).

The level of a node v in Tis the length of the
path from the leaves of T to v; the rank of vis the
rank of the level of v. Note that the rank of the leaves
equals h + I, and the rank of the top equals h; all
other nodes have lower ranks. The position of a leaf is
the number in the set {J, ... ,n} represented by this
leaf. The position of an internal node v equals the po­
sition of the rightmost descendent leaf of its left­
hand son; this number indicates where the borderline
lies from the two parts resulting from splitting the
tree along the path from v to the root.

A canonical subtree (CS) of Tis a binary subtree
of height 2d having as root a node of rank 2 d; the
number dis called the rank of the CS. The subtree of
a CS consisting of its root with all its left(right)
hand side descendents is called a left(right) canonical
subtree.

Clearly the complete tree is a canonical subtree
of rank h; it is decomposed into a top tree of rank
h - J and 2k/2 (= ✓ii) bottom trees of the same rank,
which is in accordance with the "divide and conquer"
approach of a "hyper-queue" of "subqueues" suggested
in the preceding section.

To any node v of T we associate the following sub­
trees which are called the canonical subtrees of v. Let
d = RANK (v).

UC(v): the unique canonical subtree of rank d having v
as a leaf.

LC(v): the unique canonical subtree of rank d having v
as a root.

Note that UC(v) is not defined if vis the root whereas
LC(v) is not defined if vis a leaf of T. When d = 0,
UC(v) and LC(v) consist of three nodes. Note moreover
that the rank of the root of UC(v) and the rank of the
leaves of LC(v) is higher than d.

The left(right) canonical subtree of LC(v) is de­
noted LLC(v) (RLC(V)). LC(v) and the half of UC(v) con­
taining v together form the reach of v, denoted R(v).
The dynamical information stored at v depends only on
what happens within its reach. The reach of the top is
the complete tree, whereas the reach of a leaf is the
set of leaves. See diagram 2 for an illustration.

Clearly the reach of an internal node v of rank d
is a subset of some canonical subtree of rank d + I,
denoted C(v). We say that v lies at the center-level
of C(v); moreover, vis called the center of its reach
R(v).

For each node v and each j ,; h we denote by
FATHER(v,j) the lowest proper ancestor of v having
rank 2 j. Clearly FATHER(v,h) equals the root t of T,
whereas FATHER(v,O) is the "real" father of v in T
(provided v # t). At each node we have an array of h
pointers father[O : h-1] such that father[il yields the
rank - i father of v. Since FATHER(v,h) always yields
the root of the tree this element doesn't need to be

4

included. These pointers enable us to climb along a
path in the tree to a predetermined level in O(h) steps.
Moreover, given the root of a cs U and one of its
leaves, we can proceed in a single step to the center
of the smallest reach containing the two which is en­
tirely contained within U.

The static information at a node contains moroever
its position and if it is an internal node its rank and
level. The static information can be allocated and ini­
tialized in time O(n log log n); details will be given
in the next section.

-------- level 1 + 2d, rank-,. d

rank < d

level 1, rank d

rank < d

C(v)

Diagram 2: The canonical subtrees of v. R(v) is the
shaded area.

4.2. Dynamical information

The dynamical information at internal nodes is
stored using four pointers 1 min, 1 max, r min and r max
and an indicator field ub, which can assume the values
plus, minus and undefined. At leaves the dynamical in­
formation consists of two pointers successor and prede­
cessor, and a boolean present.

Let Sc {I , ... ,n} be a set which has to be repre­
sented in our stratified tree. We say that the leaves
corresponding to members of Sand all their ancestors
in the tree are present; the present nodes are exactly
the nodes which were marked in our silly structure. A
present node can become active and in this case its in­
formation fields contain meaninful information. The
values of these fields of a non-active internal node
are: 1 min = nil, 1 max= nil, r min= nil, r max= nil
and ub =undefined.For a non-active leaf these values
are predecessor= nil, successor= nil, present = false.
For an active leaf v the meaning of these fields should
be:

predecessor:

successor
present

points to the leaf corresponding to the
predecessor in S of the number correspond­
ing to v if existent; otherwise predeces­
sor = ni 1.
analogous for the successor
true

Remember that a branchpoint is an internal node
having two present sons.

