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Coseparators in categories of topological transformation groups
by

J. de Vries

ABSTRACT

The main result in this note is that the category COMP® of all compact
G-spaces has a coseparator, provided G is a locally compact Hausdorff topo-

logical group. This provides a partial solution to an open question raised
earlier by the author.

KEY WORDS & DPHRASES: compact topological transformation group, coseparator

in a ecategory, G-space, G-compactification.



In certain parts of mathematics the question is of interest whether
all members of a given class of objects can be embedded in one "comprehen-
sive'" object. See for example [1]. This sort of problem, when studied in
a categorical context, leads to the concept of a coseparator. See [2; 19.6]
or [3; 24.6.5].

As to the existence of "comprehensive objects" for certain classes of
topological transformation groups (ttg's) we refer to [4; Chap. III] .

These results are derived independently of coseparators, but nevertheless it
is interesting to know which categories of ttg's have a coseparator. In

[4; section 6.4] we obtained some results in this direction as consequences

of a general theorem about 'preservation of coseparators' by certain functors.
However, the question of whether the category of all compact Hausdorff G-
spaces has a coseparator was left open. In this note we give an affirmative
answer for the case that G is a locally compact Hausdorff group.

In the sequel, G shall always denote a locally compact Hausdorff topo-
logical group with identity element e. Recall that a G-space is a pair
< X,m > in which X a topological space and m: GxX -+ X is a continuous
mapping satisfying the conditions: m(e,x) = x and n(t,n(s,x)) = n(ts,x) for
all s, t € G and x ¢ X. If <X,7> and <Y,0> are G-spaces, then a morphism
of G-spaces f: <X,m> - <Y,0> is a continuous mapping f: X - Y such that
f(m(t,x)) = o(t,f(x)) for all t € G, x ¢ X. In this way we obtain the cate-
gory of all G-spaces and all morphisms of G-spaces, denoted T0P°. 1f B is a
full subcategory of TOP, then the corresponding full subcategory of TOPG is
denoted BG. As a general reference for categories of ttg's, see [4] and [5].
If X is any topological space, then CC(G,X) denotes the space of all con-
tinuous functions from G inte X, endowed with the compact-open topology.

If SX: Gx CC(G,X) > CC(G,X) is defined by
oy (t,£)(s):= £(st)

for f ¢ CC(G,X) and t, s € G (so each SXt is a right-translation of func-
tions), then <CC(G,X),EX> is a G-space (SX is continuous because G is

locally compact). In the sequel we shall always omit the subscript X in SX'

PROPOSITION 1. Let B denote a full subcategory of TOP which has a cose-
parator X such that CC(G,X) 28 an object in B. Then <CC(G,X),E> 8 a




coseparator in BC.

PROOF. Let <Y,0> be any object in BG and let YysYy € Y, Y4 # Yo- It is suf-
ficient to show that there exists a morphism of G-spaces f: <Y,o> > <CC(G,X),
0> with f(y]) # f(yz). Since X is een coseparator in B there exists a con-

tinuous function g: Y - X such that g(yl) # g(yz). Define f: Y ~» CC(G,X) by
£(y)(t):= go(t,y)), y e ¥, t € G.

It is easily checked that f: Y - CC(G,X) is continuous. Moreover, by direct
computation one can verify that f: <Y,o> - <CC(G,X),S> is a morphism of G-

spaces. Since

f(y)(e) = g(y)) # 8(y,) = f(y,)(e)

we have f(yl) # f(yz), as desired. O

EXAMPLES (cf. also [4; section 6.41]).

1. The indiscrete two-point space E2 is a coseparator in TOP. Hence
<CC(G,E2),8> is a coseparator in TOPG.

2. Let F, denote the two-point space {0,1} with the TO—topology {¢,{0},{0,11}}.

Then <CC(G,F2),5> is a coseparator in the full subcategory of TOPG, deter—

mined by all T, G-spaces.

0

3. The discrete two-point space D, is a coseparator in the full subcategory

TOPO of all zero-dimensional Hiusdorff spaces. Since Cc(G’D2> is also
zero—dimensional, it follows that CC(G’DZ) is a coseparator in TOPG.

4. The closed unit interval I is a coseparator in the category TYCH of all
Tychonoff ( = completely regular Hausdorff) spaces. Since CC(G,I) is a
Tychonoff space, <CC(G,I),S> is a coseparator in TVCHG.

5. Observe that CC(G,I) is compact iff G is discrete. [If G is discrete,
CC(G,I) = IG is compact by the Tychonoff-theorem. Conversely, if CC(G,I)
is compact, then CP(G,I) is compact. But CP(G’I) is dense in IG, hence
it coincides with IG.] Consequently, unless G is discrete, our method
does not provide a coseparator for COMPG (COMP is the category of com-

pact Hausdorff spaces).



THEOREM 2. For any locally compact Hausdorff group G the category COMP® 7as

a coseparator.

PROOF. In [5] it is shown that every G-space has a G-compactification (G
locally compact). For the G-space <CC(G,I),E> this means that there exists

a morphism h: <CC(G,I),5> + <Z,5> in TOPG such that Z is a compact Hausdorff
space and h is a topological embedding of CC(G,I) in Z. In particular, k is
injective. It follows immediately from EXAMPLE 4 above and the injectivity
of h, that <Z,G> is a coseparator in TVCHG. Because <Z,G> is an object in

COMPG, it follows that it is a coseparator in COMPG. -0

REMARK. It can be shown that the weight w(Z) of the space Z mentioned in the
above proof equals w(G), the weight of G. So if G is a separable metrizable
group (and, of course, locally compact) then Z is second-countable, hence
compact and metrizable; therefore, in this case <Z,S> is also a coseparator
for the category of all compact metrizable G-spaces. It would be of interest
to find a coseparator for this category under weaker conditions on G. [For
example: G sigma—compact. In this context, observe that for a sigma-compact
group G, CC(G,I) is metrizable, so that <CC(G,I),5> in a coseparator in the
category of all metrizable G-spaces.] Another open question is, whether the

category COMPG has injective coseparator.
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