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On the Van der Pol relaxation oscillator with a sinusoidal forcing term 

by 

J. Grasman 

ABSTRACT 

Asymptotic approximations of subharmonic solutions of the periodically 

forced Van der Pol relaxation oscillator are constructed with singular per

turbation techniques. These approximations are locally valid and may take 

the form of a two variable expansion in one region and a boundary layer type 

of solution in a next region. Integration constants are determined by averag

ing and matching conditions. The construction of the approximations brings 

about certain restricting conditions on the amplitude of the forcing term. 

KEY WORDS & PHRASES: Van der Pol equation, relaxation oscillation, subhar

monic entrainment, singular perturbation 
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1. INTRODUCTION 

In this paper we study the Van der Pol equation with a sinusoidal forc

ing term 

{1.1) 
d 2 2 dx ~ + v{x -1)- + x = {av+S)cost, 
dt2 dt 

for large values of the parameter v and with O <a< 2/3. Using singular 

perturbation techniques we construct a formal asymptotic approximation of the 

2~{2n-1)-periodic solution with n = O{v). In the process of constructing such 

approximation we arrive upon a set of conditions for a, f3 and v. These condi

tions are such that for a given a, the parameter f3 lies on an interval 

(1. 2) f3 {a) < f3 < f3 {a) • 
-n n 

These intervals overlap, so that for f3 on the interval {8 {a),8 1 {a)) two -n n+ 
solutions with period T = 2~{2n±1) may coexist. In earlier studies [3,4 and 

5] asymptotic solutions for the cases a= 0 and a= 2/3 have been constructed. 

In our analysis of the present problem we see that in the asymptotic solution 

elements of both cases can be.distinguished. A periodic solution of {1.1) has 

a behaviour that is characteristic for singularly perturbed type of problems. 

Locally the solution has a boundary layer type behaviour like one meets in 

problems of fluid mechanics. On the other hand the solution also passes a 

large time interval, where a two time-scales expansion can be made. Finally, 

we distinguish a sequence of points, determined by the intersections with the 

lines x = ±1, where the local behaviour of the solution is analyzed by a 

stretching procedure in both the dependent and independent variable. For a 

complete picture of the different regions which are successively passed 

through by the solution we refer to Fig. 1.1. Integration constants in local

ly valid asymptotic solutions are determined by averaging conditions and by 

matching pairs of local solutions of adjacent regions. 
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Fig. 1.1. Regions with a local asymp~otic solution 

2. ASYMPTOTIC SOLUTION FOR REGION A 

In this region the solution exhibits an oscillatory behaviour of period 

2n in the regular time scale and, at the same time, a slow decrease of its 

average value. In order to analyze the solution asymptotically we introduce 

an additional time variable T = (t-t0-n)/v with t 0 = n/2(mod) 2n and consi

der the following two-variable expansion for the solution (see COLE [1]). 

(2.1) -1 -2 
x = xo(t,T) + v xl (t,T) + v x2(t,T) + .••. 

Substituting (2.1) into (1.1) and equating the terms with equal powers of v 

we obtain a recurrent system of differential equations for x. (t,T). The first 
1 

equation reads 

(2.2) 

or 
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(2. 3) 

having a solution of the form 

(2. 4) 
1 3 3 

x 0 = 2cos[ 3 arccos{2 a sint + 2 c0 (T)}]. 

The second equation of the iterative scheme becomes 

(2.5) 

or, after integration with respect tot and with the use of (2.3), 

t 

(2.6) I - -
Go(t,T)dt + 8 sint + cl (T) 

with 

(2. 7) 

The integral of G0 in the right-hand side of equation (2.6) is secular 

in the sense that for (t-t0-i) + 00 this term would increase in order of mag

nitude so th.at (2 .1) would not hold for a large time interval. This secular

ity is banished by choosing the constant of integration int such that on the 

average over a 2'IT-interval G0 disappears: 

(2. 8) 

or 

(2. 9a) 

TV+2'IT 

f G0 (t,T)dt = 0 

TV 

TV+2'IT 

I x0 (t,T)dt. 

TV 

Since at time t 0 + 'IT the solution starts at the value x = 2, c0 satisfies the 

initial value 
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(2.9b) cOco) = 2/3 - a. 

The solution will leave the region A at a time tm = t 0 + 2mn as it ap

proaches the line x = 1, which occurs when c0 reaches the value -2/3+a. From 

(2.9) it follows that in the slow time scale this will be for 

-2/3+a 27f 

(2.10) T(a) = 27f I { I 
2/3-a 0 

Finally, the third equation reads 

(2.11) 

2 2 
cl x 0 cl x 1 

2 -'-- + -- + 
ata, at2 

so according to (2.6) we have 

-
3x0 ax 1. 

t t 
oG0 = _ 2 

f { f 
2 

.(2.11) (xo-1) x2 = --- - -- + - dt-G }dt - X1XO oT clt OT 1 
to+1r to+1r 

with 

(2 .12) 

2 
The term 3G0/3T satisfies the averaging condition and behaves as a+b/(x0-1), 

therefore its integral is not secular. The averaging condition 

(2.13) 