Let v be an internal node, and denote the top of
C(v) by t. If vis active its dynamical information
fields have the following meaning:

1 min: points to the leftmost present leaf of LLC(v)
if such node exists; otherwise 1 min= nil.

l max: idem for the rightmost present leaf of LLC(v)
r min: idem for the leftmost present leaf of RLC(v)
r max: idem for the rightmost present leaf of RLC(v)
ub plus if there occurs a branchpoint in between

v and t, and minus otherwise.

If vis an active internal node it is present and
consequently LC(v) contains at least one present leaf;
this shows that it is impossible to have an active in­
ternal node with four pointers equal to nil.

As suggested in the preceding section the time

needed to insert a first or to delete a last element
should be independent of the s~ze of the tree, This is
realized by preventing present nodes from becoming ac­
tive unless their activity is needed. This is expressed
by the following.

Properness aondition: Let v be a present internal node.
Then vis active if and only if there exists a branch­
point in the interior of the reach of v (i.e. there ex­
ists a branchpoint u E R(v) which is neither the top
nor a leaf of C(v)}.

A leaf is active if and only if it is present; the
root is active iff the set is non-empty.

(Actually the case where S = 0 is degenerate and
leads to several programming problems, which were pre­
vented in practice by including n in Sas a permanent
member.)

If the internal node vis non-active but present
then there is a unique path of present nodes going from
the top t of R(v} t:o a unique present leaf w of C(v)_
contained in R(v}. In our approach we can proceed from
t tow and backwards without ever having to visit v,
making it meaningless to store information at v.

If some canonical half-tree has two present leaves
then all its present nodes at its center level are ac­
tive. Also if a node v of rank dis active then
FATHER (v,d) is active as well. We leave the verifica­
tions of these assertions as an exercise to the reader.

The set Sc {l, •.. ,n} is represented as follows.
First the leaves corresponding to the elements of Sand
all their ancestors are declared to be present. Next we
compute using the properness condition which present
nodes become active. Finally the dynamical fields of
all active and non-active nodes are given their proper
values. The resulting information content is called the
representation the the set S. We leave it to the reader
to convince himself that this representation is unique,

(In our actual program the structure is initial­
ized at S = {n}, representations of all other sets be­
ing the result of execution of a sequence of instruc­
tions from the extended repertoire.)

An example of a proper information content is
given in diagram 3 (omitting the evident doubly linked
list data). The symbol"-' denotes nil resp. undefined.

0

a b C

LEVEL RANK LMIN Ll1AX RMIN RMAX UB

t I 6 4 a C '\, '\,

j 12 2 h h i i
h 8 3 '\, '<, a b +
i 8 3 '\, '\, C C +
g 6 l d d e e
d 4 2 a a '\, '\, +
e 4 2 '\, '\, b b +
f 4 2 '\, '\, '\, '\,

Diagram 3: Example of a proper information content.

5

5. OPERATIONS ON THE STRATIFIED TREE STRUCTURE

Once having described the representation of a set
S by assigning values to particular fields in the stra­
tified tree, the next step is to indicate how the set­
manipulation operations mentioned in section I can be
executed such that
(i) a processing time of O(h) = O(log log n) is real­

ized;
(ii) the structure of the representation is preserved,

i.e. the properness condition should remain va­
lid.
Moreover we must indicate how the static informa­

tion together with a legitimate initial state for the
dynamic information can be created in the proper time
and space (i.e. both of order n log log n).

In this section we pay no attention to the self­
evident operations needed to manipulate the doubly link­
ed list structure formed by the leaves of our tree, Fur­
thermore we assume that always n E S; the driver will
insert this element at initialization and will take
care that this element is never deleted from S.

5.1, Initialization

Initialization takes place during a single tree­
transversal in pre-order, When a node is processed its
father-pointers and its position, and in case of inter­
nal nodes its rank and level are stored in the appro­
priate field. The needed computations are based on the
following relations:
(i) the fathers of the top are nil; the fathers of a

direct son v of a node w where RANK(w) = d satis­
fy

FATHER (v,j) = w for j :,; d
FATHER (v,j) = FATHER (w,j) for j > d.

The node w is accessible during the processing of
v by use of a parameter fath in the recursive pro­
cedure which executes the tree-transversal.

