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The infinite horizon optimal control problem on manifolds*) 

by 

J.C.P. Bus 

ABSTRACT 

In this paper we present a differential geometric approach to the in

finite horizon optimal control problem for nonlinear time-invariant control 

systems. It uses a recently proposed fibre bundle approach for the defini

tion of nonlinear systems. The approach yields a coordinate free first order 

characterization of optimal curves without a_priori regularity conditions. 

The usefulness of the approach is motivated and illustrated with the linear

quadratic optimal control problem. 

KEY WORDS & PHRASES: nonlinear system theory, optimal control problems on 

manifolds, infinite horizon problems, first order con

ditions, Lagrange multiplier rule 

*)This report will be submitted for publication elsewhere 





I • INTRODUCTION 

Many problems in applied science can be formulated as optimal control 

problems. I.e. as a problem of steering a given system from a given initial 

point at time t = 0 to a prescibed target point (or -set) at time t = T, 

such that a certain cost functional is minimized. Examples can be found in 

engineering (control of satellites or distillation columns), see for instance 

ATHANS & FALB [1966], or economics (production planning, economic growth 

planning). In some of these examples, particularly in economics, it is natu

ral to choose an infinite time interval (T = 00). The following problem of 

optimal economic growth for a one sector closed economy with a single homo

geneous good, described in INTRILIGATOR [19801, is a simple example. We 

seek to maximize with respect to the control c (c(t) is the consumption per 

worker at time t), the social welfare functional: 

00 

W(c) = f e-o(t-to)U(k(t),c(t))dt, 

to 

with state variable k (capital per worker) satisfying the (nonlinear) 

system equations 

k = f(k) - Ak - c, 

and restrictions: 0 :,;; c :,;; f(k), c piecewise continuous. We see that the 

welfare functional is defined by a utility function U with discounting at 

rate o > 0. The system equations are given by the observation that the rate 

of change of the capital per worker equals f(k) (the level of output per 

worker, which is usually an increasing function of k) minus a constant A 

(the depreciation rate of capital) times capital per worker, minus consump

tion per worker. One may choose the simplest form of the utility function 

depending on the consumption c only. However, other choices are imaginable 

too, depending on k but also depending on c of k. For instance one might, 

for social stability reasons, want to avoid fast fluctuations in consumption 

and/or capital per worker and therefore add a penalizing term of the form I cl 2 

(lkl 2
).,Note moreover that the restriction on the consumption might also be 
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incorporated in the utility function by using an interior penalty function 

as known from mathematical progrannning techniques. 

We se_e that generally an optimal control problem is given by: 

a control system (a differential equation in the state variables 

depending on controls), 

a time interval [0,T] with TE ]R+ or T = 00 , 

an initial state and a target set (a subset in state space, possibly 

consisting of one point), 

a cost function depending on the time, the state, the controls and, 

possibly, the derivatives of state and controls as functions of time, 

an end cost function defined on the target set (only appearing if T <co). 

We shall use the following abbreviations for the various kinds of 

problems. 

CEFHP: 

FEFHP: 

clamped end point, finite horizon optimal control problem; 

here the target set consists of one point and we have no 

end cost function; moreover T < 00 ; 

free end point, finite horizon optimal control problem; 

here the target set is some, at least one dimensional, sub

space of the state space and T < 00 ; 

CEIHP (FEIHP): clamped end point (free end point), in;inite horizon optimal 

control problem; T = 00 

If the target set is not specified we talk of FHP (IHP) and if the time 

interval is not specified to be finite or not we may talk of CEP (FEP). 

We shall use the variational approach for characterizing solutions of the 

optimal control problems. That means that we shall formulate optimal control 

problems as variational problems with restrictions and solve these. 

A variational problem can be given by a Lagrangian function L(x,x,t), an end 

cost function h(x), a time interval [O,T], possibly infinite, an initial 

point and a target set. Then one wants to minimize the action 

T 
( 

= J J(x) L(x(t),x(t),t)dt + h(x(T)) 

0 

over all possible curves {x(t), t E [O,T]}. The problem is called restricted 

if the curves to be considered are restricted in some sense. We shall use 

similar ,abbreviations as above for variational problems, but with P 



replaced by VP. For instance IHVP means infinite horizon variational 

problem. 

An optimal control problem can be formulated as a variational problem 

taking x to be both state and control variables and restricting the curves 

to be system trajectories with associated input. 

