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ABSTRACT

A fractional integral operator is derived, for which the partial dif-
ferential operator axx - ayy - Vy'lay plays a similar role as the ordinary
differentiation d/dx does with respect to the fractional integral of Riemann-
Liouville. An application is given to the Koornwinder polynomials (a class
of orthogonal polynomials in two variables). Also, an operator is obtained

which has the Jacobi functions of order (%{v—l),—%ﬁ as its eigenfunctions.
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1. INTRODUCTION

This paper deals with the theory of a fractional integral operator IS
corresponding to the second order partial differential operator
(1.1) D =3 -3 -vy ha

) v T %xx T %y T Yy

The operator I% is a generalization of the fractional integral of Riemann-
Liouville. The theory of the fractional integral operator of Riemann-
Liouville is given in Section 2, together with an application to Jacobi
polynomials.

The idea of fractional integration is the following. Suppose we have

a differential operator Q and an initial value problem
k n
(1.2) Q0 f(x) = g(x), xe R, k e N,

with initial conditions on f such that (1.2) has a unique solution, which

can be written as

(1.3) f(x) = Ikg(x),
where
k
(1.4) Ig(x) = f K(x,y)g(y)dy,

for some kernel K, depending on k. If (1.4) is defined for k in € (or IR),
Rek > k_ and such that

0
(1.5) Ikllkzg(x) = Ik1+k29(x),
and
(1.6) o g = Mo,

then the operator Ik, k € €, is called a fractional integral operator



corresponding to the operator Q. Here "fractional" means that k can be non-
integer, and "integral" refers to the fact that Ik is the inverse of a dif-
ferential operator Q (and that it can be written as an integral for

Rek > kO)' If g is such that QK g exists and

IkQﬁg = QKIkg, £ ¢ N, Rek > LY

then Ikg can be defined for all k € C:

< +
(1.7) Ikg i= Ik KQﬂg, £ e N, Re (k+f) > ko.

k+l | . . . .
Here I is given in (1.4). The last step is necessary in the cases where
Q is a hyperbolic operator (as is Dv)’ since in that case (1.4) corres-

ponds to a convergent integral only if Rek > k. > 1. M. RIESZ [13] used the

0
technique of fractional integration and analytical continuation in order to

solve (1.2) with Q = [1, where

(1.8) D=3 =8 _ —...=3_
X0%0 1*1 n-1%n-1

the wave operator in R". In order to solve the problem with Q = Dv' where

Dv is given by (1.1), we will use the results of M. Riesz if v is an integer.
In that case Dv corresponds to the wave operator in Ey+2 acting on functions
which are rotation invariant. It will appear that the results obtained in
this way also hold for v € €, IRev > -1.

The origin of the research in this paper is a differential recurrence
relation for the Koornwinder polynomials, which are two-variable analogues
of the Jacobi polynomials. This differential recurrence relation results in
a formula of the form (1.2) with x € IR2 and Q = Dv' The problem for the
Koornwinder polynomials is sketched in Section 3. The fractional integral
operator It, v € IN is found from Riesz's theory in Section 4. In Section 5
a class of distributions and a generalized convolution structure is intro-
duced such that Iif can be defined as a convolution of the distribution £
with a distribution z which is the analogue of the Riesz distribution. Then

U
the fractional integral operator It is defined for v € €, Rev > 0 (Section

u

6) and the action of Iv

on the Koornwinder polynomials is given (section 7).



In Section 8 it is shown how the operator It results in an integral operator

Jt o when we consider the action of It on functions of the type
4

(1.9) £(x,y) = rOF(t), x = rcht, y = rsht.

It is proved that the Jacobi functions of order (%{v-l),—%ﬁ are eigenfunc-

tions of Jt . This leads to the action of It on the James type zonal poly-

14
nomials, which can be written in the form (1.9) with F(t) a Jacobi function

%). The expansion of the Koornwinder polynomials in a
series of James type zonal polynomials completes the proof of the results

of order (%%V—l),—

in Section 7. The last section, Section 9, is meant to give some additional

results. In this section the integral operator Is is explicitly given in

the form (1.4). Here the kernel is expressed by two different formulas con-

taining hypergeometric functions. Both formulas hold for a different part

u
v

of the region of integration. By means of this expression for I the defini-

tion of IS is extended to IRev > -1.
2. THE FRACTIONAL INTEGRAL OPERATOR OF RIEMANN-LIOUVILLE

The classical theory of fractional integration and its applications
can be found in OLDHAM & SPANIER [11]. As a reference for fractional inte-
grals of generalized functions (distributions) see ERDELYI [3], GELFAND &
SHILOV [7, Ch. I, §3.5] and SPRINKHUIZEN-KUYPER [16, §7 and §8].

DEFINITION 2.1. If f is a continuous function on IR which is zero for x < XO'

and if IRey > 0O, then

Ff57-f§ £(t) (x-t) ¥ lat, x > X,
(2.1) Me(x) :={ " %o
o, X < xO
The operator 1" has the following properties:
u, M U, +u
(i) 1 11 2f(x) =1 ! 2f(X),

ey = e,



e . u _
(iidi) 11mINO I'f(x) = £(x),
(iv) qu(x) is an analytical function of y for IReu > O.

The definition of I"

has a natural extension when we permit £ to be a distri-
bution with its support bounded to the left.

Let D(IR) be C:(IR) with the usual topology, and let D' (IR) be its dual
consisting of the distributions on D(IR). The subset D', (R) of D'(R) con-
sists of those distributions which have supports bounded to the left. We will
use the notation (f,¢) for the action of the distribution £ on the test
function ¢; (+,°*) is linear in both arguments. Each locally integrable func-

tion £ will be identified with a distribution (for which we use the same

symbol f) by
(2.2) (£,¢) = J f(x)¢ (x)dx.

Consider the distribution pu in D'+(]R) which is defined for Re u > 0 by

1 u-1
(2.3) pu(x) =T x_ s

J-x if x =20,
(2.4) x, = 1

0 elsewhere,
and by

_ (_1\Kk (k)

(2.5) (B,s4) = (1 0,

if IReu > -k, ¢ ¢ D(IR).

The function u - (pu,(b) is an entire analytic function. The convolution
of pu and a distribution f in D'+(]R) exists because
(2.6) supp (£) n supp(x > pu(y—X))

is bounded for any y € IR. The convolution is defined by

(2.7) (f*Pu,d)) := (f(X),(pu(Y),¢(X+Y)))-



The fractional integral operator ™ acts on distributions f in D'+(IU as
u -
(2.8) I f:—f*pw

LEMMA 2.2. Let £ € D', (R) and Wil sl € C, then

u, u u,+u
1) 1irle=1! Z,
.. d _p+tl_ _ _p+l 4 u
(ii) a;-l f =1 a;-f =1T¢£,

(iii) 19F = £.

PROOF. If ﬂ«aui >0, i=1,2, then

1 Myl Hyol
(2.9) p. *p (X)) = o5———— [ Yy (x-y) dy
My My P(ul)F(uz) + +
+u,.-1 ! -1 -1
IS SR M- PR R
T T () Y Y Y
0
=p (x).

Hence the first part of-the lemma is a consequence of (2.9), the asso-
ciativity of the convolution and the analytical continuation as given in
(2.5).

Similarly the second part of the lemma results from

d

(2.10) a;—pu+1(x) = pu(x), Yu € C,
and

a a a
(2.11) ax ErPuyg) T G B rPy T B g P

In order to prove the third part of the lemma we use (2.7), where ¢ is allow-

ed to be a test function in D_(EU:

D (m) =1{ye c” | supp (¥) < (-=,m] for some m € (—o,»)},



with the usual topology (see [16]). Then

(1"£,¢) = (£xp .9) = (£,3%),

where
Mo (x) = (B, (¥) 6 (xty)) = (o (y=x) 16 (V).
Hence,
‘ fpu (y=x)¢ (y)dy, IRep > O,
"o (x) =
(-1) K"k ) 4y, Rey > k.

