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FOURIER TRANSFORMS OF HOLOMORPHIC FUNCTIONS AND APPLICATION TO NEWTON
INTERPOLATION SERIES, II

by

J.W. de Roever.

ABSTRACT

This paper treats a generalization of the Martineau-Ehrenpreis theorem
and applies it to the derivation of the Newton interpolation series for the
largest possible class of functions. By means of Fourier transformation the
Martineau-Ehrenpreis theorem establishes the isomorphism between analytic
functionals with compact carrier and some space of entire functions. In this
paper the analytic functionals are carried by unbounded convex sets with
respect to some class of weightfunctions and its Fourier transforms are no

. . . . n
longer entire functions, but they are holomorphic in cones in C .

KEY WORDS & PHRASES: Fourier transformation; analytic functionals carried by
unbounded convex sets; holomorphic functions of several
complex vartables; cohomology with bounds; the Martineau-—
Ehrenpreis theorem on Fouriertransforms of analytic func-
tionals; Newton interpolation series in several variables

for non-entire functions.
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1. INTRODUCTION

This paper is the last of two papers dealing with Fourier transforms
of holomorphic functions and the Newton interpolation series.

In [10] KIOUSTELIDIS derived the Newton series with the aid of Fourier
transformation. The advantage of this method against the classical ome
(Cauchy's integral formula, NORLUND [13], GELFORD [5]) is that it treats
the case of several variables as well. However, his treatment is valid for
entire functions only. The aim of this paper is to show that this restric-
tion is not due to the method, but that the method (namely the formalism of
Fourier transformation) can be extended so as to include all possible non-
entire functions for which the Newton series is valid.

In the first paper [14] the Newton series has been derived for func-
tions, holomorphic in tubular radial domains, of polynomial growth in |Re z|
and of exponential growth in |Im z|. Such functions are the Fourier trans-
forms of tempered distributions with support in unbounded convex sets accord-
ing to a well known theorem (see [16]) generalizing the theorem of PALEY-
WIENER-SCHWARTZ. In this case, however, one only uses the real part of the
domain of convergence of the Fourier transformed Newton series. In [10]
KIOUSTELIDIS has considered complex compact subsets of this domain using a
Paley-Wiener type theorem, namely the theorem of EHRENPREIS [2] and
MARTINEAU [12] dealing with Fourier transforms of analytic functionals with
compact carrier. These Fourier transforms are entire functions of exponen-
tial type in |z| and for such functions the Newton series is derived.

Generalizing the Ehrenpreis-Martineau theorem the main theorem of this
paper states that holomorphic functions of exponential type in cones are
the Fourier transforms of analytic functionals carried by unbounded convex
sets with respect to some class of weightfunctions. One can formulate two
versions of this theorem (based on formula (5.5)(i) and (5.5)(ii) respecti-
vely) and surprisingly it turns out that the apparently weaker version (i)
equals the stronger version (ii). A particular case of version (i) has
already been proved by KAWAI in [9]. However, this case cannot be handled
very well in the derivation of the Newton series. Therefore, it still has

sense to present the theorem as it is done here.



The proof of the main theorem is very different from the proof in [16]
of the similar theorem in part I [14]. In fact the last theorem in 2n vari-
ables is used in proving the former in the n-dimensional case. The pattern
of the proof is actually the same as that of Ehrenpreis' fundamental prin-
ciple [3], only here one deals with non-entire functions. While in the
Ehrenpreis-Martineau theorem the injectivity of the map F (Fourier trans-
formation) presents no problem, it seems to be the most difficult part of
the generalization given here. For this part and for the transition from
version (i) to version (ii) cohomology with bounds is used.

Together with the theorem on Fourier transforms some other theorems
are given dealing with estimates for products of a polynomial matrix with
a holomorphic non—entire vectorfunction similar to the case of entire func-
tions given by HORMANDER in [7]. These theorems as well as the main theorem
itself may be useful in other applications, for example if one is interested
in solutions of systems of partial differential equations that can be writ-
ten as boundary values of functions holomorphic in tubular radial domains.

The main theorem yields all the tools for deriving the Newton series
for non—entire functions in several variables. Now the domain of convergence
in €% is used completely, so that the most general class of functions is
obtained for which the Newton series holds. This generalizes the case of one
variable in NORLUND [13].

In section 2 the Ehrenpreis—-Martineau theorem is discussed, and section
3 describes how the Newton series can be derived from this theorem as it is
done by KIOUSTELIDIS in [10]. Section 4 deals with some properties of un-
bounded convex sets. Section 5 gives the space of -holomorphic functions in
cones in €% of exponential type and the space of their Fourier transforms,
which turns out to be the dual of some other space of holomorphic functions.
These spaces are topologized in such a way that they are reflexive and that
Fourier transformation is an isomorphism. A part of the version (i) of this
isomorphism is also proved. In section 6 the main theorem of this paper,
i.e. version (ii) of this isomorphism, is stated and the problems used to
prove the main theorem are formulated. In section 7 these problems are
solved, formulated so as to make them useful in other applications too,

Here cohomology with bounds is derived and used. Section 8 gives some



corollaries and particular cases. Especially those concerned with functions
holomorphic in tubular radial domains prepare section 9, where the Newton
series is derived for these functions. The appendix deals with the problem
how to extend local relations between holomorphic functions to global rela-
tions. It uses cohomology as derived from the existence theorems for the
5—operator given by HORMANDER in [7]. Furthermore special coverings of open
sets in C" are constructed, adapted to the case of non-entire functions.

Finally a short description of Ehrenpreis' fundamental principle is given.

2. ENTIRE FUNCTIONS OF EXPONENTIAL TYPE

This section deals with the relation between an entire function of
exponential type and the carrier of its Fourier transform. It contains
nothing new, but it is merely a rearrangement of some theorems of [7],
stated in the appendix, in a way to make it suitable for generalization in
section 5.

Let @ < €” be an open set and let A(2) be the space of in Q holomorphic
functions with the topology of uniform convergence on compact subsets K of
2. Elements u of the strong dual A'(Q) of A(R) are called analytic function-

als 1n . A(Q) with the norm

(2.1) £l = sup |f(z)., Kcc @
K
zeK
is a linear subspace of C(K), the space of continuous functions on the com-
pact set K. Therefore, in view of the Hahn-Banach theorem and the theorem
of Riesz, each analytic functional in @ can be represented as a measure in
a compact set K of ©1. We say that an analytic functional u in Q is con-

centrated on the compact set K of Q, when for all f ¢ A(Q)
[<u,f>] < MHfHK
with some positive constant M. In that case p can be represented as a mea-

. . . . n .
sure in K, Thus every analytic functional p in € can be considered as an

analytic functional in @, where Q is an arbitrary open neighborhood of the



compact set K p is concentrated on. We denote the space of analytic func-

tionals in C" concentrated on the compact sets of Q as
n
Al(CH).
1 (e

Conversely, analytic functionals in  are analytic functionals in ¢" too by
means of their action on the restrictions to Q of entire functions. This
correspondence is 1-1, when Q is a Runge domain (see def. A5), for then
A(Cn) is dense in A(R). Hence there is a map of A'(Q) onto Aé(cn), which is
1-1 when Q is a Runge domain. For example, when n = | one can think of

Q =€ \ {0}; then the map
A'(Q) > AS'Z(C)

is surjective, but not injective. Here Aé(C) = A'(C), since by the maximum

principle for every compact neighborhood K of 0 with boundary K in € \ {0}
(2.2) HfHK = Hfﬂﬁ,

when f is entire.
We now give a more rigorous exposition of the foregoing. Let Q be an

open set in ¢" and K a compact subset of 2. Denote by
A(K)

the space of functions holomorphic in a neighborhood of K with the norm

(2.1) and by

Ay (@)

the space of functions holomorphic in @ with the same norm. It is clear
that AK(Q) is a linear subspace of A(ﬁ) and that both spaces are not Banach
spaces. Since we are only interested in their duals, it doesn't matter if

we consider these spaces or their completions, the Banach spaces A(K) and



KK(Q), respectively, consisting of functions continuous on K and holomor-

phic in the interior of K if this is not empty. We denote by
Kcos Q

a sequence {K 1o of compact subsets of Q with int K < K c int K c

m m=1 - m m m+ 1
c Km+1 c  and with U1 Km = @, Then we have the following characterization
m=

of the space A(Q)

A(Q) = proj lim A (2) = proj lim KK(Q) = proj lim A(K) = proj lim A(K).
Kee, Q Kee, 0 Ko, @ Keo, @

Both KK(Q) and K(ﬁ) are closed linear subspaces of Am(l;K), see [14] B.4 or

[18], so that according to [14] C.6 and C.7 the maps AK(Q) - AS(Q) and

A(K) » A(S) are compact, S ccK. Thus A(Q) is anFS-space (see [14] F.8),

which is nuclear according to [14] G.7. Since KK(Q) is dense in KS(Q), the

dual can be represented as

(2.3) A'(Q) = ind lim A&(Q)

Ko,
according to [14] F.12, However, in general an element of Aé(Q) does not
uniquely determine an analytic functional in any neighborhood Q' < Q@ of K.
This is true for distributions: distributions in O with support in K are
also distributions in 0', Kcc 0' c 0. Only when A(R) is dense in AK(Q'),
representation (2.3) of A'(R) is the inductive limit of all analytic func-
tionals in any open neighborhood Q' of K concentrated on K. So we must find
a sequence Kccy @ forwhich A(Km+]) is dense in A(Em), for then A(Q) is
dense in A(K) (see [14] 1it.[2], §26,2.5), thus also in AK(Q') c A(K), In

that case (2.3) can be written as

(2.4) A'(Q) = ind lim A'(K)
Kccsy Q

the inductive limit of analytic functionals concentrated on K. It is not

possible to find such a sequence {Km}:= for all domains . Only for pseudo-

1
convex domains  we will find one or, actually for domains of holomorphy,



but according to theorem A.3 the domains of holomorphy are just the open
pseudoconvex domains.

We define for any compact subset K of @ the set

Ry=1{c | ceq, I£(@] < I£l for all £ ¢ A@)) DOt R cq,
see (Al). Hence for f € A(R) we have HfHK = Hfﬂﬁ, thus AK(Q) = AR(Q). Q is

a domain of holomorphy, if
(2.5) RQ cc Q, whenever KccQ,

according to theorem A.1. In the sequel we will assume that Q2 is pseudo-
convex expressing that (2.5) is satisfied. Then the restriction map from
AK(Q) into A(R) exists. According to theorem A.4 AK(Q) is a dense linear

subspace of A(E). Hence
(2.6) AK(Q) = A(KQ) (2 pseudoconvex).

Thus for any sequence Kccs ﬁg

We have obtained that the closure of the space

is the desired sequence satisfying (2.4).

A (2) def oroj 1im A @)

Kcc, Q!

equals
A, () = proj lim & (2) = proj lim Z(EQ).
Kee, Q Kee, Q°

AQ,(Q) is a pré—Fg—space, that means its closure is an F§—space. If Q' is
such that K<y Q' impliesﬁQCI_,Q we get AQ,(Q) = A(R); for example AQ(Q) =
= A(Q); another example is (2.2). However, we will consider cases where
AQ.(Q) # AQ).

The strong dual of AQ,(Q) is the LS-space

(2.7) Al (®) = ind lim A'R),
KC_LYQ' Q



which yields (2.4) when Q' = Q.
Let Q] c QZ be both pseudoconvex open sets in Cn; then the restriction
maps

Ary)— AQ] (€,) == AQ))
are continuous. The first map is a surjection from a Fréchet space onto a
pré-Fréchet space and since AK(QZ) is a linear subspace of AK(Ql), the
second map is in fact the embedding of the linear subspace AQ](QZ) into

A(Ql). The transposed maps are the continuous maps

AT Q) Aé](ﬂz) A" (2,),

where the first map is surjective according to the Hahn-Banach theorem and

the second map is injective. We always have ﬁQ c ﬁQ , but if
1 2
(2.8) R, =K,
b

then in view of (2.3), (2.6) and (2.7) we have (see theorem A.7)
v — Al
(2.9) A (Ql) AQ](QZ)'

contains a component of §

When each component of for example when both

2 1°
are connected, A'(Ql) is dense in A'(Qz), for then A(Qz) = A"(Qz) is mapped

injectively into A(Q]) = A"(Q]). We do not have this in the case of dis-

tributions: E'(Ol) is not dense in E'(OZ), 01 c 02; E'(6]) is even a closed

linear subspace of E'(Oz), 6] c O2 and 0] convex (see [14], G.5).

The linear hull L of the following set of entire functions in g

17z
{et?78) a
zeC

is a Runge domain, so this set is dense in
FARS

is dense in A(QZ), when Qz

AQ (92) too. Indeed, differentiating et with respect to z and setting
1

z = 0, we get 1z, so that we can approximate the polynomials by elements



of L. Therefore, the map

i .
F: u e Aél(Qz)‘vw+ f(z) = <uc,e N

is an injective map from Aé (2,) into some set of entire functions f.

2
Let HK be the function from c into IR

H (z) = sup Im(-z-z), K cc Cn.
K
zekK

We have HK = Hch(K)’ where ch(K) is the convex hull of K, see section 4.

When u is concentrated on K, f = F(u) satisfies
(2.10) [£(z)| < M exp HK(z).

Hence we define the Banach space (see [14] B.4)

Exp(K) Am(exp-HK(z);cn)

and the LS-space

Exp(Q)

ind lim Exp(K)

Koy

We have E;p(ﬂ) = E;p(ch(Q)) and’ according to [14] G.7 E§p(Q) is nuclear.
Hence F is an injective map from Aél(QZ) into E;p(QI) when 92 is a

Runge domain. Also F is a bounded map, which follows from (2.10) and the

fact that Aé (Qz) being an LS—-space is regular, see [14] F.15 and F.l16.

Since Aél(QZ) is bornological, F is continuous. We will see that if Ql is

convex, F is surjective and its inverse is continuous too. Convex sets are

Runge domains (see [16] 16.11), hence with @  convex (2.8) is satisfied

1
according to theorem A.6, so that then (2.9) holds.

THEOREM 2.1. Let Q be a convex domain in C". The map F from A'(Q) into
E;p(ﬁ) given by

F(u) (2) = <u§,eiz'c>, L AT(R),



18 an tsomorphism.

Before proving this theorem we write Aé (Qz) in a different way. We
have introduced the notion of an analytic functional in  concentrated on
the compact set K cc @ and AK(Q) was a linear subspace of C(K). However,
A(Q) also is a linear subspace of E(R), the space of all C —functions in
Qcc” =iR2n with the topology of uniform convergence of all derivatives
on compact subsets., Indeed, all the derivatives of holomorphic functions
converge on compact sets of @ when the functions converge. So we can give
A(R) the topology induced by E(Q) and each u € A'(R) can be extended to an
element of some E'(K). Then u is a distribution with compact support K and

for £ € A(R) we get

l<u,f>| <M sup uD"-"qu ;
o] <k

so Cauchy's formula yields for all € > 0O

(2.11) [<u,f>] < M€ Hf"K s

€
where KE is a closed e-neighborhood of K in c” with Ke cc Q and Mgis a posi-
tive constant depending on €. When (2.11) holds we say that the analytic
functional p in @ is carried by K. Thus an analytic functional in Q carried
by K is concentrated on any. neighborhood of K in Q. Sometimes it is said
that u is carried by such a neighborhood, see [15]: An analytic functional
can be carried by several compact sets, but it is not true that it is carried
by the intersection of all carriers, unlike the notion of support of a dis-
tribution, see [7] 4.5.

We will now describe the topology of A(Q) using the concept of carrier,
although this makes the description more complicated. Analytic functionals
concentrated on compact sets are easier to describe, but analytic functionals
carried by compact sets are easier to handle and are more natural as we will
see,

Let K cc Q@ be a compact subset of Q2. We define the pré-LS-space (this

means that its closure is an LS-space)
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(2.12) A () = ind lim AK ).
K ev0 €
The closure KK(Q) of AK(Q) does not consist of holomorphic functions in K,
but the closure KF(Q) of AK(Q) consists of functions each holomorphic in a
N
neighborhood of K. AK(Q) consists of all holomorphic functions in a neigh-

borhood of K when Q is pseudoconvex and K = K according to (2.6), for

Q
example when K is convex. The dual of AR(Q) is the FS-space

(2.13) A'(Q) = proj lim Aé «) ,

K ev0 €
the space of analytic functionals in Q carried by K. Now Aé](ﬂz) is the
inductive limit of the spaces A'(2), namely

K

ind lim AL(QZ) = Aé (92) = ind lim A'(Qz).

ch>91 K 1 ch7ﬂl
Indeed, each Aé(Qz) can be mapped continuously into Aﬁe(QZ) and into
Aél(QZ) successively and conversely for all ¢ > 0 each A&(Qz) can be mapped
continuously into Aﬁ (Qz), thus into A%(Qz), see [14] F.6. In this repre-
sentation Aél(ﬂz) is an LS-space too: a neighborhood of zero in AL(QZ),
that is a neighborhood of zero in some Ake(ﬂz), is mapped into a relatively
compact set of Aé (92) for any n > 0, K cc S and ¢ small enough, thus into
a relatively compact set of AL(QZ). This is in contrast with distributions,
where the inductive limit E'(0) = ind 1lim E'(K), K <=y 0, is strict, when
0 and K are convex, see [14] G.5. -

Along the same lines one can see that E;p(ﬂ) can be represented as the

LS-space

Exp(2) = ind lim Exp(K.)
0
Keoy Q
with

Exp(K ) 8L 5roj 1im A (exp(-H, (z)-el 2l ;€®) = proj 1lim Exp(K ).
0 ev0 K €40 €
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We will now prove theorem 2.1,

PROOF OF THEOREM 2.1. It is clear that F maps A%(QZ) continuously and
injectively into Exp(KO). It is sufficient to prove that F is a surjective
map between the Fréchet-spaces A%(QZ) and Exp(KO), for then F_l is continu-
ous according to the open mapping theorem. When K is convex, this is exactly
theorem 4.5.3 of [7] with 2,
= A" () and Exp(Q), when Q is convex. [J

= ¢, Thus F is an isomorphism between Aé(cn) =

Theorem 2.1 is due to EHRENPREIS [2] and MARTINEAU [12]; for polydiscs
this theorem can also be found in [15] and [18], where analytic functionals
are used concentrated on compact sets. The notion of carrier of an analytic
functional enables us to prove the continuity of F_l by the open mapping
theorem. In [7], [15] and [18] eZt

izeg . . . . . .
e ® in view of the the generalization in section 5.

. . iz
1s used instead of e C, but we use

In the sequel we will start with a space of holomorphic functions of
exponential growth. Let a(y,x) be a continuous function of z = x+iy on the
unit sphere of c" = IRzn, such that the following function, which is homo-
geneous of degree one, is convex

def y X
4(z) = a(prr ) T2l.

In that case we call a(y,x) itself convex, see section 4, This function

determines a convex compact set K c c” by
K = {¢ | g = &+in,-y-&-x+n < d(z), z = x+iy € Cn},

see section 4. With this compact set K we denote the space Exp(K) also as
Exp(a) SEE Exp(K).

The function a(y,x)+e on the unit sphere determines the function a(z)+el zl

n
on C and we have

Exp(a+e) = Exp(KE).
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Similarly we denote
Exp(a+0) g§£ Exp(Ko).

We conclude this section with a corollary about the difference between
analytic functionals and distributions expressed in properties of the spaces
of their Fourier transforms.

Let a and b be two convex functions with #(y,x) < b(y,x) on ¢® and let
they determine the compact sets K and S, respectively; then K ¢ S, The LS-

space Kg(Q) is reflexive and it is mapped injectively into ZK(Q):

A"(Q) < A"(Q).
S K

Hence (see [15], corollary 5 to th.18.1) Aé(ﬂ) is dense in Aé(Q) and since
F is an isomorphism Exp(a+0) is dense in Exp(b+0).
In [14] section 2 we have seen that the space of Fourier transforms of

distributions with support in some compact set Kl in R" is a closed linear
subspace of the space of Fourier transforms of distributions with support in
a compact set S1 with K1 c Sl' Let us take the example when K] = K and

S] = S: let K and S be balls in the real part of ¢” with radius a and b

respectively (a < b). Then a(y,x) becomes alyl and a(z) = alyl, so that we

get
proj lim Aw(e-(a+€)"y"—€"x";cn) = Exp(a+0)—§g§§EeExp(b+0)
ev0
( e-a"y" n) n, closed
ind lim A (—=——0;¢" ) = H(a;C") Tioe—— H(b3C™).
oo 1+l 2™ tnea
subspace

The difference between these maps is not a consequence of the different
structure of the spaces Exp and H. For we can make them look similar without
changing them. Namely, it follows from the second map that

/e—(a+a)“y"

proj lim ind lim A ;¢n> = H(a;c™)

e40 me O\ (141 zIH™
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and since the following injections are continuous

- Iyl =l %l
o (a+¢) y" el I

A_(

o]

-(a+e)lyl -l xl
;€") — ind lim Am(e -c“) —

e (140 zIH™

- | -
— A_ (e (a+n)lyl n"X";Cn)

with € < n, we get, according to [14] F.6,

/ - (a+e)lyll el xl
(2.14) proj lim ind lim Am\e
ev0 m>®

n
p ; C ) = Exp(a+0) .
(1+l 2l
It follows from [14] C.3 that H(a;Cn) can be mapped continuously into
Exp(a+0). Hence the transposed map between the inverse Fourier transforms

of these spaces, which are reflexive, is continuous:

A (€h) -+ E®).
K

A_(mn) is the space of all real analytic functions on K cc R" in view of
(2.6) and the fact that K = K 0’ because K is convex. Actually, every
compact set in R" is polynomially convex in Gn, see [11]. Since an analytic
function, that vanishes in an open set in IRn, vanishes, the above map is
injective. Therefore, the map from H(a;Cn) into Exp(a+0) is dense and this
implies that the distributipns with support in a compact set K in R" are
dense in the space of analytic functionals carried by K. Even since Exp(a+0)
is dense in Exp(b+0), the distributions with support in K are dense in the
space of analytic functionals carried by the connected compact set S in Cn,
where K is any compact subset of S; for example K may consist of only one

point of S.

3. NEWTON SERIES FOR ENTIRE FUNCTIONS OF EXPONENTIAL TYPE

In this section we derive the Newton interpolation series (see [14])
for entire functions of exponential type. The same is treated by KIOUSTELIDIS
in [10]. However, the form given here yields a stronger result on the con-

vergence and serves as a good introduction to the generalization in section 9.
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. n . . n
Each vector h in € determines a convex open set Qh in ¢ by

_h.C_

(3.1) o =1t | te c®, e 1] < 1}.