In this paper we shall only consider first order conditions for opti

mality. Therefore we rather speak about stationarity and stationary control 

instead of optimality and optimal control. 
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In BUS [1982] we gave a differential geometric approach to the charac

terization of stationary solutions of the CEFHP (and CEFHVP). We proved 

there a generalization of the Lagrange multiplier rule on manifolds which 

appeared to be basic to this characterization. Moreover, we used a recent 

fibre bundle approach to nonlinear control systems on manifolds. In appendix 

to that paper we indicated the results for the FEFHP (FEFHVP). We shall 

sununarize these results in section 2 and use these in section 3 to give a 

characterization of solutions for the IHP (IHVP). In section 4 we try to 

give some motivation for developping such a general formalism. We define 

the concepts of equilibrium point and basin of extremal curves and give a 

rough sketch along which lines existence and uniqueness results for station

ary curves can be obtained. These ideas are illustrated with the example of 

linear-quadratic optimal control. 

Our approach is coordinate free and uses noapriori regularity condi

tions. It is intended to contribute to the qualitative study of the IHP 

which might lead to general methods for solving the nonlinear optimal feed

back control problem. 

In this paper we use notations as given in BUS [1982], which are mostly 

consistent with the notations of SPIVAK [1979, vols I,II]. 

Thanks are due to H. Nijmeijer and Dr. J.H. van Schuppen for worthwile 

discussions about the subject. 

2. SUMMARY OF EARLIER RESULTS 

We shall first consider the finite horizon variational problem (FHVP) 
(X) • • • 

on a smooth (i.e. C) manifold M. We assume that the target set Sis either 

consisting of one point xT EM (CEFHVP), or a smooth connected submanifold 
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of M of dimension ;:c:1 (FEFHVP). We denote I = [O, T.1 (T E JR+). Instead of 

giv,ing a Lagrangian L(q,q,t) we give, more generally, an action 1-form a, 

which is a smooth differential 1-form on M. (The Lagrangian problem is ob

tained by choosing M = TQxI, a= Ldt, where Q is the so-called configuration 

space.) By h : S -+ JR we denote the end cost function and x0 E M is the 

given initial point. 

Now let us consider a smooth injective curve <I> 

<l>(T) E S. 

I-+ M, with <f>(O) = x0 , 

DEFINITION 2.1. A mapping <I> (-o,o) x I-+ M (o ;:c: O) is called a variation 

of qi for the'FHVP iff 

(i) 

(ii) 

(iii) 

OJ 

<I> = C 

¢(0,t) 

¢(e:,O) 

in each 

= <I>( t) 

= <l>(O), 

variable, ¢ (e:'.) is injective for all e: E (-o,o); 

for all t E I; 

¢ (e:, T) E S for all e: E (-o,o). 

We talk about CE(FE) variations, depending on S. We are interested in 

stationary solutions of the FHVP in the following sense. 

DEFINITION 2.2. An injective curve <I> : I-+ Mis stationary for the FHVP on 

M (defined by a, h, x0 , S) if <f>(O) = x0 , <f>(T) ES and either 

(i) 

(2. 1) dd I (h(<f> (T)) + f <1>* a} = O, 
e: e:=O e: e: 

I 

for all variations cf> ( • )V; (e:,.) of <P or, equivalently,. e: = 
(ii) 

(2.2) dh(V(T)) + f 
I 

for all vector fields V along cf> with V(O) = 0, V(T) E Tcf>(T)S (where LV 

denote the Lie derivative with respect to V). 

Recall that a vector field along a curve qi: I+ Mis a smooth mapping 

V: I+ TM such that fort EI V(t) E T<P(t)M and <1>*Lva is defined to be 

* equal to <P LXa for any vector field X on M which is a smooth extension 

of V. For further details, as well as a proof of the equivalence of (i) 

and (ii) see BUS [1982]. 



We can give the following important characterization of stationary 

curves 

PROPOSITION 2.3. An injective curve$: I+ Mis stationary for the FHVP 

iff $(0) = x
0

, $(T) ES and 

(2.3) 

(2.4) 

$ (.1__j ) t: ker da., 
* 0t t 

(dh+a.)ls($(T)) = o, 

Vt EI; 

where ker .da. = {vE TM I da.(v,w) = 0 'v'wE T'IT(v)M} and 1
8 

denotes restriction 

to S. 

The proof of this proposition is given in BUS [1982]. Condition (2.3) 

should be interpreted to be trivially satisfied for the CEVP. In this case 

S consists of one point and its tangent space reduces to the zero tangent 

vector. Condition (2.3) expresses the so-called transversaZity condition 

at the end point. Other references to this kind of approach to variational 

problems are GARDNER [1983] and GRIFFITHS [1983]. 

co 
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We may introduce restrictions on curves in M via smooth (C) codistri-

butions of fixed dimension on M. It is shown in BUS [1982] that for instance 

conditions that curves should be trajectories of a given (nonlinear) system 

can be easily expressed in such a way. We say that a curve$: I+ Mis 

admissibZe under restriction codistribution E if $*B = 0 for all BEE. 