TV+27f I G1 (t,T)dt = 0, 

TV 

yields a linear differential equation for c1 : 

(2.14) 

TV+27f 
ac1 + S:_ f 
OT 21r 

TV 

1 --at 
2 

X -1 
0 

TV+27f 
-8 =-
27f I 

TV 

s;nt dt. 
X -1 

0 



Let c 1 (0) = c 10 , then we have 

T TV+2'1r 

= exp{;; f 
0 

f 
TV 

1 -- 2- dtdT} 
X -1 

0 

T T TV+2'1r 

- JL J exp{-1 J J 2'11" 2'11" 
0 0 TV 

1 -- 2- dtdT} 
X -1 

0 

and so 

(2.15a) c 1 (T (a)) = q (a){c10 - Sp (a)}, 

TV+2'1r 

J 
TV 

sint dtdT] 
2 

X -1 
0 

T Ca) T 

exp{211r J 
0 

TV+2'1r TV+21r 

(2.15b) p (a) 
1 =-

2'11" J 
0 

T(a) TV+21r 

(2. 15c) q (a) = exp{;; f f 
0 TV 

I + dtdT} f 
- xo-1 TV TV 

1 - 2- dtdT}. 
x -1 

0 

s;nt dtdT, 
X -1 

0 

Ast approaches the value t 0 ·+ T(a)v each time fort= t = t 0 + 2nm the 
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-1/2 m 
solution gets closer to the Line x = 1. In av -neighbourhood of (x,t) = 

(1,tm) x0 would behave as 

(2. 16a) 

and x 1 as 

(2. 16b) 
-a(t-t) 

m 
X = 

1 4v2 
T = T(a). 

-1 Clearly, the asymptotic expansion is not valid anymore, as v x 1 increases 

in order of magnitude. Just before the solution enters such regions we have 

that asymptotically 

1 ~ -1/2 -1 1/2 r:. v Ri -- v2a(t-t )v - C' (T) (t -t -1r-Tv) (t-t ) v /v2a 2 m O m O m ' 

and so 
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(2.17) 

3. ASYMPTOTIC SOLUTION FOR REGION A 
m 

Let us assume for a moment that the solution has passed a v- 112 neigh

bourhood of a point (x,t) = (1,t 1) and returns to the interval (1,2). Since 
m-

the two variable expansion (2.1) is not valid anymore and the solution again 

approaches the line x = 1 at time t = t, we introduce for the time interval 
m 

t 1 < t < t the expansion m- m 

(3 .1) 
-1 

x(t;v) = xm0 (t) + v xm(t) + •••• 

Similar to (2.1) we obtain a recurrent system of differential equations for 

x. (t), i = 1,2, •••• The first two equations read 
mi 

(3.2a) 
2 dxmO 

(xm0-1) ~=a cost, 

(3. 2b) 

2 
d xmO 

= - - xmO + 8 cost. 
dt2 

Integration yields 

( 3. 3a) 

(3. 3b) 

= a cint + C {m) 
0 

dxmO =----dt 

t 

I 
tm-1 

Since fort= tm x approaches the value 1, we have C~m) = 

(3. 4) 
1 3 3 

= 2 cos{3 arccos(2 a sint + 2 a - 1)}. 

Ast approaches t from below {3.1) behaves asymptotically as 
m 

{3. Sa) X ~ 1 - -2
1 v'2ti {t-t) + V-lK /{t-t ), 

m m m 

so that 



(3 .Sb) 

(3. Sc) 

t m-1 

(-C(m) +$+I )/ili, 
1 n 

xm0 (t)dt. 

Consequently, also the expansion ( 3. 1) looses its validity as t + t • 
m 

4. ASYMPTOTIC SOLUTION FOR REGION B 
m 
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-1/2 We investigate the local behaviour of the solution in av -neighbour-

hood of (x,t) = (1,t) by introducing the transformations 
m 

(4.1ab) X = 1 + V (~)v-112 , 
m 

Substituting (4.1) into (1.1) and multiplying this equation with v-112 we 

obtain, after taking the limit v + m, 

(4. 2) 

The function vmO(~) expresses the local limit behaviour of the solution for 

v + m. In order to match the-solution of region A it must satisfy 
m 

(4.3) 

see (3.5). The function 

(4. 4) vm0 (~) = -aD~ (-a~)/DK (-a~), 
m m 

satisfies (4.2) as well as (4.3). In (4.4) Dµ(z) denotes the so-called para

bolic cylinder function of orderµ (see WHITTAKER and WATSON [9, p. 347]) 

with 

(4.5) 
1 2 µ µ(µ-1) 

D (z) = exp(--4 z )z {1 - -'--'"'-"-- + ••• } 
µ 2z2 

for z + m. Assuming that Km~ 0 the function vm0 (~) will be regular for 
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finite~, while for~ ➔ 00 

(4.6) 

as 

( 4. 7) 

for z ➔ -oo 

by 

(4.8) 