LEMMA 3.1, For all z € € and s ¢ C the sequence

. N Lk
e T @) @
k=0

converges for N - = to oi(z+ish) -z

of t.

in the space A(Qh) regarded as functions

PROOF. The series converges uniformly on compact subsets of Q> which is

the convergence of the space A(Qh)‘ a

For h € € let f be a function in E§p(Qh) and let s € €. Then using

theorem 2.1 and lemma 3.1 we derive the Newton series

c . N . k
f(z+ish) = <u et FFISMICo _ o izt g ) (i)(e By -
& ¢ N> k=0
N ) _ k
= 1lim z (i) <uc,elz E(e h C_l) > =
(3.2) W k=0 .
k- i(z+1 .
- 1O, L Gepkm teriane,
k=0 m=0
o k- [
k k- . k
= 1 @) DT ferimn) = ] () a5, £(2),
k=0 m=0 k=0
def .
where Aih f(z) == f(z+ih)-f(z), so that
K Y ke, . k-m
AL £(z) = ) (CO)(-1) £ (z+imh).
ih m
m=0
If p belongs to Ai(Qh), K cc Qh, the sequence
K
N k
_h.
b L @ETD
k=0

converges weakly in each Aé (Qh), hence it converges strongly in each

e/2 {7
Aﬁ (), thus in A'(®, ). Therefore (3.2) with f(z) = <u ,e1z ¢
e h R h z

> converges in
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the topology of Exp(KO). So we have found that if f satisfies for some
K cc Qh

(3.3) Vs > 0: |f(z)] < M6 exp(HK(z)+6HzH), ze C,
the series (3.2) converges according to:

Ve > 0, V6 >0, 3N (e,8) 2N (s), WN=2Nj, Vze c"

(3.4) N
. s k
[f(z+ish) = ) () 4., f(z)| < & A(s) exp(H, (z)+slzl),
k ih K

k=0
where N](s) is determined by (5.1) in [14] and A(s) by (5.4) in [14]. Thus
there is certainly uniform convergence on compact subsets of Gn, which is
the convergence given in [10].

_h.(:_

There exists a p < 1 with for ¢ ¢ KE |e 1| € p, so that

iz-C § s -h-z k g s k
l<u_,e ) (e -1) >| < C exp(H, (z)+elzl) [ lp™.
¢ k=0 © K k=0 &

Hence the series (3.2) converges absolutely.

We restate the results in

THEOREM 3.1. For h € €, s € C and f « E§p(9h) with o given by (3.1) the
Newton series (3.2) is valid; the series converges absolutely in the topo-
logy of E§p(Qh) or more precisely (3.2) converges according to (3.4) when
f satisfies (3.3); the series (3.2) converges uniformly in s on compact
subsets of C.

For a more detailed description of the function HK(z) when K cc @

see KIOUSTELIDIS [10] Satz 9, when K is given by (40) and (41).

h,

4, CONVEX SETS

. . . . n .
In this section we describe how a closed convex set O in IR determines

. nx .
an open convex cone C in IR and a homogeneous convex function & on C and
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that, conversely, C and 3 determine a closed convex set O in HJE

A closed convex set O in IR" is the intersection of closed halfspaces.
Let H be the largest collection of halfspaces in R™ such that O is the
intersection of halfspaces H ¢ H. Let y be the unit vector perpendicular to
the hyperplane 3H bordering a halfspace H € H, in other words y € R™ is
the linear functional which vanishes on the translation of 3H to the origin.
We identify the action of a linear functional y on £ € R" with the inner-

product: <y,&> = y+f, Then the halfspace H can be written as
Hi(a) = (¢ | -y-& < a}
with y € R™ and a a real number. Thus we have
O cH (a) ¢« H (b) when b > a
y y ’

that is Hy(a) e H implies Hy(b) e H.

The normals y to 9dH vary in a set pr C on the unit sphere S of an*,
when H varies in H. For each y € pr C let a(y) be the smallest of all the
numbers a with 0 < Hy(a). Thus for each v, € pr C and each sequence
a 4 a(yo), there is a sequence &k € O with

- . = <
(4.1) Vo' 8 = 3 aly).
Let C be the cone in R"" determined by prC

C={y | y#0, ¥ € prc}

. . . n .
with the notation ¥ = y/lyl. Hence any closed convex set O in R determines

a cone C in R" and a function a(y) on pr C such that
‘ def ~
(4.2) 0={c | -y saly) ==a@lyl, y e cl.

It is clear that for y € C the function

(4.3) Io(y) _d.—-g_f— sup -y-¢§

£e0



satisfies Io(y) < d(y) and that O = {g | -y-£ < Io(y), y € C}. Since a(y)

the smallest possible function determining the set O, we have
(4.4) a(y) = I,(y), y € C.
The cone C is convex, for
-(ty, +(1-t)y,)-€ = -ty -&=(I-t)y,-& < tI(y )+(1-t)I,(y,)
with € € 0, 0 £t £ 1 and Y sY, € C, hence

0 € ey (1meyy, (o 01D (7).

From this it also follows that the function Io(y) is convex, that is

17

is

Taking into account (4.4) we find that A(y) is convex, hence continuous and

a(y) is bounded from below on pr C. We say that the continuous function a(y)

on pr C is convex, when the function 3(y), which is homogeneous of degree

one, 1is convex on C.

It is possible that the cone C is contained in a linear subspace of

n

R of lower dimension. Thérefore, we consider C in the lowest dimensional

space containing it. Then we speak of the interior int C of C and we show
that the open cone int C determines the same convex set O as C. We denote

the closed convex set O determined by a cone C and a convex function a(y)

on pr C according to (4.2) by 0(a;C).

It is clear that 0(a;C) < O(aj;int C). Now let EO be a point outside

O(a;C), then there is a vector y, € pr C such that
— ° > .
£, (yo)
Hence there is an & > 0 with

- . +e .
2 , > a(yo) €
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Since a(y) is continuous on pr C, there is a y € pr int C with
Ia(y)-a(yo)l < gf2 and Hy—yoﬂ < e/(ZHgOU).
Hence
“€ytY = "E, Y, mEgt Ty ) > aly )ve-e/2 > aky),

thus EO ¢ O0(a;int C) by (4.2).

So we have found that each closed convex set in IR" determines an open
convex conme C in R™" (open relatively to a linear subspace of IRn*) and a
convex function a(y) on pr C. Now we will prove that, conversely, each open
convex cone C in R™ and each convex function a on pr C determine a closed
convex set O in R" by (4.2) that satisfies (4.4).

Indeed, O is convex and closed being the intersection of closed half-
spaces and we only haQe to prove (4.1). Since 3 is convex and C is open, we
can find for each v, € pr C a linear function on C, say a-y for some vector
a, with a*y < 3(y), y € C and ary, = a(yo). Then the point.g0 = -0 ¢ R"
satisfies =€y'y = asy < d(y) for all y € C, thus €y € 0. Furthermore,
—io'yo
(4.1) we may take a

= a-yo = a(yo), hence (4.1) holds. We have also obtained that in

K = a(yo) and &k = EO € 0 for all k, when Yo € pr int C.

COROLLARY 4.1. Each closed convex set O in IR determines an open (with

respect to some linear subspace of‘IRn*) convex cone Cin R and a con-
tinuous convex function a on pr C by (4.3) such that (4.2) holds. Conversely,
each open convex cone C in R™ and each convex function a on pr C determine

a closed convex set 0(a;C) in r" by (4.2), such that (4.4) is satisfied.

We give some examples. Let C be an open cone in the first quadrant of

2 . . . . 2
R *. We consider the function 3 on some straight line 2 n C ¢ IR *.



L ~

S~

Then the dual cone C* is C* = {¢ | -y <0, ye C} c IR2. We have the

~

following cases with different behaviour of the convex function & near the

boundary of 2 n C:

I

d(y) is vertical at the boundary of C and the boundary of O is asymptotical-

ly parallel to the boundary of c”.
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IT

d(y) is not vertical at the boundary of C and outside some compact set K

the boundary of O is parallel to the boundary of c.

I1T

e

C*

a(y) tends to infinity when y approaches the boundary of C and the distance
between the boundaries of O and C* increases to infinity.
In cases I and III we say that the function a is vertical at the bound-

ary of C. In case II, when a is not vertical at the boundary, we may consider
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the closed convex set 0' = 0 n K', where K' is a compact set the interior of
which contains K. Then O' is compact, so the cone C' determined by it is

n*x . n* . . .
R and the convex function a' on pr R = S determined by O' coincides

with a on pr C, that is

(4.5) a'(y) = a(y), y € pr C.

Thus when 3 is not vertical at the boundary of C, it can be extended to a
. n*
convex homogeneous function 3' on the whole of IR .
Finally we describe how we can exhaust O by closed convex sets Om not

touching the boundary of 0, namely O = U:= Om with Om closed convex sets

1

. . . . n _ oo
satisfying O < int O  , <O < int 0 c R, m=1,2,... . Let {am}m=] be

an increasing sequence of convex functions on pr C with am(y) < am+1(y) <
< a(y) for y € prC and %ig am(y) = a(y), v € pr C and moreover, either
there are positive numbers €n with a(y) - am(y) 2e, Y€ pr C, or all the
functions am are vertical at the boundary of C. Then the sets Om = O(am;C)
satisfy the conditions. When the functions a_ are vertical at the boundary
of C, the boundary of each Om approaches the boundary of 0. Otherwise the
boundaries of Om and O have a distance greater than €

When C does not contain a straight line (then Cc* is not contained in a
proper linear subspace of R" and conversely) let Ck be a sequence of open

- n*
K X x+] © PT Ck+1 c Cc R and

U:=1 Ck = C. We call Ck a rélatively compact open subcone of C and we write
Ck cc C. When C” is contained in a linear subspace‘of R" we take open

* ., . . * *
cones C, in this subspace with pr Ck K+1

k
C, are defined by the interior of the duals of Ck: Ck = int(CE)*. Also in

k

this case we call Ck a relatively compact subcone of C.

The functions a+1/k on pr C are also convex and the sets O(a+l/k;Ck)

convex subcones of C with pr C, < pr C, < pr C

> pr C;+l > pr C > C* and the cones

are of type II. Then

0(a;C) = 0, 0(a+1/k;Ck),

k

but none of the sets 0(a+]/k;Ck) is contained in 0(a+1;C).

In the next sections we will regard " as a 2n-dimensional real space
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IR2n by the identification

. 2
£ = g+ineC” <> (£,n)eR"'xR" = R,

. . . . * .
We identify the action of an element z in the complex dual space ¢™ with

the ordinary product of complex numbers

<Z2,0> = z°C = 2

and we identify c¢™ with IRZIl by

z = x+iye®n* <~ (y,x)eIRn*X]Rn* = IRzn*.

. . . 2nx*
Then regarded as 2n-dimensional real vectors the action of z ¢ IR on

T € ]R2n is

Im z-z = (y,x)+(£,n) = y-&+x-n.

. . n* C n . . . nx
When C 1s a cone in IR the set T IR" + iC is a cone in C con—
*

.. . . C . * . .
taining a straight line. The dual cone (T ) 1is the cone C contained in the
. . n . .
imaginary subspace of € . Relatively compact subcones, constructed in the

above way, are R™ + ic where Ck cc C.

k,

-5, FUNCTIONS OF EXPONENTIAL TYPE HOLOMORPHIC IN CONES

In this section we discuss the space of functions of exponential type,
holomorphic in cones in ¢" and the space of their Fourier transforms (some-
times called Fourier-Borel transforms or Fourier-Laplace transforms).

Let C be an open convex cone in Cn, which is identified with IR2n by
z = x+iyet]3n > (y,x)eIRnX]Rn = IRzn. Let a(z), regarded as a function of

(y,x), be continuous on pr C, such that the function

X

. _ z \ _ (v
i(z) = Izl a(m/ = Vool gGTaT T, oT)
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is convex in C. A function f holomorphic in C c c" is of exponential type a,
when for all € > 0 and § > 0 and for all open relatively compact subcones
C' cc C constants M(¢,8,C') exist such that

1£(2)| < M(e,s,ctyed(@)relzl zec', 1zl > 6.

We denote the space of all such functions f by Exp(a+0;C) or sometimes by

Exp and we give this space a topology of an Fg—space by means of

.o - ll
Exp(a+0;C) = proj lim A (e a(z)+1/klz ;C(k)),
k>
where C(k) = C.n {z | Izl > 1/k} and {Ck}:=1 is an increasing sequence of

open relatively compact subcones of C exhausting C (see section 4). According
to [14] G.7 this space can also be written as a projective limit of Hilbert
spaces (Exp(a+0;C) is nuclear).

We will construct a reflexive space A', which is the dual of some
space A of holomorphic functions, such that Exp is the Fourier transform
of A'. Assume that there is a continuous map Ft from Exp' into the comple-

tion A of A
t ' -
(5.1) F-: Exp' » A

then the transposed map F is a continuous map between the duals. So, since

Exp is reflexive we get
(5.2) F: A" -~ Exp

. . . t .
and since A' is reflexive, F 1is the transposed map of F.
In order to get information about A we investigate Exp'. According to

[14] C.3 and F.6 we can write Exp also as the FS-space

Exp(a+0;C) = proj lim A 0(exp(—é(z)—l/kllzll);C(k)),
k> ’

where A_ O(M;ﬁ) consists of functions holomorphic in @ and continuous on £
b
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with M|f| < ®» on Q and with M|f| = 0 at infinity. Hence by [14] B.5 Exp' is
the inductive limit of spaces, whose elements o can be represented as bounded

measures o(z) in C(k), namely for f € Exp

(5.3) <o,f> = J f(z) exp(-a(z)-1/klzl) do(z)

c(k)

and

J ldo(z) | < .

C(k)
Next we define the map Ft. Therefore we regard ¢” with elements
z = (y,x) as the dual IRzn* of some other space ]Rzn, whose elements are

denoted by (£,n) and which is identified with c” by ¢ = &+in. Then
Im z-¢ = <(y,x),(&,n)>. The cone C c IRzn* and the convex function a(z) on

pr C determine a closed convex set Q in " = IRzn"by (4.2)

(5.4) 2 B2E g(asc) S&L (¢ | Im z-z < a(z), z € prcl.

Furthermore let us introduce the closed convex sets Qk either by

(5.5) (1) Qk = Q(a+l/k;Ck+2)

or by

(5.5)(ii) Qk = Q(a+1/k;C).

In both cases = kgl Qk. It is easy to see that ezt belongs to Exp if ¢

belongs to Q. Therefore, we can define the map Ft (5.1) by

(5.6) o € Exp': Ft(o)(;) = <cz,elz'C> for ¢z € Q.

The representation (5.3) yields for some k

e—é(z)—]/k"z"

(5.7) o(z) = Ft(o)(c) = J eiz'C do(z).

C(k)
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In both cases (5.5)(i) and (5.5)(ii) ¢ is holomorphic in int Qk and satis-

fies there for some K > 0

(5.8) [0(2)] < K exp(-6, 1/klch), ¢ e q,
where dk = sin N the minimum distance in radials between pr Ck+1 and pr Ck’
see [14] proof of lemma 6.3. Indeed, for
LelU = C;Hn{c | Mgl 2 -a/6,, a= min (a(2)+1/K)}
ZepY Ck
we have
(5.9) -3(z)-1/kl zl +Im-z-¢ < —(a+6k“gﬂ)ﬂzﬂ < —a/k—ékl/kﬂgﬂ

when z ¢ C(k) and the set Qk n US is compact in both cases (5.5) (i) and
(5.5)(ii), so that (5.8) follows.

Therefore, we introduce the weightfunctions
(£) = exp 6, + Izl
M k &

Then it follows from (5.9) that the map Ft given by (5.6) is a bounded,

hence continuous, map from Exp' into the LS-space

(5.10) 1niéi1m Am(Mk, int Qk)
in both cases (5.5)(i) and (5.5)(ii), see [14] F.11, F.16 and C.7.

Our aim is to choose such a space A that the map F (5.2) is an iso-
morphism. In [14] we have seen that, when the support of a distribution is
contained in all the sets Qk’ it is contained in Q. But when the analytic
functionals in A' are concentrated om all the sets Qk’ we cannot immediately
conclude that they are concentrated on Q. Therefore, we do not yet know
which of the alternatives (5.5)(i) or (5.5)(ii) we should take.

Now we will define linear subspaces Ai and Aii of (5.10), depending on
(5.5)(1) or (5.5)(ii) respectively, such that the map F (5.2) is injective.
.z,

In fact we give the linear hull L of the set {elz }zeC the topology of the
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space (5.10).
Let Lk be the linear hull of the set

{eiz.c}
zeC(k)

of functions in ¢. We provide Lk with the norm

II-IIk = sup Mk(l)l'(C)|
cer

and denote it by

B o (4

Then A. and A.. are defined as
i ii

A2t 4 @) 8L ind 1im L),
M0 e 52, Tk

H

where Qk is given by (5.5)(i) or (5.5)(ii), respectively. The closure A of

both spaces in an LS-space, namely

(5.11) A = ind lim KMk' (),
koo sy ok

since LS-spaces are complete (see [14] F.14). A consists of functions each

holomorphic in a neighborhood int Q. of @ (compare 2.12). The duals Ai of

k
A. and A!. of A,, are FS-spaces
i ii ii

not

koo

(compare 2.13). We only have to check that A is not too small, in other
words that (5.1) still holds. By letting o(z) be 8-functions we see that L
is contained in the range of F' and when we write (5.7) as a defining

"Lebesgue sum'", it follows from (5.9) that this sum converges in the topo-

1 £ A
°8 % A 130icr)

F (5.2) is an injective map from Ai and from Aii’ given by (5.12), into Exp.

(Lk+1) to ¢(z). Hence Ft (5.1) has dense image, so that
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The definition of F (5.2) as the transposed map of (5.1) yields for
e A'

def iz

t
<u£,F (oz)(;)> = <“Q’<Gz’e >> =

Vo € Exp': <OZ’F(UC)(Z)>

iz-g
= <0 _,<u_,e >>
z C

by Fubini's theorem, so that F (5.2) may as well be defined as

(513 FW@ = < ,e®, zec
like (5.6).

Now F is a continuous injective map from Ai and from Aii into Exp.
Since Ai can be continuously embedded into Aii’ Ai is a priori larger than
Aii. So it is easier to prove that F is also surjective from Ai onto Exp.
In that case the inverse map would be continuous according to the open
mapping theorem, because Ai and Exp are FS-spaces and F would be an iso-
morphism between Ai and Exp. If we can also prove that F is a surjective
map from Aii onto Exp, then Aii too would be isomorphic to Exp, so that
Aii = Ai and Ai = Aii' First we will prove the apparently weaker version
(i), theorem 5.1, of the main result of this paper, namely that F is an
isomorphism between Ai and Exp. Then in a next section we investigate the
spaces Ai and Aii and finally in section 7 we will show that F(Aii) = Exp,
which is the stronger version (ii) of the main theorem of this paper,

theorem 6. 1.

THEOREM 5.1. Let a be a convex function on pr C for some open convex cone C
in € and let @ and 2 be the closed convex sets in € determined by (5.4)
and (5.5) (1) respectively. Then the map F from ';S_Z(L) (5.12) into
Exp(a+0;C) given by (5.13) Zs an isomorphism.

PROOF. We only have to prove the surjectivity of the map F. So given an

f ¢ Exp, we have to find for each k = 1,2,... a linear functional uk on Lk
with

@) = ke, 2 T
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and with

[<H5s0(2)>1 5 K sup exp(s ¢ leh) 16(2)]
geﬂk

for ¢ € AM ;Qk(Lk)'

Like in the proof of the theorem for entire functions (see HORMANDER
[7], EHRENPREIS [3]) we try to extend f as a holomorphic function F in 2n
complex variables v satisfying a certain bound and apply a Paley-Wiener-

Schwartz type theorem. Precisely, choose an integer k and assume that we

have found a function Fk of the complex variables v Dot (vl,vz)emnxcn = C2n
holomorphic in IR2n+iC(q) with q > max(k+2,(k+l)/6k+l) that satisfies for
some m

(5.14) IFk(vl,vz)] < Mk(1+llvll)m exp(3(Im v)+1/ql Im vl)

for Im v ¢ C(q) and
(5.15) Fk(z,iz) = f(z) for z € C(q).

Then we can apply theorem 9.1 of [14] (remark 9.1 and formula (9.5) or in
fact the Sth line from below on page 61, since 1/q < 6k+]/(k+1)), which

says that Fk can be written as

.1 . 2
k elV «E+1v N,

Fk(v) = <u€,n’ , Im v € C(k+1)
k k1™ k1™
: . 1 1 .
with u € (Sm+n+1(a+l/q,Cq)) . This means that for ¢ € S (a+1/q,Cq)
k '
l<u€ n,¢(E,n)>| < Kk sup
’ |p|<m+n+1
(€,n)60(a+l/q;Cq)
m+n+ 1 1 P
1+l (g,m)I) exp(8, .| 7 1 (Em) ID"¢(E,m) 1.

Identifying]R2n with c“;(g,n) <> ¢ = g+in, we get, because C(k) c C(k+1),
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f(z) = <U§’elz.g>, z ¢ C(k)

with
k '
[<u,0(2)>] <K sup
|p|<m+n+1
zeQ(a+1/q;C )
q
m+n+ ] 1 P .
(1+lzlh) exp(cSk+1 ey Fel) 1D%¢(2) | <

<k sup exp(s, 3 I2h) 16(2)]
cer

*
k+1
for any ¢ € AMk;Qk(Lk) c S

because q > k+2,

(a+l/q;Cq), since int Q(a+1/q;Cq) c Qk

Now we have to find an F, satisfying (5.14) and (5.15). For an arbitra-

k
ry 2 we will construct a function Fk . that satisfies
b
(5.16) |F (vl,vz)l < Mk (140 vl)™ exp (&3 (Im v)+1/21 Im vll),Im v € C(q).
k,2% )8

The construction follows the same pattern of the proof of theorem 4.4.3 of
[7], only here we have to be careful near the boundary of R"M+icC.

Since an open domain R"+iB in C" is pseudoconvex (domain of holomorphy)
only if B is convex (theorem A.2), we will use domains of the form
]Rn+ich(C(q)), where ch(C(q)) is the convex hull of C(q). This does not
change anything, because for all q there is a p with C(q) < ch(C(q)) < C(p).