Moreover, we call an injective curve$: I+ M stationary under restriction 

E if it is stationary w.r.t. all admissible variations. However, the following 

more restrictive concept appears to be more useful. 

DEFINITION 2.4. An injective curve$: I+ Mis formaZZy stationary under 

restriction codistribution E(smooth and of fixed dimension) for the FHVP 

if $(0) = x0 , $(T) ES,$ is admissible under E and either 

(2 .5) (dd I t B=O 'v'BEE) ~ dd j (h ($ (T) )+J$ * a,) = 0 
£ £=0 £ £ £=0 £ £ 

for all variations$ of$, or, equivalently 
£ 

I 
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(2.6) (~*LvS=O VSEE) => dh(V(T)) + J ~*LVa = 0, 

I 

for all vector fields V along~ with V(O) = 0 and V(T) E T~(T)S. 

The equivalence of the two conditions is shown in BUS [1982]. There it 

is also shown that at least for Lagrangian problems and for the free end point 

optimal control problem where the input appears linearly and the functions 

are analytic, the two notions stationarity and formal stationarity under 

restrictions are equivalent. For the clamped end point optimal control 

problem an additional technical condition is required. In the same reference 

a proof of the following generalized Lagrange multiplier rule has been 

given. First recall the definitions of two important I-forms. 

The canonical 1-foPm 8 on T*M is defined by 

(2.7) 8 (z;;) * = Tr ~, 

for all I';; E T*M (1r:T*M-+M the natural projection). The Cartan form on E, 

a codistribution on M, associated with a I-form a on Mis defined by 

(2.8) 

with 1rE = 1rlE' SE= slE (restriction to E), e the canonical I-form. 

THEOREM 2.5. (Lagrange multiplier rule). An injective curve~: I-+ Mis 

formally stationary for the FHVP on M (with 1-form a, end cost h, target 

set S) under restriction codistribution E, if and only if there exists an 

injective curve n: I-+ E with n(t) E 1r;1(~(t)) (tEI) and n is stationary 

for the (unrestricted) FHVP f'ln E with Cartan form ea' end cost hE = ho,rE 

and target set SE= X (S) for some section X: M-+ E. 

This theorem, which provides the basis for the following theory, 

shows that a restricted variational problem can be "reduced" to an un

restricted variati,mal problem in a higher dimensional space. For the 

last problem we can use the characterization given by proposition 2.3. In 

order to use this theorem for the stationary control problem we first recall 



the notion of a general nonlinear control system introduced by BROCKETT 

[1977] and WILLEMS [1979] and worked out by NIJMEIJER & VAN DER SCHAFT 

[1982]. 

DEFINITION 2.6. A nonlinear (time-invariant) control system E = E(Q,B,f) is 

defined by smooth manifolds Q and B, a fibre bundle T: B • Q and a smooth 

map f: B • TQ such that the following diagram commutes 

f 
B TQ 

~ ~-Q 

We call E(Q,B,f) affine if Bis a vector bundle and f, restricted to the 

fibres of B, is an affine map into the fibres of TQ. Eis analytic if B 

and Qare analytic manifolds and f is an an~lytic map. We say that 

1jJ: I • Q is a trajector'J;' of E if ljJ is absolutely continuous and 

(2.9) a I -1 ljJ (-;:;- ) E f ( T ( ljJ ( t) ) , a . e . on I. * ot t 

With a trajectory we associate a trajectory-inputs: I • B satisfying 

(2. IO) T(s(t)) = 1/J(t), 1/J*(;t1 ) = f(s(t)) a.e. on I. 
t 

Note that the fibres of B represent the state dependent input spaces. 

7 

If we choose local coordinates q for Q and u for the fibres T-l(q), then 

we obtain the familiar system equation q = f(q,u) (with abuse of notation 

for f: (q,u) • (q,f(q,u))). Then a trajectory ljJ: I • Q is a solution of 

thjs differential equation for some given initial point and some associated 

input. The pair: trajectory with associated input, is the trajectory-

input and is in this coordinates often denoted by s(t) = (1/J(t),v(t)). If E 

is affine then we can give a representation by 

(2. 11) 
m 

f(q,u) = f
0

(q) + I u. f.(q), 
i=l 1 1 
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with ui E R, f
0

, fi E X(Q) (smooth vector fields on Q), for i = I, ..• ,m. 

