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Polycondensation and gelation of trifunctional monomers*) 

by 

H.A. Lauwerier 

ABSTRACT 

The mathematical model of the polycondensation of trifunctional mono­

mers is considered in great detail. The analysis follows the method of the 

generating function as proposed by Pis'men and Kuchanov. However, more 

explicit and more complete results are obtained which p,ive a better under­

standing of the peculiarities of the mathematical model. There is no so­

called gel-point at which a gel is formed almost instantaneously, but the 

gel-point rather starts a period of infinite duration during which the gel 

is built up from the free polymers. Explicit expressions are given both for 

the initial phase and for the phase of gel formation. Solutions for the 

different periods are connected in a continuous way. If the kinetic equa­

tions are perturbed by a small perturbation parameter there is a single 

solution for all values of time. 

KEY WORDS & PHRASES: PoZycondensation, geZation, peZ-point, renerating 

function technique, e:cpZicit solutions, perturbation 

method. 

*) h' . f . 1.'t f bl' ' 1 h T 1.s paper 1.s not or review; 1.s meant or pu 1.cat1.on e sew ere. 





INTRODUCTION 

In this paper the mathematical model of the polycondensation of monomers 

with three identical functional groups is studied in great detail. The anal­

ysis follows closely the method of the generating function as proposed by 

PIS'MEN & KUCHANOV in their paper (1971). However, the results obtained 

here seem to indicate that some conclusions as regards the mathematical 

model are erroneous or at least incomplete. In fact, the solution of the 

model breaks up into two distinct expressions. The first expression holds 

for the period up to the gel-point. The second expression relates to the 

behaviour of the free polymers in the period after the gel-point. The model 

shows that the ideas of FLORY about that period were correct. It turns out 

that after the gel-point the distribution function of the free polymers does 

not change in form and that all concentrations decrease at the same rate in 

favour to the gel component. This means that on the basis of the mathematical 

model there is a certain instant, the gel-point, at which gel formation 

starts and a subsequent period of infinite durating during which the gel is 

built up gradually until all free components are consumed. The analysis 

shows that the second solution, that relating to the post-gelation period, 

is closely connected to the first solution for the initial pre-gelation 

period. Both solutions can be combined to a single analytical solution by a 

simple perturbation procedure. 

The outline of this paper is as follows. In the first section we dis­

cuss the set of kinetic equations (1.1). This m0del may be seen as the trans­

port of mass from lower to higher polymers with an ever increasing speed, 

since the reaction rate is proportional to the number of free functional 

groups of each reacting molecule. This means a rapid broadening of the con­

centration distribution function C (t), where n is the number of reacting 
n 

groups. It is shown that at a certain instant t*, the so-called gel-point, 

the second moment (1.5) becomes infinite. Fort< t* the set of kinetic 

equations (1. 1) is closed and can be shown to be consistent with the conser­

vation law that the total reacting mass should be a constant. For this ini­

tial period simple explicit expressions for the zeroth moment µ 0 (t) and the 

first moment µ 1 (t) can be derived inan elementary way. However, this deriva­

tion depends essentially on the convergence of the second moment. This means 
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* . that fort> t a different procedure should be adopted. 

In the second section the method of the generating function is used to 

obtain an explicit solution without using any previous knowledge about the 

first moment. The solution is of the same form in both the initial period 

* * t < t as the period of gel formation t > t. However, the solution still 

contains µ 1(t) as a unknown function. 

In the third section the first moment is determined by using the ex­

plicit form of the generating function obtained in the preceding section. 

It turns out that µ 1(t) is determined by a differential equation degener­

ating into two distinct factors. Thus different expressions are obtained 
( < * . * for µ 1 t) in the different phases t > t • We find t = I and 

µl(t) = t+ I fort~ I, 

for t ~ I. 

The time behaviour of the concentration of the polymer with k reacting 

groups (k~ 2) is explicitly given by (2.23) fort~ I and by (3.14) for 

t ~ I. Fort~ I the conservation law is violated. This means that a gel is 

formed, the amount of which is measured by the apparent mass defect 

G = t-1 
3t-1 

t 

3 

for t ~ I. 