(ii) the level of a node is one less that the level of
its father

(iii) the position of the leftmost node at level i > 0

equals 2i-l the position of any other node at

level i equals 2i + the position of the last node
at level i processed before; the leaves are pro­
cessed in increasing order of their position

(iv) the rank of a node depends only on the level, and
can be stored using a pre-computed table of size
k = log n.

Once having pre-computed the needed powers of 2 by re­
peated additions, the above relations show how the sta­
tic structure is initialized without having "illegiti­
mate" instructions like multiplications and bit-manipu­
lations, in time ()(log log n) per node processed. Since
there exist 2.n - I nodes this shows that the initiali­
zation takes time O(n log log n). The space
O(n log log n) follows since the space needed for each
node is O(log log n).

Pre-computing of the ranks in time O(log n) using
only additions is left as an exercise to the reader.

5.2. Operations

The extended instruction repertoire can be expres­
sed (disregarding the doubly linked list operations) in
terms of three primitive operations insert, delete and
neifhbour. Each of these operations is described by a
linearly recursive procedure. The procedures are called
upon the complete tree of rank h. If called upon a ca­
nonical subtree the procedures either terminate within
constant time independent of the rank, or the procedure
executes a single call of a top or bottom canonical
subtree of rank one less preceded and followed by a se­
quence of instructions taking constant time independent
of the rank. A call upon a subtree of rank O terminates
without further recursive calls of the procedure. From

the above assertions which can be veritied by inspec­
tion of the procedure bodies, it follows directly that
the run-time of each procedure i:s ot order h = log log n.
Concerning the preservation of the correct structure, I
refer to the PASCAL implementation which has worked
without errors. Moreeover I teel that the correctness of
the algorithms can ·E,e proved using one of the more in­
formal approaches based on recursion-induction, but no
such proof has been given till now; this approach was
used successfully during the debugging stage of the de­
velopment of the implementation. To stimulate research
in correctness proofs, I will award the prize of ten
dollars (US $10.00) to the first person suDlllitting a
convincing correctness proof of my procedures along the
lines sketched above.

In the execution of an algorithm we have fre·quent­
ly the situation that we have a CS with root t and leaf
v and that we want to inspect or modify the fields at t
in the direction of v, i.e. the left-hand fields at t
if v is a left-hand descendent of t etc. To decide whe­
ther a certain descendant of t lies in the left- or
right-hand subtree it is sufficient to compare the po­
sitions of the two nodes. We have in general:

The descendant v oft is a left-hand descendant iff the
position of v is not: greater than the position of t,

Actually the position of a node was introduced to
facilitate this easy test on the handiness of a descen~
dant.

The procedures insert, delete and neighbour use
the following primitive operations.

myfields (v, tl yields

mymin (v,t) yields

mymax (v,tl
yourfields (v,t), yourmin

yield

a pointer to the fields at t
in the direction of v. This
pointer is of the type
fieldptr.
the value of the min-field at
tin the direction of v
(which happens to be a point­
er).
analogeous for the maxfield,
(v,t) and yourmax (v,t)
the analogeous values of the
field at tin the other direc-
tion.

minof (t J yields the leftmost value of the four
pointed fields at t if tis
active, and nil otherwise.

maxof (t) yields the rightmost value analog-
eously.

The type ranktp is the subrange 0 .• h.

Finally the procedure clear gives the dynamic
fields at its argument the values corresponding to the
non-active state. The identifiers mentioned in the pro­
cedures mostly are of the type "pointer to node" (ptr)
where "node" is a record-type containing the fields men­
tioned in the preceding sections.

5.2.1. The procedure insert

insert is a function procedure yielding as result
the value of a pointer to the neighbour of the node be­
ing inserted. This neighbour is subsequently used for
inserting the mode into the doubly linked list. (It
should be mentioned that we tacitly have generalized
the meaning of neighbour to the case of a CS which is
not the complete tree.)

insert has five parameters called by value; its
procedure heading reads:

function insert (leaf, top, pres: ptr, no branchpoint:
boolean, order: ranktp): ptr,

The meaning of the parameters is as follows:

order:

leaf:

the rank of the CS on which the procedure is
called
the node to be inserted

top: the root of the CS on which the procedure is
ciilled

6

pres: a present leaf of the CS on which the procedure
is called of the same handiness as leaf at top

nobranchpoint: true iff leaf's side of the CS on which
the procedure is called contains no branchpoint.