Such systems are sometimes called input-linear. In the sequel we shall 

always assume that f is an injective immersion. 

We shall now translate a stationary control problem into a restricted 

variational problem. Note that we use the word "stationary" instead of 

"optimal" to indicate that we just consider first order conditions. We will 

use the same abbrevrations FHP etc. for the stationary as well ~s the 

0Dtimal control problems. Referring to the introduction a FHP is defined 

by a control system Z:(Q,B,f), a time interval I = [O,T] (TER+), an initial 

state q
0 

E Q and a target set Sc Q, a cost function G: TB x I+ R and an 

end cost function h: S • JR. We restrict attention to two specific choices 

of S 

I. S consists of one point qT only (CEFHP); 

2. S = Q (FEFHP). 

In the first case we assume h = O. 

Then, the FHP is to find a trajectory-input r;: I • B of Z:withT(l';(O)) = q
0

, 

T(l';(T)) ES and such that r; is stationary w.r.t. the cost 

(2. 12) J(r;) = hoT(l';(T)) + J G(r;*(:tlt),t)dt. 

I 

REMARK 2.7. Allowing S to be a submanifold of Q of codimension > 0 would 

complicate the theory considerably. The main problem lies in the accessibility 

of points in a neighbourhood in S of the end point of a given trajectory, 

by trajectories of the system in fixed time T. 

Now define a submanifold Mc TB x I by M = P x I and 

(2. 13) 

where 1rB: TB • B denotes natural projection. In canonical coordinates 

(q,u,q,~} for TB Pis the submanifold defined by q = f(q,u). Using the 

definition of trajectory-input we see that curves in TB x I which has the 

form 

(2.14)' 



for s a trajectory-input of r, lie in M. Define a codistribution Eon M 

by 

(2. 15) E = {(3 I (3 is I-form on M, 

* a cp (3 = 0 for all cp of the form cp (t) = (s* (at), t) 

withs a trajectory-input of r}. 

In canonical coordinates (q,u,u,t) for M, Eis spanned by n+m I-forms: 

(3 • = f.(q,u)dt - dq. l. = I, ... ,n, 
l. l. l. 

(2. 16) 
(3 • = ti.dt - du. j = I , ••• ,m, 
n+J J J 
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with f.(q,u) the i-th coordinate of f(q,u). For more details see BUS [1982]. 
l. 

We have from this reference the following results. 

PROPOSITION 2.8. A trajectory-inputs: I • B·is stationary for the FHP, 

with system r(Q,B,f), cost G, end cost h, initial point q0 and target set 

S(={qT} or Q), if and only if cp: I+ M given by 

(2. 17) iocp = <s*<}tl ),t), 
t 

with i the embedding of Mas submanifold in TB x I, is stationary for the 

restricted FHVP on M with r~striction codistribution E (cf. (2.15)), 1-form 

(Goi)dt, end cost~= ho;(;: M • Q natural pPojection), initial point 

qi (0) and target set {cp(T)} (CEFHP) or P x {T} (see (2.13)) (FEFHP). 

If r is affine analytic then foY'rt1al stationary curves of the FEFHVP are 

stationary and vice versa. For the CEFHVP an additional condition is 

required (see BUS [1982]). 

Together with theorem 2.5 we obtain the following corollary. 

COROLLARY 2.9. Let be given the affine analytic FEFHP as in Proposition 

2.8 and let an injective curve 1;;: I+ B be a trajectory-input of the system. 

Then the following statements are equivaZent: 

(i) , is stationary for this FEFHP; 
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(ii) there exists an injective curve n: I+ E (cf. (2.15)) with 

~Eon=~ (~ defined by (2.17) and ~E: E + M natural projection) such 

that n is stationapY for the (unrestricted) FEFHVP with Cartan form 

{cf. (2.8)): 

end cost 1\io~E and target set SE= x(Px{T}) for some section x: M + E. 

(iii) there exists an injective curve n: I+ E with ~Eon=~ such that 

(2.19) 

and 

(2.20) 

Clearly a similar corollary can be derived for the CSFHP if an 

additional condition is satisfied to guarantee equivalence between station

arity and formal stationarity. In this case SE= {n(T)} and (2.20) 

disappears. 