--+ t 

Figure I. 
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In figure I the first three moments µ 0 (t), µ 1(t) and µ 2(t) are sketched. We 

note that there is only a rather slight discontinuity in the derivative at 

the gel-point t = I. 

0.04 

0.03 

0.02 

0.01 

l 2 -+ t 

Figure 2. 

In figure 2 the first four concentrations c3(t), c4 (~), c5 (t) and c6 (t) are 

sketched. 

The set of kinetic reaction equations (I.~) is in a sense a degenerate 

system which exhibits the development of a singularity in the course of 

time. In the fourth section it is shown that all singularities are removed 

if in the kinetic equations a small positive perturbation parameter£ is 

introduced. Thus we consider the system (4.1) which as a mathematical ideal­

ization is almost as good or bad as the unperturbed set (I. I). The solution 

of the perturbed system is of the same form as that of the unperturbed sys­

tem, but it still contains the first moment µ 1(t) as a unknown function to 

be determined afterwards. The differential equation from which µ 1 (t) can be 

derived does not degenerate here and there exists a single solution for all 

values of time. It is shown that for£ ➔ 0 the solution of the perturbed 

system approaches that of the original system. 



4 

I I I I I I 
t - - µI (E) 

- µ2 (E:) JJo µo(E:) µ I µ2 
------

0 3.00 3.00 1.00 1.00 0.33 0.33 

0.2 4.00 4.01 1.20 1.20 0.34 0.35 

0.4 5.25 5.26 1.40 1.41 0.32 0.33 

0.6 6.86 6.86 1.60 1.62 0.27 0.28 
I 

0.8 9.oo I 8.96 1.80 1.83 o. 16 o. 19 

1.0 12.00 11.80 2.00 2.07 0 0.05 

I 1.5 21. 00 20.66 3.50 3.48 0 0.02 

2.0 30.00 29.58 5.00 4.98 0 0.02 

2.5 39.00 38.49 6.50 6.48 0 0.03 

3.0 48.00 47.40 8.00 7.98 0 0.04 

Table I. 

In Table l we have compared the numerical values of the first three moments 

of the perturbed system with E: = 0.01 to those of the original system. 

The perturbed system (4.1) does not imply a conservation law. If E: is very 

small, during the initial phase t << I material is lost in an almost imper­

ceptible way, but in the phase of gel formation t >> I the situation is as 

in the unperturbed case. The system (4.1) may be interpreted as describing 

reactions during which some part of the material is continuously removed 

either artificially or for the construction of a polymer with an infinity 

of functional groups, i.e., the gel. 

The author wants to stress that the global properties of the model 

considered here are not restricted to the case of trifunctional monomers, 

but in fact are quite general. The general case and other applications will 

be considered in reports of the Amsterdam Mathematical Centre. 
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I. THE KINETIC EQUATIONS 

We consider the polycondensation of trifunctional monomers as sketched 

in the following example. 

-

Let the symbol C denote the concentration of a polymer molecule with n free 
n 

functional units. Then the reaction scheme for irreversible polycondensa-

tion is of the form 

The corresponding kinetic eq~ationswithrespect to a suitable time scale 

are for n ~ 3 

( I. 1) 

where µ 1(t) is the first moment 

( 1. 2) 

The initial condition is 

( I • 3) c3 = I/3, C = 0 
n 

n ~ 4, fort= O. 
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We shall also use the zeroth moment 

( I • 4) 

which measures the total number of polymer chains and the second moment 

( 1.5) 

which measures in a sense the average molecular weight. 

The total number of building units of type c3 is given by 

( I. 6) 

This should be a constant during the process of polycondensation. However, 

this conservation law does not follow automatically from the kinetic equa­

tions (I.I). Summation of the equations (I.I) with respect ton gives 

without difficulties 

( I • 7) 

But, the next step raises some objections. If then-th equation is multi­

plied by n then summation gives in view of n = k+£-2, 

dlJ I 
l I (k+£-2)k£CkC£ 

2 
aT = - lJ ]J + = - ]J ]J + (µ1].12 -µ!). l 2 2 I 2 

k,£ 

It is tempting to write 

( I • 8) 

but this is only true as far as µ2(t) 

process would diverge. 