Let
_ _ .0 _ 0 _.0
(5.17) C(q+])6,j = {(y,x) [ X, = x],...,xj xj, ka xkl <8
. 0 2n
for k = j+l,...,n and (y,x ) € ch(C(g+1))} ¢ R,
Then ch(C(q+1)) = C(q+l)6,n € ... C C(q+])6,j C ... C C(q+l)6’0. We can

choose § > 0 so small that there exists an integer p > q+l, such that

(5.18) C(g*Dg 5 < C(p).
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Let ¥, be a Cz—function in C between 0 and 1 which is equal to I in
the disc with radius 1/2 § and vanishes outside the disc with radius §. We
write the coordinates in € as w = u+iv. Then there is a constant Kk with

E-lk-(w)| < Kk’ we C.

oW

Let us define the (0,1)-form (see appendix section II) y'(w) = aw/a&(w) dw

and let w. = iv%—v?, then dw, = -id;;—dci. When f is regarded as an element
of Am(exp(-é(z)—l/zﬂz");C(p)) we define the function Fk , as follows:
b
1 2
Fk,l(v sV ) = Fk,l(v) =
n
n 1 n L, 1 2 2
= T Wk(w-) fE(v') - ) { T wk(wm)]w. U. (v ;v],...,v.)
j=l ] j=] m=j+l J J J

for certain functions U? in n+j complex variables. When Im v ¢ C(q+1),
n 1 1

ﬂj=1 wk(wj) vanishes for v = (Im v , Re v]) ¢ C(p) according to (5.17) and
(5.18), thus Fk . is defined for v € ]R2n+ich(C(q+l)). When v2 = iv], that
b
is wj =0 for j =1,...,n, we get
1 .1 1 1
Fk 2(\) ,iv') = f(v') for v' € ch(C(q+1)),
b

so that (5.14) is certainly satisfied.
Now we choose the functions U? with a suitable bound such that Fk . is
b

holomorphic, that is such that SFk g = 0. We can write Fk . in a different
9 E

way, namely let Hé(vl) = f(v]) and let

L. 1 2 2
Hj(v ,v],...,vj) =

2 1 2 2 L, 1 2 2
= wk(wj) Hj_l(v ,v],...,vj_l) - wj Uj(v ,vl,...,vj)

F . If H% is holomorphic for
k,2 J- 1
j-1° Be v},...,Re v 5-1°
2 2(j=1) “def . .
Re vl,...,Re vj—l) € C(q+])(S j_]x R —_— Bj—l , which 1is

b
true for j = 1 by (5.18), then Hj is holomorphic in Bj when U? satisfies

for j = 1,...,n successively, then Hﬁ =

2

1
(Im Viseees Im v;, Im vl,...,Im v ; Re vi,...,Re v

1
1
n .
c Cn+J_l



31

=4 2 1 2 2 not &
5.19 d3U. = H. V 3V seeesV. 'W.)/w, =g,
( ) ; J_1( 1’ s J_]) v'( 579 gJ

It follows when j = n, that F is holomorphic in Bn = IR2n+ich(C(q-l)) c

9n k,2
c €, Since by assumption Hj—l

outside any neighborhood of zero, w'(wj) = 0 in a neighborhood of zero and

is holomorphic in Bj—]’ 1/wj is holomorphic

since
- 93y ,. 1 2 e Y
9 Yv'(w.) = 3 —=—(iv.-v.)[-1dv.-dv.] =
IJ}(J T NI NN
J
2 2 2
=(1aga‘gﬁ _?q)_>dv]/\d\)%—<—i—a—:2—+ %}dl/\dv2=0,
] ] ov. 9w, J ow ow.
J J J J
we get 5g§ = 0. Furthermore the domain Bj is convex, thus pseudoconvex.

Therefore we can apply theorem A.10 in order to solve (5.19). As a weight-

function we may take (1+Hz"2)_3(J—1) exp(-2a(z)-2/2lzll), since a(z)+1/2llzl
is a convex function and 10g(1+"z"2) is plurisubharmonic. Write z) =
= (Im v},...,Im v;, Im v%,...,lm v?, Re v;+],...,Re vi) € 1R2n and v[j] =
= (v];v%,...,vj) € Cn+J and let A(vlj]) be the Lebesgue measure in $n+J.
Then by theorem A.10 there exists a solution U? of (5.19) with
j h]
2 can 2 -23 =2/l z-1 .
[ U, (D | exp (-22(z7) 2(33?1 ) dr(v[jl) <
i J S (+lvpi ey
J
2 cay 2 -23 J'—2 2l J'II .
< f |8} oy " 2222 g, (o 5).
3 J (1+hv[j215)° Y
]

2n

Since & can be extended to a convex homogeneous function 3' on R™

lc
see (4.5), we get for x,y € Cp

3(x)-a(y) = 28(3 +Z)-a(y) < A(y)+a' (x-y)-d(y) =

Ix-yla' (x~y) < Alx-yl

and also
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a(y)-i(x) < lx-yla'(57%) < Alx-yl

for some constant A. We set M = exp(28A+28/4%) and Ck = 2(62+16K§)WM, then
we can estimate H% in terms of H?_ using (a+b)2 < 2(a2+b ), hence

1
ijlz/(1+uv[j]H2) <2,

2 exp(-2a(zd)-2/21 231)

|e* 0D | . AAlil <
J J (1+lvr 37123
h]
SRR SN
< Z{HGZM J uY_ (urj-17y | 222 )Z%Jfﬂi) D axuri-17) +
5 J (1+lvLj-17145)°Y
-1
- iy_ j

. J gt 1y | % expl2a(z {Z%Jfﬂflf) SO <

3 J (1+lvLj >N

J

2 exp(-2a(z3"y-2/21 237 1)

IN

c f IH?_I(vtj-ll)t dx(v[j-17).

k (+lvfi-171%3G"D
B.
j-1
Since for j=m B_ = R*™+ich(C(q+D)), B = F, ., vln] = o) =y,
b
z" = Im v and for j=0 B0 c C(p), Hé = f, v[0] = v] =2z € mn, zO = (y,x) = z,
it follows that
- -2/l
lF (V)Iz exp (=23 (Im v)=-2/2lIm vll) dA(v) <
K, 2 7 3n
) 1+l =)
R "+ic(q+1)
< CE j lf(z)l2 exp(-23(z)=2/2lzl) dx(z).
c(p)

According to condition H52 (see [14] G.7) we can estimate the sup-norm

by the Lz—norm and we find that (5.16) is satisfied with m = 3n, since also

Exp can be written as projective limit of Hilbert spaces. [J

REMARK 5.1, If we could choose for all k the functions F satisfying (5.15)

k,2
and (5.16) such that F (v) =Fk 2(\)) for ve ]R2n+i C(ks, thus if there is one
9

k+1,2
function F holomorphic in R Pric satisfying for all k
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(5.20) IF ()1 < Mk(]+HvH)m exp(A(Im v)+1/(2+1)IIm vl), Im v e C(k),
for some m and
(5.21) F,(z,iz) = £(z)  for z ¢ C,

then Fz would belong to H*(a+1/(2+1);C) and we would have according to

theorem 9.1 [14]

L . 2
2 elV cE+1V n,

Fl(v) - <u£,n

with ul € S*(a+1/(2+l);C)'. In that case

f(z) = <u§,elz'c> for z € C

and since GZ/RHQH is uniformly continuous on 2,, we get for
¢ € .o (L,)
AMQ,QR )

m+n+1

|<ug ¢ (@)>1 < K sup 1+l gh) exp(8,, /(+Dlzh) ID7o(2)] <

|p|<m+n+1
ceQi(a+1/(2+1);C)

< K, sup exp(§,/2lzl) [o (D)1,
5692
where QQ is now given by (5.5)(ii). Hence F would be a surjective map from

t. to Exp.
All onto Exp

6. FORMULATION OF THE PROBLEMS AND STATEMENT OF THE MAIN RESULT

In this section we reconsider the procedure followed in the last
section and we formulate the problems to be solved in order that Ki and Kii
given in (5.11) are indeed also given by (5.10), that is the space of all
holomorphic functions satisfying the growth conditions in the sets int Qk’

where Qk is given by (5.5)(i) or (5.5)(ii), respectively. Theorem 5.1 says
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that F is surjective from Ai onto Exp, from which it follows that Ft (5.1)
defined by (5.6) is injective. Since Ki is reflexive (see (5.11)) the linear
hull of the set {elz'(;}gGQ is dense in Exp(a+0;C). On the other hand when
the above problems are solved, we see that the linear hull of the set

iz-C
{e }ze

follows.

c is dense in the space (5.10) and the main result (theorem 6.1)
Anticipating on the results we will get we mean in this section by Ai

and Aii the dual A' of the spaces Ki and Zii’ respectively, given by (5.10)

(6.1) A = ind lim A_ (4 ;9),

koo

where Qk is given in (5.5)(i) or (5.5)(ii), respectively. Then A is an

LS—space. There are also other possibilities of writing Ki as an inductive

limit of spaces A?, or Kii as inductive limit of spaces Ag. We will choose
. k k

approprlate spaces Ai and AQ' In the above Ai = Aw(Mk’Qk)'

In the last section we have embedded (a linear subspace, namely (5.11),

of) A? into the space S*k+](Qk+]). Roughly we can say that A? consists of
those elements ¢ in S*k+1(Qk+1) with 5¢ = 0 and that any element u of
S*(Q)' that satisfies py = at Ok for some Op € (Sk*(Qk)')n, is zero when

. k . s . .
restricted to Ai' Hence the elements of Ai can be identified with the equiv-

. * " *
alence classes of the elements in S (2)', when two elements in S (R)' are

equivalent if their difference p can be written as u = Bt 9 in each

S*k(Qk)' for some o, € (S*k(Qk)')n. Now we investigate this more precisely.

k—-

First we write Ai as inductive limit of spaces having the topology of

Sk*(Qk), that is A? now is the closed linear subspace of

k not _kx* def . g m 1
ST =5 (a+1/k,Ck+2) —= proj lim wg’o ((1+lz exp(dk-E"gHLQk)

m>
consisting of the functions holomorphic in int Qk and C on Qk with the topo-
logy heredited from Sk. Therefore, according to [157 prop. 35.5(a) the fol-
lowing sets can be identified
@H' = (s

k,0
(A))
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and according to [15] prop. 35.6 this is also true for the topologies, when
we provide these spaces with the weak” topology and the quotient topology

with respect to the weak " topology, respectively:

@H! = (5! .
i‘c o (AF)O
i

On the other hand A? is the kernel of the map 3 = (3/821,,..,8/32n)

3: Sk — (Sk)n ,
so that according to [15] prop. 35.4 (A1i<)O is the weak™ closure in (Sk)é of
Im §t. Since Sk is reflective (it 1is an F§—space), the weak™ closure of
Im 3° is equal to the closure in the strong topology in (Sk)', [15] prop.
35.2. We denote the closure in (Sk)' of the range of the map

gt: ((Sk),)n_é (Sk)'

by Im 3 So we get

t
K

k"z k'
@pr=hy L

Im Bk
Finally we will obtain isomorphisms also for the strong topologies.
Therefore, we consider this spaces only with the topology of weakly*
converging sequences denoted by (A?)é < and (Sk)é < Since Sk is a Montel
3

3
space we get

Kyv Ry
(s )O’S— (s )b,s

where (Sk)é is the dual of Sk provided with the strong topology. According
to [14] theorem 9.1 ((9.6) and page 61 Sth line from below) the Fourier

. + . .
transformation F maps (Sk ])é continuously into

uK = ind lim H™ (a+1/ (+1) 56, k)
>0
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with

def

H™ (a+1/k50,,0) £ A_(Q+1V) ™ exp(-a(Im v)=1/1In vl); R

i c(k))

and F! maps Hk continuously into Sp*(a+l/(k+]);Ck)', when 1/k < dp/p, hence
into (sP)!.
b .12, >k
Let W = (wl,...,wn), where Wj = 1iv.-v., ] = l,...,n and let WeH Dbe the

J 1]
subspace of Hk consisting of functions f(v) that can be written as

n
£(v) Z vo g5 (v)

j=1

with gj € Hk, j=1,...,n. Then

FIm3C . c W-ﬁk and F"l‘w-ﬁk'l c Im 3°
k+1 P

when 1/(k-1) < Sp/p. Furthermore

w-ﬁk c W-ﬁk_] ’

for, let fa € W-ﬁk be a Cauchy net converging to f ¢ Hk. Then fa = W-guwith

Ea € (Hk)n, so that fa and hence f vanishes on

Vk = {]R2n+i.C(k)} n {v | iv;—vi =0, j=1,...,n}.

The inclusion follows if we have shown

PROBLEM 6.1. A function f ¢ Hk vanishing on V, can be written as

k
f(v) = W~§k_l(v), v e R°™+iC(k-1)
with Ek'] € (Hk_])n; in particular there is a positive N such that gk—] €

e N (ar1/k5C. L k=1), when £ < H™ (a+1/k5C, LK)

k-1?
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In that case we have

.o Ky, . . . Ky, F .. k
proj lim (Ai)o ¢ = proj lim (S )b s <3 proj lim (H )S s
b s
ko koo -t ke w-ﬁk

Im Bk

where (Hk)S means that Hk is provided with the topology of convergent
sequences.
)

. . +
Furthermore weakly* converging sequences 1in (A? 1) converge strongly

in (A?)' because A? is an LS—-space, so that

proj lim (A%)' = proj lim (A?)é

= v = A!
oo i‘o,s Koo (Ai)b,s Ai’

»S
where the last equality follows from the fact that the topology in the metric
space (namely the FS-space) Ai is determined by convergent sequences. Thus

F is an isomorphism between

(6.2) F: Ai 5 proi+iim (Hk)S .

///;-ﬁk

In case (ii) when Qk is defined by (5.5)(ii) we define S-spaces with

Lz—norms rather than with sup-norms. For, a continuous map from one Hilbert
space into another is weakly compact, so that projective and inductive limits
of sequences of Hilbert spaces (called FS*-spaces and DFS*—spaces, respec—
tively) are reflexive and they are dual to each other (see [19]). Also we
apply th. 15 of [19], where the isomorphism holds for the strong topo-
logies and not only for the weak " topologies as in [15] prop. 35.6. Hence
we do not have to restrict ourselves to the topology of convergent sequences
(this also applies to case (i)).

Let

s™ = ind lim Wo((1+lz)™ exp 6, 1/klzl;0 )
2 Koo 2 k 2

and let A? be the closed linear subspace S? n A(QZ)' In virtue of [19] th. 7
the topology of inﬂ+lim A?(k) with

A?(k) def A,) n W?((]+Hgﬂ)m exp 8, 1/klcl;,)
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if finer than the topology in A induced by s™ 0 but one easily sees that it
is also less fine, hence A? is a DFS” —-space, Slnce Zii can also be described

by Lz—norms ([14] G.7) we get

A.., = ind lim A,
11 L
Q>0
where A2 = pro%+lim A?. Although Kii is an LS-space, this fact is not ex—
pressed by the above inductive limit, which is only a weakly compact sequence.

Indeed, a neighborhood of zero in A2 is bounded in A hence relatively

L+1°

weakly compact in each A2+l (m=0,1,2,...), since A% is reflexive ([15]
prop. 36.3), and thus relatively weakly compact in Al 1 Therefore,
(A )' proi lim (A )'. However, the projective limit in A has no nice

propertles, so we are forced to consider the weak’ topology in (All)'. The

topology of (A..)' is also determined by weakly converging sequences, hence

(All)b (All)é s proi lim (Al)é < Any Weakly* converging sequence in

—>0 9
(A )' converges weakly* in (A?)é s for some m and thus it converges weak-

9
1y* in each A (k), k =1,2,... . Since the embedding map from Am(k) into
?+l(k+]) is compact according to [14] G.7, the sequence converges strongly
in (A2 ])' ([14] E. 2), thus in 1nd lim (AQ : é . Since (Al)' is a Fréchet
-— 1 = '
space, namely an Fs* space, (Al b, s (AR l)b’ so
(A.. = proj lim ind lim A™M! .
ii b v oo L b

Now A§+] is the kernel of the continuous map
+1 m\n

> (s
In virtue of [19] th.15 and [15] prop.35.4 we get

+1 +1
@™ = (7 )/ ,
Im §t
m

m+1
2

m+1

where the closure in (S )' of Im 5; equals the weak* closure, since Sz

is reflexive.
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H) = proj lim H™ (a+1/2;C, ,k)
L k
k——)co
and let
* . . m
HR = ind lim H2 .

>

Then it follows from [14] th.9.1 (using D.2 instead of G.5) and G.3 that

P e g F

m+2n+2),
2 2+1

c (S,Q,

As in case (i) problem 6.1 and the following problem imply that

>m+ 1 +Nx

WeET ¢ N WeH™ (at1/23C, L k+1) < 0, W (a+1/25C, ,k) <

2 gt K+1°

>M
c W-H2 ,
where the closures are taken in the corresponding spaces with m+] instead

of m and where M > m+1+N,

PROBLEM 6.2, When a function f € A(R2n+ic) in each R2n+ic(k) can be

written as
f = w-gk for some Ek € (Hm*(a+]/2;Ck,k))n,

(obviously in that case f ¢ H;), then £ can be written in ]R2n+i.c as

f=Wg withge (Hz)n;

m+N.n

in particular § € (H2 )" for some positive N independent of f.

. -
Hence H Dy A0 — Hl;i/w.ﬁlfﬁ Hf”/w-ﬁf

y and thus F is an isomorphism

between

(6.3) F: A!. s proj lim ind lim H? .
tt g0 > >m
W.HZ

39
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Let Hz pro% lim H and let H = pr0ﬂ+11m Hk. Then the rlght hand side
in (6.2) 1is equal to the equlvalence classes of elements in H, i’ when two
elements in H are equlvalent if thelr difference f can be written in each
?R2n+1.C(k) as f = W. gk with gk € (H ) . The right hand side in (6.3) is
equal to the equivalence classes in H T when two elements in H are equiv-
alent of their difference f for each 2 can be written 1n?R2n+1C as £ = W'EQ
with El € (HZ)n

Next we consider the set in?R2n+iC where W = (wl,...,wn) vanishes,

namely
V={v|v eiR2n+iC, iv;—v§=0, j=l,.e.,n}
and

v, =V (R4 c(k)}.

Since W-ﬁk vanishes on Vk and W'ﬁz vanishes on V, we can define the contin-

uous restriction maps I

Ii: H%// Sk — Hk v
WeH

k

and

* Sk
I..: H // —» H
11 2 w-ﬁ; 2 v

by If(v) = f(v ,1v ) Here H |V and H are the spaces of restrictions of

v

functions in Hk or H to Vk or V with the topology induced by Hk or H;,

. . . 1
respectively. Then the maps I are surjective, When we regard z = v as the

variable in V there are natural continuous injections J

J.: Hk‘ o3y A (exp(-a(z)-1/klzl);C(k))
1 Vk B
and
J..: H| <—yproj lim A (exp(-&(z)-1/(2-1)lzl);C(k)).
11 2 v koo ©
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Now the topologies of

e 4. k * *
proj lim H QIV = Hii'V

k-—->oo

* . .
= HilV and proj 1lim H

L0

"
become extremely simple, as they both coincide with the one induced by
*

1ilV is an FS-space, Finally we

Exp(a+0;C), compare (2.14), thus H;lv = H

have obtained

I. J.
(6.4) Ai cf_>proj lim H%// +k-—34+proj lim Hklv C_£+ Exp(a+0;C)
ko0 WeH k> k
and
I..
(6.5) A', cﬁ?proj lim ind lim HI; L —=proj lim ind lim HI; v
1L Q>0 > W-H? >0 m>eo

J..
c_ii; Exp(a+03C).

In theorem 5.1 we have proved that the map Ji ° Ii is surjective, hence
Ji is surjective., Remark 5.1 is concerned with the question whether Jii ° Iii

is surjective. Using the proof of theorem 5.1 we see that indeed Jii o Iii

and hence Jii are surjective, if the following problem is solved.

PROBLEM 6.3. Let the function fk € Hm*(a+l/£;ck,k) satisfy for all
k=1,2,..,

(f = 0.

k+1—fk){v
k

Then there exists a function f ¢ H; with for all k = 1,2,...

(f—fk) v = 0.
k
For, in that case (5.20) and (5.21) can be satisfied.
Problem 6.1 says that the map Ii is injective. Problem 6.1 as well as

problem 6.2 follow from problem 6.4, which says that the map Iii is injective,
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PROBLEM 6.4. A function f e HZ vanishing on V can be written in ]R2n+ic as
f=Wg with ge H)".

The next step is to investigate holomorphic functions vanishing on
the set V, but before doing this we give an intuitive interpretation of the
isomorphisms (6.4) and (6.5) in terms of the last section revealing the
a priori difference between the spaces (5.11) and (5.10) in terms of this
section. In section 5 we have shown that Exp is isomorphic to the dual of
thg closure (given in (5.11) and here denoted by Ki) of the linear hull of
{elz'C}z€C in Zi and in this section Exp is isomorphic to H; v Hence
(H; V)' is isomorphic to Ki and problem 6.3 implies the same for Kii' Indeed,
let us examine what elements of (H*)' yield A or A under Ft defined in (5.6)
(we do not distinguish between cases (i) and (ii) here). Let ¢ € X, thus

o(z) = Tt

c
1

ke

ho~18

k

with Z, € C and with some constants Cpe If for some o € (H*)'

.1 . 2
<Gv,elv E R N ¢ (z)

then

Q
|
Ho~18

y ¢, 8(v'=2)8(vP-iz,) = e 5(v' -z )8 (v -ivh =

k=1

é(ivl—vz) z c
k=1

1
8(v —zk) ’

k

. . . . * . *
thus o acts on the restrictions of functions in H to V, that is ce (H V)'.

Now consider an element ¢ € A. If for some o € (H*)'

.1 . 2
1V *g+1v e
<ov,e

"= 4(0) ,

then we only know that

iv]'£+iv2'n .
<0V,wje > =0, j=1,.0e,n ,
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. . _>
since 8j¢ = 0. The exponentials are dense in H*, so that <0,W'H*> = 0, thus

()
o e /// L)
Wl

see [15] prop.35.5(b). When we have shown that the map I is injective
(problem 6.4), the spaces A (5.11) and A (5.10) coincide and we obtain a
theorem similar to theorem 2.1.

V is defined as the simultaneous zero-set of the polynomials W, o=

.1 2 .1 2 . . . .

= 1viTV ey W= 1V SV L These polynomials generate a prime ideal in any
point of a pseudoconvex set Q c mzn. Therefore, according to Hilbert's
Nullstellensatz all holomorphic functions f in Q vanishing on V can locally,

that is in a neighborhood w of any point in Q, be written as
(6.6) £ = w-’g’w with Ew e AW,

see appendix (A.18)., With the aid of Cartan's theorem B (theorem A 14) it is
shown in the appendix that f ¢ A(Q) satisfying (6.6), satisfies (6.6)

globally, that is f can be written as
f=Wg withgeA@".