If uw > 0, then pu is a regular distribution corresponding to a positive con-

tinuous function. Thus

Ju¢(x) =0 for some u>0=¢(x) = 0.

u

Application to Jo¢-¢ and use of the composition property of J results in

JO¢ = ¢ and thus

1%f,0) = (£,3%) = (£,0), V4 e D_(R) > D(R). 0

COROLLARY 2.3. Let g € D'+(E0. The unique solution f € D'+(IU of
d.n

(2.12) (dx) f=g

is given by

(2.13) £ = 1.

In the theory of special functions we often met relations which can be
written as

d -
(2.14) Ix fge1 X = £, x >0,

o



where fu(x) is. jointly continuous in x and o, analytical in a, sufficiently

often differentiable in x, and

(2.15) fa(O) =0, if IRea > Qg

for someha0 € IR.

If a is such that fa is locally integrable on {x[ x = 0}, then the
function fa is identified with a distribution in D'+(In which is zero on
{x Ix < 0} (cf. (2.2)). For those values of a (2.14), (2.15) and Corollary

2.3 yield:

(2.16) e (x) = £yay () x > 0,
for uy € WM.
In many cases (2.16) also holds for u € €, IReuy > 0. There are two
techniques to prove (2.16) for u € C, Rey > 0:
(i) Give a direct proof by calculation, or
(ii) Use the theorem of Carlson for analytical continuation (see Theorem

2.4 below).

THEOREM 2.4. (Carlson, cf. TITCHMARSH [19, p. 186]). Let f(z) and g(z) be
analytical functions for Rez > 0, and let f(z) = g(z) if z = 1,2,3,... . If,

for some M > 0 and u € (0,m):

ul zl
I

[£(z) -g(z)] < Me Rez > O,

then
f(z) = g(z).

An example of a family of functions {fa} is provided by the Jacobi

polynomials:

(o, B) _ _ . .
(2.17) R.n (1-2x) = 2F1( n,n+o+p+1;a+1;x).

For them the following relation holds:



o a-1
4a _x  _(a,B),,_ _x  (a-1,B+1)
(2.18) ax T(o+D) Rh (1-2x) T () Rn (1-2x%),
and indeed
b x* (0,8 T (o, 8-
(2.19) I F-(O(.—+1—)_ Rr1 (1-2%x) = m Rn (1-2x),

Rea > -1, Rep > 0. See ASKEY [1, (3.6)] and ERDELYI et al. [4, 2.8 (22)].
Formula (2.19) with p > O contains an expressioh for Jacobi polynomials

of order (a,B) with a > B as a convolution of a positive function and a

Gegenbauer polynomial (= Jacobi polynomials with equal parameters). Hence

a number of properties for the Jacobi polynomials such as

(2.20) IRéu'B)(x)l < Ré“’s)(1) =1, 1 <x <1,

a =B Aa+B = -1 AB > -1,

can be derived from the corresponding properties for the Gegenbauer poly-

nomials.
3. FORMULATION OF THE PROBLEM

The motivation for writiﬁg the present paper and the earlier paper [16]

came from the following problem. In KOORNWINDER & SPRINKHUIZEN-KUYPER [9] we

studied a class Ra'B'Y(E
n,k

us call them Koornwinder polynomials, following K. RINGHOFER [12]. In [9,

,nN) of orthogonal polynomials in two variables. Let
(6.20) ] we obtained the differentiation formula

Y O U'IBIY — i l o-1 a—1IB+1IY
(3.1) D_NR (€,m) = 7 aloty+3)n Rk (E,m),

where, after a change of variables

(3.2) (Em > y), E=x =16 -y),

Y

the partial differential operator D' equals

Yy _ 1
(3-3) Do =7 Poyyq v



with D, given by (1.1). It is important to have a formula corresponding to
(3.1) in a similar way as (2.19) corresponds to (2.18), because such a for-
mula may yield an analogue for the Koornwinder polynomials of inequality

(2.20). Formula (3.1) can be written as
(3.4) oD L (xy) = £ (x,¥), x>y =20,
(3.5) fa(x,x) =0 if IRea > O.

Comparison of (3.4) and (3.5) with (2.14) and (2.15) leads to the problem of

deriving a fractional integral operator It which acts on suitable f such

that
u, M W, +u
(3.6) 11211 %,
Vv AY] AV)
(3.7) b T""%f = "2 £ = 1V,
AVARRY] AY] Vv vV
(3.8) 1% = &,

4. SOLUTION OF THE PROBLEM FOR v IN IN

Let v € N. We will solve the problem stated in Section 3 by consider-

. ~ Vv+2 . . . .
ing functions f on IR which are invariant under rotations around the xo-

axis. These functions % correspond to functions f on
2
(4.1) Q:= {(x,y) ¢ R” |y 2 0}:

(4.2) F(x PXyreeo X ) = £(x,y),

0 v+1

2 ' +
where x = xO and y = /gf-+x2-+...-kx3+1. The wave operator [] in IRv 2 equals

(4.3) 0 :=23 -9 - . — ax % .
00 171 v+17v+1

It is easily checked that for functions f and £ corresponding to each other

as in (4.2) the wave operator 0 corresponds to Dv:
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(4.4) Df(xo,x X)) = D E(x,y).

17777 v+

Thus the initial value problem
k .
(4.5) D,E(x,y) = g(x,y) in @,

with initial conditions for f on a curve S in @, corresponds to

(4.6) 0% = 3, in R°'?,

with initial conditions for E on the hypersurface E corresponding to S.
The initial value problem (4.6) was solved by M. RIESZ [13] in terms
of a fractional integral operator. The action of the fractional integral
operator on distributions can be found in L. SCHWARTZ [15] or DE JAGER [8].
See also [16] for a related problem. In the following we give a sketch of

+
the theory. Let P be a point in BQ) 2 with coordinates (xg,...,xi+1). The
forward light cone £+(P) with its vertex in P is:
~ v+l P
(4.7) L, () == {(xg,.eavx 1) € R Ixo > xg A
P.2 2 P 2
(Rp = %)™ = (g =% m e =k X )7 = 0
and similarly the backward light cone is given by:
~ v+1 P
.= <
(4.8) L) == {(xgr-aixy, ) € R | x) < % A
P2 P 2 P 2
- - - - - - >
(kg =%g) " = (k=X 7 = ee = (x ) =% )7 = O

We will use the notation L+ and L_ for a light cone with its vertex in the

. . . v+1
origin. Let £ be a continuous function on IR . A hypersurface

) eIRv+2 X = f(xl,...,x )}

S = {(x_,x RERVE N 0 1

01

is called admissible if for any point P in g



11
L,(P) nS=1 (P) ns = {p}.

For an admissible hypersurface S we define

(4.9) S+ = U L+(P),
PesS
(4.10) S = U L (P).
PeS
Hence §+ n E_ = E For each admissible hypersurface S there exists an open

neighbourhood E of g in ]R\)+2 such that
(1) if P e E then §+ n E_(P) is bounded;
(1i) if P € K then L_(P) < K;

(iii) S_ < XK.

If E is a smooth admissible hypersurface, and if its normal everywhere makes
an angle less than 1 m - & (for some § > 0) with the x

0
~ v+2 . .
choose K := R . However, if this angle tends to 21'1' m, it may be necessary

~ +2
to take K as a proper subset of ]Rv . Let

-axis, then we can

D(R) = CC(K)

with the usual topology (D(X)) is the inductive limit of spaces DM (X) , M
a compact subset of K, cf. [16, §7] and D' (K) its dual. We will use the

following spaces of distributions:
(4.11) D' ®) = {f ¢ D'(X) | supp () < 8,1},
~ + ~ ~
(4.12) Fro ={Ee0 @®"%) | supp®) < L}
+

If f and g are both in F'+ then the convolution product %*a exists as a
distribution in F' . If f is in F', and g in D'_,_(E) then fxg exists in D'+(E).

