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On a class of elliptic singular perturbations with applications 
• . • *) in population genetics 

by 

J. Grasman 

ABSTRACT 

With the maximum principle for differential equations asymptotic esti­

mates are made for a class of linear elliptic singular perturbation problems 

with resonant turning point behaviour in some of the independent variables. 

The method is applied to stationary solutions of the Kolmogorov backward 

equation from population genetics. 

KEY WORDS & PHRASES: mazimum prinaipZe, eZZiptia singula!' pePturobation, 

population genetias. 

*) This report will be submitted for publication elsewhere. 





I. INTRODUCTION 

In this paper we consider elliptic singular perturbations of first or­

der differential operators vanishing at an interior surface of a domain. For 

Dirichlet problems of this type we construct asymptotic solutions and prove 

their validity by using the maximum principle. 

DE JAGER [4] considered a similar class of problems in which a para­

bolic boundary layer occurs at the interior surface. We will investigate 

the case where the first order operator has the opposite sign giving arise 

to ordinary boundary layers along the boundaries of the domain. For this 

problem standard singular perturbation techniques do not lead to a uniquely 

determined outer solution. Similar to the method for elliptic singular per­

turbation problems with turning points of GRASMAN & MATKOWSKY [3], we pose 

an additional condition, so that a unique outer solution can be derived. 

Adding boundary layer corrections we obtain a uniform asymptotic approxima­

tion; its validity is proved by estimating asymptotically the remainder 

term. This proof, based on the maximum principle for elliptic differential 

equations, differs from the ones given by DE JAGER [4] and ECKHAUS & DE JAGER 

[I], as near the surface where the first order operator vanishes, the approx­

imate solution varies in the normal direction in a way unsuitable for apply­

ing the maximum principle. In this paper we construct barrier functions that 

also take into account the ~ehaviour of the asymptotic solution along the 

surface, so that the maximum principle will lead to meaningful results. 

This method requires a higher order accuracy in a neighbourhood of the sur­

face. 

The type of elliptic singular perturbations.we deal with occur in prob­

lems from population genetics. The elliptic perturbation models the effect 

of random mating, while the parameter£ denotes the inverse of the popula­

tion size. We will not attempt to give a complete description of the class 

of genetic problems to which our method applies, but confine ourselves to 

two examples: a one-locus model with migration and a two-locus model. Our 

asymptotic results hold for a subdomain of the continuous state space of 

possible genetic distributions; the elliptic equations for these problems 

degenerate at the boundaries of the full domain. In general existence of 

solutions of this last type of Dirichlet problems is not guaranteed; see 

FRIEDMAN [2,p.308]. 



2 

2. FORMULATION OF THE MATHEMATICAL PROBLEM 

We consider the Dirichlet problem for a function cj> (x 1, ••• ,~ ,y 1, ••• ,ym; £) 

satisfying the linear uniformly elliptic differential equation 

(2. 1) inn 

with boundary values 

(2.2) cj> = h(x,y;e) on an, 

where£ is a small positive parameter. The domain n is a bounded domain in 
n 

lR , n = k+m, of a form such that 

(2.3) (x,y) E n implies (x,O) En. 

The first and second order differential operators L1 and L2 have coefficients 

that are Holder continuous inn, 

(2.4) 

(2.5) 

m 

LI - l 
j=I 

a 
b. -"-, J oy, 

J 

k 

L2 = l 
i,j=I 

Furthermore, it is assumed that 

(2.6) b(x,y) = 0 iff lyl 

(2. 7) S(x,y)•b(x,y) :,; 0 on 

(2.8) 
m 

2 I b. (x,y)y. :,; -Llyl 
j=I J J 

= o, 

an, 

in n, 

where S(x,y) is the outward normal to an, La positive constant independent 

of£ and lyl the Euclidean length of y. The behaviour of the solution depends 

strongly upon the first term of L2 near the surface lyl = 0. We define the 

bounded domain r c lR.k by 
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(2. 9) r = {x I (x,O) c: Q} 

and state the following lennna, which is easily proved from the definition of 

ellipticity; see for example [9,p.56]. 

LEMMA 2.1. Let the differential operator 1 2 be unifoY1171ly elliptic in rl; then 

the operator 

(2.10) 
k 32 
I a .. (x, O) 3 . . l iJ dX. X. 

i,J= i J 

is unifoY1171Z.y eUiptic in r. 

3. THE MAXIMUM PRINCIPLE 

For the elliptic operator L given by (2.1) we formulate the maximum 
E 

principle as follows: a twice continuously differentiable function¢ satis-

fying L ¢ > 0 in a domain Q cannot have a maximum in Q; see PROTTER & 
E 

WEINBERGER [9,p.61]. The following lennna is a direct consequence of the 

maximum principle. 