< 00 

' 
since otherwise the summation 

With the initial condition (1.3) the last equation gives at once 

( 1. 9) JJI (t) = t+I ' 



Then from (1.7) we obtain the solution 

(I. IO) 2-t 
= 6(t+I) • 

The conservation law µ 1 - 2µ 0 = I is true, but the result (I.IO) cannot be 

true since then µ 0 becomes negative in course of time. This suggests that 

at some time the second moment indeed becomes infinite and that the result 

(1.9) does not hold any longer. Therefore, in the next section an indepen­

dent derivation of µ 1(t) is given. 

2. THE METHOD OF THE GENERATING FUNCTION 

Following the method explained in the paper cited above, we introduce 

the generating function 

(2. I) 

If then-th equation of (I.I) is multiplied by xn then surmnation gives 

(2.2) a a (a ) 2 -11 = - µ x-11 + 1 -11 • 
at I ax 2 ax 

It is to be expected that the summations do converge for lxl < I and that 

g(x,t) is a regular analytic function of x for all values oft provided 

lxl < 1. 

(2.3) 

The moments of the polymer distribution can be written as 

= g (I,t) 
X 

µ 2(t) = g (I,t) + g (1,t). 
XX X 

To the partial differential equation (2.2) we have to add the initial con­

dition 

7 
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(2.4) g(x,O) 

The equation (2.2) can be simplified by introducing the auxiliary 

function 

(2.5) 

t 

o(t) = exp - I w1(T)dT 

0 

and new independent variables u,v determined by 

t 

(2.6) u = o(t)x, V = I 2 
0 (T)dT. 

0 

Then (2.2) passes into 

(2. 7) )
2 

clg _ I clg 
:3v - 2(au ' 

with the initial condition 

(2. 8) for v = O. 

Attention is drawn to the fact that no explicit use is made of the form of 

w1 (t) and that the problem (2.7), (2.8) can be solved without any knowledge 

about w1(t). On the contrary, w1(t) can be determined from g(u,v) as 

(2.9) - (ag\ µ1 (t) - o au) . 
u=o 

The right-hand side of (2.9) also contains w1 as an unknown function so that 

the actual determination of w1 requires still some extra work. 

The solution of (2.7) and (2.8) is standard matter. The set of charac­

teristic equations of (2.7) is given by 

(2.10) 

where p = g and q = g. Integration gives 
U V 

(2.11) p = A, q = B, u + Av = C, g + Bv = D, 



where A, B, C and Dare constants of integration. The initial condition 

(2.8) requires 

(2.12) D = ½ c3 , A = c2 , B = ! A 2 

Then for all values of v the solution of (2.7) and (2.8) is determined by 

(2.13) ( ) .!_ C3 _ I 4 g u,v = 3 2VC' 

together with 

(2.14) 2 
u +vC c. 

9 

It is not difficult to eliminate the parameter C from (2.13) and (2.14). 

From (2.14) C can be solved as a two-valued function of u and v, but keeping 

in mind that for v ➔ 0 C remains finite, we should take the single root 

(2. 15) C = I - ✓ l-4uv 
2v 

Then for g we obtain eventually 

(2. 16) g(u,v) 
2 2 3/2 

- I + 6uv - 6u v + ( I - 4uv) = 
12v3 

or 

(2. I 7) g ( U, V) = ½ U 3 ? i( ~ ; 4 ; 4 UV) , 

where 

(2. !8) 1F1(a;b;z) 

with the notation 

(2.19) 

f (a)k = a(a+l) ••• (a+k-1), 

1 (a) 0 = I. 

k ~ I, 
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During the initial phase of polycondensation the first moment is given 

by (1.9). Then from (2.5) and (2.6) we obtain 

(2.20) 

so that 

(2.21) 

For x = 

a ( t) - t+ I' 

4uv = 
4xt 

(t+I / • 

v(t) = 
t 

t+I ' 

the function 4uv increases monotonously from Oto I in the inter-

val 0 ~ t < I. At t = I the second derivative of g(u,v) with respect tot 

becomes infinite so that also the second moment becomes infinite at that 

instant. 