Both convolution products exist, since

supp (£) n supp ((Xys-«-sX 4) > GY=Xgreeery 47X 1))

v+1

is bounded for (yo,... ) € JRWP2 or %, respectively. The convolution

'Yy+1
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product of an arbitrary number of distributions in F'+ and exactly one dis-

tribution in D'+(§) is a distribution in P'+(E). Furthermore this convolution

product is commutative and associative. Locally integrable functions on

+2 ~
R or K are identified with distributions:

~ ~ ~

(4.13) ‘ (£,9) = J f(XO,---,X\)+1)¢(X )dx . ..d

e e X . ax
v+l 0 v+1’

0"

where the E on the left hand side is a distribution and the f on the right

hand side is a locally integrable function. In both cases $ is a test func-
+2 ~ ~ +

tion in D(R” “) or D(K). Note that D(K) c D(R’ 2).

The Riesz distribution Zu is a distribution in F'+ and is defined by

_ Lv u-1 =1l~pu-v-2
(4.14) Zu(xo,---,xvﬂ) = [r 72" "TET(BWE-v))] o '
where
2 2 2 5 2 2 5
~o g TEp T o) e Xy 2 )
(4.15) p = 1
0, elsewhere,
for Repy > v, and by
(4.16) (Zu'¢) = (Zu+2k'Dk¢)'

for Rey > v-2k, k € N, ¢ ¢ D(IR\H'Z).

The Riesz distributions have the following properties:

(4.17) 7z *Z =7Z ,
My Hpy o WgtHy
(4.18) 0z =7z,
ut+2 u
(4.19) Zy = S,
(Zu,g) is an entire function of u for any E in D(Ey+2) and Zu is a regular

distribution (locally integrable function) for IReyuy > v. Within D'+(K) the

differential equation (4.6) has the unique solution:
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(4.20) f = g*Z2k ’

where Z2k is a Riesz distribution. The analogue for the wave operator of

the fractional integral of Riemann and Liouville is defined for 'E in

D'_I_(K) by:

(4.21) T = Fxz .
v u

The operator It has the properties:

+
MyMon My,

(4.22) I I f=1 £, .
AY] AY] AY

(4.23) 0 I, £=1 O£ Ivf,

(4.24) 9% - %
Vv

They follow immediately from (4.17), k4.18), (4.19), (4.21) and the associa-
tivity of the convolution product.

Until now S was allowed to be an arbitrary admissible hypersurface and
E a corresponding neighbourhood as given after (4.10). In order to return
to our original problem (4.5) we will suppose S to be rotation invariant
and then E can also be chosen to be rotation invariant. If £ is a rotation
invariant distribution in D'+(E) then Eﬁ% will have the same proverty, and
(4.21) can be expressed in terms of the coordinates on Q.

+
The rotation invariant (r.i.) test functions in U(]R\) 2) form a closed

+
subspace DO(IR\) 2). Similarly, let DO(IRZ) consist of all functions in
2 +
D(R”) which are even in the second variable. The spaces D (ZIR\) 2) and

0

+ +
v 2) is D(')(IR\) 2) and it consists

DO(IR2) are isomorphic. The dual of OO(IR

v+2

of all r.i. distributions in D'(R ). The set D(')(IRz) of even distributions

. V2
0(IR )

in D' (IR2) is the dual of DO(]RZ) . The spaces of distributions D
and Dc')(IRZ) are also isomorphic. Note that a test function ¢ in UO(IRZ) and

a regular distribution ¥ in Dc')(IRz) are already determined by their re-

strictions to Q:

(4.25)  (.9) == J ¥ (x,y) 6 (x,y) dxdy = J ¥ (x,) 6 (x,y)axdy,
R? Q
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Ve D'(]Rz), regular, and ¢ € D (]R2).
0 » 0

2

~ + ~
Let f be a regular distribution in Dé(ne) ). At the one hand f can

1
loc(Q’yvdXdy) by (4.2). At the other hand

£ corresponds to a regular distribution ¥Y(f) in Décmz) by

be identified with a function f in L

~ o~

(4.26) (Y(£),¢) = (£,9),

o € DO(Ig). (In (4.26) f need not to be regular. If f is not regular, the
distribution Y (f) still exists but there is no function f corresponding to

this distribution.) Formula (4.26) leads to

(4.27) (fl¢) = J f(Xol..-IX\)+1)¢(XOI-.-lx\)+1)dxo...dx\)+1
my+2
L (v+1)
2m v
T T(R(vH1)) f £(x,¥)9(x,y)y dxdy.

Q
Together with (4.25) and (4.26) this implies

21Tlz(\)+1)

s Vv
= T(BorD) CXEYIY

(4.28) Y (£)

1 v
when f € LlOC(Q,y dxdy) .
If confusion is possible we will write Wv(f) for ¥Y(f). Define the ad-

. . * -

joint Dv of Dv by:

(4.29) (D*ll) ¢) := (Y,D _¢) P e D (IR2) oD (]R2)
. \) 14 . ! \) 7 O 14 O T

1 v 2
then for f € Lloc(ﬂ,y dxdy) n C (Q)

*
(4.30) DvW(f) = W(va).

Let K be the projection of E on 2 and let S+ be the projection of §+
on Q. The space D[K] consists of all ¢ in DO(IRZ) for which supp(¢) n @ c K.
Let D'[K] be its dual (consisting of even distributions). Then P'+[K] 1=
{p € D'[K] | supp(¥) n Q < S+}.
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Let us define the fractional integral operator JS by:
u TR
(4.31) (Jv‘l’(f),¢) 1= (Ivf,¢),

for ¥(f) € D'+[K], corresponding to f e D'+(E). The fractional integral opera-

1
tor IS acting on a funetion £ in L

loc(K,y dxdy) with supp(f) < S+, is given

by:
(4.32) (mijf),m = (J‘\ij),qs).

If Repy - v < 0, the left hand side of (4.32) contains a distribution which
in general is not regular, but if IRe (u-v) > 0, then (4.32) results in:
/'_'_‘_—_l
2 2
(4.33) ISf(x,y) = c(u,v) J £(x =&,/ (y-n) =g )
£,2>0

2
c (& -n -C)

2 2 %(u-v)-1 v-1
2V g panag

= c(u,v) f f(x-¢, y2+n2—2yn cos ¢)

.&/m>0
O<¢p<m
. (g2-nz)f(u_v)—lnv(sin¢)v_1d£dnd¢,
with
-1 u-2
(4.34) Le(u,v)] =2 T(%v)T (5u)T (s (u-v)),

1 v
£ e L  (Kydxdy), supp(f) < S, Re(u-v) > O.

As a corollary of the theory of ™ ana (4.31) we obtain:

AY

LEMMA 4.1. Let y,X € D'+[K], v € N, then
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X _U+2 u+2_* u
D J =J D =J
AVERY v v vw vw’
0
va =Y,

* k
PN =x=v=1J"X.