Problem 6.4 asks for functions g € Hz, so it is the analogue with estimates
of the problem treated in the appendix. By (6.6) we can reformulate problem

6.4:

PROBLEM 6.5. If f ¢ H; can locally (that is in a netighborhood w of any point

in TC) be written as
- - n
£=veg, g ¢ A(w)

then there exists E € (HZ)n with £ = W-g.

In the next section we will solve this problem for general polynomial
systems P instead of W. Also in that case, a set V can be so defined (see

EHRENPREIS [3]) that a function f vanishing on V can locally be written as
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f= P'g, see theorem A 17. Provided that J is surjective, the isomorphism I
in (6.4) and (6.5) is the analogue with estimates of the isomorphism (A 19).
Using (6.6) and the above mentioned problem of the appendix (theorem

A 15) we can reformulate problem 6.3:

PROBLEM 6.6. Let the functions f, e H' (a+1/2;C
k= 1,2,...f

k,k) satisfy for all
e~ = w-gk in R¥M+iC(k), Eke A(R?™+i C(k))?, then there exists
a function £ e, with for all k = 1,2,... f~f, = W-§_1n R2+i c(k) for
some %k € A(R2n+ic(k))n.
Aléo this problem will be solved in the next section for general

polynomial systems P instead of W. Therefore, Jii is surjective and we have

proved the main theorem of sections 5, 6 and 7, namely

THEOREM 6.1. Let a be a convex function on pr C for some open convex cone C
in € and let Q and 2, be the closed comvex sets in C° determined by (5.4)
and (5.5)(ii), respectively. Then the map F from A', the dual of the space
A (6.1), into Exp(a+0;C) given by

F(w)(z) = <uc,elz";>, Loe A

18 an isomorphism,

We have also shown that Exp is isomorphic to Ai, hence Zi = Kii' Taking
into account theorem 5.1 we can conclude that the linear hull of the set
iz-z
e
t }zeC
Theorem 6.1 is a generalization to non-entire functions of the theorem

of EHRENPREIS [2] and MARTINEAU [12] of section 2 which deals with entire

is dense in A (6.1) in both cases (i) and (ii).

functions as Fourier transforms. A particular case of this theorem with

(5.5)(i) instead of (5.5)(ii) has already been proved by KAWAI in [9].

7. COMPLETION OF THE PROOFS

In this section we solve problems 6.5 and 6.6. For that purpose cohomol-
ogy with bounds is introduced. The solution requires estimates in the steps
of the proof of a similar statement without bounds in the appendix. We for-

mulate the theorems in a more general way making them useful in other
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applications too.

. n . . .
Let @ be an open pseudoconvex set in € such that there is an increasing

sequence of open pseudoconvex subsets Qk with union Q and with

Vk, Je = e(k): Qk(s) c Qk+l

where Qk(e) is the e-neighborhood of Qk. Moreover, in some theorems we

require that there is a continuous plurisubharmonic function o in Q with

(7.1) 9 =1z | o(z) < k}.

This is only a special condition on  ([7], th.2.6.7.1ii), if the sets Qk

are unbounded.

For example, we may take for  suitable e-neighborhoods of each other,

k
since the function d(z) = -log 6(z,QC) (here G(Z,QC) is the distance between

z € Q and the complement of Q) is plurisubharmonic when 9 is pseudoconvex.
We show that in some sense also the sets R2n+ic(k) c czn of the last
section are an example. Therefore, we say that two increasing sequences
{Qk}:=l and {Qé};=l exhausting Q are equivalent if for every k there is an ¢
with © c Q' and Q' < Qz. Then it is clear that any function on © that is

k 2 k
bounded in some norm on all subsets Qk is also bounded on the subsets Qi and
conversely.

LEMMA 7.1. The increasing sequence £R2n+iC(k)}:=i exhausting Q = R%% iC <

c ¢ s equivalent to an increasing sequence {Qk}:=1 satisfying (7.1).

PROOF. Choose a vector o in C c R?n and a number ¢ > 1 and consider the

hyperplane H = {y | o'y = ¢} C‘Rzn. Let for each y € C

* _ ¢
A
be the intersection of the vector y with H. We define a plurisubharmonic
(even convex) function x in C by x(y) = d(y*) = -log G(y*,CC). Then the sets
Ci ={y | x(y) < k}, k = 1,2,..., are relatively compact subcones of C

exhausting C. Now we set for z = x+iy
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0(z) = max(d(y),x(y)),

which is plurisubharmonic (even convex) and we have

-k

= {2z | o(z) <k} = {BR°™iCl} 0 {ze2 | 6(2,0%) >

Hence the sequence {Qk}w_ is obviously equivalent to fR2n+iC(k)}:=1. (]

k=1

Let ¢ be a plurisubharmonic function in Q. In some theorems ¢ will be
such that for every z ¢ Qk and lz'-zl < e(k)

(7.2) $(z')=¢(z) < Kis

where the constant Kk does not depend on z and z', but may depend on k. For
example the function m log(1+lzl ) + 23(y) + 2/%llyl is plurisubharmonic in

R? +1i C and satisfies (7.2) for every sequence {Q 3o equivalent to

{R2n+iC(k)}:=]. Finally let P = (ij), j = 1,...%pf ; =1,...,9, be a
matrix of polynomials.

Then problems 6.5 and 6.6 follow from lemma 7.1 and the next two theo-
rems, theorem 7.1(a) and theorem 7.2, respectively. In theorem 7.1 we form—
ulate a part (b) with uniform bounds, which we do not need here, but which
may be useful in other purposes. Part (b) is derived in the same way as

part (a).

THEOREM 7.1. If f € AP can locally (that is in a nelghborhood w of any

point in Q) be written as
f=Pg, g cAw?,
w w

then there is a number N, such that

(a) there is a function v ¢ A(Q)q with £ = Pv and with

f -

J Iv(z)lef)—NdA(z) <o, k=1,2,... ,
(141 21%)

O

when Q = G Qk satisfies (7.1) and ¢ 18 a plurisubharmonic function in
k=1
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Q such that

,
| 1£(2) 1% exp-6(z) dA(z) < », k =1,2,...

9]
k
(b) For all k = 1,2,... there are constants K integers L

q . .. _ . .
v, € A(Qk) with £ ka in Qk and with

L 2k and functions

- f
| n@1? 22 06y <k | 1517 expmia) (e,
g (140 zI=) Q

k lk

when the right hand side is finite for some plurisubharmonic function ¢.

In part (b) the pseudoconvex subsets Q, of 2 do not have to satisfy (7.1).

k

P _ . . _ -
THEOREM 7.2. If fk € A(Qk) , k=1,2,..., are functions with fk+1 fk ng
€ A(Qk)q, then there are a number N and a function f ¢ AP with
e A@)Y, and with

in Qk’ 8
£~ = P in 0, &

J 1£(2) |2 Jiﬂliﬂgﬂ%-dx(z) < o, k=1,2,... ,
(1+1 21 %)
o

when Q = U 2, satisfies (7.1) and ¢ is a plurisubharmonic function satis-—

k=1
fying (7.2) such that

[ £, ()17 exp=6(z) dA(z) < =, k= 1,2,...
e

Here If(z)l2 means lfl(z)l2 + ... F pr(z)l2 when f = (f .,fp) € A(Q)p

12
and A (z) denotes the Lebesgue measure in c”.

First we need similar theorems as theorem Al3 and Castan's theorem B,

theorem A 14, but now with estimates. Let U(A) = {Uix)}ieI s, A =0,1,2,...
A

be the coverings of Q given in the appendix section V satisfying properties
(A15) (i), (i1),(1ii),(iv),(v) and (vi) and let for every k U{") =

= {ng) n Qk}ie be the corresponding coverings of Q . When F is an analytic

I k*
sheaf on 2, we denote by Cp[U(A),F,¢] the set of alternating cochains

c = {cs} in Q, s € I§+l, cg € F(U;A),F), satisfying for all k

"Cui,k ﬂii Z J |CS(Z)|2 exp—¢(z) dr(z) < =
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and by Cp(U(A) F,$) the set of all alternating cochains c in Qk with
Hcﬂz k @, By ¢N we will mean the plurisubharmonic function ¢ (z) = ¢(2) +
+ N log(1+121%).

Lemma 7.2 will be obtained in the same way as theorem A 13, only we
write down explicitely the construction of the map " (A10), so that we
can bring estimates in the statements involving 8*. We do not work with the
sheaf E of germs of Cw—functions, but rather with the sheaf L of germs of
locally square integrable functions. Then we may use theorem Al0 instead of
theorem A 9. So let Lq be the sheaf of germs of (0,q)-forms with locally
square integrable coefficients and let Zq be the subsheaf of d-closed forms
of type (0,q). Again we have a part (a) with globally defined functions on

Q and a part (b) with functions in 9, and uniform bounds.

k

LEMMA 7.2.
(a) Every cochain c in Cp[U(A),A,¢], p =21, with §c = 0 can be written as
— ' ' p=1r,,(}) - ®
c =6c' forac' e C [U ,A,¢2m], where m = min(p,n), when {Qk}k=1
satisfies (7.1).
(b) For all k every cochain c in cP[u(A),A,¢], p 21, with Sc = 0 can be

written in Q, as c = dci for a c! ¢ Cp—](U£A),A,¢2m) such that for some

k k
constants Kk

'
"Ck"¢2 K < Kk "C"¢,k ,

where m = min(p,n). Also for fixed kevery cocycle c ¢ CP(U£A),A,¢)
satisfies the above property (b) for this k.

PROOF. A section c € T(Q,LO) with 9c = 0 determines a holomorphic function
c € A(Q) (this follows by repeated use of lemma 4.2.4 in [7]). For c ¢
€ Cp[U(A) ¢] with 8c = 0 we want to find a ¢' e CP~ ][U(A) Zq,¢2 ] such
that 8c' = c, when q = 0 or in part (b) cochains Ck e cP” I(U(A) VA ,¢2 ) such
that GCL = ¢ in Qk. We assume that this has already been proved for smaller
values of p and all q, when p > 1, m = p and when the constants Kk in part
(b) depend on p.

First we give estimates in the construction of g in theorem Al12. For

each k we choose £ = 2(k) such that, when ng) n Qk # 0, Uﬁx) c QQ according
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to property (A15)(iii). Since also all sets in U(A) contained in Qk have

a minimum size (say they contain a ball with radius ak(k)), we can construct

[oo]

a partition {¢ } of unity subordinate to the covering U(A) of Q (¢\)hasits

v v=l
support in Ugi)), such that for all k

(7.3) mgxl§¢v(z)lz <c

for those v with ng) n Qk # . Here
v

n
136(2)1% = ) 13.6(2)12.
=1

For example let for each v € IA+1 X, be a C -function equal to one in

A+1
U( ) and to zero outside the € (A+1)-neighborhood of U(A+]) (which
v Z(kv) v
Q PN
v
M)
Yo (v)
T 4
v
|, 0D
- /ka
/ nk -1
i v
figure 7.1.
certainly is contained in Ué?l) with p = Py a1? because of property (Al5)
b
(v)), where kv is the smallest integer k with Ué?i) n Qk # 0, see figure
. ) =
7.1, Then for those v with Up(v) n # 0 mgxl&xv(z)l depends on

(A+1)

82(1)(A+1),...,€2(k)(k+l). Since U is a covering of Q,
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¢ (z) = =———, v=1,2,...

U™ Gitn i =p(v),

is a partition of unity subordinate to the covering
that satisfies (7.3). Note that for each z not more than M terms in the

denominator differ from zero because of property (Al15)(ii).

P

As in the proof of theorem Al2 we set for s ¢ IA

g. =2 ¢ c. >
s v v Tis

when ¢ ¢ CPEU(A),Zq,¢]. Then as in theorem Al2 g ¢ Cp—l(U(A),Lq) and 8g = c,

if 8c = 0. Furthermore writing ¢v = V¢v°/$;-and using % ¢v = 1 we find

2 2
IgS(Z)I exp-y(z) di(z) 22 "gS"lp,k <

IA
<™
—

¢V(z) lci\)s(z)l2 exp~y(z) dr(z) <

for all plurisubharmonic functions ¢ for which the right-hand side is finite.

Since not more than M (k) different v's are mapped by p onto the same i,

A A1
when Uik) n Qk # @, (property (A15)(vi), we get by summing up

2
(k) "C"w,k'

2
"g"w,k < MA,A+1
= .. p-1,,(}) .
Let 3g = £ be the cochain in C u ,Zq+]) defined by

f =23g = % 8¢V A Civs .
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Then
2 2 (r) = 2
< .|
“f3"¢,k:£{€"a¢vAciVs"¢,k} __Nk é"a¢vAC1Vsl¢,k
where at most Néx) terms in the sum are different from zero, when U(A) n

n Qk # @ according to property (Al15)(iv). If Uéx) n # @, then Uéx)c Q

so that for all i e I, with ng) q ng)# g

2 (k)

)
Ui n Qz(k) 0.

Hence using (7.3) in the above estimate we get with Kﬂ = Cl(k)Nk A+
b

A

2 2
"f"¢,k < Kﬁ"C"¢,k‘

3¢ = 0. If p > 1, by the inductive hypothesis of case
Cp-z[U(A),Z ] with §f' = £ and by

Now &f = Ség

. . ]
(a) we can find a cochain f' ¢ q+1’¢2p-2

the inductive hypothesis of case (b) we can find cochains fi €

P2 ;M) . Voo .
e C (Uk ’Zq+l’¢2p—2) with Gfk f in Qk and with
2 2
£ < K"I£
K 9y, 5k K o,

for some constants KE depending on k. By theorem AlQ and property (A15) (i)
for every s ¢ IE_I we can find (g')s € F(Uék),Lq) so that S(g')S = (f')S in
Uéx) and _

"(g')S"2 < Iegy 12

s ¢, _
¢2p 2p=2
and since the sets Q, are pseudoconvex, theorem Al10 yields (g')
raw™ n g ,L) . h that 3(g’) = (£/) in UM 0o and o
€ s k’"q"’ suc &k’ k’s s k
2 2
I(gh) | < (D | .
k’s ¢2p k’s ¢2p—2

Hence {(g")_ | s e 127"} =g" ¢ P 2UM,L 4, T and ((g)) | s e 27} -
=25 () qQ’"2p k’s

Pe P L L0, ).

q’"2p

g
k
Finally put c' = g-8g' and cé = g—égi, then for all k
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IA

'l

A

M)y 1y 2
g + pNo gl <

lel? o+ pNéx)"f'"z <

= Ay A+l b, sk 0 k
-2
2p 2p-2

and for some constants Kk

IN

2 A 2 2
le )l + pn Mg P S Klel? L

M
K o,05k T A, byprk Pk P9pm2?

Furthermore 8c' = 8g = c and ac' = f-§3g' = f-8f' = f-f = 0, hence
c' € Cp_l[U(A),Zq,¢2p] and also 6c! = &g = c and dc' = f—éggﬂ = f-df& =
= f-f = 0 i 1 P=1 ()
f-f = 0 in Qk’ hence cp € C (Uk ’Zq’¢2p)'
It remains to consider the case p = 1. The fact that §f = O then means

1
k

that f defines uniquely a (0,q+1)-form f in Q with 3f = 0. In case (a) we
cannot immediately apply theorem Al10, but we need a modification, where the

integrals are performed in the sets Q . Assume that this may be done. Then

K
we can find § ¢ F(Q,Lq) with 9 = £ and for all k

J IQ(Z)IZ exp=¢(z)_ dr(z) < = .

2,2
Ak (1402l ™)

In case (b) we use theorem Al0 and obtain (0,q)-forms gk € F(Qk,Lq) in Qk

with Egk = f‘ and

e
[ 11?22 0 < [ 151 expmso anco.
J (141212 y
k k
Putting
€D =858 oy ™ s T TR )
s 8 k

for s ¢ IA’ we obtain cochains with the required properties (using (A15)(ii)
in the estimates for §).

In fact we only have n induction steps, since all (O,n)-forms g satisfy
5g = 0. Therefore, the estimates hold already when p is replaced by
min(p,n) and the constants Kk in part (b) may be taken independent of p.

We only have to prove the modification of theorem Al10. [J
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LEMMA 7.3. Let Q be an open pseudoconvex set, Let {Qk}k 1 be an increasing
sequence of subsets of Q satisfying (7.1) and let ¢ be a plurisubharmonic
function in Q. For every (0,q+1)=form g with locally square integrable
coefficients and with 3g = 0, there is a (0,q)-form u in @ with locally

square integrable coefficients, such that du = g and for all k

J |u(z)|2 _S§219§§Q§ di(z) < =
(1+1 21 %)
Qk

provided that for each k

J |g(Z)I2 exp-¢(z) dr(z) < =,

N

PROOF. Let x be a convex majorant of the nonnegative function ¥

0 fora<l,
X(a) = { K 9
max{0,logl2 J lg(z)|” exp=d(z) dr(z)]1} fork<a<k+l,
Der1
k=1,2,... . Then ¥(z) EEE x(o(z)) is plurisubharmonic in 9, so that we may

apply theorem AlQ in the domain @ with the plurisubharmonic function ¢+y.

This yields a (0,q)-form u in Q with du = g and with for each k

f lu(z) |2 2XP=0(2) 4, () < X (K J lu(z) |2 &XR(0(2)=0(2)) 4,y <

2.2 =
(1421 %) (L1 212)
e , 2
< oX(K) J lu(zy |2 exRC ¢(z)ZW§z)) dr(z) < eX (K )J g (2912 exp (=6 (2) =0 () dr(z) =
(1+1 21 %) !
r o
X0 ( ) * Z J ) 18(2) 17 exp(=6(2)-0(2)) dA(2) <
) Qk+l\Qk i}
= X(k)[ J 1g(2) 1% exp=0(2) dr(z) + ) 'JE] < o, .
2, k=1 2

REMARK 7.1. In general lemma 7.3 is not true, if we consider different

weightfunctions ¢k in the sets Qk’ or in the same set Q. For example assume
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that Sg = 0 and that for every k

(7.4) J 15(2)1% exp(=¢(2)-1/Klzl) dA(z) < =,
O
where Qk c Qk+1 c Q or Qk = Q for all k. Then it is not true that there is

a form u in Q with du = g and with for all k

2 exp(=¢(z)=1/klzl)

(141 21 22

(7.5) f lu(z) | di(z) < =,

o"

For if this were true, using theorem 4.4.2 of [7] as in section 5, we could

extend the entire function
f(z) = § el/g elz’c dg

in ml satisfying

1/¢e eeﬂzﬂ

[£(z)] < 2¢ e for all € > 0

. . . 2 . .
to an entire function F in €  satisfying

F(z,iz) = f(z)

IF(vl,vz)] < K€(1+"v")m eeﬂlm vl for all € > O,

But then according to VLADIMIROV [16] 29.1 F is a polynomial, hence f would

be a polynomial, that is

k a. ...
£(z) = ) § L 12t g
j=0 7 ¢J
for some k and constants aj contradicting the definition of f,
In [9] KAWAI has shown that for each (0,q+1)-form g with gg =0
satisfying (7.4) there does exist a (0,q)-form u with du = g in Q satisfying

(7.5), when Q satisfies

sup lIm zl < K < =
zef
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for some constant K.
Next we derive Cartan's theorem B with bounds. Let F be either the
sheaf of relations of P on 2, thus F = R_ or the image under P of the sheaf

Aq, thus F = PAq, see (A5) and (A6).

P

LEMMA 7.4. Let the plurisubharmonic function ¢ inm the pseudoconvex open
set Q satisfy (7.2). There is a positive integer N (depending om P), such
that for all X there is a u > A with the following properties
(a) when moreover the subsets Qk of @ satisfy (7.1), every cochain
f e Cp[U(A),F,¢] with 8£ = 0, p =2 1, can be written as S§f' =
gsome £' ¢ Cp_l[U(U),F,¢N];
(b) for all k there are integers 4

*
f for
°),u f

> k and constants K, ., such that every
k ALk

cochain f € Cp[U(A),F,¢] with 6£ = 0, p 2 1, for all k can be written

as 8f] = with £] e cp'l(ué“),F,¢N) and with

* .
X uf i

X, k

el <K I £l .
Kok T ALk 9,0
PROOF. First we change theorem Al6 into a formulation with Lz—estimates. Let
K = w+z be so that U n Qk # P and V = (t+1) w+z c Q2 for some & > k, where
tw is the enlargement of w by a factor t with respect to some center in w.
Then V contains some e-neighborhood of tw+z, where ¢ depends on the size of

=Q =1U and M2 =
m 2m

= eXp_(1)N+m+(n+])/2 P

exp-¢m? Qp =V and Mm = exp—¢m, Qm = tw+z and with dz = ¢) are satis-

. L2
w. The condition HS1 ([14] G.7 with Mp = exXp=dy, » Qp
) and by (7.2) the condition H82 ([14] G.7 with M

fied. Hence instead of (Al4) we get

2 exp—¢ (W) exp=3¢ (w)
[v(w) | di(w) €C. sup |v(w)|] ——2F—— <
i (141l 2yNrm+ (n+1) /2 I eU (141l Yy
-1 Izl \N
< C,C sup [|P(w)u(w)]| exp=3¢ (w) (]+ )
I vetwtz (1l y® NI+

(7.6)

IN

=1
CIC(1+sup"cﬂ)N sup |P(w)u(w) | EEE—AQS%% <
Cetw wetw+z (140wl

IA

c, J PG | 2ELW gy (),
v (1+0wl <™
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since

N+m(w) ¢ (v) < some constant for w € U and v ¢ tw+z

m

l2) and

follows by repeated use of (7.2) and since the estimates with (1+lwl
(1+Ilwll)2 are equivalent and |v (w)|+...+|v (w)| < Vq |v(w)| when

(vl,...,v ) € A(U)q. The constants Cl’ C and C2 do not depend on z,

C depends on the size of w and C depends moreover on e, in fact C2 ~ el
(see [18], proof of HSZ)’ but ¢ depends on the size of w.

For p = M (see (A15)(ii)) the theorem is true, since there are no
non—-zero cochains f ¢ CM[U(A),F,¢]. Thus assume that the theorem has been
proved for all P when p is replaced by p+1 and when the constants N and n
and in part (b) the constants %2 and K depend on p.