D (z) 
µ 

exp (-¾ z 2 ) z µ { 1 - µ ( µ-2
1) + ... } 

2z 

h1r 1 2 -µ-1 (µ+1) (µ+2) 
r(-µ) exp(4 z +µ1ri)z {1 + 2z2 + ... } 

On the other hand, at region A 1 , the solution is approximated 
m+ 

as t t t • Thus, the local solution (4. 4) of B matches the local solution of 
m m 

A l if m+ 

( 4. 9) 

Using (3.Sb) we find that 

( 4. 10) c(m+1) = 
1 

C (m) - I • 
1 n 

Let for some m, say m = n, 

(4.11) K l :5: 0 < K :5: I /fia. 
n- n n 

Then the parabolic cylinder function ~(-a~) vanishes for certain value(s) 

of the argument. Let ~ = ~O be the lowest zero. For ~ t ~O we have that 

( 4 .12) 

so vmO becomes singular and the solution rapidly decreases as~ approaches 

~o· 
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5. ASYMPTOTIC SOLUTION FOR REGION C 

At this point the solution enters the boundary layer region C with local 

coordinate 

(5 .1) 

Assuming that. the solution can be expanded as 

(5. 2) X 

we arrive at a recurrent system of equation for the coefficients W.: 
l 

(5. 3a) 

(5. 3b) 

') 
d'-w0 
-2+ 
dn 

2 
d w1 
-2+ 
dn 

According to (4.12), (5.2) matches the solution for region B if for n + - 00 

n 

(5. 4ab) w0 :::::: 1 + 1/n, 

Condition (5.4a) is satisfied by the class of solutions 

(5 .Sa) 

while because of (5.4b) the integrated equation (5.3b) must have the form 

(5. Sb) 
aw 

1 --+ 
dn 

As n ➔ 00 the solution leaves the boundary layer region at exponential rate 

and fort - tn - s0v-l/2 small, but independent of v, (5.2) behaves asympto

tically as 

(5. 6) X = 
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6. CONDITIONS Jli'OR 21T ( 2n-1) -PERIODIC SOLUTIONS 

As the solutions of period T = 21r(2n-1), we are looking for, are sym

metric, that is 

(6. 1) x(t) 
1 = -x (t - 2 T), 

we have completed the local approximations. Transposing (5.6) to the comple
-1/2 

mentary phase and substituting t = t 0 + 1r + ~0v in (2.1), we obtain the 

periodicity condition 

(6. 2) 

= 2 1 2 1 2 2 1 -1 - 3 a (4 a ~O - Kn - 2) v 

or 

(6. 3) 

From (4.9) and (4.10) it follows 0 that 

(6. 4) = S - c(m) + (n-m+l)I . 
1 n 

Comparing (2.17) with (3.5) we see that for n-m-+ 00 , but at the rate such 

that n-m = o(v), there exists a matching relation between c 1 (T) and Cim): 

(6. 5) 

Substituting (6.6) into (6.4), while using (2.15), we obtain 

(6. 7) 
-1 

(21r) I Tv. 
n 



From (6.3) and (6.7) we derive 

(6. 8a) 

(6.8b) 

(6. 8c) 

S = {&(Kn+½) (l+q (a)) - Gn (a) }/S (a), 

G (a) 
n 

s (a) = 1 + q(a) - p(a)q(a). 
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Since K may range from Oto I/&', a periodic solution of period 2TI(2n-1) 
n n 

is possible for 

(6. 9) 

< { (2
1 -12ci'+ I ) (l+q(a)) - G (a) }/S(a). 

n n 

7. CONCLUDING REMARKS 

The formal asymptotic analysis of the Van der Pol relaxation oscillator 

with a periodic forcing term as we presented in this report forms the last 

~art of a series of studies on this problem, see [3, 4 and 5]. In [3] and 

[5] solutions of period 2TI(2n~1) were found under given conditions for S for 

the special cases a= 0 and a= 2/3. If for a= 2/3 we consider the range of 

S given by (6.9) we observe that this special case, studied in [5], is com

pletely covered by the results of this report. As I (2/3) = 613, T(2/3) = 
n 

p(2/3) = 0 and q(2/3) = 0, the conditions on s213 read 

(7.1) 

For a= 0 we have I (0) = 2TI, T(0) = 3/2 - log 2, p(0) = 0 and q(0) = 1/2, 
n 

so 

(7.2) (3 - 2 log 2)v - 2TI(2n-1) < 3130 < (3 - 2 log 2)v - 2TI(2n-2), 

which for s0 + 00 matches the conditions on this parameter given by inequali

ties (21) and (22) of [3]. 
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It is our intention to write a final report in which we compare the 

asymptotic conditions on a, /3 and v with numerical results on this problem, 

see FLAHERTY and HOPPENSTEADT [2]. For that purpose some integrals such as 

I (a) and T(a) need to be evaluated by numerical integration or (if possible) 
n 

by an analytical expression. Moreover, we will attempt to relate our formal 

asymptotic results with the outcome of topological-analytical work by 

GUCKENHEIMER [6] and LEVI [7]. 
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