At first glance the parameter pres seems to be un­
necessary since its value can be derived from the values
of myfields(leaf, top). However in the case where the
CS under consideration is a top-CS of a CS of next high­
er rank the fields at top refer to nodes at a level far
below the level of leaf and consequently their values
may be misunderstood. This danger (to be dealt with by
"dynamic address translation" in the preliminary version
of our data structure [3]) can not be solved using bit
manipulation instructions on node-addresses since their
run-time should be charged according to their length:
log n, which clearly is prohibitive. Actually this "mis­
take" was responsible for the major bugs discovered dur­
ing the process of implementing our structure.

A call of insert terminates without further recur­
sive calls if leaf's side of the CS under consideration
does not contain a present leaf (pres= nil). Otherwise
the nodes hl = FATHER (leaf, order-I) and
hp= FATHER (pres, order-I) are computed. Now if
nobranchpoint is true then hp is present without being
active and special actions should be undertaken in this
case. In this case hl is present iff hl = hp and depend­
ing on this equality either the bottom-call

insert(leaf, hl, mymin (leaf, hl), true, order-1)

or the top-call

insert (hl, top, hp, true, order-1)

is executed after having "activated" the right fields
at hp and hl.

In this situation the procedure delivers pres as
its value.

If nobranchpoint is false then hl is present iff
it is active which is tested by inspecting its ub-field.
If hl is active the bottom-call

insert (leaf, hl, mymin (leaf, hl), mymin (leaf, hl) =
mymax (leaf, hl), order-1)

is executed and its value is yielded as the result of
insert. Otherwise, the top-call

insert (hl, top, hp, nobranchpoint, order-1 l

is executed after having set nobranchpoint := (hpt.ub =
minus) and having activated the fields at hl and hp.
This call yields as a result the neighbour of hl in the
top-tree in nb, and depending the outcome of a compari­
son between the positions of hl and nb the value of
insert equals minof (nb) or maxof (nb).

After these activities the fields at the top may
have to be adjusted if the current call is a call on a
bottom-CS, which is the case iff order equals the rank
of top. From this point of view the complete tree has
to be considered a bottom-CS, which explains why the
levels are numbered from the leaves to the top instead
of the reverse order as was done in the preliminary re­
ports on our structure [3,4].

The initial call of insert reads:

insert (pt, root, mymin (pt, root),
mymin [pt, root) = mymax (pt, root), hl

where it is assumed that root is active and pt is not a
present leaf. (These conditions are enforced by the dri­
ver.)

We now give the complete PASCAL text of insert.

BIBUOTHEEK MATHEMATISCH CENTRUM
_ -AMSTERDAM--

function insert(leaf, top, pres ; ptr;
nonbranchpoint : boolean1 order : ranktp)

var hl, hp, nb : ptr; fptr : fieldptr;

begin if pres= nil then
begin fptr:= myfields(leaf, top);

with fptrt do
begin min:= leaf; max:= leaf end;
if leaft.position <= topt.position then
insert:= topt.rightt.min

else insert:= topt.leftt.max
end else
begin hl:= leaft.fathers[order - 1];

hp:= prest.fathers[order - 11;
if nobranchpoint then

if hp<> hl then
begin fptr:• myfields(leaf, hl);
with fptrt do

begin min:= leaf; max:= leaf end;
fptr:= myfields(pres, hp);
with fptrt do

begin min:= pres; max:= pres end;
hlt.ub:= plus; hpt.ub:= plus;

ptr;

nb: = insert (hl, top, hp, true, order - 1 l ;
insert:= pres

end else
begin fptr:• myfields(pres, hp);
with fptrt do

begin min:= pres; max:= pres end;
hpt.ub:= m:inus;
insert:= insert(leaf, hl, mymin(leaf, hl),

true.order - 1)
end

else if hlt.ub <> undefined then
insert:= insert(leaf, hl, mymin(leaf, hl),

mymin(leaf, hl) = mymax(leaf, hl), order - 1)
else

begin fptr:= myfields(leaf, hl);
with fptrt do

begin min:= leaf: max:= leaf end;
nobranchpoint:= hpt.ub = minus;
hlt.ub:= plus; hpt.ub:= plus;
nb:= insert(l1l, top, hp,

nobranchpoint, order - 1);
if hit.position c= nbt.position then
insert:= minof(nbl else insert:= maxof(nb);

end;
fptr:= myfields(leaf, top);

if topt.rank • order then with fptrt do
if leaft.position < mint.position

then min:= leaf else
if leaft.position > maxt. position
then max:= leaf

end;
end;