COROLLARY 4.2. Let v € N, TRe (u-v) > 0, Re (;-v) > 0, i=1,2,

1 v
f e Lloc(K’y dxdy) , supp(f) c S+, then

Hy H2f U1+U2

I I =1I £,
AUV v
+ +2
D Iu 2f = Iu D £ = qu in weak sense
vV v v v

. , 1 , ,
Here all functions are in Lloc(K,yvdxdy) and 1" is given by (4.33). If in

L 1 +
addition va € L C(K,yvdxdy) for £ = [Xalﬂ, then

lo

2 y
(4.35) Iof = f, if IO =1 KDKf.
v v v v

v+1 1 Vv
If k = [—§—J, f,g € LlOC(K,y dxdy) , supp(f) and supp(g) < S, then the

unique solution of

k
(4.36) va =g
is given by
(4.37) £ =15

If 0 <k < [%{v+1)] then the unique solution of (4.36) is

I2[%(\)+1)]]DK

(4.38) £ = v I

2= [Z(v+1) ] -k,

, 1
provided that Dﬁ g € Lloc(K,yvdxdy). Both (4.37) and (4.38) are weak solu-

tions. They are classical solutions if g is 2[%{v+1)]—times continuously

I
differentiable and DEZ(v+1)Jg € LiOC(K,yvdxdy).
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5. A GENERALIZED CONVOLUTION

5.1. Distributions and test functions on Q

Again Q is given by (4.1). Some of the definitions below are already
contained in Section 4. We repeat them here in order to have all definitions

together:

(5.1) L, (x,y) := {(gM) e 2 &x = |y-nl}

is the forward light cone with vertex (x,y) € 2, and
(5.2) L (x,y) := {(§,n) € Q| x-£ 2 |y-n|}

is the backward light cone with vertex (x,y) € . The symbols L+ and L_ will

be used for the light cones with their vertex in the origin:

=
I

{(x,y) e 0|x 2y (0},

and

=
Il
IA

{(x,y) ¢ ]| x < -y (20)}.

A curve S of the form { (f(y).,y) Iy 2 0} (with f continuous on [0,®)) is

admissible if for any point (x,y) in S:

L (x,¥) n8=1L_(xy) n8s={(xy]}

For an admissible curve S:

(5.3) s = U L, (x,y),
* (x,y)es *
(5.4) S_ = U L (x,y).

(le) €S

Let K be an open neighbourhood of S in @ such that
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(i) if (x,y) € K then S+ n L_(x,y) is bounded;
(ii) if (x,y) € K then L (x,y) < K;

(iii) s_ < K.

Let

= {(x,y) € R | (x,1yl) € k}.

The space D (IRZ) is the closed subspace of D( IR2) which consists of
C -functions Wthh are even in the second variable. The space D (K) consists
of test functlons ¢ in D (IR ) with supp(¢) n Q € K. As topologlcal vector
spaces D (El) ‘inherits the topology of O(DR ) and D (K) inherits the topo—
logy of D(K). There are the following sets of dlstrlbutlons The set D (Ii)
consisting of all distributions in D'(IRz) which are even in the second
variable and D'(E) consisting of all even distributions in D'(E). Note that

0
Dé(IRz) is the dual of DO(IRz) and Dé(K) is the dual of DO(K). Furthermore

(5.5) Dy, (X = ¥ e DY(K) | supp(¥) n @ < s},
and
(5.6) Fr'o i= {0 e DRy | supp(®) n @ <1}

2
Again a regular distribution ¥ in Db(ﬂi) acts on a test function ¢ as

given in (4.25).

5.2. A convolution structure on D'[Q]

In this subsection v will be a fixed complex number with
(5.7) IRe v > 0.

. A . v+2 . .
If v ¢ N a convolution structure is inherited from IR by considering
rotation invariant functions. The generalization of this convolution struc-
ture corresponds to the ordinary convolution for the first variable and the

convolution for the Bessel functions of order %{v—l) for the second variable,
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A. SCHWARTZ [14] uses the same convolution structure but his function spaces

are different. For v fixed we again (cf. (4.28) identify a function f in

L1 c(Q,yvdxdy) with a regular distribution Wv(f) in L1

1o loc(Q,dxdy):

2'"1'5(\)+1)

_em \Y
(5.8) ¥ =ty Y

DEFINITION 5.1. Let IRev > 0. Let £ € LiOC(K,yvdXdy), g,h € Lio

be such that supp(f) n Q < S+, supp(g) n Q and supp(h) n Q c L./ then

vV
C(Q,y dxdy)

Lv R
2 -
(5.9) k®qg(x,y) := f;"lw) J k txet Y gy 2oz Py (6 Y o2re?y £ Laganar
>0
v ,
2 2 2 _
= P(Zv) J k(X-E,/§ +n°-2yn cos ¢)g(€,mn’ (sing) " ldgdnd¢,
n>0
0<¢<m

where k can be both £ and h.

Note that the integral is over a bounded part of IR3, so it converges
for IRev > 0. In this case the commutativity is clear from the first expres-
sion and the transformation of variables (&,n) - (x-£,y-n). In the following

we will use the second part of (5.9). Then (5.9) is equivalent to:

L (v+1)
(5.10) keg) (x,y) = ————— | 1 ¥(£,n) g€, nn"dagan
! T (%(v+1)) X,V ! ! !
n>0
where
A
(5.11) f(x,y) := £(-x,y),

and the generalized translation operator T: is defined by:
14
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™
v . [Ca(v+1)) L L2 2 e v-l
(5.12) Tx,yf(g,n) = T T (5v) J f(& x,/§ +n" -2yn cos ¢) (sin ¢) déd.
0

v .
The operator TX . has the properties:
’

. v VoY .
(1) T, yf(E,n) = Tg,nf(x,y),

14

(ii) if f has its support in some forward light cone, then T: yf(g,n) con-

r

sidered as a function of & énd n (x and y fixed) has its support in a for-

ward light cone, while considered as a function of x and y its support is

contained in a backward light cone. Similar results hold for functions £

with their supports in S+, being the union of forward light cones with their

vertices on the admissible line S in Q.

Because of the commutativity of the convolution product (5.9)

(5.13) J ° ¥(g,n) -g(,nn"dean =
X,y
n>0

Vv \% AY]
= J f(E,n)TX’yg(E,n)n dgdn,

n>0
for all functions f and g for which these integrals converge.

Note that
21T1~5(\)+1) v -
(5.14) (Wv(f),¢) = f?%YCITTT_J £(x,y)¢(x,y)y dxdy
Q
for £ € Lioc(ﬂ,yvdxdy). Hence (5.10) yields:

L(v+l) 12
_ IZW v oV
(5.15) (‘Yv k®qg),d) = I-TW Tx’yk(E,n) .

n,y>0
v v
* g(&,n)é(x,y)n y d€dndxdy

_ VvV
= (Wv(k)(XrY)Wv(g)(E,n),T_g’n¢(X,Y))-

. The function
'Y

Here we used (5.8), (5.10), (5.13) and the properties of T:

o: (x,v,&,n) > ng r]q)(x,y) is in CmCR4), even in y and even in n. Its
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support is not compact, but the intersection M of supp(¥Y(k)) x supp(¥(qg))

and supp(®) is compact in 1R4 (or in K x IR2 if supp(k) = S, and ¢ € DO(E)).
Formula (5.15) suggests the definition of ¥(k) ® ¥(g) for distributions.

In that case Y (k) (x,v)¥(g) (§,n) has to be interpreted as a tensor product

of distributions. (Remember that this is defined as a distribution on D(]R4)

(or on D(K x ]RZ) by
(¥ (k) (X,Y)‘l’(g) (E,n) ,X (XIYIgIn)) = (¥Y(k) (X,Y),(‘Y(g) (&,n) IX(XIYIEIn))) ’

X € D(JR4) or D (K x JR2) . It is equal to (Y(g) (E£,n), (Y (k) (x,y).,X(x,v,&E,M))),
see TREVES [20, Th. 40.3].) Although the support of & is not compact, the
right hand side of (5.15) is uniquely defined when we replace ¢ by p®, where
p is a cut-off function which is 1 on the compact set M and O outside of a
suitable chosen open neighbourhood V of M with v compact. Note that p can
be chosen such that it is even in y and n. Furthermore, we have to investi-
gate if the linear functional on DO(IRz) defined by the left hand side of

[s2]

(5.15) is continuous. Consider a sequence {¢n}n=1 with l]_mn—)oo ¢n = 0 in

DO(JRZ) (or DO(E)), then also limn_mo p<1>n = 0 in D(IR4) or D(K x ]RY)) , where

PO (X,¥,E,m) > p(x,y, EMT L, b (,y).