To illustrate this approach we shall work 0ut these conditions in 

coordinates. Choose coordinates (q,u) in Band denote canonical coordinates 

on TB x I by (q,u,q,u,t). Choose coordinates (q,u,u,t) on M such that 

i(q,u,u,t) = (q,u,f(q,u),u,t) E TB XI. An element BEE given by 

n m 
(2.21) B = l AiBi(q,u,u,t) + I µJ.Bn+J.(q,u,u,t) 

i=l j=l 

for B. given by (2.16) (i=l, ••• ,n+m), is represented by coordinates 
1 

(q,u,u,A,µ,t). In the sequel we call such coordinates on Mand E canonical 

coordinates for given coordinates on B. Define 

(2.22) 

Then 

(2.23) 

H(q,u,u,\,µ,t) = G(q,u,f(q,u),u,t) + ATf(q,u) + µTu. 

eG = H dt - µ.du .• 
J J 



Working out (2.19) for n(t) = (q(t),u(t),u(t),A(t),µ(t),t) stationary we 

obtain 

(2.24) <i dH ( • ) = dA q,u,u,A,µ,t (=f(q,u)), 

. -dH • (2.25) A = aq(q,u,u,A,µ,t), 

(2.26) d u = dt u(t), 

(2. 27) µ -aH . = au(q,u,u,A,µ,t), 

-aG 
(2.28) µ = __!:!(q,u,u,t). 

au 

Note that substitution of (2.28) in (2.27) yields an implicit system of 

nonlinear differential equations in u. 

In many applications G does not dependend on u. Then (2.28) yields 

µ = 0 and H does not depend on u orµ 

(2.29) H(q,u,11.,t) 
T = G(q,u,f(q,u),t) + A f(q,u). 

I I 

Restricting the equations to the submanifold in E given byµ= 0 we obtain 

the well-known equations following from Pontryagin's maximum principle 

(the smooth case): 

(2.30) <i 
aH 

= "'aI( q, u, A , t) , 

(2.31) 
. -aH A = aq(q,u,A,t), 

(2.32) 0 aH 
= au(q,u,A,t). 

The transversality condition (2.20) becomes, in the general case, 

(2.33) 11.(T) = ::(q(T)), 

(2.34)' µ(T) = O. 
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Note that the last equation is consistent with µ = 0 for the case that G is 

independent of u. 

3. THE INFINITE HORIZON PROBLEM 

In this section we shall extend the results of section 2 to the IHVP 

and IHP. We have 

(3. 1) I = [0,oo), h - 0. 

With an IR-variation of cp: I -+ M we mean a FE-variation of cp according to 

Definition 2.1 with S=M (i.e. no condition on the end point). To assure 

finiteness of the cost integral we have to adapt the definition of station

arity in the following sense 

DEFINITION 3.1. An injective curve cp: I-+ Mis 

(i) stationary w.r.t. the IHVP with action form a iff 

(3.2) j lcr*al < 00 

I 

(3. 3) 

(ii) 

(note that cp*a is of the form $(t)dt, so that lcr*al here means 

l$(t)ldt) and for all IR-variations cp of cp: 
£ 

d
d I j cp*a = O; 
£ £=0 £ 

I 

formally stationary w.r.t. the restricted IHVP with action form a 

and restriction codistribution E iff (3.2) is satisfied and for all 

IR-variations cp of cp: 
£ 

<~1 cp * (3=0 'v'f3EE) ~ ~1 r 
d£ £=0 £ d£ £=0 

I 

* cp a= O. 
£ 

In extending the results of section 2 to the infinite horizon case the 

following lennna is crucial. 



LEMMA 3. 2. An injective CUY'Ve cp : I + M is stationary for the IHVP if and 

only if (3.2) is satisfied and for aii t EI: 

(3.4) cp (+-I ) E ker da. * ot t 

.13 

PROOF. Letcpbe stationary. Then (3.2) is satisfied by hypothesis. Define, 

for arbitrary T € ]R+' $ = cpj[O,T] and suppose cp is not stationary for the 

CEFHVP with end point cp(T) (=~(T)). Then there exists a CE-variation cpe of 

$ on [O,T] such that 

T 

dd I J i*a f 0. 
e e=O £ 

0 

However, we can construct a smooth CE-variation cpE: of cp on I which is 

arbitrarily close to the (non-smooth) curve f defined by: 
£ 

Hence 

= $ (t) 
£ 

= cp(t) 

t E [O,T], 

t > T. 

ddEI J cp:a f O. 
E:=O I 

This contradicts the stationarity for the IHVP. Hence cp is stationary for 

the CEFHVP for every finite T. Then Proposition 2.3 yields the necessity. 

To prove sufficiency, define a strictly monotonously increasing 

sequence {T.}
00 

, with lim T. = 00 • Denote 
i i=O i~ i 

Ii= [O,TiJ' cpi =¢Ir .. 
i 

We know by hypothesis (3.2) 

lim 
i~ 

I. 
i 

lim J 
i~ 

I. 
i 

= J 
I 
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Now let$ be an arbitrary IR-variation of$ on I and define 
£ 

{

$~(t) 

= cr1 ( t) 
£ 

$ (t) 

t E I. l' i-

t E [T. l , T. ] , 
1- 1 

t ~ T., 
1 

i i where CJ is chosen such that$ (t) is smooth int and£, 
• £ £ • 

l(cr
1
-$)*al is bounded on [T. 