5.2.2. The procedure delete

The procedure delete yields no value. It has six
parameters, the first three of which are called by val­
ue the others being called by reference (although
cailing them by result should be as good; this i~ how­
ever not possible in PASCAL). The procedure heading
reads:

procedure delete (l,aaf, top : ptr; order : ranktp;
var pres 1, pres 2 : ptr;
var nobranchpoint : boolean);

The meaning of the value-parameters is as follows:

leaf:
top:
order:

the leaf to be deleted
the root of the CS considered
the rank of the CS considered

The remaining parameters have after a call of de­
lete the following meaning:

pres 1, pres 2:

nobranchpoint:

7

present leaves in the CS considered,
one o~ thell) behlg the neighbour of leaf
(see explanation below)
true if! there occurs no branchpoint on
the path from top to pres 1.

A call of delete should make non-present leaf and
its ancestors up to the lowest branchpoint but in doing
of other nodes on different paths which were active may
have to become inactive. As long as this holds
nobranchpoint remains true.

Proceeding downwards from the other son of the low­
est branchpoint as near as possible we arrive at the neigh­
bour; if we however select always the remotest present
node we arrive at a node which might be called the ex­
trem~ of leaf in the tree. The extreme, as a "binary
approximation" of leaf is as good as the neighbour, but
in the usual sense it is as far away as possible.

After a call of delete pres 1 and pres 2 are the
neighbour and the extreme of leaf ordered according to
their positions (i.e. pres 1t.pos ~ pres 2t.pos).

delete terminates without inner call if the lowest
branchpoint equals top; at this time pres 1 and pres 2
are initialized with the values yourmin(leaf, top) and
yourmax(leaf, top) and nobranchpoint is made true if
these two values are equal.

Updating of these values proceeds depending on whe­
ther the call just terminated was a top or a bottom call
(which is known to the current incarnation of delete).
If the last call was a top call then
pres 1 := minof(pres 1); pres 2:= maxof(pres 2) and their
equality is tested again to decide whether nobranchpoint
should remain true; if so the node formerly pointed at
by pres 1 is disactivated.

If the last call was a bottom call the ub field at
the former top and the pointers away from pres 1 at this
node are inspected to decide whether there occurs a
branchpoint at or above this node; if not the former top
is disactivated.

The fields at the current top are adjusted only
when the current call is a bottom call.

The initial call to delete reads:

delete(pt, root, h, pres 1, pres 2, nobranchpoint);

The driver makes sure that pt is a present leaf which is
not the unique present leaf. The complete text of delete
is given below.

procedure delete(leaf, top : ptr; order : ranktp;
var pres1,pres2: ptr; var nobranchpoint : boolean);

var fptr : fieldptr; hl, hp : ptr;

begin fptr:= myfields(leaf, top);
with fptrt do if min= max then

begin min:= nil; max:~ nil;
pres1:= yourmin(leaf, top);
pres2:= yourmax(leaf, top);
nobranchpoint:= pres1 = pres2

end else
begin hl:= leaft.fathers,order - 11;

if minof(hll = maxof(hll then
begin delete(hl, top, order - 1,

pres1, pres2, nobranchpointl;
clear(hl); hp:= pres1;
if nobranchpoint then hpt.ub:= minus;
pres1:= minof(pres1); pres2:= maxof(pres2);
if nobranchpoint then

if (pres1 = pres2) then clear(hp)
else nobranchpoint:= false

end else
begin delete(leaf, hl, order - 1,

pres1, pres2, nobranchpoint);
if nobranchpoint then

if (hlt.ub = minus)
and (yourmin(pres1, hll = nil)

then clear(hl)
else nobranchpoint:= false

end;

end;

if topt.rank = order then

end

if min leaf then min:= pres.1 else
if max = leaf then max:·= pres2

5.2.3. The procedure neighbour

The function neighbour has five parameters which
are called by value. Their meaning is about equal to the
meaning of the paralllleters in insert, however pres is
replaced by the pair prnin and prnax.