In case F = RP there is a polynomial matrix Q, such that F = QAr by
(A6) and according to theorem All we can write f ¢ Cp[U(U) F,¢] as f QgS

where g ¢ Cp(U(U) AY). In case F = PAY we write Q = P and r = q, then also

B

f = Qg with g € Cp(U(U) Ar) according to theorem Al5. Let v 2 u+210g(t+1),
then for every i « I (t+1) times U( v) (u)
such that (7.6) may be applied with U = U(v) and V = U(“) ( y: From theorem Al16
and (7.6) we obtain a cochain § ¢ Cp(U(v) AT ) with Qg Qg = £, where

s' = (s), hence p f = Qg. When U( v) ne =g, then U( ) c Qs

u, U, k
some (k) (property (A15)(111)), so that (7.6) yields

is contained in U v(i)? where t is

% (k) for

(2 ( 2.
f IgSI exp ¢N]+m dx < Ck,u J IfS,I exp=¢_ dA
(v) (w)
US an US,

for some N1 and all m. The constant Ck u depends on the smallest and the

largest size of the sets U( v) with U(v) n Q # @ and this depends on k and

v, but v depends on uj; C does not depend on s. Since not more than a

k,u

finite number of different s are mapped by PLy onto the same s' (property
3

(A15) (vi)), we get by summing up

7.7 Il < ¢! I £l k=1,2,000 &
( ) g ¢N +m’k K, ¢m’2(k)3 3%

1
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Thus § ¢ CP[U(v),Ar,¢N1+m]. When 6f = 0, 8Qg = Q8g = 0, whence together

with (A15)(iv) it follows that 6§ = ¢ is a cocycle in Cp+1[U(v),RQ,¢N1+m].
By the inductive hypothesis of case (a) we can find p' > v, N, and
1
a cochain c¢' ¢ Cp[U(u ),R ) ] with 8c' = p* 1¢ in © and by the in-
Q’ "No+N,+m v,u
ductive hypothesis of case (b) we can find moreover constants 2k > k, KC K
. ' P,y (n") . y o % . .2
and cochains C € C (Uk ’RQ’¢N2+N]+m) with Gck Py,ptc in Qk and with
fetl < K" _ el .
k ¢N2+N]+m’k vok e

*
We put gO = pv,u

=" c * ¢ = 0, and ="
pv,ut* pv,uv > 81 pv,u

ng = py,urC = 0 in @ According to lemma 7.2 (a) and (b) there are

1
& - o' e cPrut ),Ar,¢N2+N1+mJ, so that &g, =
r
1Bcy e Cp(UéU'),A s9No+N+m) SO that
1 k' 1
-1 r . -1 r .
g' e CP ‘[U(u ),A ,¢N] with ég' = g and gi e cP (Uéu ),A ,¢N) with Ggé =

in Qk’ respectively, where N = N, +N, +m+2 min(n,p) and with moreover

= 8 2™

Ig!'l <k gl )
B g0k Ke T8y N
2N

_ '
Finally we put f' = Qg' ¢ cP 1[U(u )’F’¢N3+N] and £' = Qg' ¢

_ . K K
e cP 1(Ulgu ),F,¢N3+N) with N, depending on Q. Then

3
Qdg ng Dv’qug pv’uv pu’v pU,U'
in © and similarly 6fé = p: U,f in Qk. Furthermore for all m and 1 we get
b
£} LS K g L < KM NOART L
¢N +N’ ¢N +N +m’ \)91‘1 ¢N +N +m’
3 2 1 2 1
+ K" el } <
v,k ¢N +m’2k
1
+1 (v)
< KM, ()PTHR" _(p+2) NV Nl <K I £l ,
Kk V,H v,k Rk ¢N1+m’zk U,k ¢m,2
where & = Q(lk) depends on Zk according to (7.7) and where KU K is a constant
b

depending on k,v and u', but u' depends on v, %, depends on k and v depends

k

-on u; N_ depends on Q, N, on p by the inductive hypothesis and N, on P, but

3 2 1
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Q depends on P,

Hence the lemma is proved when N, p and in part (b) moreover £ and K
depend on p. But there are only finitely many induction steps, so that we
can take the largest N, p, 2 and K. We start the induction when p = M,

p =X and m = 0. Therefore, the lemma is true for all p with constants N
(depending on P), p (depending on A) and in part (b) & (depending on k) and
K (depending on A and k). [

Now we are able to prove theorems 7.1 and 7.2.

PROOF OF THEOREM 7.1. It follows from theorem Al5 that for all s ¢ I0 we

can take f = Pg_ in U;O) € U(O) with g € A(Ugo))q. As in the proof of lemma
7.4 we set v = 21og(t+1), so that (t+1) times Uév)
As in (7.7) we can find g ¢
v)

S

is contained in U§9) for

all s ¢ I , where s' = sel

N 0,V 0
e C[U ,Aq,¢N]] with Pgs =f in U

of (7.7)

for all s « Iv and with (7.6) instead

( 2 -
(7.8) J Igéz)l —§§$~$§E%T dir(z) < J f(z) 2 exp-¢6(z) dr(z),
(1+lzl <)
) (0)
U

m s m=1,2,... ,

(0) AP

,01. Consider the differences
(v)
s

¢ = 8g. Since not more than a fidite number of different s are mapped by

where f is regarded as a cocycle in CO[U

¢ of the functions gs in the overlaps of the sets U for s € Iv’ that is

0.y onto the same s', there are constants C& with
3
el o [ 1E@)1? expmo(z) dr(z)
¢N M~ m J :
1 QQ, (m)

Then Pc = PSg = 8f = 0 and also 8c = 0, hence c is a cocycle in
Cl[U(v),RP,¢N J. According to lemma 7.4(a) there are v > u, N2 and
1
O (1
(7.9) et e P R0,

where N = N]+N2, with Sc' = p: uc in © and according to lemma 7.4(b) there

3
are moreover constants Kk (also depending on v), integers m > k (depending
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on k) and cochains c! ¢ CO(U(U) R ) with 8c! = p* c in ©, and with

K Kk *Rpedy

k V,HU k
(7.1) Hc Kk Hc" ,m < Kk C; J lf(Z)!2 exp~¢(z) dr(z) ,
] QQ
where 2 > m > k depends on k.
Finally for all s ¢ I we put v, (z) = ,(z) c (z) for z ¢ U(U) with
s' = Py,us which by (A9) def1nes a functlon vV € A(Q)q because {v | S e Hﬁ €
e C (U(“) AY) and sv = p:,uég—pv’u = 0. Furthermore for all k
J |V(z)|2 Jﬁﬂzjﬁg%g dr(z) < Hvﬂ¢ K <
g (1+0 2l =) N?
k
by (7.7) and (7.9). Similarly, for each k (vk)s(z) = gs,(z)—(ci)s(z) for
Z € U(“) n Qk defines a function v, € A(Qkfland there are constants Kk and
lk > k with

- f
[ v ? 22y sk [ 15617 emmo(a) ana)
J (141 21%) o

k Qk

by (7.8) and (7.19). Moreover, for all s ¢ Iu in

Ui“) we have

= = & - L
Pv PvS Pgs, PcS f,

so that Pv = f in Q and similarly ka = f in Qk. )

PROOF OF THEOREM 7.2. Let F be the sheaf PAY. We construct a cochain h e

e C [U(O) ,AP 4] as follows: for all s e I,> when U; )e Q
(0),

we define h (z) =

I (0)

= £,(z) for z ¢ U ;3 for k = 1,2,... successively, when U n Q. # 0,
(0) ¢ Q let 2 be the smallest integer with U(O) c Q or when U(O) c
k+l n QE, let 2 be & = k+1, then we define hs(z) f (z) for z ¢ U(O)

By (A15)(ii) we obtain for all k

Il . M max J lf.(z)l2 exp=¢(z) di(z) < = ,
¢ 1<j<8 J

j

where 2 = 2(k) depends on k according to (A15)(iii).



60

+gk) in Qk for all m > 1, the differences

(0) of the sets U(O)

SSZ

0 0
or Pgslsz for some Bsysy € A(Uélgz)q. Hence ¢h e C (U( ) sF).
Now theorem 7.2 follows from the next theorem and theorem Al5., []

Since fk+m—fk = P(gk+m 1

of the functions hS in the overlaps U are either zero

THEOREM 7.3. Let F be the sheaf PAY in the pseudoconvex set Q, where Q is

the union of the subsets Q, satisfying (7.1) and let ¢ be a plurisubharmonic

k
function in Q satisfying (7.2). If for some X h € CO[U(A),AP,¢] with

Sh € C](U(A) F), then there is a constant N and a function v e A(Q)p with
for all s € I, v(2)=h_(2) = P(2)g_(2) for z « U(”

¢ QWM ,AY and ith

and for some g ¢

( _
| lv(z) |2 _EER_@(ZL)N_ ar(z) < e for all k = 1,2,
(1402l )

e

PROOF. We can estimate the cocycle f = 6h € C](U(A),F) in terms of h by use
of (Al15)(iv), hence f ¢ Cl[U(A),F,¢] and 8f = 0. According to lemma 7.4(a)

there is a cochain f' ¢ CO[U(U),F,¢N] with &8f' = p; uf in Q for some integer
3
N and pu > A.
Let for all i ¢ Iu and z ¢ U£U)
= et
Vi(Z) hS'(Z) fi(Z)
where s' = px (i). Then &v = pA Sh-6f' = pk f- pk f =0 in Q, thus

{vi | 1€ Iu} determlnes a functlon vV € (Q)p. Moreover, using (Al15)(vi) we

obtain for all k

2 exp-¢(z)
[v(z) ]| =222 di(z) < lvl <M (k) Il +I £ < o,
J (14120 HN ook AN ek ok
Q
k
For s € IA let I'(s) < I be the set of those i ¢ I with V ggi UEU)D

n U(A) # @, For all i ¢ I' (s) and z € V we have
v(z)-h_(z) = hs.(2)~f£(2)-hs(2)

Since hs,—hS € F(Uéé) n Uéx),F) and also fi € F(UﬁU),F), we obtain
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V—hS € F(Vi,F) .

V.
1

As Vi is pseudoconvex, theorem Al5 yields

v—hS € PF(Vi,Aq)

V.

i

and again by theorem Al5 v=h = Pg in U(A) for some g« F(U(A),Aq),
()\) S S S S S

S

because also U is pseudoconvex (property (A15)(i)). 0

8. COROLLARIES AND EXAMPLES

In this section some corollaries and particular cases are given of the
theorem on Fourier transforms in section 6, theorem 6.1. We can survey this

theorem by: let

(8.1) Exp(a+0;c) 2&L prol_]'{ lim A_(exp(=2(2)=1/kl z1)5C(k))
o
and
(8.2) ACa+05C) 2L ind 1im A_(exp 1/Klzl 30(a+1/k;0)) ,
koo
then
(8.3) F A(a+0;C)' = Exp(a+0;C)

where A(a+03;C)' is the strong dual of A(a+0;C) and F is an isomorphism; Q is
given by formula (5.4). Here we have used the fact that the sequences of

weightfunctions

{exp Gk/kﬂgﬂ}k=] and {exp l/k"g"}k=]

induce the same topology on the space A(a+0;C).

Let w ¢ prC, then w € pr C, for some k; since Q(a3;C) n (C;H)c is

k
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o *
bounded and since for ¢ e Ck+]

szl < Im weg < ligl
for some § > 0, also the system
o A o
(8.4) {exp E-Im w C}k=l

induces the same topology on A(a+0;C). These weightfunctions Mk satisfy
Mk = exp—¢k, where ¢k(c) = =1/k Im w*z is a plurisubharmonic function.
Therefore, the theorems of the appendix and of section 7 may be applied to
the space A(a+0;C), because all the LP-norms are equivalent, p = 1,2,...,®
(the space A(a+03;C) is nuclear (see [14] G.7)).

It follows from (8.3) and (8.4) that any f ¢ Exp(a+0;C) satisfies for
all € > 0 and § > O

]ei(z—ew)-c, <

[£(z) |

|<uc,elz'c>| <M sup
*7 reQ(a+8;C)

d(z-ew)+6ll z—cwl

IA

Me,é

when z ¢ ew+C. Now let a be bounded on prC, then a can be continued as a
continuous function to prC and thus a is uniformly continuous on pr C. That

means that for all § > 0, there is a £(8) > 0 with for e < £(8)

—~—
la(z=ew)=-a(z)]| < 6.
Hence

d(z—ew) < a(2)lz—ewl+8llz—cwl < Se(8)+c(8) sup la(z) |+3(z)+8l 2l ,
zepr C

so that f satisfies for z ¢ ew+C, all ¢ > 0 and 6 > O

Izl
eé(z)+26 2l

]
[£(z)] < Me,6
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We can choose w ¢ prC so, that the sets {€w+C}€> are just the subsets of

0
C consisting of all the points of C with distance larger than n to the

boundary of C, n > 0 and n > 0 if ¢ > 0. Thus we have found that as sets

(8.5) Exp(a+03;C) = proj lim Am(exp(—é(z)—]/kﬂzﬂ);l/k w+C),

koo
when a is bounded on pr C. Since the topology defined by (8.1) is obviously
weaker than the one defined by (8.5) and since both topologies turn Exp(a+0;C)
into an F§—space, both topologies coincide (see [15] corollary 2 to th.7.1),
so that (8.5) also holds for the topologies. A similar property holds for
the spaces H(a;C) and H*(a;C) of [14] provided that then & is uniformly
continuous on C, which is true when a is not vertical at the boundary of
pr C (see section 4), for example when a is constant. This surprising prop-
erty of functions of exponential type in cones is difficult to establish
without Fourier transformation.

Another surprising corollary is that, as topological spaces, Ai = Aii’
as we have already seen. It means that it does not make a difference if we
use (a+1/k;C) or Q(a+1/k;Ck) in the space A(a+0;C): any function ¢ holo-

morphic in int Q(a+1/k;C) with
o) | < M, exp-1/klgl, ¢ e int Q(a+1/k;C)

is holomorphic in some larger set int Q(a+1/m;Cm) u int Q(a+1/k;C) and

satisfies there
lo(z)| < M, exp-1/2lzl

for some % 2= k depending cn k and Cm and some M, depending on M., k and Cm,

2 1?

but not on ¢.

Now we imagine an open convex set Q in c” being given or equivalently
an open convex cone C in ¢" and a convex homogeneous function a in G (Q such
that it does not contain a straight line, whence the cone C is open in ™).
Let {Qm};=1 be an increasing sequence of closed convex sets with union Q and

such that the points of Qm are those points in Q@ with distance larger than



64

€ from 3Q (see section 4). The sets Qm determine convex homogeneous

functions 3 on C with for some n_ = ¢
m m m

a(z)-n_ < a (z) < a(z)-e , z € prC

€ > €

>0, e - and >
m m+1 > "m 0 T 7~ N

mel 0, n, 0 for m >~ », We define

(8.6) Egp(a;C) = ind lim Exp(am+0;C) ,
m>°

where we may use (8.5) instead of (8.1) when a is bounded. An equivalent
definition is
Egp(a;C) = ind 1lim proj lim Am(exp-am(z);C(k)).
> k>0

We also define

A'(a;C) = ind lim A(a_+05C)"

m>©

or equivalently

K'(a;C)

ind lim [ind lim A_(exp l/kHCH;Q(am;C))]' .
m> k>

It easily follows that F is an isomorphism:
(8.7) Exp(a;C) = FA'(a;C).

E§p and A' are inductive limits of nuclear Fréchet spaces, so they are
nuclear themselves,

In particular we may take for the cone in C" a tubular radial domain
TC c Cn, where TC = R™iC with now C an open convex cone in R". A relativ-

ely compact subcone of this domain is Rp+iCk with Ck cc C and the domains

C(k) become

{m?+ick} n{z | lmzl > 1/k} ,
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see section 4. Let a(y,x) be a convex homogeneous function on TC which is
bounded on each pr T k. Then a(0,x) exists and is finite; so A =
C, not

= Hmﬁxl a(0,x) < «, Then the domain 2(a;T ) == Q2(a;C) 1is bounded in the
X=

imaginary direction, that is Q(a;C) c R™+iB , where B, is the ball with

A A
radius A in R". This case will be used in the next section, where the
Newton interpolation series will be derived.

We can consider boundary values of functions f holomorphic in R"+i C.
When these are finite order distributions the function f satisfies
™ Iyl <1

(8.8) [£(z)]| < Mk (+lyl™, yecC

k’

for some m depending on f. When moreover f ¢ E§p(a;TC), f is the Fourier
transform of an analytic functional in Z' (see [14] H.4) carried by Q(a;C).
Indeed, in the same way as theorem 6.1 was obtained, using polynomials as
weightfunctions instead of (8.4) one can show

(8.9) Dﬁ(a;c) = F z2'(a:C)

with Z'(a;C) the dual of

z(a3C) = proj lim A_((1+lzh)™5a(a ;0))

m—)oo
and with
exp—am(z)
D%(a;c) = ind lim proj lim A (_—_—__:5_; thd_ck) ,
m>o k> 1+l yl

where Rp+ick may be replaced by {Rp+ick} u {EP+i(1/kyO+C)} with Yo € prC,
when a is bounded on prC. Z'(a;C) and hence also D%(a;C) is a nuclear LS-
space, so that for example they are reflexive (compare the spaces in section
6 [14]).

Finally we give three examples with { contained in R" illustrating the
differences between analytic functionals and distributions. For simplicity we
assume that the function a is constant on prC, so that (8.4) holds.

Firstly, let f be holomorphic in R"+i C and satisfy for all € > 0 and k
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1£(2) | < K(e,k) elate)yl+elxl

y € Ck’ ‘“yll > €,
then f satisfies these inequalities (with other constants K(eg)) also for

y € eyy*C, yy € prC and £ = F(o) with o carried by
Q=1{z ]| n=0, -y.g < alyl, yec} c ¢",
such that for all € > 0 o can be represented as a measure o in

2=z | Inl <e, -y-g< (ate)lyl, yecC}

with

J exp-el zll |dc€(c)[ < o,

Y]
€

Secondly, let f satisfy for all € > 0 and k and some m

(a+e)lyll+ell xl

|£(2z)| < K(e,k) e (atlyl ™), yec

k’
then f satisfies these inequalities (with other constants K(e,k)) also for
vy € Ck U {eyO+C} and f = F(u) with u € Z' carried by Q, that is for all

€ > 0 u can be represented as a measure uE in QE with

f )
J (1+hel) ™ Jdu_()] < =

Q
€

for some 2 > m (actually 2 = m+n+2, see [14] (6.10)).

Finally, let f satisfy for all € > 0 and k and some m

|f(Z)| < K(E,k) e(a+€)|ly|| (]+"X" )m (1+“y"—m)’ y € Ck,

then f satisfies these inequalities (with other constants K(e,k) and

(1+1xlH™ replaced by (1+||xl|)2 for some ¢ > m) also for y ¢ C, u {€y0+C} and

k
f = F(g) with g € S' having its support contained in 0 = {¢ | -y-¢ < alyl,

y € C}, so that g can be represented as a finite combination of derivations
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of measures gj in O with
-2
[ anen™ jag; @1 <«
0

for j = 0,1,...,% (2 = m+n+2, see [14] (6.10)).

As in section 2, in the first two examples we have when b > a > 0

Exp(a+0;TC) —QEE§3—+ Exp(b+0;TC),

while in the third example

H(a;C) closed linear subspace% H(b;C).

Even, since the restriction map from A(b+0;C) into S(a;C) is injective, we
have

H(a;0) —315€ 5 pyn(b+0;1C).

9. NEWION SERIES FOR FUNCTIONS HOLOMORPHIC IN TUBULAR RADIAL DOMAINS

In this section we derive the Newton interpolation series for functions
in E§p(a;TC). We give the most general class of holomorphic functions for
which the Newton series is valid for h in a convex cone C in R". However,
since the detailed description becomes quite complicated, we discuss a
particular case, namely a class of holomorphic functions of constant expo-
nential type and we give a uniform bound on the length of h. The bound for
Ihl will not be the best possible, but still this case gives a good idea
of the generalization of the validity of the Newton series discussed in this
paper. Finally we make some general remarks on the validity of the Newton
series,

In [10] KIOUSTELIDIS derived the Newton interpolation series (and
similar series) with the aid of Fourier transformation. The adventage of

this method against the classical one (Cauchy's integral formula, NORLUND
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[13], GELFOND [5]) is that it treats the case of several variables as well.
However, his treatment is valid only for entire functions. This is not a
restriction due to the method, for, as we have shown here, one has to extend
the method (namely the formalism of Fourier transformation) to non-entire .
functions. Then we are able to derive the Newton series (and the similar
series of KIOUSTELIDIS [10] or [14] remark 10,1) in several variables for
non-entire functions as well. Moreover, in some way we obtain the largest
possible class, for which the formalism is valid, since we use the domain
of convergence completely (that is we do not cut off a compact subset of
this domain as it is done in [10]) and since outside this domain the formal-
ism is not valid, see Satz 5 in [10].

As we have seen in [14], section 5, we have to restrict the vector h
to a real open convex cone C in R" in order to get the Newton series for
non—-entire functions. Moreover, let hl be bounded by a positive number b.
Let the convex (unbounded) open set £ in ¢" be the interior of one of the
components of

_h.c_

{z] zec®, le 1] <1, Vh e C with Inl < b},

see figure 4.1 of [14]. Then Q@ is bounded in the imaginary direction, because
[hen] < (2k+i)m for some k and for all h € C with Ihl < b and also @ is

contained in
9.1) {z | =h+£ < log 2, Vh € C with Ihl < b},

Hence  determines the convex cone R'+i C in C" and the convex homogeneous
function HQ on R™+iC by

(9.2) HQ(z) = sup - Im z-Z.
zefd

H. (z) is continuous up to y = 0, that is HQ(X) exists for x ¢ R" and it
follows from (9.1) that HQ(E) is bounded by (log 2)/b+B, where B is a bound
for Inll, thus (8.5) may be applied. Also we have, see (4.2), (4.3), (4.4)

Q = int{c l -Im z°¢ < Hﬂ(z), zZ € EkoiC}.
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Let Qm be an increasing sequence of convex closed subsets of 9 such

that some e-neighborhood @ of @ 1is contained in Q and @ = U, . Let
m,€ m m=]1 m

H be the functions Hy, , m = 1,2,... . For y € C, h € C let s ¢ C be such

m Cm

that

. n,.
z+ish ¢ R +1C,

so that Res = -o for some non-negative number a depending on y and h.

LEMMA 9.1. Let z e'Rp+iC, h e Cand s € C as above. Then the sequence

iz*zC N s -h-t k
oy ,(8) = e ) (k)(e -1)
’ k=0
converges for N - = to exp i(z+ish)+ty in all the spaces A(Hm+O;C),

m=1,2,... .