Here p is chosen such that (supp(¥(k) X supp(¥(g))) n supp <I>n, n=1,2,...
is a subset of the compact set where p = 1. This choice is possible since
d)n > 0 in T)O(IR2) (or 2DO(E)) implies supp(q)n) ‘e N, n=1,2;..., where N is
a compact subset of IRT or K. This proves the continuity of the linear func-
tional in the left hand side of (5.15), since continuity is equivalent to

sequential continuity on DO(]RZ) and ’DO('IE). Thus (5.15) leads to:

DEFINITION 5.2. Let y,C € F'+andx € D(')+(1~<), then

(5.16) (Vex,8) := (WG, (Em) T, 66y,

where « = ¥ or ¥k =z, ¢ EUO(E) (if x = ¥X) or ¢ eDO(IRZ) (if k = 7).

Hence

(5.17) Ykeg) = ¥Y(k) & ¥Y(g).
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LEMMA 5.3. If y and k € F'_ then y @ x ¢ F' . If y ¢ F'_and « « Dé+(§)
—_— "
then { ® K ¢ Do+(K).

PROOF. The linearity of the functional Y@k is clear from the definition.
The continuity of its action on DO(IRZ) or DO(E) follows from the argument
given before the definition. So Yy®« is in Dé(IRz) or Dé(z). Consideration

of the support of Yy®«k proves the lemma. O

. \Y \Y P .
Since T £ n¢(x,y) =T % Y¢(£,n) it is clear that the convolution struc-
-G el 4
ture ® is commutative. Suppose Y, x and ¢ are in F'+ or two of them are in
F'+ and the third one is in D'+(E). Let ¢ be a test function in 90(]R2) (or

~ 0 ~
in the smaller set DO(K) if one of the distributions is in Dé+(K)). Consider

Ve xe g:
vV

\
(w(E,n)x(z,w)c(x,y),T_Z'WT_g’n¢(x,y)),

ve (x®cz),9)

while

(Ve ®2,4) = WE,Mx(ZWT Y, T, T $x,y).

E€/n

Here we used the commutativity of the convolution. Hence the associativity

follows from the relation

v v Y v
(5.18) T—Z,WT—E,H¢(X'Y) = T_g,nT_Z,w¢(x,y).

From (5.12) it is clear that (5.18) is equivalent to

vV V V V
. +z+ = +z+E,v) .
(5.19) TO, TO,n¢(x z+E,V) TO,nTO,w¢(x z+&,y)

This relation will be proved using the Hankel transform.

5.3. Hankel transformation

The "modified" Bessel function JB(y) is defined by

(1) J_ (x) is a solution of

B
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(5.20) Azsﬂu(y) +u(y) =0, B#-1,-2,...,
where
(5.21) A =3+ (2B+1)y 1a
. 28+1 ° yy Y oy
(ii) JB(O) =1, Jé(O) = 0.
Then
J _ B "B
(5.22) B(y) = 2 T(B+l)y JB(y),
where JB(Y) is a Bessel function.
It is checked by differentiation and integration by parts that for
= 28+1
2B+1 _ 28+1 1
(5.23) T0’y A28+1 u(n) = A2B+1 TO,y u(n), Re B > 5
where TO is defined in (5.12). I found this very useful remark in
I
MUKHLISOV [10]. This commutation relation (5.23) and the definition of J

B

result in the product formula:

m =21 7 ().

(5.24) J (y)J’5 on g

B

This product formula is well-known (cf. WATSON [21, p. 367]). In terms of

A
the function J_ the Hankel transform u of a function u is given by:

B

g -1 u(y)J (AY)Y28+1dy, Be R, B2 -%-_

(5.25) Qoo = @2Pre+)

O_ﬁS

2B+1

. 2 A
For functions u in L ([0,®),y dy) the transform u exists in the same

A A
space and (u ) = u again. See TITCHMARSH [18, Ch. VIII].

5.4. The associativity

Let ¢: (x,y) > ¢(x,y) in C (EZ), even in y. Consider the Hankel trans-

form with B = —%v 1), v > 0, of T ¢(x,y) with respect to the second

0,
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variable. y. It is possible to take the Hankel transform because TB n¢(x,y)
. ’

2
is in C:([O,W)), and thus in L ([O,W),yvdy), considered as a function of y.

v A _
(5.26) (T0’n¢(x,')) (A =
_ L(v-1) -1 v )
= (2 T (3s(v+1))) J Toln¢(x,y)1%(v_1)(ky)y dy
0
_ o (v-1) -1 v v
= (2 T(%(v+1))) ¢(x,y)TO,nJ%(v_1)(Ky)y dy

o———38

(6 (x, )" ()] (an),

L(v-1)
with use of the product formula (5.24).

Formula (5.26) tells us that (5.19) is true after a Hankel transforma-
tion, but then (5.19) must hold for v > O since the Hankel transformation
is invertible. For complex values of‘v, IRev > 0, (5.19) holds since it

depends analytically on v. Thus we proved the associativity:
(5.27) Ve (x®z) = (Y&y)®L.

Other important properties of the generalized translation operator

TV as given in (5.12) are:
X,y

v P

(5.28) ang,n¢(X,y) = (Tg'n3x¢)(X,Y):

(5.29) (B +vy 3 )T d(x,y) = (TO (3 +vy 13 )6) (x,y) -
Na'% vy &/m g, vy y

The first one is clear from (5.12), while the second one is equivalent to
(5.23). Application of (5.28) and (5.29) on the convolution product as given

in Definitions 5.1 and 5.2 results in:

COROLLARY 5.4. Let Q be one of the operators Bx, ayyi-vy_lay, Dv’ then:

(5.30) Q(f®g) = (Qf) &g = £ (Qg),
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for suitable functions f and g. For distributions Y and X this yields:

* * *
(5.31) 0 (peyx) = (QyY)&x =9&Q x,
where
(5.32) Q@ v, 4) = (¥,00),

for any test function ¢.
6. A FRACTIONAL INTEGRAL OPERATOR FOR D\)

In this section it is supposed that RRev > 0. The function Zu is de-

fined by:
b -1 -1 y-v-2
(6.1) z, = [r VoM F(%u)r(%(ufv))] pu v '
with
I(x2—y2)%, ifx>yzo0,
(6.2) p(x,y) := 1
0 elsewhere,

1
cf. (4.14). If IRe(p-v) > O then ZU is in LlOC(Q,yvdxdy) and it corresponds

. . . _ . ' i
to a distribution qp = ‘P\)(zu) in F Y L OC(Q,dxdy) by (5.8‘) . BAnalytical

1
continuation with respect to y leads to:

DEFINITION 6.1. The distribution Q, in F'+ is defined for Reyp-v > 0,

Rev > 0 by (4.25) and:

-v-2 Vv
e v

1

(6.3) qu(x,y) = Wv(zu)(x,y) = h(u,v){p(x,y)

-

(6.4) [h(,v)17F = 1 2% 20 () T (5 (u=v) ) T (5 (v+1)) .

For Re (u-v) > -2k and ¢ € UO(JRZ):

k
(6.5) (qu,¢) ’Dv¢)'

(@40
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It is a corollary of (6.10) below that (6.5) is independent of the

choice of k.

LEMMA 6.2.

(6.6) z ® z =z ’ Re (u.-v) > 0, i =1,2,
My My u1+u2 i

(6.7) q ©®qgq =49 HyrH, € c.