neighbour may be called both for present and non­
present leaves. This is justified by the fact that with­
out expensive bit-manipulation on the positions it is
impossible to decide whether the neighbour is the pre­
decessor or the successor of the given argument.

prnin and prnax are the left and rightmost present
leaf on leaf's side of the CS under consideration.

neighbour terminates without an inner call in the
following cases:
(i) pmin = nil; now the neighbour resides on the other

side of the tree
(ii) prnin = prnax = leaf; idem
(iii) leaf lies outside the interval prnin - pmax; in

this case neighbour yields the nearest of the two
in the usual sense without needing to investigate
the inner structure of the tree.

The short-cut (iii) is unique to the procedure
neighbour. If none of these situations occurs a recur­
sive call is performed. This inner call is a top call
if either the node hl at the center level in between
leaf and top is not present (which in these circum­
stances is equivale.nt to non-active) or if leaf is the
unique present descendent of hl; otherwise a bottom call
is executed.

The initial call of neighbour reads:

neighbour[pt, root, rnyrnin[pt, root), rnyrnax[pt, root), hl

If called upon an empty tree or on the unique pre­
sent leaf neighbour yields nil as its result; the driver
takes care that these degenerate cases are looked after.

The text of neighbour is given below:

function neighbour[leaf, top, prnin, prnax : ptr;
order ranktp) : ptr;

vary, z, nb, hl : ptri pos : 1 .. n;

begin pos:= leaft.position;
if [prnin = nil)

or [(prnin = prnax) and [prnin leaf)) then
if pos <= topt.position
then neighbour:= yourrnin[leaf, top)
else neighbour:= yourrnax(leaf, top)

else if prnint.position > pos then neighbour:= prnin
else if prnaxt.position < pos then neighbour:= prnax
else
begin hl:= leaft.fathers[order - 17:

y:= rninof[hl); z:= rnaxof[hlli
if [[y = zl and [y = leaf))

or [hlt.ub = undefined) then
begin nb:= neighbour[hl, top,
prnint.fathers[order -1], prnaxt.fathers[order -17,

order - 1);
if hlt.position < nbt.position
then neighbour:= rninof[nbl
else neighbour:= rnaxof(nb)

end
else neighbour:= neighbour[leaf, hl,

end
end;

rnyrnin(leaf, hl), rnyrnax(leaf, hl), order - 1)

5.2.4. Some remarks concerning the procedures

(l) The procedures insert, delete and neighbour all

8

have the property that their innermost call is a bottom
call, where we consider the co~plete tree to be a bot­
tom tree as well, This observation is due to KMS &
ZIJLSTRA [SJ.
(2) At a node of rank d the father pointers of rank ;, d
are never inspected by the procedures, This results from
the fact that their values are preserved in the stack of
local variables of the envelopping recursive calls; in
particular during ad-th order call the d-th rank father
of all nodes within the CS under consideration (exclud­
ing top) is passed on in the parameter top. By omitting
the space needed for these pointers one might reduce the
storage requirements by a constant factor.

6. APPLICATIONS OF THE STRATIFIED TREE

In this section we discuss the topics of the repre­
sentation of off-size priority queues (i.e. n not of the

h
form 22), and the problem of manipulating a large number
of equal size priority queues at once. The problem of
reducing the storage requirements in the latter case
without losing the O(log log n) processing time is left
unsolved.

6.1. Off-size priority queues

Let n be an arbitrary number and select h such that

22h-l < n ~ 22h. Using the rank-h stratified tree to re­
present a priority queue of size n seems prohibitive
since both its size and its initialization time are of

order h. 22h which might be about as large as n2 • log log n.
To prevent this space explosion we can either eliminate
bottom-subtrees or levels from the the rank-h tree.

6.1.1. Elimination of lower subtrees

In this approach all lower CS of rank h - I which
have no leaves corresponding to numbers~ n are neither
allocated nor initialized. In practice this means that
the right-hand side of the tree is never used as long

as n < 22h/2. If the driver takes care about degenera­
cies the procedures of the preceding section work cor­
rectly without notifying that a large part of the tree
is not physically present. The overhead in time and
space is bounded by a constant factor 3.