Thus the solution (2.16) with (2.20) and (2.21) does only hold for 

0 ~ t < 1. A simple calculation shows that in addition to (1.9) and (1.10) 

the second moment is given by 

(2.22) 3-t 
µ2(t) = --2 ' 

1-t 
0 ~ t < 1. 

The individual con~entrations follow from (2.16), (2.17) and (2.18) 

as 

(2.23) 
40\-2 

k! 
1 f 4t lk-3 

O+t)3 "lc1+t)2f 

For a fixed value of k this function increases monotonously in 0 < t < k~3 

and decreases afterwards. This means that at the so-called gelation point 

t = 1 aZZ concentrations are past their maximum. This could mean a violation 

of the conservation law of units, but the obvious interpretation is that 

after t = 1 the system ceases to behave as a closed system. After t = I 

matter leaves the system or, in other words, is transported to infinity. 

In a sense this means the formation of a molecule C with an infinity of 
00 

bonds, i.e., a gel. The size of the gel is measured by the defect of the 

conservation law. 

(2.24) t ~ I. 



3. THE GELATION PHASE 

The first moment µ 1(t) is determined by (2.9) and (2.16). It is, 

however, simpler to to start anew from (2.11) and (2.12) and keeping C as 

an independent parameter by way of time scale. Thus we start from the set 

(3. 1) 

2 

{ 

µ I = crC , 

a+ vc2 = C. 

Differentiation of the second equation with respect to the time gives 

(3.2) a + 
2 • 

vC - (1-2vC)C = O. 

But, since froM (2.5) and (2.6) 

(3.3) a = - µ cr 
1 

and • 2 
V = O" 

the latter equation reduces to 

(3.4) (1 - 2vC)C = O. 

Here we obtain the surprising result that the solution breaks up into two 

distinct parts. There is the general solution 

(3.5) C = constant, 

and the singular solution 

(3.6) 2vC = 1. 

The first solution corresponds to the initial period of polycondensa­

tion during which µ 2 < 00 • Then the solution is given by (1.9) as 

(3. 7) t 
v(t) = l+t • 

BIBLIOTHEEK MATHEMATlSCH CENTRUM 
-AMSTERONJi-----

] ] 
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The second solution corresponds to the subsequent phase of gel forma­

tion t > I. Then we find from (3.1) 

(3. 8) a= ½C, 

The correct time scale follows from (3.3) which gives 

C = 

so that , with the initial condition 

C(l) = 2cr(I) = I, 

we have 

(3.9) 
-1/3 

C(t) = (~ t - ½) 

Substitution into (3.8) gives for the first moment 

(3.10) µ I (t) = 3t-I ' 
t ;:: I. 

By this and 

(3. 11) u = ! x(} t - ! )- I / 3 
2 2 2 , 

I (3 1 )I/ 3 
v=z 2t-f ' 

the full solution (2.17) is given by 

(3.12) 

or 

(3.13) 

1 g(x,t) = ----,,---,.--....,... 
I2(3t-l) 

F ( ~ • 4 · x\ 
1 1 2 ' ' )' 

- I + ~ X - 1 X 2 + ( I -x) 3 / 2 
3 2 8 
-4 g(x,t) = ---------3t - I 

t ;:: 1, 

t ;:: ). 

The rather surprising result is obtained that the distribution function 

does not change with time and that all concentrations are simultaneously 

decreasing with the time factor (3t - 1 )-I. Explicitly for k ;:: 3 



(3.14) t ~ 1. 

The zeroth moment µ O(t) follows from (3.13) as 

(3. 15) 
1 

µo(t) = 6(3t-t) '· t ~ 1. 

Then, according to (2.24), the formation:of the gel is given by 

(3.16) G = 
t- I 

3t - I ' 
t ~ 1. 

4. A MODEL WITH A SMALL PERTURBATION 

If the system (I.I) of kinetic equations is replaced by 

( 4. 1) 

13 

where e is a very small positive quantity, a model of polycondensation is 

obtained which differs only very little from the model studied so far. 

However, we shall soon see tnat this model does not have the singular behav­

iour exhibited by the previous model. It turns out that by the introduction 

of the very small perturbation parameter£ the two distinct solutions, one 

for the initial phase and one for the phase of gel formation, are glued 

together in a continuous manner. Of course for£~ 0 the solution of the 

model (4.1) passes into the pair of solutions of the previous model. 