PROOF. The space A(Hm+0;C) is defined by (8.2) so that according to (5.9)

exp iz-¢ € A(Hm+O;C) when z eﬁRn+iC, hence exp i(z+ish)-z and
exp(iz-z-kh'z), k = 0,1,2,..., belong to A(Hm+O;C) for all m. Since A(Hm+O;C)
is a Fréchet space, we have to show that for some € > 0 small enough

(9.3) sup |¢ (z)| exp elzgl <K,

CeQm’E

N,z

where K is independent of N.
In section 5 of [14] we defined subsets Q(g) gg; Qh(s) of

9 = {z | e i) < 1}

by

Qh(e) def z | -h+€ < 1log(2 cos hen-g)}

and we showed that for all € > 0 there is a €, (here €, = €/(6b)) such that

1 1

the el—neighborhood of Qh(e) is contained in Qh(%e) cQ

we will show that for all € > O there is a ¢

h On the other hand,
2 such that the boundary of the

e-neighborhood of
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(9.4) 2(e,) def 2, (c,)

heC
Inll <b

is contained in 0°.
First let us remark that Qh c QBh when B < 1, since
B log(2 cos x) < log(2 cos Bx) , [x] < im .

Then ¢ € 89(82) means, that there is an h € C, depending on ¢z and &§, with
Ihl = b and with

~h+& > log(2 cos hen - 62) - 6.

and

]
S
m

Now we choose €, = min(b282/16, 1/171), §

= ¢ + i sign(sin hen) % Ve, h,

where sign(0) 1. Then Ic—col < ¢ and for some integer k

5n+4/§ > |Im h'(;0+2k7rl > 4/52 s

so that when |Im h-;0+2knl not x| < im

-Re h*;o > log(2 cos h-n—ez)—%ez =
= log{2 cos(lxl—é/gg)-ez}-%ez > log(2 cos Im h'co),

for, €, < 1/171 implies sin 4/;; < 63/16 /Eg, so that the following estimates
with |x| < im hold

2 cos(lxl—4¢€£}—52 > 2 cos x—16e2 cos X + 2|sin x|sin 4/55 -€, >

120, b 63— _
> 2 cos X - ]682(]—3X ) + 27x 16/?;' €,

and the right hand side is larger than
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2 cos x + €, 2 2 cos X exp ie

2
if

16 2
=5 /E; X"+ 2x 8/2;' > 0,

|~

which is true when
_ 64 i /.64
x 2 4/e) = [-1+(1+ 55 ge ) ]/(ﬁ/_ez) )

Hence 2o ¢ Q and also when im < |x| < im+4v/e,_, Zo ¢ 2. Thus the sets Q(1/m)
defined by (9.4) with €,

From the formula above (5.3) in [14] we get for 7 e Qm er € sufficiently
9

replaced by 1/m may serve as the sets Qm.

small such that @
m, €

c Q(e]) for some ¢
3

1’

| ()] £ C. (e,) expahez exp —-Im z-, a >0
N,z 1°71

IA

I¢N’Z(C)l Cz(el)(1+";") exp-Im z-¢, o =0 .

For ¢ € Q outside a compact set and ¢ again sufficiently small
(y=ah) & > elgl |

hence there is a constant K such that for ¢ € Q
-Im z-z + ah:& < K - el¢l,

since Inl is bounded in . Now (9.3) follows when a > 0 and for a = 0 it

follows by replacing € by le. []

With the aid of lemma 9.1 and formula (8.3) the Newton series is
derived for functions f belonging to Egp(HQ,TC) given in (8.6), where HQ is
defined by (9.2):
1z-§—ah’c-sh-c> -

f(z+i(s+a)h) = <uC,e
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<e—ah-§u , lim et? ¢ z (E)(e h.C—l)k>
N->eo k=0
v -ah . h k
(9.5) = 1@ <™, TS -
=0

z (i) <e—uh-c(e-h~c_])ku elz'C> = z (i) Akh f(z+iah)
k=0 k=0 1

valid for z ¢ R™+iC, he C, Ihl < b, Re s+a > 0, a > O arbitrary. The

sequence

o~ =

-ah*z, -hez_ .k
() e MRS u

k=0 ¢

converges weakly in A(Hm+O;C)' for some m depending on u, which depends

on £, and since A(Hm+O;C) is a Montel space (see (8.2)), this sequence
converges strongly in A(Hm+O;C)', hence according to (8.7) the series (9.5)
converges in the topology of E;p(HQ,TC). Thus, reminding (8.5) we get, when
f satisfies

(9.6) Vk,Vy ¢ C. with Iyl > 1/k: [|£f(2)]| < Mk exp Hm(z),

k

for Re s > -~a with a > 0, h € C with Ihl < b:

Ve > 0, V& > m, Vp, H’NO(E,Q,,[)) = N](S), Vz € ]Rn"‘i(l/PW"‘C), VNZNO
9.7) N )
|£(z+i(s+o)h) = ) (5) 85 £(z+iah)| < € A(s) exp H, (z) ,
k=0 k ih L
where N](s) is determined by (5.1) [14] and A(s) by (5.4) [14].

Replacing z+ich by z in (9.5) we see that the Newton series

(9.8) f(z+ish) = ) (%) 25 £(2)
k=0 k ih

valid for y € nw+C, h € C, Ihl < b, when Re s > -a, a > 0 depending on n > 0
and h, such that y-oh ¢ Sw+C for some § > 0, converges according to

Mo

v

Ve > 0, V2 > m, 3N (c,8) 2N (s), Vz ¢ R™+i(nw+C), WN
(9.9)

N
[£(z+ish)- | (§) A5, £(2)| < e A(s) exp Hy(z-ioh)
k=0
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We restate the results in

THEOREM 9.1. Let h € C with Ihl < b and let £ be an element of E;p(HQ,TC)
where Ho i8 given in (9.2). If o > 0 Zs such that y-oh e Sw+C, § > 0, when
y € nw+C for some n > 8, then the Newton series (9.8) is valid for this y
and h, when Re s 2 -a. The series (9.8) converges absolutely in one of the
norms of E§p(HQ,TC)0r, more precisely, it converges according to (9.9).
When Re s 2 -o with a 2 0 arbitrary, the Newton series (9.5) holds for all
y € C, h e C, Ihl < b; then the series (9.5) converges absolutely in the
topology of E;p(HQ,TC) or, more precisely, it converges according to (9.7)
when f satisfies (9.6). In both cases (9.5) and (9.8) converge uniformly

in s on compact subsets of {s | seC, Res > -a}.

Using (8.8) and (8.9) as in [14] section 7 we can derive the Newton
series (9.5) for functions f satisfying

-m

Vk,Vy € Ck: [£(2)] < Mk(l+"y" ) exp Hm(z).

This series holds for z ¢ nfhd.c, h ¢ C and Re s+a 2 0, o 2 0 arbitrary and

it converges in the topology of D%(a;C), namely according to

Ye > 0, V& > m, Vp, ENO(E,Q,p)E:N](s), VzeﬁRn+i{CpU {1/pw+C}},

VNZNO

| £ (z+i(s+a)h) - g (;) £(z+ich) | < ¢ A(s) (1+lyl " S)exp H(2),
k=0

where t = m+n+2 if o > 0 or t = m+n+3 if o = 0. This yields the convergence

of the series (9.8) similarly to section 7 [14].

Actually, theorem 9.1 gives the condition f should satisfy in
order that the Newton series holds when h ranges in a given domain. How-
ever, the function HQ(z) (formula (9.2)) arising in condition (9.6) is not
given explicitely. This would be quite complicated (see [10] for entire
functions and h complex). Therefore, we now start with a given class of
functions and determine the domain of h the Newton series is valid in. For
simplicity we will not give the largest possible domain, but still we get

a considerable generalization of theorems 7.1 and 10.1 of [14].
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e hrt

The domain of convergence Q = {z | | 1| < 1} is determined by

-h+& < log(2 cos h°n)

for h ¢ R%, see 4.1 and figure 4.1 of [14], here figure 9.1 when k = O.
-h.n

figure 9.1
Figure 9.1 gives the component of Qh that contains the origin. We approximate
this domain from the inside by
1
(9.10) {z | —-;—Tr h*& + log2 h°n <%TT log2 when ~h+£> 0 and |hen| < 37

when -h*¢§ <0} c Qh.
Now let a convex homogeneous function #(z) be given on R™+i C with C
a convex open cone in Egh such ‘that a(0,x) exists for X ¢ pr R". This

function determines an open set { by
(9.11) Q = int{z | -Im z°¢ < a(z), ze R™+icC}.

Let {ém(z)};=1 be an increasing sequence convex homogeneous function with
limit 3(z) and with am(z)+em < a(z), z € pr TC, for some €n > 0. Let Qm be
the domain determined by the function a . Then from (9,.,10) and (9.11) it
follows that @ < @, when h € C satisfies

h
1 1
. §1T 10g2 -j-w 1
(9.12) Inl < mln{ - — = f .
é(gﬁﬂhilogz h) a(0,%h)
Hence in that case Qm c Q. for all m and we obtain

h
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COROLLARY 9.1. For functions f e E§p(a;TC) the Newton series ig valid, when
h € C satisfies (9.12).

However, when a is a rather constant function, a better condition for

Ihl than (9.12) is obtained by approximating ©, from the inside by

h

{z | (h-£)2+(h'n)2 < 1og22 when -h+*£ >0 and |hen| < log2

when -h+£ < 0} c Qh'

A

This inclusion follows from log22 < log2(2 cos v)+v2, [v] im, which is

true because

+

10g22-1og2(2 cos v) = (log2 - log2 cos v)(log2 + log2 cos Vv) <

< log2°(2-2 cos v)°2 log2 < v221og22 < 0.98 v2

IA
<

For 7 ¢ Qm and h € C such that -h*§ > 0, we get
(h+£) %+ (h*m)? = =(=h*E)h+E=(-h*m)hen <€ & ((~hE)h, (-hen)h) =
= Il {(h-g)"+(h°n)"}* a_((-h-&)h, (-h°n)h),

hence

{(h.g)2+(h.n)2}% < Il am(&ﬁjéﬁ)

for some a ¢ R’ and B ¢ R. This is smaller than log2 when we require that

(9.13) Inl < min, = —oBZ_ .
(a,B)e(R ,R) a(ah,Bh)
a2+82=]

In case £ ¢ @ and ~h*g < 0, Jhen] < Il am(O,ih), so that |h*n] < log2 if
h satisfies (9.13). Thus for h € C with (9.13) satisfied, the domain  (9.11)

is contained in Qh'
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COROLLARY 9.2. For functions f ¢ E;p(a;TC) the Newton series 18 valid, when
h € C satisfies (9.13).

For example, when a(z) is a constant a on pr(ﬂfhd_C), the Newton series
holds for h ¢ C with Ihl < log2/a, if the function f satisfies

Vk: |f(z)]| < Mk exp am"zﬂ, y e C Iyl > 1/%, a_ < a.

k’

Nl

This is a better bound than condition (9.12) since lﬂ 1og2{(%m)2+10322}_ <

< log 2. This condition for Ihl generalizes the one3dimensiona1 case of
NORLUND [13] p.237.

In sections 7 and 10 of [14] we have seen that the bounds for lhl were
determined by the value of the convex homogeneous function a on C at the
point h, namely Ihl < log2/a(h) when a(h) > 0 or Ihl arbitrarily large when
a(h) < 0, where the function f was of polynomial growth for lxl large. Here

the function f is of exponential growth also for llxl large and the bounds

for Ihl are determined by the values of a on
~ 0~ 2 2
{Bh+ioch | 20, Be R, o +B =1},

see conditions (9.12) and (9.13). This bound is always positive and finite,
except in one case, where the Newton series is valid for h ¢ C with [l
arbitrarily large, namely for functions f of exponential type, holomorphic

in Rp+iC, satisfying
- 2, 2.}
Ve > 0: |f(Bh+ich)| < Ma exp e(a"+B87) %, o >0, Be R,

This generalizes the case that a(ﬂ) < 0 in sections 7 and 10 of [14].
Finally we consider the case a < 0 more carefully and we will find that

in that case too the Newton series (9.8) is valid for all y such that

y-oh € C, even if y does not belong to C. But first we have to modify the

meaning of all the terms occurring in the series. We assume in the remaining

of this section that for o < O

Re s 2 =a > m, ,



where m is a non-negative integer.

Firstly, we consider the series

o e k
=h- k k - —mh —she
.16 ] @EP D s {1 Genkm et e
k=0 k=0 m=0
for ¢ € Qh. We will show that we can rearrange some of the terms in this

series. Therefore, we remark that the series

o

I3 OGOHEDT™)

m=0 k=m m

is absolutely convergent for arbitrary numbers Am, m = 0,],...,m0, since

by (5.1) [14]

m m

0 o 0 o
1 k=N§(S) - = 3 gl k=Nl%s)_m1(S;m>r <
"0 2 sy, v ,o+mel
smzomlxml-um)lkzlk <>,
because a+m < 0. Hence
ek kem 5 s 0 k-m
(9.15) ]mzo kzm (D PEDT T A = k=£;+](k) mzo.(m)(-l) ot
m
¥ ki:(i) mgo(i)(-l)k'm . CITMTPR.

exists. Now we write (9.14) in the following way

K K
-sh+C . s k k=-m =-mh-C
e —0(S3A,se0esh_ ) = llm{ YOO ) )= e 1 -
! My Nowlk=0 K m=o ™
N ) o k
- k k=-m
- 7 O EET AT T ST GEnEma J} -
k=m+1 Ko™ T 20 K p=o ™ m
N K _
=1im ] U GHED T,

N k=0 m=0

77
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where oS exp-mh-z for m > m and Moo= exp(—mh'g)-km for m < m. In order
to compute @(s;kl,...,Kmo) we derive from (9.15) and from Re s > m
?? s E s—=m k mo s s-m
0(s3X 500esh )= A C) ) C DT = J A C)A-1)TT =0
1 mO =0 m m k=0 k =0 m m

for any numbers Am. Choosing Am = exp-mh°*Z we obtain

o k
0.16) = T @) ) (HEntTme™
=m0+] m=m0+]
@ k
=7 S T BeEnkqFra,
k=0 k m=0 m m

where [ exp—mh*¢ for m > m_ and Mo arbitrary for m < m.. In fact, we

have rearranged the terms in ?9.14) so, that first the sugmation is performed
over all the terms with exp-mh<z for m < m, and it turns out that the series
is independent of these terms.
Secondly, we give bounds to the functions
6,g(2) = i ) -0k,
k=0

when Re s 2 -a > my. From p.27 [14] we get for 7 ¢ Qh(e)

[0 (2) | < 1+B_{1+(~log p) "}

with p = I-}e exp-Re h°z, whence

-— Rh.
19 (2)] < 1+B_+C(s,a)e ™ ™ T TE,

Therefore, we may conclude as in lemma 9.1 that the series e--OLh'E ¢N Z(c)
H
converges in every space A(Hm+O;C), when y is such that y-och € C, h ¢ C and

that for UC € A(Hm+O;C)’ the series
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N
() e (eTRE Ky,

k=0 * :

converges strongly in A(Hm+O;C)'.
Now using (9.16) we derive that for f ¢ E;p(HQ,TC) the following

Newton series converges in the topology of Exp A(Q,TC)

© k .
Erisrad) = § () < ] (HnkmemhE e iz,
k=m_+1 mem_+1 E
0 0
o k
= I GOEDT £z,
k=mo+1 m=m0+]

Replacing z+ich by z and using the second part of (9.16) we find that the

Newton series

(9.17) f(z+ish) = J () o5 £(2),
k ih
k=0
where the asterix means that in the points {z+imh { m = 0,],...,m0} where
f is singular or undefined we may take zero instead of f(z+imh), is valid

for all he C, Ihl < b, Re s 2 -a >m, > 0 and all y such that y-oh ¢ C and

that it converges according to (9.9).0
It may happen that f ¢ E%p(HQ,TC) can be continued analytically outside
the domain n€1+ic, so that f(z+imh) is defined for all m. But in fact, this
is not essential and the series (9.17) has a meaning even if f is singular
or undefined in some points z+imh, m < my, as long as Re s > m. Obviously,
this is the generalization to several variables of the one dimensional case
given in NORLUND [13] p.237 in the first example 123.
We conclude with
THEOREM 9.1, When Re s > -a > my 2 0, theorem 9.1 also holds for all y
such that y-oh € C; then the modified Newton series (9.17) converges accord-

ing to (9.9).
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APPENDIX

PASSAGE FROM LOCAL TO GLOBAL RELATIONS

In this appendix we discuss some well-known properties in the theory

of functions of several complex variables. Except section I all sections are
devoted to the problem how to extend local relations between holomorphic
functions to global relations. As some readers may not be familiar with the
topics used to solve this problem, we will go more into detail than merely
copying definitions and theorems from litterature. We give those proofs that
show how to use the various concepts (as sheaves and cohomology) in deriving
the main result., In fact, since we want a quantitative result in section 7,
we perform the same steps there as in section IV of this appendix, then
taking care of estimates. Therefore, we also give the quantitative theorems
these steps start from. Almost the same method HORMANDER [7] uses in his

book is applied here and we repeatedly refer to this book.

I. DOMAINS OF HOLOMORPHY

In this section we give some definitions and theorems which are used
in section 2, the case of holomorphic functions on compact sets.

Let Q2 be an open set in ¢". We denote by A(R) the space of all holomor-
phic functions in Q with the topology of uniform convergence on compact sub-
sets K of Q2. All functions holomorphic in a certain domain © in Cn, n> 2,
might be continued analytically into a larger domain. Domains for which this
is not possible are called domains of holomorphy. Thus @ is a domain of holo-
morphy if and only if there exists a function f € A(Q) which cannot be con-
tinued analytically beyond Q, that is, it is not possible to find Q, and Q

1 22

with @ # Q] c Qz n © and with 92 connected and not contained in 2, and

f1 € A(Qz) so that f = f] in Q]. One can decide whether a domain Q is a
domain of holomorphy by other means too. We will discuss some of these means
which are most useful in applications.

For a compact set K of an open set Q we define the A(Q)-hull ﬁQ of K by

(A1) f(Q ={z | zeQ, |£(z)| < sup [£(z)| for all f ¢ A(Q)}.
zeK
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If we choose f(z) = exp z+z we find that ﬁQ is contained in the convex hull
ch(K) of K. Domains of holomorphy can be characterized by the following

theorem, th.2.5.5(ii) of [7]:

THEOREM Al. Q Zs a domain of holomorphy if and only <if from K cc Q it
follows that ﬁQ cc Q.

Hence convex open sets in ¢ are domains of holomorphy. Conversely

Bochner's theorem (th.2.5.12 of [7] or 17.5 of [16]) yields:

THEOREM A2. A tube domain R'+i 0, where 0 is a domain in R", is a domain

of holomorphy if and only if O Zs convex.

A more geometrical characterization of domains of holomorphy is obtained
by regarding them as pseudoconvex sets. These sets can be defined with the
aid of plurisubharmonic functions. Rather than giving a precise definition
(2.6.1 of [7]) we state some results. As in (Al) one can define a P(Q)-hull
ﬁg of K by requiring that f is plurisubharmonic instead of f ¢ A(R). Then
like theorem Al an open set Q is pseudoconvex if and only if from K cc Q it
follows that ﬁg cc Q. Since the function |f(z)| is plurisubharmonic if f is
holomorphic, domains of holomorphy are pseudoconvex., The converse is also

true (th.4.2.8 of [7]):
THEOREM A3. An open pseudoconvex set is a domain of holomorphy.

Actually, if K is a compact set of an open pseddoconvex set 2, then ﬁQ
equals -g (th.3.4.3 of [7]). Therefore, we will not distinguish between the
concepts of pseudoconvex open set and of domains of holomorphy and we assume

0 to be one or the other where necessary.

THEOREM AS5. Let Q be a pseudoconvex open set in € and K a compact subset
of Q, such that ﬁQ = K. Every function analytic in a neighborhood of K can

then be approximated uniformly on K by functions in A(Q).
This is theorem 4.3.2 of [7].

DEFINITION A5. A domain of holomorphy £ c ¢” is called a Runge domain if

polynomials are dense in A(Q), that is if every f ¢ A(Q) can be uniformly
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approximated on an arbitrary compact set in Q by analytic polynomials.

Since polynomials are dense in A(Gn) we might as well have considered
arbitrary entire functions instead of polynomials in definition A5. For a

compact set K we define

K={z l Ze€ Cn, |P(z)| < sup |P(z)| for all polynomials P}.
zeK
Then K = ﬁcn and compact sets K with K = K are called polynomially convexz.

However, we even have (th.2.7.3 of [7]):

THEOREM A6. Q 78 a Runge domain if and only if for every compact set K in Q
K = KQ.
This theorem is a special case (namely when Q, = Q and Q, = Gn) of the

1 2
following theorem (th.4.3.3 of [7]):

THEOREM A7. Let 2, < Q, be domains of holomorphy. Then every function in
A(Ql) can be approximated by functions in A(Qz) uniformly on every compact
subset of 2, if and only <f for every compact subset K of Q, we have

II. THE 3-OPERATOR

In this section we define the d-operator and give some existence
theorems.

Let u be a complex valued differentiable function in Q c ¢". We denote
z = x+iy € Q also as z = (y,x) with x ¢ R" and y € fo where now § is
regarded as an open set in R?n (the reason for not writing z = (x,y) is,
that, when we do so for ¢ = E+in ¢ Cn, z = (£,n), then -Re(iz-g) can be
written as inproduct between the vectors (y,x) and (&,n) in R?n).The com~
ponents of z are denoted by Zj = xj+iy. and z. = xj—iyj. When differentia-

J

tion takes place, we rather use Zj and Ej’ 3 ly...,n, as coordinates than

(y,x), so that
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Then we get

du

]
o~ s

[N

N

+
ne~—g

Q.

N

and with
0 = v 8u -
du = Z = dz, and du = z 35 dz.
we may also write
du = du + du .

When we write du = 0 in 2, we mean that every component §ju = au/an must

vanish in . These are exactly the Cauchy Riemann equations, so that we get

THEOREM A8. 4 function u in C](Q) 18 holomorphic in the open set Q if and
only if 3u = 0 in Q.