LEMMA 3.1. If the -twice continuously differentiable functions¢ and iµ satisfy 

(3. 1 ) IL ¢ I < -L 1jJ 
E E 

in r1 

-
and if 1¢1 s 1jJ on 3Q~ then 1¢1 s 1/J in Q. 

PROOF. From the maximum principle and (3.1) we deduce that ¢-iµ cannot have 

a maximum in Q and since ¢-iµ s O on 3Q, we conclude that ¢-iµ s O in Q. Simi­

larly, -¢-~1 does not have a maximum in Q and -¢-iµ s O at 3Q, so that 

-¢-iµ s O in~- Combining these results we obtain 1¢1 s 1jJ in rl. D 

In the next step we give an asymptotic estimate for the solution of 

(2.1), (2.2). For that purpose use will be made of so-called barrier func­

tions: Lemma 3.1 is applied with a given function 1jJ as barrier function. 

THEOREM 3.1. Let the -twice continuously differentiable function ¢ satisfy 
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(3.2) 

and I <I> I ~ N on an with M and N positive constants independBnt of e:. Then a 

constant K indBpendBnt of e: exists such that 

(3.3) l<l>I ~ K in Q. 

PROOF. We introduce the barrier function 

(3.4) ~(x,y) = -U(x) + Rlyl 2 + S, 

in which we choose R > M/L with L given by (2.8) and U(x) such that 

(3.5) 
k a2u 
l a. .. (x, o) a a 

•• I 1J x. x. 1,J= 1 J 

k 
= 2M + 2R l 

i,j=l 
y .. (x,O) 

1J 
in r. 

Since the coefficients a. .. and y .. are Holder continuous, there exists a 
1J 1J 

positive constant F, such that 

(3. 6) 
k a2u k 

. J. a.iJ0 (x,y) ax.ax. - 2R . J. 
1,J=l 1 J 1,J=l 

2 For ly I ~ (I+ F/M)e: we have 

(3. 7) 

y •• (x,y) > -F 
1J 

in Q. 

-L ~ 
e: 

{ 
k a2u m } m 

= e: .. I a.iJ0 ax.ax. - 2R . J. I yiJ" - 2R .l 
1,J=l 1 J 1,J= J=l 

b.y. > 
J J 

2 2 
> -e:F + 2RL ly I ~ M( ly I + e: ). 

Because of the Holder continuity of a. .. and y .. a-t ly I = 0 the following 
2 1] 1] 

estimate can be made for lyl < e:(I +F/M) and e: sufficiently small; see 

(3.5). 

(3. 8) 
k a2u I a. .. cx,y) a a • • I 1] x. X, 1,J= 1 J 

m 
- 2R l 

i,j=l 

Thus, for lyl 2 < e:(I + F/M) we have 

(3. 9) 
2 2 -L ~ > e:M + 2RLlyl > M( lyl + e:). 

e: 

y .. (x,y) > M. 
1J 
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Finally S of (3.4) is taken sufficiently large such that 

(3. IO) ip 2".: N on an. 

From (3.7) and (3.9) we conclude IL ~I ~-Lip inn, while from (3.10) it 
E: E: 

follows that 1~1 ~ ip on an. Using Lennna 3.1 we obtain the estimate l~I ~ ip 

in ri. Sinc1e the function U(x) as well as the domain n is bounded, a positive 

constant K can be found such that~~ Kin Q, which completes the proof of 

the theorem. D 

COROLLARY 3.1. Let the twice continuously differentiable function ~(x,y;e) 

satisfy 

(3.11) IL ~ I 
E: 

inn 

and l~I ~ Noh(e) on an with of and oh continuous positive functions for 

O < e < e0 (e 0 sufficiently small) and with Mand N independent of e. Then 

a constant K independent of e exists such that in Q 

(3.12a) 

or 

(3.12b) 

if oh/of is bounded fore+ o, 

PROOF. As a barrier function we take 

and proceed as in the proof of Theorem 3.1. D 

Thus, Corollary 3.1 produces an asymptotic estimate for the solution of 

(2.1), (2.:2) from the asymptotic estimates of the data f and h. 

4. ASYMPTOTIC APPROXIMATION 

Let us assume that by some matched asymptotic expansion procedure we 

have found a formal uniformly valid asymptotic approximation, say~ , of as 
~ satisfying (I.I) and (1.2). Its validity is proved as follo-ws. Substitu-

tion of ~ := ~ + R into (I. I) and (I .2) yields as 



6 

(4.la) 

(4.lb) 

L R = f - L ~ £ £o/as 

R = h - cj> as 

inn, 

on an. 