1
,T.] for all i. Then $1 11 £ • 1- 1 £ i 

variation of $1
• By assumption (3.4) and Proposition 2.3 

(3.5) dd£ l 
£=0 

Now define 

f. (£) 
1 

= 

I 
I. 

1 

I 
I. 

1 

-i * 0 i 1 , 2, ••• ($ ) a = = . £ 

i * g. (e:) = d 
($£) a, cl f. (£). 

1 £ 1 

i 
cr0 (~) = $(t) and 

~ ~
1 is a CE-

• £ 
~ 1 is stationary: 

Then lim g.(O) = 0 and by smoothness off and g w.r.t. e: we see that g.(£) 
i"?<lO 1 1 

converges uniformly on some £-interval. Moreover 

lim f. (0) 
i-+<x> 1 

.,. 
Using DIEUDONNE [1969, thm. 8.6.4] we obtain 

d 1· f. (£) lim g. (£). - im = d£ . 1 i"?<lO 1 
1-+<x:> 

Substituting£ = 0 yields 

:£1 I $:a= o. 
£=0 I 

This proves the stationarity of$. • 
In order to prove a generalization of the Lagrange multiplier rule 

(thm. 2.5) we need Ascoli's theorem. We shall reproduce here the formulation 

of this theorem given in ROYDEN [1968]. The proof can be found in this 

reference. It has been given for continuous functions but can easily be 
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extended to smooth functions. 

THEOREM 3.3. (Ascoli) Let F be a family of functions from a separable space 
X to a metric space Y which is equicontinuous with equicontinuous families 

of derivatives. Let {f } be a sequence in F such that for each x E X the set n 
cl.{f (x) IO::; n < 00 } (cl. denotes closure) is compact. Then, there is a 

n 
subsequence {fn} which converges point-wise to a smooth function, the 

k 
convergence being uniform on each compact subset of X. 

THEOREM 3.4. (Lagrange multiplier rule). Let$: I= [O, 00 ) + M be an injective 

curve. Then$ is formally stationary for the restricted IHVP with action 

form a and restriction codistribution E, if and only if there exists an 

injective curve n: I+ E with rrEon =$,such that n is stationary w.r.t. 

the Cartan form ea= rr; a+ eE (rrE: E + M natural projection and eE the 

restriction to E of the canonical 1-form). 

PROOF. Define a sequence of strictly monotonously increasing time intervals 

Ii= [O,T.] with lim T. =~.Let ~ be formally stationary and define 
. l. i+oo l. 

$1 = $1 1 .. With the same arguments as in the necessity part of Lemma 3.2 we 
l. • 

may conclude that $1 is formally stationary for the CEFHVP for every i. 

Using theorem 2.5 we know that there exist ni: I.+ E (i=l,2, ••. ) such 
l. i i i . . that rrEon = $ and n 1.s stat1.onary w.r.t. ea. From the proof of theorem 

2.5 (see BUS [1982, thm. 3.8]) we see that we can choose n~ uniquely 

(i=I,2, ••• ) such that ni(t) = nj(t) for i::; j and t EI .• Indeed, the 
l. 

vector fiel1 Z defining F1 and F2 _in that proof c~n be chosen along$ 

(not just ~
1
). Then, if nj1 1 . I n1 we know that nJl 1i_is als? stationary 

on I .• Therefore, the Lagran~e multipliers for both n1 and nJl 1 satisfy 
l. i 

the same differential equation and end point condition ((3.21) in that 
i proof). So they are equal. We assume such a choice for n and define 

-1. 
curves n: I+ E (i=I,2, ••• ) smooth satisfying: 

(3.6) 
-i {ni(t), 
n (t) - i - n (T.), 

l. 

t E I., 
l. 

t~T. 1. 
l. + 

-i 00 

Clearly {n }i=I is an equicontinuous family on I and their derivatives are 

equicontinuous families too. Moreover, we have for fixed t EI: 
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i < oo} N+l -N k 
= {n (t),n (t),n (Tk),k=l, •.• ,N}, 

for N chosen such that t E [TN,TN+l]. As this is a finite set of points in 

E it is compact in E and we can use Ascoli's theorem yielding convergence 
-i i 

of n to a smooth curve n: I -+ E. Moreover, n = n I 
1

. is stationary w. r. t. 
l. 

ea for all i. Finally, if s1, ••• ,Bm span E locally then 

(3. 7) 

= J x.ts. I 
J J = I 

I I 

by admissibility and stationarity of cf,. This also holds globally as we may 

split up a global problem in a sequence of local problems. The boundedness 

of the integral together with the stationarity and use of proposition 2.3 

and hmma 3.2 yields the necessity. 