6.1.2. Elimination of levels

Let k = r1og nl. A binary tree of height k is di­
vided into a top tree of height rk/27 and bottom trees
of height Lk/2J, which trees are divided themselves
analogously. This leads to a canonical decomposition
where certain rank-O levels are not physically present.
Once having pre-computed the function which attaches a
rank to each level (which can be solved in time
O(log n. log log n)), the algorithms of the preceding
section can be used without modifications. The needed
overhead factor in time and space is bounded by a con­
stant factor 2.

6.2. Representation of many priority queues

If one has to represent several priority queues it
makes sense to separate the static and dynamical infor­
mation in the nodes. The static information is about e­
qual for each queue. More in particular, using an "ad­
dress plus displacement" strategy, where the position
of a node is used as its address, one has access to each
node whose position is known. Since all nodes are acces­
sed by father pointers from below, or by the downward
pointers from the dynamical information, it is suffi­
cient to have available a single pre-computed copy of
the static information in a stratified tree. For each
queue involved in the algorithm a O(n) size block of
memory, directly accessible by the position of a node,
should be allocated for the dynamical information.

Using the above strategy we arrive at the
O(n log log n. A(n))-time, O(n2).-space representation
of a mergeable heap promised in the introduction. It is
clear that the larger part of the space required is ne­
ver used, and luckily there is a well-known trick which
allows us to use this much s•pace w:j.thout initializing
it [I]. Still it is a. reasonable question whether SOJI)e
dynamical storage allocation mechanism can be designed
which will cut down the storage requirement to a more
reasonable level.

A direct approach should be to allocate storage
for a node at the time this node is activated. This me­
thod, however, seems to be incorrect. One must be able
to give the correct answer to questions of the follow­
ing type; "Here I am considering a certain CS with root
top and some leaves pres and leaf, where pres is pre­
sent and leaf is not,. Let hl be the ancestor of leaf at
the center level. To decide whether hl is active, and,
if so, where it is allocated," Inspection of the ances­
tor at center level of pres will yield the correct an­
swer only if pres is actually the neighbour of leaf;
this however is not guaranteed in our algorithm.

The same problem arises if one first tries to com­
pute the neighbour of leaf. Consequently it seems ne­
cessary to reserve a predetermined location to store
hl which can be accessed knowing the position of hl in
the CS under consideration and having access at its
root.

The following approach yields a representation of
a mergeable heap in space O(n./n) without disturbing
the O(log log n) processing time. Consider a rank d
tree. As long as its left or right-hand side subtree
contains not more than one present leaf, all necessary
information can be stored at the root of the tree. If
at a certain stage a second leaf at the same side must
be inserted, the complete storage for the top tree is
allocated as a consecutive segment, and a pointer at
the root is made to refer to its initial address. In
particular the nodes at the center level now have been
given fixed addresses which are accessible via the root,
The center-level nodes themselves are considered to be
the roots of bottom trees of rank d - I which are treat­
ed analogously. In this manner a call of insert will
allocate not more than O(/n) memory cells, whereas
neighbour does not use extra memory and delete may re­
turn the space for a top tree if both sides of its en­
velopping CS have be,m exhausted except of a single
leaf.

The initial address of the current relevant stor­
age segment is given as a new parameter to the proce­
dures whose value is passed on to an inner call, unless
all enveloppiES calls are bottom calls.

The O(nln) bound on the used memory for the merge­
able heap algorithm is obtained by noting that at each
intermediate stage the information contents are equal
to one obtained by executing not more than n insert
instructions.

We complete this section by noting that the stor­
age requirements may be further reduced by replacing
the binary division of the levels by an r-ary one for
r > 2, which might r.asult for each E > 0 in an
O(n log log n • A(n))-time, O(nl+E)-space representa­
tion of a mergeable heap.

7. REDUCIBILITIES AMONG SET-MANIPULATION PROBLEMS

The on-line manipulation of a priority queue,
which is also known as the on-line insert-extract min
problem, is one out of a multitude of set manipulation
problems. Each of these problems has moreover a corres­
ponding off-line variant. In the off-line variant the
sequence of instructions is given in advance and the
sequence of answers should be produced, the programmer
being free to choose the order in which the answers are
given.