If we are able to show that the right-hand sides of (4.1) and (4.2) have the 

appropriate asymptotic behaviour, then by application of Corollary 3.1 the 

smallness of the remainder term R is established. It is to be expected that 

the solution of (I.I), (1.2) has a boundary layer structure, which ~ay com­

plicate the construction of a suitable function cj> as its derivatives may as 
be of a larger order of magnitude in the boundary layer. this difficulty is 

surmounted by including (small) boundary layer corrections to the asymptotic 

approximation. Depending on the shape of the domain different types of 

boundary layers may arise. 

In the sequel we restrict ourselves to the case m= I for convex domains 

with nowhere characteristic boundaries, so that inequality (2.7) is strict­

ly satisfied. These domains have the form 

(4.3) 

+ + 
with p-(x) > 0 in r, p-(x) = 0 on ar and because of our method of approxima-

tion p± E c3 (r). We consider the Dirichlet problem for the function 

cj>(x 1, ••• ,xk,y;£) satisfying 

(4.4) 

00 -
with a .. ,S.,y EC (Q). This problem is assumed to have continuous boundary 

1J 1 

values 

-(4.5) for XE f 

with h± E c2 (r). The asymptotic approximation of cj> has the form 

(4.6) 

with u0 (x) satisfying 



(4.7a) 
k a2u 
l a .. (x, O) 

0 0 in r = 
i,j=I l.J ax. ax. 

l. J 

(4.7b) u0(x) = h(x) on ar, 

and with 

(4.8a) 
[ + + + = h±(x)exp p-(x){~-(x)+y}], v0(x,y;E) 

Eq-(x) 
k ± ± k + 

± a - + ± ~+ + 
(4. 8b) l ap ap ± l q = ----a + _£_f3- + y 

' 
h- = h- - uo, ax. ax. ij ax. i i,j=I l. J i=l l. 

+ + + + 
w:iere a:.,s:,y- = a .. ,f3.,y(x,±p-(x)). 

l.J l. l.J l. 

THEOREM 4.1. Let the function $(x1, ••• ,~,y;E) satisfy (4.4) in the domain 

Q defined by (4.3) with boundary values (4.5). Then there exists a positive 

constant K independent of E auch that 

(4. 9) I$-$ I ~ KE in Q as 

with $ given b.f ( 4 • 6 ) - ( 4 • 8) • as 

PROOF. We introduce the local coordinate n 

respect to E, 

-1 + + + 
LE - E MO+ Mi+ M2+ ••• , 

+ + a2 + a 
MO - q-(x) -2 - p-(x) arj" , 

an 
+ 

while }r, m > o, is of the form 
m 

+ k + a2 k 
}1 - l r:. (x) + l m i,j=l l.Jm ax.ax. i=I l. J 

+ = (p-(x)+y)/E and expand L with 
E 

+ a2 
s: (x) 

im ax. an 
l. 

+ a2 
+ t-(x) --+ 

m 
an2 

(r .. 1 =0). 
l.J 

We introduce additional boundary layer terms 

(4.10) + - + -$as (x,y;E) = U(x) + V 0(x, n) + v0(x, n) + dV 1 (x, n) + V 1 (x, n)} + 

2 + -+ E {v2(x,n)+ v2(x,n)} 

7 
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with V. satisfying 
]. 

+ + + ~+ 
(4.lla) MoVo = o, v0(x,O) = h-(x), 

+ + + + + 
(4.llb) M°oVt = -M1v0, v1(x,O) = o, 

+ + + + + + + 
·(4.llc) M-v- = -Mj"Vj" - ~VO' v2(x,O) = o, 0 2 

+ 
i (4.lld) v:(x,n) + 0 as n + co, = 0,1,2. 

]. 

+ 
The expression for v0 we gave in (4.8); 

+ 
v: 

]. 
with i > 0 is of the type 

(4.12) 

Let R = ~-~ • By straightforward calculation one finds that a constant M as 
exists such that IL RI s ME 2 inn, while also IRI s NE on an for some N > O. . E 

Fro~ Corollary 3.1 we conclude that IRI s KE inn for some K. Finally, the 
• + 

proof is completed by checking the additional boundary layer terms El.vi: 

i = 1,2 which are O(E) in Q. D 

REMARKS. When making higher order approximations, one has to take into ac­

count corner layer contributions in an E-neighbourhood of (x,O), x far. 

The higher order terms for the outer- and boundary layer expansions follow 

from the fundamental iteration process (see [1]) with an additional equation 

of the type (4.7a) for the terms of the outer expansion. 

5. APPLICATION TO PROBLEMS IN POPULATION GENETICS 

A population consisting of different genotypes with random mating can 

be described by stochastic as well as by deterministic mathematical models. 

We will deal with a deterministic model, a diffusion equation known as the 
' Kolmogorov backward equation, being the limit of a stochastic model as the 

population size increases indefinitely; see MARUYAMA [6,p.221]. Our asymp­

totic analysis applies to the stationary solution of the Kolmogorov back­

ward equation of a certain class of genetic problems. We will give two 

illustrating examples. 