To prove the sufficiency, let n: I-+ Ebe stationary w.r.t. e • Then 
a 

• V 
and n1 = nl 1 . (i=l,2, ••• ) is stationary for the CEFHVP with I-form e . Use 

1 i i a 
of theorem 2.5 gives formal stationarity of cf> = rrEon under restriction 

-i 
distribution E for i = 1,2, •••• Choose cf> : I-+ M (i=l,2, ••• ) smooth such 

that 

(3.8) 
t E l., 

l. 

t~Ti+l" 

-i 
Then use of Ascoli's theorem again gives convergence of cf> to cf> and it 

follows that cf>= rrEon. Moreover (3.7) and (3.8) yield 



J Ital < 00
• 

I 

Therefore, the formal stationarity of ~i for the CEFHVP yields the formal 

stationarity of~ using the same arguments as at the end of the proof of 

lemma 3.2. This completes the proof of the theorem. D 

We can apply this theorem to the IHP given by a nonlinear control 

system E(Q,B,f), time interval I= [O, 00), cost function G: TB x I • JR 
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and initial point q
0 

€ Q. First we recall the following proposition from 

BUS [1982]. Although it is formulated there for the FEFHP the proof is the 

same for the IHP as we here also have a free end point in Q. 

PROPOSITION 3.6. Let be given an IHP with affine analytic control system 

E(Q,B,f). Then, for the restricted IHVP assiciated with it we have equivalence 

between formaZ stationarity and stat~onarity of curves. 

COROLLARY 3.7. Let E(Q,B,f) be an affine analytic nonlinear system. Let 

G: TB x I+ JR be a given cost function. Supposes: I+ Bis a trajectory

input of E satisfying ,(s(O)) = q0 and 

(3. 9) < ro. 

Let M = P x I c TB x I, with P defined by (2.13). Thens is stationary for 

this IHP if and only ff there exists an n: I+ E (E defined by (2.15), 
* interpreted as a subbundle of TM) such th.at: 

(3. IO) 

with TIE: E + M natural projection and 1: M + TB x I the embedding, and 

(3. l l) 
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If we would work out these results in coordinates we would obtain 

formulas (2.24) up to (2.28) for the unbounded time domain. 

In the next section we shall shed some more light on this result and 

try to motivate its importance. 

4. MOTIVATION 

Based on the foregoing theory we shall define some important concepts. 

We shall see that applying this theory to the linear-quadratic optimal 

control problem leads to an elegant representation of the solution in terms 

of the stabilizing solution of the algebraic Riccati equation. Moreover, 

it sheds some light on along which lines a nonlinear geometrical approach 

to infinite horizon optimal control might go. 

We consider the IHP and look to the set of curves in E which are 

candidates for the stationary curves we search for. This is called the set 

of extremaZs r of the IHP and is defined by 

(4. 1) 
r = {n: I+ EI irE(n(t)) E P x {t}, 'v't E I; 

a 
n* (at) E ker deG, 'v't E I}. 

(For the definition of P see (2.13).) As M = P x I and Eis a subbundle of 

TM= TP x TI we can write 

-(4.2) E =EX I. 

Note that curves n Er are in fact graphs of curves y: I+ E. We denote 

(4.3) r = {y: I+ EI n: t + (y(t),t) is in r}, 

and often call r also the set of extremals. One might ask whether all curves 

in rare integral curves of a certain vector field on E. In fact, one can 

prove that, under certain regularity conditions, there exist a submanifold 

of E and a vector field on this submanifold such that its integral curves 

are extremals as curves in E. Then we would be interested in the equilibrium 



points and associated stable manifolds of this vector field. However we 

shall not go this way as it requires a priori regularity conditions. We 

shall define the concept equilibrium point directly. 
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DEFINITION 4.1. An element;€ Eis called an equilibrium point for r (or f) 
iff the curve y: I+ E, defined by y(t) = e Vt, is in r. 

Before we discuss the question of existence of equilibrium points for 

rand their computation, we introduce one more important concept. 