Again we use the generating function (2.1). Then (4.1) is equivalent 

to 

(4.2) ag _ _ x ~ + 1 /ag)2 
at - µ I ax ~ax . 

Next we introduce the auxiliary variables cr(t) as defined by (2.5) and 

(4.3) u = cr(t)x, 

t 

v = l+e f cr2 (T)dT. 
0 
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Then (4.2) passes into the partial differential equation (2.7) to which the 

initial condition (2.8) may be added. This means that the final results 

(2.16) and (2.17) do apply also here. The only problem is that µ 1(t) and 

cr(t) are still to be determined. It is easily seen that the system (3.1) 

applies equally here and the same is true for (3.2). However, instead of 

(3.3) we have 

2 
(4.4) and • cr 

V = I +e: • 

Then substitution gives 

(4.5) • 2 2 (l+E)(l-2vC)C + EO C = 0. 

If this equation is combined with the second equation of (4.4) we find a 

linear differential equation 

(4.6) EC2 :~ - 2vC + 1 = 0, 

which can be solved in an elementary way. With the initial condition 

V = 0, 

we obtain 

(4. 7) V = 

Next from (3. 1) we have 

(4.8) cr = 
( l+E)C + c2+2/E 

2+E 

C = fort= O, 

The time scale follows from (3.1) and (4.4) by integration of 

(4.9) 



This gives 

(4. 10) 

which determines the dependance of C from t. Then by (4.7) and (4.8) also 

the time behaviour of cr, v, µ 1 is fixed. 

15 

For the zeroth moment µ 0 and the second moment µ 2 the following simple 

expressions can be derived 

(4.11) = 
(1+2£)C3 + 3C4+2 /£ 

µo 6 (2+£) 
, 

(4. 12) 
2 

µ2 = µ 1 + 
2 (2+E)cr C 

£+2C1+2/E: 

For£+ 0 we may expect that 

(4.13) { 
C(t,£) + 

C(t,£) + (~ t -½ )-l/3 

for O :5: t < I, 

fort> 1. 

For a very small value say£~ 0.01 numerical integration of (4.10) shows 

that C(t,£) is very close to these limits (see Table 2). In fact from (4.5) 

and (4.7) it follows that C(t,£) decreases monotonously. From (4.7), (4.8) 

and (4.9) it can be derived that in the beginning phase of polycondensation 

t << 1 C(t,£) can be approximated by 

(4. 14) ( 1 - t)h 
CRi 1+t , 0:5:t«l. 

But later on in the gelation phase t >> 1 we have the behaviour 

(4.15) f (1 + ) }-l 13 
C RS l3 2 +: (t-c) , t >> 1, 

where c is a constant. 



16 

t C C(E:) 

0 1.00 1.00 

0.2 1.00 1.00 

0.4 1.00 1.00 

0.6 1.00 0.99 

0.8 1.00 0.99 

1.0 1.00 0.98 

1.5 0.83 0.83 

2.0 0.74 0.74 

2.5 0.68 0.67 

3.0 0.63 0.63 

Table 2. 

It 1s of interest to see what remains of the conservation law (1.6). 

We find 

(4. 16) J.J 1 - 2µo = ½ c3 • 

This shows that the system (4.1) is always open and that at all times 

material is removed from the system which no longer will take part in the 

reaction scheme. In the initial phase t < I this happens in an almost 

imperceptible way. Later on the removal is as in the unperturbed case e: = 0. 

But here there is a gradual change in the rate of removal at the critical 

time t = 1. 

The expression (4. 12) shows that the second moment remains finite. 

More precisely we always have 

(4. 17) 4 
].J2 < 3 + e: 
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The full solution (2.16), (2.17) does apply also here. The value of v 

is given by (4.7) and uv = ovx is determined by (4.7) and (4.8). In this 

perturbed model the argument 4ov does not have the maximum I but instead 

2 
(4. 18) 4av + I - _E __ -2 • 

(2 + E) 

This means that all moments of the concentration distribution function 

remain :::initie at all times. 
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