EXAMPLE 5.1. We consider a diploid population with two alleles a and A at 

one locus divided into two colonies of each N individuals. Let p. denote 
l. 

the fraction of allele A at colony i. Assuming random mating without selec-

tion or mutation and with nett migration proportional to the difference in 

pi, we obtain the Kolmogorov backward equation 

(5. I) 

where ~(p 1,p2,t) denotes the probability density of the fractions pi at 

time t. This equation holds in the square S = { (p 1 ,p2) I O <Pi, p2 < I}. 

Substitution of 

(5.2) 

transforms the stationary equation of (5.1) into 

(5. 3) f 2 2 (a 2~ a2~) a2~ ] a~ e: lo -x -y ) - + - - sxy -- - y - = o, 
ax2 ay2 axay 3y 

e: = I / ( 4 µN), 

in a domain Q = {(x,y) I lx±yl < I}. We consider the Dirichlet problem of 

(5.3) with O < e: << I for a subdomain Q0 c Q of the form 

(5.4) Qo = { (x,y) I lyl· < I - ✓x2-o 2+2o, lxl < I - o} 

-with boundary values hon an0 . Equation (5.2) relates a point (x,y) E Q to 

the distribution of alleles at some time. Let p0,e:(x,y;x0 ,y0) denote the 

probability density of leaving Q0 the first time at (x,y) E an0 if starting 

at (x0 ,y0) E Q0• The following relation between Po,e: and~, is kno-wn to be 

valid 

(5.5) Ian Po,e:(x,y;xo,Yo)h(x,y;e:)dcr = ~(xo,Yo;e:) 
0 

where dcr denotes a positive measure on an0 ; see MATKOWSKY & SCHUSS [7]. If 

(x0 ,y0) is chosen in the outer region of Q0 the system leaves Q0 at either 

a point of an0 with x < -1+2o or with x > 1-20 with probabilities that tend 

to 

9 



(5.6ab) 
1-o-x0 

pr(left exit)= - 2-_-2-0-, pr(right exit)= 
1-o+xo 

2-20 

10 

as E + 0. This result is derived from (5.5) by choosing appropriate boundary 

values h. As o + 0 this asymptotic result tends to the exact solution of the 

problem for the full domain with arbitrary E > 0. 

EXAMPLE 5.2. A population of N diploid individuals, each characterized by 

its genotype with respect to two loci and with two alleles at each locus, 

is described by the fractions of gametes of types AB, Ab, aB and ab. Let 

these fractions be denoted by p., i = 1,2,3,4. In case of random mating such 
I. 

system is modeled by the Kolmogorov backward equation 

(5. 7) ~= at 
3 

I 
i=l 

2 3 
I I 

i=l j=i+l 
+ 

(5.8) 

transforms the equation for the stationary problem into 

(5.9) 

E = l/(2+4Nµ), 

while the domain S transforms into a domain n satisfying (2.3), (2.7) and 

(2.8). Again we consider the Dirichlet problem of (5.9) with O < E << 1 for 

a subdomain n0 c n with an0 bounded away from an and with an0 + an as o+O. 

In the limit E + 0 the probability of leaving n0 at some point of an0, if 

starting at the outer region of n0, depends according to formula (5.5) 

entirely on the function U(x 1,x2) satisfying 
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(5. I Oa) a2u a2u 0 in r O = { (x l' x2) I (x1 ,x2,0) e: n0 } XI (I-xi )-2 + x20-x2)-2 = 
ax 1 ax2 

(5. 1 Ob) u = h on ar0 , 

where his some appropriately chosen boundary value. Using this result one 

can prove that for£+ 0 the two-locus system, if starting in the outer 

region of n, tends to linkage equilibrium (y= 0) along the subcharacteristic 

of L1 by choosing an appropriate domain nn with n arbitrary small but in­

dependent of£; see Figure I. For a more extensive discussion of this prob­

lem we refer to LITTLER [5]. 

y 

n 
n 

x2 

(x0 ,0) 

+ n + xi 

Fig. 1 The path towards linkage equilibrium as£+ 0. 

REMARKS. The asymptotic solution (5.10) for the outer region tends to a 

regular limit as o + 0. From this limit expression one may derive the 

probability of first fixation of a specified allele in a same manner as 

we find the probability of loosing either one of the two alleles in Example 

5.1 from (5.6) by letting o + O. Finally it is mentioned that for both 

examples more accurate approximations can be obtained by computing the next 

terms of the asymptotic expansion in£ as we remarked in Section 4. In 

Example 5.2 this would lead to new quantitative results for linkage dis­

equilibrium when£ is small; see also OHTA & KIMURA [8]. 
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