Clearly, each on-line algorithm can be used to
solve the off-line variant, but the converse does not

9

hold.
In [3] we have investigated the reducibilities

among the on-line and off-line versions of the insert­
extract-min-, union-find- and insert-allmin problems.
Here we say that a problem A can be reduced to a prob­
lem B if an alogirthm for B can be used to design an al­
gorithm for A having the same order of complexity, If
moreover A and Bare both off-line problems it should
be possible to translate an O(n)-size A problem on a
O(n)-size structure into an O(n)-size B problem on a
O(n)-size structure in time O(n).

It has been shown by HOPCROFT, AHO & ULLMAN that
the off-line insert-extract min problem is reducible to
the on-line union-find problem [2], The author has shown
that the off-line union-find problem is equivalent to
the off-line insert-allmin problem [3]. Together with
the "natural" reduction of on-line insert-allmin to on­
line insert-extractmin these reducibilities are repre­
sented in diagram 4 (the acronyms denoting the problems
discussed).

ONUF

~II
OFUF

---------<I ONIEM

~0-NI-AM~I

~I ·~I
;,

I I OFIAM OFIEM

nloglogn

n A(n)

Diagram 4: Reducibilities among set-manipulation
problems

ACKNOWLEDGEMENTS

I wish to thank J. Hopcroft for suggesting the prob­
lem and other useful suggestions. For the current state
of the algorithms I am heavily indebted to R. Kaas and
E. Zijlstra who, during the process of implementing the
priority queue structure, discovered several hideous
bugs in my earlier versions, and who contributed some
nice and clever tricks; their use of a position field
should be mentioned in particular. They also found the
first recursive version of the delete procedure. Finally,
I would like to thank R.E. Tarjan, Z. Galil and
J. van Leeuwen for valuable ideas.

Author's addresses:
Mathematical Institute, University of Amseterdam,

Roetersstraat 15, Amsterdam; or
Mathematical Centre, ze Boerhaavestraat 49,

Amsterdam.

REFERENCES

[I] AHO, A.V., J.E. HOPCROFT & J.D. ULLMAN, The design
and o:nalysis of computer Algorithms, Addison
Wesley, Reading, Mass. (1974).

[2] AHO, A.V., J.E. HOPCROFT & J.D. ULLMAN, On find­
ing lowest common ancestors in trees, Proc.
5-th ACM symp. Theory of Computing (1973),
253-265.

[3] EMDE BOAS, P. VAN, An O(n log log n) On-Line Algo­
rithm for the Insert-Extract Min PY'oblem,
Rep. TR 74-221 Dept. of Comp. Sci., Cornell

Univ,, r:thaca 14853, N,;L

[4] EMDE BOAS, P, VAN, The On-Line Insert-Extract Min
Problem, Rep, 75-04, Math. Institute, Univ.
of Amste,rdam,

[5] EVEN, S., M.R. GAREY & Y. PERL, Efficient Genera­
tion of Optimal Prefix Code: Equiprobable
Words Using Unequal Cost Letters, J. Assoc.
Comput. Mach. 22 (1975), 202-214.

[6] FISHER, M.J., Efficiency of equivalence algorithms,
in: R.E. MILLER & J.W. THATCHER (eds.),
ComplexUy of Computer Computations, Plenum
Press, New York (19721, 158-168.

[7] HOPCROFT, J. & J .D. ULLMAN, Set-merging Algorithms,
SIAM J. Comput. I (Dec. 1973), 294-303.

[8] KAAS, R. &E. ZIJLSTRA, A PASCAL implementation of
an efffoient priority queue, Rep. I-lath.
Institute, Univ. of Amsterdam (to appear).

[9] TARJAN, R.E., Efficiency of a good but non linear
set union algorithm, J. Assoc. Comput.
Mach. 22'. (19751, 215-224.

[10] TARJAN, R.E., Edge disjoint spanning trees, domina­
tors a:nd depth first search, Rep. CS-74-455
(Sept. 19741, Stanford.

[11] WIRTH, N., The Programning Language PASCAL (re­
vised report), in K. JENSEN & N. WIRTH
PASCAL User Manual and Report, Lecture
Notes in Computer Science 18, Springer,
Berlin (1974).

10