7
My THy o TR,
PROOF. If Re (u,~v) > 0, i = 1,2, then (5.9), (6.1) and (6.2) yield:

L (u

‘ -v) -1
2
z @z = const. J [ (x-£) -(Y-n)z"C ] L .
¥} M2 *
O<&<x
z>0
L (u,-v) -1
2 2 2 2 v-1
- (87-n"-r), z° dgdndc.
After a Lorentz transformation on £ and n this results in:
Lu,-v)-1
z ®z = const. f C( x2—y2—€)2—n2—C2] L .
L T ) *
0<E<‘/x2_y2
z,x>0
L(u,-v)-1 )
2 2 2 2 v
e (& -n -C) ¢ dgdndg
5 %(u1+u2—v)—1
Jconst. (x" -y )+ ’ x > 0,
1O, x <0,

/2

which is seen from the tranformation (£,n,z) = vx —y2 (E',n',z"). Thus
(6.8) z ®zu = const. z .
The constant can be calculated by evaluation of the integral. Though, it is

easier to consider (as did M. RIESZ [13]) the convolution of zu and the func-

tion ex. Although the support of eX extends to infinity, the convolution
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. . . C s . X, . .
with zu, U € C exists, and is associative since e is rapidly decreasing for

X -+ - and zu is of finite algebraic growth.

(6.9) zu®ex = 2" 720 () T ) T (s (u=v)) 17T -

[ ex'g(gz-nz)f(“'V)‘an(sin¢)“'1dgdnd¢ 5,

£,n>0
O<¢<m

since

J B A P

+
£,n>0
0<¢<m
[ 1 m™
F - L(y—y) - _
= [ e et lag f (1-n2) 2V =L vg J (sin ¢) V7T a¢
0 0 0

2P 720 () T () T (5 (u=v) )

From (6.9) it is clear that the constant in (6.8) is equal to 1. This proves
(6.6). If Re (ui—v) >0, i=1,2, then (6.7) is a corollary of (6.6), (6.3)
and (5.17). For ui € €, i=1,2, (6.7) is proved by analytical continuation

with (6.5). O

In (6.5) we already used that:

(6.10) DVZU+2 = zu,
which implies
(6.11) D" =

: vqu+2 B qu'

Here (6.10) is checked by computation.

DEFINITION 6.3. If } F'+ or D(')+(I~<) , then
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u o=
(6.12) Iy W) =aq @y,

1 v . 1 v
If £ € Lloc(ﬂ,y dxdy) and supp(f) < L+ or if f € LlOC(K,y dxdy) and

supp (f) < S, then
Hey Lo oM
(6.13) ‘ ‘YV(I\)f) : Jv(‘i’v(f)),

if the right hand side of (6.13) is a function in Lioc(ﬂ,dxdy) or

1
LlOC(K,dxdy).

Hence, for Re (u-v) > O:
y
. = ® f.
(6.14) Iv(f) zu f

Note that (6.14) is equal to (4.33).

THEOREM 6.4. For any \ € F' or D' (X):

+ 0+
My W2 H1TH
(1) 3y =3, ,
i) DIgMRy = gHYy - gy,

(iii) JS@ =Y.

PROOF. The first and the second part of the theorem follow from (6.7), (6.11)
(6.12) and the associativity of the convolution . The third part is a con-
sequence of the other two, and is proved in the same way as in Lemma 2.2.
Here, the adjoint operator Ju* to Ju, defined by (w,J ¢) = (J w $),

b € D (nz ) or ¢ € D (K), corresponds to taking the convolution with a posi-

tive functlon if u,v e R and (u-v) > O. g

COROLLARY 6.5. Let y, X be both in F'+ or both in Pé+(E), then the unique

sblution of
* k
(Dv) P =

is given by



LEMMA 6.6. Let Q be one of the differential operators BX or 8yy4~vy_18y

then
*_U _ u *
QI b =30V,
where h ¢ F' _or Dé+(E) and QF is defined by (5.32).

COROLLARY 6.7. = Corollary 4.2 with the restriction v € IN replaced by

. , 1 v .
Re v > 0. The function f is also allowed to be in LlOC(Q,y dxdy) if

supp (£f) < L+.

COROLLARY 6.8. Let Q be one of the differential operators Bx or 3yy4—vy—1

then

if £ and Q £ are in L1
- lo

1 v
Lloc(K,y dxdy) and supp(f) < S,-

C(Q,y\)dxdy) and supp(f) < L+ or if they are in

7. APPLICATION OF THE FRACTIONAL INTEGRAL OPERATOR

29

14

In this section we return to our original problem as stated in Section

1,2 2 )
3. Iteration of (3.1) in terms of (&,n) = (X,Z{x -y )) yields:

u 2__ 2,04 o+, B,y 1 2 20
(7.1) D2Y+1(x v) Rn,k (x,4(X vy ))
T (utat+1) T (photy +2)
2 2
= 22U 2 (x —yz)aRg’E'Y(x,%4X -y ),

T (a+1)T (aty +3) '

u € IN.
2 2 2
The function £_: (x,y) > (x —yz)uR?le’Y(x,;ll-(x -v)), x>y =20,

(x,y) - 0, elsewhere, is in L1 (Q,y2Y+1dxdy) if Re (0+1) > 0, Re (y+1)

3 loc
Re (a+Y4~5) > 0. Corollary 6.7 leads to:
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2 +u_o+u, B- 2_2
_‘y2)u H_o+u, B u,Y(x%(X ) =

(7.2) (% R %
T (p+o+1)T (pu+o+ +—3—)
ou - HTe wrary ¥ 37 o4 2 20 a,8,y, 1,2 2
=2 3 12 +1(x -y) R (x,Z(X -y )),
T (0+1)T (a+y +3) Y !

for y € N, Rey > ——1-, Reo > -1, Re (u—Y—%) > 0 and IS given by (4.33).
The condition Rey > —%—corresponds to Rev > 0, which is needed in (4.33),
but which can be extended somewhat (see Section 9, Remark 1). Similarly
the condition Eka(u—y-—%ﬁ > 0 is obtained from (4.33). The conditions

IReoa > -1 and Rey > ——é— together imply IRe (a+y+%) > 0.

LEMMA 7.1. Suppose that the conditions given after (7.2) hold, then (7.2)

is true for u € C.

PROOF. We know that (7.2) holds for u € N. There are two ways to prove

(7.2) for u € €, IRe (u-y —%0 >0 (cf.‘the remark after (2.16)).

(i) Use Carlson's theorem (Theorem 2.4) and estimate Rz:B’Y(E,n) as a func-
tion of a. This estimation can be obtained from the expansion (7.3)
below.

(ii) Use the generalized power series expansion

a,B £y Bry
(7.3) RCYem = L et gt e,
! £=0m=f '
where ZY 2 is a zonal polynomial of James (see Subsection 8.4) and
14
calculate
2y 2 2.0 Y 1.2 2
(7.4) 12y+1(x Y2y e (eg(x Y )) .

Both methods work. The latter leads to some interesting results which can

be found in Section 8. O

REMARK 7.2. If we are able to prove the conjecture:

(7.5) IRg:]E'Y(g,n)l <1, a =B 2—%, Y =2 -
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(€,n) in the region of orthogonality, for some real values of the parameters
1
(a,B,Y) = (aO,BO,Y), Y = Y then (7.2) can be used to prove (7.5) for those

(a,B,Y) with o+B = a0-+60 and o > ao-ky-ké-(see KOORNWINDER & SPRINKHUIZEN-

KUYPER [9, Corollary 8.5] and SPRINKHUIZEN-KUYPER [17, §7], for the con-

jecture and the values of (a,B,y) for which it is proved). In order to prove
2u

(7.5) in this case we use the positivity of the operator I2Y+1

a,B
and RO,O

with y = a—ao

'Y(E,n) = 1. The latter relation results in:

F(u+a+1)F(u+a+Y-+%0

I
F(a+1)T(a+y-+%o 2y+1

2

(7.6) (x2-y°) 22

(x —yz)a.

atu _ 22u

2
REMARK 7.3. In Section 9 the definition of I2$+1 is extended to the case
2
IRey >=1. See figure 1 in that section for those cases where 12$+1 is an

operator with a positive kernel.