In the above 3u is a (0,1)-form. We call g a (0,1)-form in Q if it can

be written as
n —
g(z) = | g (2) dz,, zeQ,
k=1

where 8> k=1,...,n, are functions in Q. We will give a condition when a
(0,1)-form g can be written as 3u for some function u. A necessary condition
on g is dg = 0, where we define

o8
- k .-
ag = Z z g-z-— dzm A de

when the functions g, are differentiable. Here we may use the rule
(A2) dz_ A dz, = =dz_ A dEm, k,m = 1,...,n

and gg = 0 if the coefficients of all the dzm A dz, (m < k) vanish. It is

k
easy to see that for any u ¢ CZ(Q) 99u = 0, so that indeed 3g = 0 is a
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necessary condition. When Q is pseudoconvex, it is also a sufficient con-
dition. This we state in a theorem, which we give in a more general form,
namely for (0,q)-forms. We say that g is a (0,q)-form in @ (q = 0,1,...,n)

if it can be written in the form

-1
g = z gI(z) dz", z e
ITl=q

where I = (kl""’kq) is a multiindex and dz' = dEkIA...AdEk and where the
summatition is performed over all multiindices I with k1 < k2 < .. < kq
(for again we may use the rule (A2)). Thus g has (2) coefficients g1 We

define

g
5%1 dzk A dzI
1 |Il=q "k

g =

h~—8

k

where (A2) should be used. It is clear that 33 g = 0. Now the following

existence theorem for the 5—operator holds (cor.4.2.6 of [7]):

THEOREM A9. Let the coefficients 81 of the (0,q+1)-form g in the pseudo-
convex open set Q be Cw—functions and let 3g = 0. Then there exists a

(0,q)=form u with Cm-coefficients in Q such that 3u = g.

Next we state a similar theorem, where besides the existence of u also
estimates of u in terms of estimates for g are given. We use the measure
e—¢dA, where d\ is the Lebesgue measure in Gn, and ¢(y,x) is a plurisub-
harmonic function. We do not give the definition of a plurisubharmonic
function (see 2.6.1 of [7]), but we merely state that a convex function
4i(y,x) is plurisubharmonic, that 10g(1+"z"2) is plurisubharmonic and that
a¢+ByY is plurisubharmonic for a =2 0, B = 0 whenever ¢ and ¢ are plurisub-
harmonic. These facts will be sufficient for the applications we make. For
a (0,q)-form f in @ (q = 0,1,...,n), where the coefficients fI are locally

square integrable functions, we write

lf(Z)lz = |fI(Z)|2, z e
[TI]=q
and
HfH¢ = J 1£z) 12 (%) an(ay .
Q
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We remark that for such an f we must take the weak derivative in 5f, thus
derivatives in distributional sense. Then we state the following theorem

(th.4.4.2 of [7]):

THEOREM A10. Let Q be a pseudoconvex open set in G and ¢ any plurisub-
harmonic function in Q. For every (0,q+1)-form g with locally square
integrable coefficients, with Hg"¢ finite and with 3g = 0, there is a (0,q)—
form u in Q with locally square integrable coefficients, such that 3u = g
and

2 °

[ lu(z) 12 e (14120272 an(z) < gl

Q

Here u depends on ¢, when the right hand side is finite for more than one

function ¢.

ITI. ANALYTIC SHEAVES

In this section we discuss some properties of analytic sheaves and we
formulate the main problem of this appendix. We do not give a general
definition of a sheaf on an open set Q in m“, but we just give the properties
we need in this paper. A more complete description can be found in [6] or [7].

For z ¢ Q@ we denote by Az the set of equivalence classes of functions f
which are analytic in a neighborhood of z, under the equivalence relation
f ~gif f = g in a neighborhood of z in Q. The residue class fz of £ in Az

is called the germ of f at z.]) It is clear that Az is a ring. Let

D Since an analytic function is determined completely when it is given in an
open set, the residue class of f is trivial: it consists of f only. But
when we consider the restriction of f to a variety V in Q, we get a sheaf
on V (V is a simultaneous zero set of holomorphic functions in ) and the
equivalence classes are no longer trivial, see [6] def.IV D.5, p.143 and
see also section VI. Also, when we consider C -functions instead of ana-
lytic functions, it has sense to define the germ of f at z as a residue
class,
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where the rings Az are considered as disjoint sets. Furthermore, let the

collection of subsets of A of the form
{fz I Z € w<c Q, where w is open and f ¢ A(w)} ,

where w runs over the collection of open subsets of @ and f runs over the
elements of A(w), be a basis for the topology of A. Then for every open sub-
set w of Q and every f ¢ A(w) the map ¢ from w into A with ¢(z) = fz is

open and continuous.

Let m be the map from A into 2 which maps Az onto z. Then m¢ = identity.
In general we call the image of a subset U of Q under a continuous map ¢:

U > A, with m¢ = identity, or the map ¢ itself, a section of A over U. The

set of all sections of A over U is denoted by I'(U,A). In fact an element of
r(u,A) is the restriction to U of a holomorphic function in a neighborhood

of U in Q or if U itself is open, it is a holomorphic function in U.

The space A is an example of a sheaf on 9. Since Az is a ring for each
z € 0, we can consider a sheaf F such that Fz is an Az-module for each ze
and such that the product of a section in A and a section in F is a section
in F. Such a sheaf is called an analytic sheaf. In particular we will con-
sider ideals in Az and modules in Az. Since the ring Az is a noetherian
ring ([7] th.6.3.3 or [6] th.II.B.9) the ideals in Az and the modules in Az
are finitely generated. k

For example, let U be an open subset of @ with # # U # Q and let an
analytic sheaf F be given by Fz = Az if z € U and Fz =0 if z € Q\U. A
section of this sheaf over a connected open set intersecting \U must be
zero by the uniqueness of analytic continuation. In any point z € 9, Fz is
finitely generated, but in any neighborhood w of a boundary point of U in
F is not finitely generated by the sections over w.

Thus although Fz is finitely generated in any point z ¢ §, we cannot
always use the same generators for all z in a neighborhood of any point.
However, we consider sheafs where this property indeed is satisfied, Namely,
an analytic sheaf F is said to be locally finitely generated if for every
given point in Q there exists a neighborhood w in @ and a finite number of
sections f],...,fq ¢ T'(w,F) so that Fz is generated by (fl)z""’(fq)z as

an Az-module for every z ¢ w. In particular we will consider locally finitely
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generated subsheaves F of AP, so that then in the above definition for
k=1,...,9 fk ] ’
j=1l,.e.,p with (fk)z = (fk(z),...,fk(z)).

Let F be a locally finitely generated analytic sheaf, let fl"”fq be

is a p-tuple of analytic functions fi e A(w) in w,

sections over an open set U of @ and let for any z ¢ U

k -
: g (fk)z = 0}.

I >0

_ 1 q q
Rz(fl,...,fq) = {(g ,e00,87) € Az | )

Rz is a submodule of Az, called the module of relations between f],.,.,fq

at z. Then

R(f. ,eeeb,f ) = U R (£,,...,f
(£, Q= U R )

is a subsheaf of A% on U, called the sheaf of relations between fl""’fq'
A locally finitely generated analytic sheaf F is called a coherent

analytic sheaf, if R(f],...,fq) is locally finitely generated for all Ucg,
all fk e T'(U,F), k = 1,...,q and all q. When F is a locally finitely gener-
ated subsheaf of Ap, the last condition is always satisfied. For by Oka's
theorem ([7] th.6.4.1 and th.7.1.5 or [6] th.IV,C.1 and IV.B.7 and 8) every
locally finitely generated subsheaf F of AP is coherent; that is for any
point in U ¢ @ one can find a neighborhood w < U and finitely many elements
GpavnesGy € TGW,R(E ey f)) (thus for L= 1,...,r G, = (Byer0r8]) ¢

€ A(w)q and for z € w
gkj .
(A3) gz(z) fk(z) =0, i =1,00e5D »
k=1

£ = l,.0.,T), so that Rz for every z ¢ w is equal to the A?—module generated
by (G])z""’(cr)z’
If two of the sheafs of the exact sequence (that is the image of one

map is the kernel of the next map)
O+-F->G->H->0

are coherent, then the third sheaf is coherent too, see [6] th.IV.B.13.
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From now on we only consider coherent analytic sheaves and we do not state
this all the time.

Let now in (A3) the functions fi € A(U) be polynomials ij = fi,
j=lyieesps k=1,...,q9 and let U = Q. Then we consider the sheaf homo-

morphism
p: A9— AP
defined by mapping (g](z),...,gq(z)) € A: to

7 k ; k AP Q
(kzl P (2) g (Z)""’k§1 P 8 (2)) € AL, z e Q.
We have seen that the image and the kernel of this map are coherent analyt-
ic sheaves and in particular it follows from the proof of the Oka theorem
(th.6.4.1 of [7]), that the functions gﬁ in (A3), 2 = 1,...,r, k = 1,...,q,
can be chosen to be polynomials. Thus the kernel RP of this map is generated
by the germs of all q-tuples Q = (Q],...,Qq) with Qk polynomials for
k=1,...,9, such that

q
(A4) Z Pa(2) Q2 =0, zeaq.
k=1
Furthermore, since the polynomial ring (over C) is noetherian, the module
of all Q = (Q],...,Qq) with Qq polynomials satisfying (A4) is finitely
generated over the polynomial ring. Thus since all the generators, that is
in a neighborhood of all the points of Q, are polynomial q-tuples Q, RP is
generated by a finite number of such Q, say by Q2 = (QIZ""’QIQ)’

2 =1,...,r, where ka is a polynomial. Summarizing we get the exact

sequences of sheaf homomorphisms
qP

(A5) 0o— RF—+ Ai— F— 0 ,

where F is the image of P and

r
(A6) 0~ Ry~ A Q R 0.
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A section f = (f],...,fp) in F is a p-tuple holomorphic functions in
2, thus fj e A(Q), j = 1,...,p, satisfying locally, that is in a neighbor-

hood W of each point in @,

q
Y s s .
(A7) £5(2) kél P2 g (2),  zeuwg, g oehb), j=1,...p.
In w, N o the functions gﬁ}zA(wS) are not necessarily equal to the functions
gk st . We
would like that h™~ = 0, thus that (A7) holds globally, that is we would

like to find 8 € A(Q) such that (A7) holds for all z € Q. The main problem

€ A(wt), for they may differ by a section nSt in Rp over w_ N w

of this appendix is to prove that such functions 8> k=1,...,9, exist.
We can formulate this as: the problem is to prove that the following

sequence of sections is exact
(A8) 0 — T(2,R,)— re,AY -2 r,F) — o.

That the sequence is exact in the first two places is clear, but our atten-
tion is paid to the exactness in the last place, thus to prove that the

map P is surjective. We will find that (A8) is indeed exact, when Q is
pseudoconvex., Then starting with (A6) we would at the same time have solved

the problem:

THEOREM All, If the fUnction-fk e A(Q) satisfy

q
Z ij(z) fk(z) = 0, ze Ry, J=1ly00usp
k=1
then there are functions g, € AQ), 2 = 1,...,r, such that
r
£,(2) = QZ, Qe (2) g, (2), zeQ, k=1,...,q,

when Q 1s pseudoconverx.
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IV. COHOMOLOGY GROUPS WITH VALUES IN A SHEAF

In this section we define cohomology groups and show how they are used
to solve the problem formulated in section III,

We consider the sheaf F as an additive commutative group.
Let U = {Ii}ieI be an open covering of the open set £ in €. If p is a non-
negative integer, we denote by s = (so,...,sp) any elemenilin 1P+1 and we
set US =Ug n...n USP. A map assigning to every s ¢ IP"' a section
cg € F(US,F) so that cg is an alternating function of s (that is, cg changes
sign if two indices in s are permuted) is called a p-cochain of the
covering U with values in F. Here we define T'(f,F) = 0, the abelian group

with one element. Then the set CP(U,F) of all p-cochains is an abelian

group.
A map & from CP(U,F) into Cp+](U,F), called the coboundary operator, is
defined as follows: if c ¢ CP(U,F), then for s ¢ Ip+2
p+1 3
(6C)S = 'z (-]) CS ..lg'.'.s
j=0 0 ] ptl

where the notation §j means that the index sj should be removed. We intro-

duce the group of p-cocycles

zZPU,F) = {c | ¢ e cPU,F), sc = 0}
and the group of p-coboundaries

BP(U,F) = {6c | c e cPNqu,P),

where C_] = 0. Since for all c ¢ CP(U,F) 86c = 0, BP is a subgroup of zP.

We can, therefore, define the quotient group

HP(U,F) = zp<u,i>// ,
8% (U,F)

which is called the pth cohomology group of U with values in F.

For example, if ¢ is a O-cocycle, then ¢ -c. =0in U n U_ for all
- So 5 So S
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s, and Sy» which means that there is a section f ¢ T(Q,F) with the restric-

0
tion cg to Us for every s. Hence

(A9) 10U, F) = ree,F) .

Let V = {V.}. be another covering of Q, which is a refinement of U.
This means that there is a map p from J into I such that V cU (J)
every j € J. If ¢ € cP(U,F), we can then define a cochain pc € CP(V F) by

setting (pc) equal to the restriction of cp(s) y to V . One easily

«eop(s
sees that p commutes with the coboundary operators iil cP w, F) and Cp(V F)
and, therefore, it induces a map p from HP(U,F) into HP(V,F). This map p
is independent of the choice of p (see prop.7.3.1 of [7]).

Let E be the sheaf of germs of c”-functions on 9 (see the footnote on

page 85).

THEOREM Al12. Let F be a sheaf of E-modules on Q, then BP(U,F) = 0 for p 2 1

and every covering U of Q.

PROOF. Let ®v be a partition of unity subordinate to the covering U, that is

3 3 © . . . 3 . .

i) ¢v is a C -function with compact support in U; for a certain index 13

v

ii) all but a finite number of functions ¢v vanish identically on any com-
pact subset of Q;

‘o - Q.

iii) g ¢v 1 on

For c e zP(U,F) we put, when s ¢ IP,

= z ¢
v
which defines a cochain g in Cp_](u,F). Since with s € Ip+]
p+l
6c), =c + 7 (-3t R =0
is s . i s....8....5
v j=0 v 0 j
we get
p+1 3
(6g)s - z .Z ¢v(—1) i s ....8....5_ z &Y €s T Cs°
v 3=0 v 0 ] v

Thus c¢ is a coboundary. [
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Let F, G,  H be three sheaves of abelian groups on 2 and let ¢ and Y be

sheaf homomorphisms such that the sequence
o—Fheh oo

is exact (thus ¢ is injective, y is surjective, the kernel of ¢ is the image
of ¢). This defines exact sequences between sections; thus we get the exact

sequence
o— cPw,F)— cPwW,6)— cP,H) ,

but the last map is not necessarily surjective. We denote its image by
CE(U,H) and call it the group of lZftable cochains. We then have an exact

sequence

o— cPw,F)— cPW,G) — c{a’(u,H)—+ 0.

Since § commutes with v, CE(U,H) is mapped by § into C§+1(U,H) and we can

define the cohomology groups

wP (U, H) = zp/ ,
a a/ gpP
a

where Zg(BZ) is the group of ali liftable p-cocycles (coboundaries of liftable

(p=1)-cochains). Then we have the commutative diagram with exact columns:

i’ | i’

c‘l’"‘w,F)—i—» ci’(u,F)—G» ci’”(u,ﬁ
¢ 6 ¢
cll’"(u,e) S CI(U’G) SN cl’”(u,e)
v v v

Cg'](u,H)—(-S——-r cP ) S, cg”(u,m

l | |

0] 0 0
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Now we construct a map 6* from HZ(U,H) into Hp+1(U,F) as follows: If
fe Zp(U H), then f = yg for some g € Cp(U G) and Yég = Syg = 8f = 0, hence
= ¢c for some c € cP* ](U F). We put § *f = ¢ and we have ¢8c = S¢c =

= 66g = 0, hence 8c = 0, that is c ¢ Zp+](U,F), since ¢ is injective.
Another representative of f in HP(U H) differs from f by a coboundary

f1 € Bg(U,H). Then f] wgl for some g € o (U G) and also f] = §f' for some

f' ¢ Cz—l(U,H). Furthermore there is a g' ¢ Cp U,G) with yg' = £' and we

have w(gl—Gg') wg]-éwg = —6f' = 0, thus g]—ég' = ¢c' for some c' ¢

€ CP(U F). Let c, = sc' e BPT ](U F), then Gg] = §¢c'+85g" = ¢éc’ ¢c], hence

6%, = ¢, e8P, F).

Thus indeed &~ is a homomorphism between the cohomology groups

*

(A10) 6%: HP(U,H)— LA

The kernel of 6° consists of those f ZP(U H) mapped by §* on cobound-
aries c ¢ BPY 1(U F). For such an f we have 8*f = ¢ = 8c" with c" ¢ CP(U,F);
hence y(g-é¢c") = Yg = £ and §(g-¢c'") = ¢c=¢8c" = 0, thus £ is the image
under ¥ of a cocycle in Zp(U,G). Conversely, the image f under ¥ of a co-
cycle g in Zp(U,G) is mapped by §* to 0, since O = 8g = ¢6*f and ¢ is in-
jective.

The image of 8" consists of those c¢ in Zp+1(U,F) mapped by ¢ into co-
boundaries of Bp+](U,G), because it follows from the construction of 8" that
¢6*f = ¢c = §g. Conversely, if c ¢ Zp+](U,F) is such that ¢c = 8g for some
g € cP(U,G), then O = yoc = ydg = Syg, thus Yg = f is a cocycle in ZE(U,H)
with 8"f = c.

Therefore, we have obtained an exact sequence

* * * *
(A11) o— w0, F) 2 wOw,6) L Hg(u,H)—“—> ulw,F) 2= ulw,o
* *

LN H;(u,m—L» "2, F) — ... ,

where the maps ¢* and w* are obtained from ¢ and ¥ in the obvious way, using
the fact that the maps of cochains defined by ¢ and ¢ commute with the co-
boundary operators.

We shall now prove that existence theorems for the g—operator are equiv-
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alent to statements involving HP(U,A).

THEOREM A13. When Q e C" is covered by an open covering U = {Ui}i where

eI’
each U 18 pseudoconvex, then for p 2 1 HP(U,A) is isomorphic to the quo-

tient space

{f | £ <s a (0,p)-form with C -
coefficients in Q and with
3f = 0}

{3g | g 28 a (0,p-1)=form with

C -coefficients in Q} .

PROOF. Denote by Eq the sheaf of germs of (0,q)-forms with C -coefficients
and by Zq the sheaf of germs of (0,q)-forms f with C -coefficients and with

3f = 0. Then it follows from theorem A9 that the sequence

0— 7 —E 257 —5o0
q+l

is exact and that this also holds for the sequence of sections
o— cP,z y— cPW,E )— cPWU,z__)y— o
b q 3 q b q+] b

) =

since intersections of pseudoconvex sets are pseudoconvex. Thus CZ(U,Zq+1

= CP(U,Zq+1) and using (All1) and (A9) we get the exact sequence

1 1
0— F(Q,Zq)—~+ P(Q,Eq)——+ F(Q,Zq+])——+ H (U,Zq)—~+ H (U,Eq)-—+
1 2 2
— H (U,Zq+1)——+ H (U,Zq)-—+ H (U,Eq)——+ cee o

Theorem Al2 yields Hp(U,Eq) = 0 for p 2 1 and, therefore, we get

WP,z ) = HP”(U,Zq), p 21

q+l

and

I
H (U,Z ) = 12,2 ) .
d a*] /F(Q,Eq)
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So using theorem A8 we get for p > 1

R

P - yP p-l ~ ~ gl ~
BP(U,2) = BP(U,Z) = B” (U,Z)) = ... =H (u,zp_]) =

IR

P(Q,Zp)

r(sz,Ep_l) . 0

In particular, it follows from theorem A9, that if Q itself is pseudo-

convex

v

(A12) P (Uu,A) = o, p

for all open coverings U of @ consisting of pseudoconvex sets.

This result holds more generally for all coherent analytic sheaves F,
which is Cartan's theorem B (th.7.4.3 of [7] or th.VIII.A.14 of [6]). We
will prove this only for subsheaves F of AP that are finitely generated by
polynomial vectors in A(R)P ]), which is all we need in this paper. For the
general case we only indicate where the proof follows the same pattern, which
will be sufficient to show why F should be coherent. Moreover, we assume
that the covering U is such that more than M distinct sets Ui e U have empty
intersection, although this requirement is not necessary (see the footnote

on page 98).

THEOREM Al4., Let Q be an open pseudoconvex set in ¢®, let U be an open
covering of Q consisting of pseudoconvex sets such that the intersection
of more than any M elements of U Zs empty and let F be a subsheaf of AP

on Q finitely generated by polynomial vectors. Then

5P (U,F) = 0 for p = 1.

1)

The fact that a coherent analytic sheaf F is generated in each point by
sections over Q is Cartan's theorem A (th.7.2.8 of [7] or th.VIII.A.13
of [6]). Here we only assume that there is a finite number of sections
generating F in all points of Q and that these sections consist of poly-
nomials.
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PROOF. Let F be generated by hl?""h e T'(9,F), thus each hk = (hl,...,hi) €
€ A(Q)r, k=1,...,q9 and each hi not ij is a polynomial. Let us suppose
that the problem of section III is solved, that is the sequence (A8) is
exact when @ is pseudoconvex. This means that the cochains in CP(U,F) are

liftable, hence from the exact sequence

0o—R— A B F—o0

P

we get the exact sequence
0— cPU,R,) — cP(U,AY — cPWU,F)— o .
As in (Al1) we obtain the exact sequence
#P (U,AY) — wP(U,F) —> Hp+1(U,RP)——+ P, A%

From (A12) it follows that the right and left hand terms are zero for p = 1,
thus

HP(U,F) = Hp+](U,RP) i

From (A6) it follows that also_RP is a sheaf which is finitely generated by
polynomial vectors. Thus if we have shown that Ht+](UtG) = 0 for every

sheaf G finitely generated by polynomial vectors, it follows that Ht(U,H)==O
for every sheaf H finitely generated by polynomial vectors, t > p, in partic-

ular that Hp(U,F) = 0. But HM(U,G) = 0, hence the theorem is proved. [J

The above proof is based on the fact that when F is a sheaf which is
finitely generated by sections h],...,hq, then also R(h],...,hq) is a sheaf
with this property. For that reason we had to require that the vector hk
consists of polynomials (see (A6)). In the general case, F is just a coherent
analytic sheaf. Then it follows from Cartan's theorem A (see footnote on
page 95) and the Heine-Borel theorem that F is finitely generated by sections
h],...,hq € T(Q,F) in the interior Q' of any compact subset of Q. Let U'

be the covering of Q' consisting of the sets Ui =7U, n Q. Since F is coherent,
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also the sheaf R(h],...,h ) is finitely generated in Q' by sections over @,
and the above shows that Hp(U',F) = 0 for p > 1, For the passage from U' to
U see parts (a) and (b) of the proof of theorem 7.4.3. in [7].

We still have to prove that (A8) is exact. Briefly we can say that by
definition all cochains are locally liftable and that by theorem Al4 locally
liftable cochains are globally liftable in 2, when Q is pseudoconvex. Let
us investigate this statement more precisely.