DEFINITION 4.2. The basin of the set of extremals r w.r.t. the equilibrium 

point e € E for r is the set BCE defined by 

(4.4) B = {x € EI ]y € f(y(O) = x, lim y(t) = e)}. 
t"?OO 

In order to compute an equilibrium point we note that such a point 

e EE should satisfy by definition the following equation: 

(4.5) 

In canonical coordinates (q,u,u,A,µ) for Ewe obtain that e = (q,u,u,A,µ) 

should satisfy 

aG --+ aq. 
l. 

aG --+ au. 
J 

aG --+µ.=O, 
au. J 

J 

f. (q,u) = 0, 
l. 

ii. = O, 
J 

for i = I, ... ,n, J = 1, ••• ,m. With definition of H by (2.22), these 

equations reduce to 
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(4.6) aH o, aH o, aH o, ¾ = -= -= 
3A au 

(4. 7) 
aG . o. µ =- u = clu' 

If G is independent oft, then so is Hand r0stricting to the submanifold 

with u = 0 yields H dependent on q, u and A only. Then an equilibrium 

point can be obtained as solution of (4.6) (gives q,u and )._ coordinates) 

together with (4.7) (givesµ and u). 

We see that a solution (q*,u*) of the nonlinear progrannning problem: 

min G(q,u,f(q,u),O) 
q,u 

subject to f(q,u) = 0, 

* together with the values of the Lagrange multipliers A at the solution, 

yields the equilibrium point 

* * * aG * * * * (q ,u ,o,A 'au(q ,u ,f(q ,u ),O)). 

. ( * *) . d The solution q ,u 1s also called the stea y state solution of the optimal 

control system. Clearly, the existence and uniqueness of an equilibrium 

point (locally) can be analyzed by studying the equations (4.6). 

Once we have an equilibrium point for r we have to analyse its basin. The 

following questions are relevant: 

I. Does the basin cover the manifold Q, i.e. 1.s the projection of B c E on Q 

the whole of Q? In that case, for every starting point q
0 

E Q we can 

find an extremal in r which projects on a trajectory-input of the system 

that starts in q
0 

and ,ends in the equilibrium point. 

2. Is the covering simple, i.e. is there for each q
0 

E Q a unique 

extremal in r as under 1? 

Conditions for existence and uniqueness of stationary solutions might be 

derived from studying these questions. For further motivation one might 

for instance look up the book of YOUNG [1969]. We shall here illustrate the 

relevance of the approach by working it out for the linear-quadratic optimal 
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control problem. We have 

f(q,u) = Aq + Bu, 

T T G(q,u) = q Mq + u R~, 

with A, B, Mand R matrices of appropriate dimension, M, R symmetric and 

R positive definite. Then the equations for an equilibrium point (4.6) and 

(4.7) yield 

(4.8) 
Aq +Bu= 0, 

Ru+ BT"= 0, 

µ = o, u = o. 

By positive definiteness of R we may solve the third equation for u and 

substitute, yielding 

(4.9) 

(4. 10) 

with -1 T 
= (A-BR B \ 

H \_M -AT )" 

If we asstnne that the pair (A,BR-lBT) is stabiZizabZe (i.e. there exists a 
. h h h f A -l TF 1· • h . 1 matrix F sue tat t e spectrum o -BR B ies int e negative comp ex 

half plane) then His nonsingular and a unique solution (q,A) = (0,0) of 

(4.9) exists. Therefore the equilibrium point in Eis the origin (in the 

given canonical coordinates). 

To see how r-curves are like we note that they satisfy the equations (2.24) 

up to (2.28) which become: 
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q = Aq + Bu, 
. T A = -Mq - A).., 

(4.11) u d 
= dt u, 

0 = Ru+ BT).. 
' 

µ = o. 

Again we can solve for u yielding u = -R~
1
BTA. Substitution of u yields a 

differential equation in (q,)..): 

(4.12) 

Solut.ions of (4. 12) define the extremals. We know (see VAN SWIETEN [ 1977]) 

that, if (A,BR-lBT) is stabilizable, then there exists a stabilizing 

solution K- of the algebraic Riccati equation 

(4.13) 
T -1 T 

AK+ KA - KBR B + M = 0, 

such that columns of the matrix [ 1-J span an H-invariant subspace in (q,A)
K 

space and curves of the form 

(
q(t)) (q(t) ) 
)..(t) = K-q(t) 

are stable, with q(t) a solution of 

(4. 14) 

-So the basin B c Eis the set 

(4. 15) 
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Clearly the basin B covers Q and the covering is simple as extremals are 

defined by (4.14). So, for every q0 E Q we can take the corresponding point 

in the basin Band the unique extremal in r emanating from this point and 

going to the equilibrium point the origin. This completes the picture for 

the linear-quadratic optimal control problem as an example for possible 

treatment of the nonlinear case. 
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