8. AN INTEGRAL OPERATOR WHICH HAS JACOBI FUNCTIONS AS EIGENFUNCTIONS

8.1. The integral operator

. 1 v . 1 v
For f in Lloc(Q,y dxdy) , supp(f) c L+.or f in Lloc(K,y dxdy) ,

supp (£) < S+ and IRe (p-v) > 0, we have (cf. Definition 6.3, (6.14) and
(4.33)):

(8.1) ISf(x,y) = c(,v) J f(E,n){(x—g)z—(y2+n2-2yn cos ¢)}f(“'v)‘1.

E<x
O<p<m

- 1Y (sin )V tazanas,

where

(8.2) Le(u,w 1 = 2%720 (o) T () T (5 (u=v)) .
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Using hyperbolic coordinates in (8.1):

(8.3) Xx =rcht, y = rsht, E =pchrt, n =pshrt,
we get
(8.4) ‘ ISf(r ch t,r sh t) = c(u,v) J f(p ch 1,0 sh 1)
O<¢<m
>0
r>p>0

. [r2 + p2 - 2rp(ch t ch T=-sh t sh T'cos¢)]E(u—v)—1

+ —
« 0" sh 1) V(sin ¢)V aparas.

Substitution of
(8.5) £(r ch t,r sh t) = r F(t)
in (8.4) and replacing p by rp yields

(8.6) r'“‘”x\‘jr%(t)=c(p,v) J F(T)*

0O<p<1
>0
O<op<m

L — —
- [1 +p2,_2p(ch t ch T-sh t sh T COS‘b)]z(u v) -1,

0%V ah 1)V (sin )Y laparas.

DEFINITION 8.1.

14

u .= °
(8.7) Jv L) = cuyv) J F(T)

O<p<1
>0
O<d<m

1 Ed —
. [1-+p2,_2p(ch tcht-shtshrt COS(b)]:(U v) -1

+v+ -
e o™ ah )V (sin ¢) V7! aparas,
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Re u-v > 0, Rev > 0, F such that the integral converges, c(y,v) given by

(8.2).

8.2. The convolution structure for Jacobi functions of order (%(v-1),-%).

In tbis section Tt and * will be used for the generalized translation
operator and the convolution, respectively, corresponding to the expansion
in Jacobi functions of order (%(v-1),-%). As a reference for this convolu-
tion structure and other facts about Jacobi functions we used FLENSTED-
JENSEN & KOORNWINDER [5]. In [5] the more general case of Jacobi functions
of order (a,B) is considered. Though, in all formulas it is possible to
take the limit B ¥ —%n

The Jacobi function ¢A is given by

(8.8) ¢A(t) = ¢A (t) Fl(%(%v+ik),%(%v—ik);%(v+1):-sh2t)-

)

Other expressions for ¢X are obtained by using the transformation formulas

for the hypergeometric function _F,:

271
(8.9a) ¢k(t) = 2F1(%v+ik,%v—ik;%(v+1);%(1—ch t))
-Lv-iX . . 2
(8.9b) = (ch t) 2F1(%(%v+1k),%(%v+1+1k);%(v+1);th t) .

A definition corresponding to the definition we used for the functions JB
(cf. Section 5.2) is:

The Jacobi function ¢A(t) is the solution of the differential equation
1.2 2
(8.10) Evu(t) = —(%v + A )u(t),

such that u(0) 1, u'(0) = 0. Here

(8.11) Ev := att + vectht Bt.

The generalized translaticn operator Tt:
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T
—1 —
TtF(I) s= 1 T (% (v+1)) [T (5v) ] ! [F(arch[ch t ch 1-sh t sh Tcosyl).
0
. v-1
= (siny) ay, Rev > 0
has the property:
(8.12) EthF(T) = TtEvF(T)'

The proof of (8.12) is obtained from

' -2
(8.13) {BTT + v cth T aT + (sht) " (3, +(v-1)ctg ¥ Bw)}F(A) =

by

= F"(A) + vcthAa F'(3d),

where
A = arch[ch t ch T - sh t sh T cos }],

and

m

m
J (3 +(v-1)ctg¢»3)FWA)(sinw)v'ldw = (sinw)v_la F(A) = 0.
vy Y ] (7 0
0

The commutation relation (8.12) results in the product formula for the

Jacobi functions of order (%(v-1),-%).

(8.14) ¢, (£)¢, (1) =T ¢, (1).

The Jacobi functions of order (%(v-1),-%) form a continuous orthogonal set

with respect to the weight

(8.15) aut) = 1 2V % (en ¢ Vat.

The convolution product is defined by

(8.16) F*G(t) J F(T)TtG(T)du(T)

>0

= ﬂ‘%zv_% J F(T)TtG(T)(ShAT)vdT,

>0
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for suitable functions F and G. The convolution is both commutative and
associative.
Consider the Jacobi transform:
[ee]
A

(8.17) F (X)) := J F(t)¢x(t)du(t) .

0
The inverse transformation and more details can be found in FLENSTED-

JENSEN & KOORNWINDER [5]. A corollary of (8.16), (8.17) and (8.14) is:
A

(8.18) F % ¢)\(t) =F (k)'cbk(t),

for suitable functions F.

8.2. The action of JS on Jacobi functions of order (%(v-1),-%)
14

Using the notations of Subsection 8.2 (thus * is the convolution pro-
duct for the Jacobi functions of order (%(v-1),-%), we can write the inte-

gral operator J: a (see (8.7)) in the form:
r

(8.19) J% Fit) = Frk(t),
v,a
where
1
- - : L(u-v) -1
(8.20)  k(t) = cluvm2 VI () [T (5 (vr1)) 37 J (1+p2-2p cn t) P
0
poc+\)+1dp
_ 2V p (ge2) cn 1) (V)
T (%) T (5 (v+1)) T (3 (p+v)+a+2)
o F, (5(a+v+2) % (0+v+3) 55 (k) +a+2; (ch t) ~2) |

271

The second expression for k(t) follows from evaluation of the integral in

the first expression:
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(1+p2—2p ch t)%(u—v)—lpu+v+1dp

OV

1
—t, 0tu+2 J (1 - o~2tgy (V) -1 % (=) =1 _atv+l

(e ) (1-s)

0
and this leads to the given formula when we use:
1
,F,(a/biciz) = I(c)[T(B)T (c-b) 17} f 27 (1) (1-t2) P4,
0
and

F,(a,b;a-b+l;z) = (1+z) "2 F1(%a,%a+%;a—b+1;4z(1+z)_2),

2 2

see ERDELYI et al. [4].
Combination of (8.18) and (8.19) results in:

THEOREM 8.2.

(l«‘.(\)—l) I_li) (li(\)_l) l_;i)

u _
(8.21) Jv,a¢k (t) = d(u,v,a,l)¢x (£),

where

,H T (5041+% (3v+i)) ) T (5a+1+% (5v-id))
T (o+su+1+% (5v+i)) )T (sa+kp+1+5 (5v-id) )/

A
d(u,v,0,A) =k (A) =
Re (u-v) > 0, Rev > 0, |ImA| < Re (a+2+%v).

A
PROOF. In order to calculate k (1), we use the second expression for k(t),
¢A(t) as given in (8.9b), the power series expansion of 2F1’ and the follow-

ing formulas

[e 2]

-2x~-2y+ 2y-1
f (ch £) X2 g ¥ 5 - wBx,y),  Rex,y > O,
0

. _ I'(c)T (c-a-b) L
2F1(a,b,c,1) = T(c-a)T(cb) ' Re (c-a-b) > 0,
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r(2z) = 2227177

T(z)T (z+%).