We assume that either @ is an open pseudoconvex set whose closure is
compact in the open pseudoconvex setQ'and that F is a coherent analytic
sheaf on @', or that © is an open pseudoconvex set and that F is a coherent

analytic sheaf on  such that F is generated in any point of Q by finitely

many sections HJ, j=1,...,9, over 2, such that R is generated in any
point by finitely many sections Si = (S%] ...,SJq), j= 1,...,r, over
£,..., such that RS is generated by finitely many sections SJ =

r .
= (SJI,..., ] m_1), = ,...,rm, over @, m = 2,3,... . For example, when F

is generated by polynomial vectors, we deal with the last case. In both
cases we can find for any zJ € 2, any m and any feI(Q,F), (c ). € (Rsk)z ,

= 0,1,...,m—1, S0 = H, an open neighborhood wJ of zj in Q, such that in
the following sequence

m rm Sm m, ‘m-1 Sm—l m T Sl
(A13) A(wj) —_— A(wj) —_ . . . > Alw.) ——
md H m
Alwy) —— T(wj,F)
f| , belongs to the image of H and ck € A(w ) belongs to the image of Sk+] for
k J0 l,000,m—1 (r = q). mJ depends moreover on f and cl, k =0,...,m1 and

it is clear that the above property also holds with wr replaced by an open
m OIS J

m m+1 . .
subset of wy, hence w, = < w.. Now | z. € Q} is an open covering

of  and U?) is an open refinement of U(k) when £ > k; we denote the

restriction map from Cp(U(k),G) into Cp(U(z),G) induced by the map from U(g)
(k)
u

into by p (G is any sheaf on Q).
K, 2

RO

Actually we will show that there is an open refinement V of such
that in the exact sequence (All1) f is liftable and that s~ maps f onto a
coboundary of B](V,RH), that is 6 f = 0, so that H is surjective. The proof

is in fact the same as that of theorem Al4, only we develop the sequence
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(A11) explicitely using (A10).

0. 0 0 0,70
Let £ ¢ I'(Q,F), then f = ng in Wy for some gj € A(wj) , and we regard
f as a cocycle in CO(U(O),F). The set go = {g? I zj € 2} determines a cochain

r
in CO(U(O),A 0y, Let co = Ggo, then Hco = GHgO = 8f = 0, hence co is a
cocycle in C](U(O),RH) (in fact c0 = &*f by (A10) and (A5) with P = H).

A . . 1 1,,,(1) O . 0 1
ccording to (Al3) there is a g ¢ C (U LA ') with Po,1¢ = Slg . Let

c] = égl, then Slc] = GS]g] =0 IGCO = 0, hence c] € C2(U(]),RSI) (in fact
b
¢! = 6% c® by (A10) and (A6) with P = H and Q = S,).
0,1 X K (k) Tk 1
Generally we find cochains g e C (U*"",A ™) and cocycles
Ck = ng c Ck+1(u(k)’RS )’ k.= O’]’...,m s
k
. k _ k _ k=1 _
since Skc = 6Skg = pk_l,kﬁc 0, so that

k k+1

pk,k+1c = Sk_-l-lg > k = 0,1,-..,111—1

In the next section we show that any open covering of 2 has a refinement
consisting of pseudoconvex open sets such that the intersection of more
than M of these sets is empty. Let m = M-1 and let I/ be such a refinement

of U(m); we denote the restriction map from Cp(U(k),G) into Cp(U,G) by Hp
M1 _ o 1) M-1 M-1

Now ¢ , SO0 certainly we may write Py—1€ = 8¢ with
L cM'](V,RS ). Assume that for k < M-I
k Sk .k k
Pre = e, &t eC (V,RS ) .

k

Let gk = pkgk-ék, then ng = pkck—pkck = 0. Since Q is pseudoconvex, by

- T -
(A12) there is a cochain fk ] € Ck_](V,A k) with gk = Gfk l. Then we define

k-1 k-1 k=1 k-1
d = 8§, f" ', so that ¢ e C (V,Rsk_]) and
k-1 k=1 _ o .k _ K o ok _ k-1 _ k-1
887 = 5880 1 = 58 = 0SB ST = 0oy 18 Pr-1¢ -

D The Hilbert syzygy theorem says that Rsn= 0, hence ¢ = 0, see [6]

IV.C.th.4. So, neither here nor in theorem Al4 we have to require that
more than M sets of the covering have empty intersection. However, the
Hilbert syzygy theorem is not proved here,
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Thus this holds for all k, in particular for k = O:

0 .0 .0 0
Ppc = s&, e e C (V,RH)
(that is P is a coboundary, thus d*pof = 0). Hence we have
_ 0_.0 . _ .
f H(gk Cj) in Vj e V, k QO(J)
_ 0_,0 . _ .
f H(g2 éi) in Vi e V, 2 = po(l),
while
.0 = x0_,0 _ 0 _ 0 _.0_0
yields
0.0 _ 0.0 .
8 cJ = g,~¢ in Vj n V1 .

Thus there is a holomorphic vector function g ¢ A(Q)q with £ = Hg in Q,

namely for all j

0 0 in V. e V.

g =8 .\ —C.
DO(J) ] ]

So we have solved the main problem of this appendix:

THEOREM Al5. When Q is pseudoconvex, the following sequence is exact

(A8) 0 — T (2,Ry) — re,AY £ r@,F)— o.

We have proved theorem All too, so that the sequence (Al3) is exact for
any open pseudoconvex set w?. In the general case when F is not generated by
polynomial vectors, theorem A of CARTAN (see footnote on page 95) and con-
sequently theorem B, as we have shown, follow from the next result due to
CARTAN ([7] th.7.2.1.(ii)):

Let Q be pseudoconvex and K a compact subset of Q@ with K = ﬁQ (see (Al))
and let h],...,hq be sections over a neighborhood of K of a coherent analytic

sheaf F on a neighborhood of K, which generate F there. If f is an arbitrary
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section of F over a neighborhood of K, then there are g],...,gq analytic
in a neighborhood of K so that f = 2§=1 h g, there.

In section 7 we give a quantitative version of theorems Al4 and Al5,
when H is a polynomial matrix. For that purpose we need a quantitative
version of the above semilocal result., This is the following modification
of th.7.6.5 in [7], which is actually proved there (or th.III 3.4.(3) when

p=q =1 and the general case is contained in th.III 3.6 in [3]):

THEOREM Al16. For any polynomial matrix P, there is an integer t > 1, such
that for any neighborhood w of 0 and every u e A(tw+z)Y, z € ¢, there is

ave A(w+z)q with Pv = Pu and

(A14) sup |v(w)| £ C (1+||zﬂ)N sup |P(w) u(w)]| ,

wewtz we tw+z
where C 18 a constant depending on P and w (the smaller w the larger C) and
where N only depends on P. Here tw+z denotes {w | w = tz+z, Cew} and

MOIEED NI CIES

In section 7 we perform all the steps of the proofs in this section
again, then taking care of the bounds. The sets w+z. and tw+zj in theorem

Al16 in fact will be just the sets w? and w? ], respectively, in a quanti-

tative semilocal version of (Al3).

V. SPECIAL COVERINGS

In this section we show that any open covering of the open set § has a
refinement that satisfies properties (Al15)(i) and (ii) below. This is based
on a theorem of dimension theory, th.3,82,Ch.7, p.278 [4]. Moreover, we
construct a special covering of @ with refinements satisfying some additional
properties needed in section 7. The essential idea for this construction has
already been used by WHITNEY in [17], whecih can be found in [8] too.

Let Q be an open set in R" and let 0 = {Oa}aeA be an open covering
of Q. Each point in © has a bounded open neighborhood whose closure in R"
is contained in some open set Oa' Hence there exists an open refinement

of 0 consisting of open sets whose closure is compact and contained in Q.
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Since Q is paracompact, we can find a locally finite open refinement
v = {Vj};=1’ where each vj is compact and contained in @ (such a refinement
is necessarily countable, because Q is separable). According to [4] 7.2.th.3

and 7.3.th.13 V has an open shrinking W = {Wj}go= (which, therefore, is

1
also locally finite and Wj cc @), such that more than n+l1 distinct sets Wj

have empty intersection (that is the order of W is at most n). Since Q 1is
normal, lemma 1 to th.3,§1,Ch.5 [4] yields an open shrinking W' = {W3}§=]
of W such that the closure with respect to © of each wg is contained in
wj, but since ﬁj c Q, this yields W} c Wj for all j. Of course W' is a
locally finite open covering of order at most n.

For each j Wg is compact and contained in Wj and, therefore, we can
find finitely many open convex sets U. ., k = 1,...,m. with U. c W. and

. I,k J ik J

w! U
J

3,k such that more than M' distinct sets Uj K have empty inter-
b I

section, where M' is a positive integer independent of j. For example, this

m
j
< Upsy

can be done by covering W} by sufficiently small closed hypercubes in Wj
(so, that the vertices form a rectangular lattice) and by taking sufficient-
ly small convex open neighborhoods of these cubes. Then we get M' = 2n, but
it is also possible (by choosing sufficiently small convex open neighbor-
hoods of some cubes and sufficiently large convex open sets contained in

the other cubes) to obtain M' = n+l.

Since each point in Q has a neighborhood that intersects a finite
number of the sets Wj, this neighborhood also intersects a finite number of
the sets Uj,k' Furthermore, each point in Q is contgined in at least one
set W! and in at most n+l sets Wj, thus in at least one agd atéﬁost
M = (n+1)M' sets Us ke Uj’k}j=], K2
locally finite open refinement of 0 consisting of convex open sets, such

Therefore, the covering U = { is a
that more than M distinct sets of U have empty intersection.

. . n .
Since convex sets in € are pseudoconvex, we have obtained the

COROLLARY. Let Q be an open set in ¢" and let 0 be an open covering of 9.
Then there exists a locally finite open refinement U = {Ui}:=1 of 0 with
the properties

(i) for every i Ui is pseudoconvex and Ui cc Q,
(A15)
(ii) there is an integer M such that more than M distinct sets

in U have empty intersection.
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Now we construct coverings of Q that satisfy some additional properties.

Let Q be an open set in ¢" and let {Qk}:= be an increasing sequence of open

1
subsets with union Q and with

Vk, e =¢e(k): Qk(e) c Qk+]

where Qk(e) is the e-neighborhood of Qk.
Choose positive integers m with mo > Wy such that a cube with side
l/mk is contained in the ball with radius e(k), for k = 1,2,... and let

m0 = 1, Divide ¢" into a collection U' of closed cubes with side 1 (such

that the vertices form a rectangular lattice) and select those cubes con-
tained in Ql. Call the collection of these cubes Ué. Divide the remaining
cubes and parts of cubes of U' into a collection of cubes with side I/m1

and let U; be the collection of those cubes that are contained in 9

9
Generally when we have defined sets Ué,...,Ui_l of cubes, we define the set

Ué of cubes obtained by dividing the remaining cubes and parts of cubes of
U' into a collection of cubes with side l/mk and by selecting those cubes

that are c ained in Q .
hat ontained in K+1

Then the union of Ué,U;,... covers {2, since

1 ' ' '
of UO,UI,...,Uk. k 0

ees OT UL_I, since these cubes are all contained in Qk’ or it belongs to

K is covered by the union

For, a point x ¢ Q. either belongs to one cube of U} or
some cube of U'k, since any cube with side ]/mk containing x is contained

in 2 4+ Hence any cube in Uﬂ can intersect only cubes of Ué for ¢ = k-1,
k or k+1. Furthermore, the intersection of more than 22n distinct cubes is
empty.

Now we will define sufficiently small open neighborhoods of the cubes
of Ué,U',..., so that we get an open covering. Define the map o by mapping
a cube K' € UL to the enlargement of the interior of K' by a factor
]+mk/mk+], the center kept fixed. Then oK' = K is an open cube. Let for each

k Uﬁo) be the set Uéo) = {aK' | K' € UL} and let

(0) _ (0)
U =Yg U 7

4 (©

Then is a covering of Q that satisfies besides properties (Al15)(i) and

(1i1) the following properties for A = 0
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(A15) (iii) all the sets in the covering U(A) intersecting Qk have a minimum
size and are contained in § with 2(k) = k+3;
) (k)
(iv) when a set in U intersects Qs it intersects not more than
A) .
Néx) elements of the covering Uék), where Né ) 1s some number
depending only on k..
U(O) have a

The proof follows from the fact that two cubes Kj and Ki in
non-empty intersection if and only if a_lKj = K3 intersects u_lKi = Ki. To

prove this, assume that K! ¢ U Ki € Ué, 2 =2 k, thus 2~k = m=0 and that

k’
K} n Ki = (. Since cubes in U; can intersect cubes in Ué only when q = p-1,

p or p+l, the distance between K3 and Ki is at least

1 + 1 + ... 1 1

Meel ez +mk+m—12mk+1

when m = 2, or

1
M+

when m equals zero or one. The distance from the boundary of Kj to K} is

by definition of «

e 1. 1
Merr M Py

and the distance from the boundary of Ki to Ki is 1/(2m

(A16) %[m—]k— (1+

2+])’ so that the

distance between Kj and Ki is at least

I NS DR RS .

T2 T2 g 2 2 =
Me+1 T+ 1 Mevmel Mg+l T+ 1 Te+1

when m =2 1, or

0

1 1 1

Meer 2oy 2

0. Only in this case the boundaries of Kj and Ki might touch each

0

when m
other, but since Kj and Ki are open, Kj n Ki = f.

Now property (Al15)(ii) follows from the same property for the cubes of
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U(O) intersect Qk. If a_]K does not intersect

K does not intersect the elements of Ué,.,.,Uﬁ, hence K does not
éO),...uéO)’ the union of which contains Qk' Thus

K1’ hence a K is contained in Qk+2’ so that K is con-

.. . . -1_ .
tained in Qk+3' Thus K has a minimum size, namely the size of o K is at

least l/mk+2. Property (A15)(iv) follows from property (iii) and the same

Ué,U',... . Let the cube K in
Qk+1’ a
intersect the elements of U

a_]K intersects

property for U',U;,... .

Finally we construct open refinements U(A) of the covering U(O) satis-
fying besides the properties (A15)(i),(ii),(iii) and (iv) the following
properties

(A+1) . . )
(A15)(v) for each X U is a refinement of U and moreover each open

cube Kgx) € U(A) enlarged ZA_“

J )

contained in some Ki

u
the map p between the index sets of U(A) and U(U) with p(i)==iu

times with the center kept fixed is

€ U(U) for every u = 0,1,...,A-1; we denote

by PLas

?
(vi) when ng) € U(A) intersects 0 there are at most M u(k) indices

Kk’ A,
1p with pA,u(lp) =3, p= 1""’MA,u(k) (u > A).

Eventually by taking larger integers m , we may assume that each mer =
(0) _

= Pg+] M for some integer P4l 22, k=0,1,... . Let m m and let
() _ A ) ) _ (-1) Wk o=,

mk(x) _? Moy for A 1,2,..., then m, 2pk+>\mk and m 2 +1 3

(mk ) , k=20,1,..., will be the length of the sides of the closed cubes

y® u(®

the covering is constructed from similarly to the construction of

Namely, let K! be a closed cube with side (méx))—]
. ), ) . , ()

with a factor (1+mk /mk+l) of the interior of Ki will be a cube KA of U

as in the construction of U(O). Then U(A) satisfies the same properties on

RO

, then the enlargement

. So, let us assume that the coverings with the desired

900509

properties have been constructed in the same way as have been construct-

ed from closed cubes,

We divide the closed cubes Ki—l’ with side (mék_]))—], the sets KA—] €
€ U(A—l) are constructed from into (2pk+x) T closed cubes Ki with side

(méx))—] and the covering U(A) is defined as the set of open cubes KA being
the enlargement of the interior of the cubes Ki by the above factor,
k =0,1,... . Then the difference of two times half the side of K, and half

A

the side of Ki satisfies
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)
2[1(] +EEE__) __l__] -1 ! < ! = ]
z ) ) OO Y] 9 (A-1) °
e+ Mk e M Met1

where the right hand side equals the distance from the boundary of KA—] to

Ki—l according to (Al6). Hence two times KA’ with the center kept fixed, is

contained in KA—]’ so that property (A15)(v) follows. Furthermore, K!

A—1
)21’1 )21?1

cubes K! sets

)\’
From this and from property (A15)(iii) the above

contains (Zpk+k hence pA—l,A maps not more than (2pk+A

KA onto the same KA-]'
property (A15)(vi) follows.

REMARK. Although we use property (A15)(iv) in section 7, this could be

avoided. However, the coverings U(k) satisfy (A15)(iv) anyhow.

VI. NULLSTELLENSATZ AND FUNDAMENTAL PRINCIPLE

In this section we discuss Hilbert's Nullstellensatz, Ehrenpreis'
generalization and fundamental principle.

Consider an ideal I; in Az generated by the germs (hl)z""’(hq)z at z
of functions hl""’hq holomorphic in some neighborhood U of z. We define

the set
V= {w | h](w)=0,..., hq(w)=0, we U}

and let Vz be the equivalence class of V under the equivalence relation

V ~ W if there is a neighborhood w of z with Vnuw = Wn w. Vz is called the
germ at z of V. It is clear, that the ideal I; is not trivial omnly if

hl(z) = ... = hq(z) = 0. When fz € I; we denote by f a holomorphic function
in a neighborhood of z such that fz is the germ of f at z. Then for any

fz € I;, z ¢ V, there is a neighborhood w of z with
f(w) = 0, we Vnuw,

Conversely, let us consider the ideal Iz in Az of all the germs at z of

holomorphic functions vanishing on Vz’ that is

(A17) I_={f, | there is a neighborhood w of z and f ¢ A(w) with
f(w) = 0 for we V n wl.
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It is clear that Iz is an ideal and that I; c Iz.
Hilbert's Nullstellensatz says that, if fz € Iz, there is a positive

integer m with f? € I; or
I =rad I' = {f_| £f" ¢ I' for some m depending on f },
z z z z z z

see [6] II.E.th.20. Obviously, when I; is a prime ideal this yields
([6] III.A.7)

V=
(A18) Iz Iz s
that is, fz € Iz can be written as f(w) = ZE=] gk(w) hk(w) for w in some
neighborhood w of z and for some 8, € Aw), k= 1,...,q.
EHRENPREIS has generalized this result in the following way (see [3]

chapter II): let the functions h]""’hq be polynomials, let for example

(of course, also h](z) eee = hq(z) = 0) and let V; be the germ at z of

Bh]
V' = {w | SE—(W) =0, w e U},
1

Then we require that fz € Iz moreover satisfies in some neighborhood w of z

gg%(w) =0, weV n w
Now let wz be defined as (VZ,V;), where this should be understood in the
following way: a function f holomorphic in a neighborhood w of z vanishes
on W_ if f vanishes on V n w and af/az1 vanishes V' n w.

The same can be done for higher order derivatives and the other poly-
nomials hk' The characterization of Wz is not immediately clear from the
polynomials h],...,hq (see example 4,IT,2 in [3]). Anyhow, Wz can be defined
in such a way that, if Iz is the ideal in Az of germs of functions vanishing
on Wz, we always have (A18), that is Iz is the ideal in Az generated by

(h])z,...,(hq)z (th.II 2.4 of [3]).



107

VZ in the Nullstellensatz is called the germ at z of a variety and
Wz in Ehrenpreis' formulation is called the germ at z of a multiplicity
variety. In case of modules in Az instead of ideals, it is possible to
define p germs (W ) ,...,(W ) of multiplicity varieties and so we get the
germ W = ((W])z,...,(wp)z) of a vector multiplicity variety. This can be
done in such a way, that the analogue of (A18) holds, namely (th.II 2.6 of
[31):

THEOREM Al7. Let ij be polynomials, j lyeeesps k= 1,0..,9. Then 7t s

possible for each z to define the germ ﬁz at z of a vector multiplicity
variety, such that each p-tuple of functions f. 32 j =1,...,p, holomorphic

in a neighborhood of z, whose germ at z vantshes on W 4> can be written as

fj (W) = kz] ij(w) gk(w), J = 1""’p
for w in some neighborhood w of z and for some functions g, € A(w),

k=1,...,9.

Next we consider a sheaf I' of ideals generated in each point of an
open pseudoconvex set by polynomials hl""’hq’ thus p = 1. Their simul-
taneous zero-set defines a variety V = zgﬂ Vz in @ (at points z where some
hk(z) #0 Vz is empty). Similarly we can define a multiplicity variety W
in Q (see [3]). We will consider sheafs of functions on V; the same can be

done for a multiplicity variety W. Let I be the sheaf on Q

where Iz is defined by (A17); note that Iz = Az when z ¢ Q\V. We can define
a sheaf F on Q@ by

that is the following sequence is exact

0— I— A— F— 0.
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For z € Q\V Iz = Az, thus Fz = 0. Thus F is only non-trivial in points

of V, so we consider the restriction F' to V

Rt = ng Fz
which is a sheaf on V. In accordance with the footnote on page 85 we can
regard F' as the sheaf of germs of analytic functions on V. A section f
in T(V,F') is a holomorphic function in V; regarded as a section f1 in
r(Q,fF) we would have f](z) = f(z) for z € V and fl(z) = 0 for z ¢ Q\V. So,
we may just as well consider the sections in T'(R,F) as the holomorphic
functions in V. In case I; is a prime ideal for all z € @, (A18) holds and
the sheaf I is finitely generated by polynomials. This also holds when we
consider a sheaf of ideals on a multiplicity variety. Hence theorem Al4 may
be applied. Also, generally for any sheaf T of ideals Cartan's theorem B may
be applied, since I is coherent ([6] IV.D.2). However, in the case occurring
in this paper I; is prime for all z € . Hence in the same way as theorem

Al5 was obtained from Cartan's theorem B we here get
0—> I'(Q,I)— I (Q,A) — r(a,F) — 0,
so that

(A19) A(R) = T(Q,F) = Tr(V,F") .
r,I)

Thus any function holomorphic in V is the restriction of a function in

A(Q) and in case (A18) holds any function f in A(Q) that vanishes on V can

be written as f(z) = ZE=] hk(z) gk(z), z e Q for some 8 € A(Q). In this

paper we will derive a quantitative version of (Al19) for a special variety V.,
When Q = €7, when I' is an ideal generated by polynomials and when W

is its associated multiplicity variety (thus (A18) holds), the isomorphism

(A19) with V replaced by W and with bounds (that is all the occurring

functions satisfy moreover certain estimates at infinity) is Ehrenpreis'

fundamental principle (theorem IV 4,1 in [3]; a survey of this theorem and

its proof can be found in [1] IV). The fundamental principle holds for
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modules generated by polynomials too (th. IV 4.2.[3]), however, in that
case the definition of global vector multiplicity varieties is a more

delicate question (see page 100 [3]).
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