If we use the expression of k(t) in terms of the hypergeometric function
instead of the integral representation as the definition for k(t), then the
conditions on the parameters can be weakened to: IRReu > 0, IRRev > -1,

[ImA| < Re (a+2+%v). O

8.4. The action of Ig on the zonal polynomials of James

The zonal polynomial of James Z; 2(Ej,n) is given by the formula:
14

Gy p L (m-0)

Y S e o
(8.22) Zm',e(EIN) . (Y+L§)m_£

CTR I
Rm_z (n E)I
see KOORNWINDER & SPRINKHUIZEN-KUYPER [9]). Here RéIéY)(x) is a Jacobi poly-
nomial (see (2.17)). In terms of the coordinates £ = x = r ch t and

n= %(xZ—yz) = %rz, y = r sh t and with y = L(v-1), we obtain

Y 2 (v)m—ﬂ m+L
(.23) Z (rcht,br )= —m8™——— r F, (-m+£,m-L+v;% (v+1) ;% (1-cht))
m, L ) m+Al 271
(%v) 22
m-—
(v)
. m-£ m+l (5 (v-1),-%)
- (L) 2m+ﬁ r ¢i(m—£+%v) (&),
m-£ ’
. .2
with i7 = -1.
THEOREM 8.3.
2u 2 2.0.Y 2 2 _
(8.24) 12Y+1(x -y7) Zm,ﬂ(x'%(x -y )) =

3
) 2—211 I’(£+0L+1)I'(m+oc+y+§-) ( 5 2)0L+UZY

2 2
X -y mz(x,%(x -y )),
F(£+a+u+1)F(m+a+u+y-+§0 '

Re (u-y-%) > 0, Rey > —1-, Re o++1 > 0.

PROOF. With x = r ch t, vy = r sh t, v = %5(v-1) the right hand side of (8.24)

is equal to:
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(V)m_z

m+L
(li\))m_lz

2u
AY]

r20t+m+£ (%(v-1),-%)

= ¢i(m—£+%v)

(t) =

(v)m—ﬂ r20c+m+£+2u 2u (B (v-1),-%)

(%v)m_z2m+ﬂ v,2a+m+ﬂ¢i(m—£+%v)

(t)

d(2u,v,2a+m+ﬂ,i(m—£+%v))(x2—y2)2a+2uZ$ K(x,%(xz—yz)).

Here we used (8.6), (8.7) and Theorem 8.2. The conditions on the parameters

also follow Theorem 8.2. 0

Substitution of (8.24) in (7.3) results in (7.2) and so (7.2) holds
for Rey >—-§—, TRe oo > -1 and Re (u-—y—%) > 0.

9. SOME REMARKS

REMARK 9.1. Because of the commutativity of the convolution in (6.14) (see
also (8.1)), the action of IE (Repy > Rev > 0) on a function f which satis-

fies the conditions in Definition 6.3 can be written as:

(9.1) Isf(x,y) = c(u,v) J £(g,m) -

E<x
O<op<m

[(x-E)2 - y2 -n? - 2yn cos ¢]E(“_v)-1-

¥ (sin ¢) 7! agands,

Ce(u,) 1™ = 2"720 () T ) T (s (uv))
Integration over ¢ leads to:

(9.2a) Isf(x,y) = J f(a,n)K:(x,y;E,n)dEdn,

where
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1-u 1 L
(0.20) K GeyiEm = ——— [0)? - (y-m FTH T,
{r&u}
. 2 2 -1
. 2F1(1—lsv,/zv;%u;[(x—£) - (y-n) " 1@4yn) ),
if €-n < x~y < &+n A x+y > &+n, vy,n > O,
(9.2¢) KM (x,v:E,n) = 22 [(x-£)2 - (y-m 272 (W01
- v (KrYi sy TG T (2T (B (p-v)) - % y=n
e Y F L (A () v eyl (x-6) - (y-m) 217,
if x-y > &+n, y:m > 0,
(9.24) Ks(x,Y7€,n) = 0, elsewhere.

If £ is a continuous function with its support in L+ or S+ then the integral

in (9.2a) converges if
(9. 3) TRev > -1, Re uy+v > 0 and Re u-v > 0.

Because KE depends analytically on v and is continuous in £ and n outside

a set of measure zero, formula (9.2a) leads to an extension of the operator

Iz to the region Rev > -1. It is defined for functions f which satisfy the

conditions in Definition 6.3, for Rev > -1.

REMARK 9.2. From the original definition of IE

IS is an operator with a positive kernel if y > v > 0. The sign of KE in

(cf. (8.1)) it is clear that

(9.2) for v > -1 depends on the sign of the hypergeometric functions in
(9.2b) and (9.2c). Using similar techniques as GASPER [6] used in order to

find the sign of the convolution kernel for the Jacobi polynomials, we find:

(9.4) KS(x,y;E,n) >0 if 0>V >=1 A pty = 2

or if u > v =2 0.
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and Ks(x,y;g,n) is both positive and negative if -1 < v < 0 and 0 < ptv < 2.

REMARK 9.3. A corollary of Remark 9.1 is that (7.2) holds as a classical

integral for

(9.5) Rey > -1, e (a+l) > 0, Re (u-y-3) > 0, Re (aty +3) > 0.
From Remark 9.2 we see that I§$+1 is an operator with a positive kernel if
1 1
(9.6a) Lﬁy—g =0 and —1<'y<—5,
or if
1
(9.6Db) 11>Y+§2(L
see figure 1.
vt ’
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Figure 1. The sign of I
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REMARK 9.4. Corollaries 6.7 and 6.8 give the action of the operators Bx,

ayy + vy—lay and Dv on ISf. The following relation can also be useful:

1

- u _n -1
(9.7) y ayIvf(x,y) = Iv+2y Byf(x,y),

for suitable functions f.

For y an integer, relation (9.7) is a corollary of

1

y 9D = Dv+2y By.

For other values of u (9.7) can be proved by differentiation of (9.2).

REMARK 9.5. If v ¥+ 0 in (9.2) then we obtain:

(9.8a) Igf(x,y) = J f(E,n)Kg(x,y;g,n)dgdn,
where
(9.80)  KAGeyig,m = 2 M0 1L 0) - (pem T,

if £-n < x-y < &4n A x+y > E4m, y.,n > 0,

(9.8¢) K e yrEom) = 20D O 1L ) P - rem 1T 4
+ [(x—€)2— (y+n)2]l§u_1}, if x-y > &+n, y,mn > 0O,
(9.84d) Ko(x,y;g,n) = 0, elsewhere.

Formula (9.8b) is the Riesz kernel for n = 2. Formula (9.8c) is obtained
from (9.8b) by adding the kernel with n replaced by -n. Formally this re-
lation also holds for v # O.

REMARK 9.6. R.M. DAVIS [2] solved the initial value problem for the operator

X, X, %% Yy

n-1 -1
L= ) 3 -9 -vy '3
i=1 ii
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with initial conditions for y = yo > 0. The Riesz kernel which she found
([2, p. 211]) is:

21—uﬂ1—%n

v“<xi,y;£i,n) = [T () T (% (u-n) +1) 7" 10 V72V

£ )2]%(u—n)_

2 2
C Ly T mE ) e - (xE

2 2 2 -1
. 2F1(1—§v,%v;%(u-n)-1;[(xl—gl) +...+(xn_1—€ Y =(y-n) " J(4yn) 7).

n-1

If n = 2 this kernel is equal to the kernel in (9.2b), besides a complex

factor since she considers a different region of the plane.

REMARK 9.7. Suppose that f(x,y) only depends on the Lorentz distance

r = sz—yz and that the admissible line S is the sheet x < 0 of the hyper-
bola x2-—y2 = 1. The corresponding neighbourhood K can be chosen as the
interior of L . In that case the fractional integral operator for

DV/= 9 -2 —vy—lay corresponds to fhe fractional integral operator for

X2 Yy 3
d%/ar2 + (v+1)r = d/dr, which is given in [16].
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