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FOURIER TRANSFORMS OF HOLOMORPHIC FUNCTIONS AND APPLICATION TO NEWTON 
INTERPOLATION SERIES, II 

by 

J.W. de Roever. 

ABSTRACT 

i 

This paper treats a generalization of the Martineau-Ehrenpreis theorem 

and applies it to the derivation of the Newton interpolation series for the 

largest possible class of functions. By means of Fourier transformation the 

Martineau-Ehrenpreis theorem establishes the isomorphism between analytic 

functionals with compact carrier and some space of entire functions. In this 

paper the analytic functionals are carried by unbounded convex sets with 

respect to some class of weightfunctions and its Fourier transforms are no 

longer entire functions, but they are holomorphic in cones in ~n. 

KEY WORDS & PHRASES: Fourier transformation; analytic functionals carried by 

unbounded convex sets; holomorphic functions of several 

complex variables; cohomology with bounds; the Martineau­

Ehrenpreis theorem on Fouriertransforms of analytic func­

tionals; Newton interpolation series in several variables 

for non-entire functions. 
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1. INTRODUCTION 

This paper is the last of two papers dealing with Fourier transforms 

of holomorphic functions and the Newton interpolation series. 

In [10] KIOUSTELIDIS derived the Newton series with the aid of Fourier 

transformation. The advantage of this method against the classical one 

(Cauchy's integral formula, NORLUND [13], GELFORD [5]) is that it treats 

the case of several variables as well. However, his treatment is valid for 

entire functions only. The aim of this paper is to show that this restric­

tion is not due to the method, but that the method (namely the formalism of 

Fourier transformation) can be extended so as to include all possible non­

entire functions for which the Newton series is valid. 

In the first paper [14] the Newton series has been derived for func­

tions, holomorphic in tubular radial domains, of polynomial growth in !Re zl 

and of exponential growth in !Im zl. Such functions are the Fourier trans­

forms of tempered distributions with support in unbounded convex sets accord­

ing to a well known theorem (see [16]) generalizing the theorem of PALEY­

WIENER-SCHWARTZ. In this case, however, one only uses the real part of the 

domain of convergence of the Fourier transformed Newton series. In [10] 

KIOUSTELIDIS has considered complex compact subsets of this domain using a 

Paley-Wiener type theorem, namely the theorem of EHRENPREIS [2] and 

MARTINEAU [12] dealing with Fourier transforms of analytic functionals with 

compact carrier. These Fourier transforms are entire functions of exponen­

tial type in lzl and for such functions the Newton series is derived. 

Generalizing the Ehrenpreis-Martineau theorem the main theorem of this 

paper states that holomorphic functions of exponential type in cones are 

the Fourier transforms of analytic functionals carried by unbounded convex 

sets with respect to some class of weightfunctions. One can formulate two 

versions of this theorem (based on formula (5.S)(i) and (5.S)(ii) respecti­

vely) and surprisingly it turns out that the apparently weaker version (i) 

equals the stronger version (ii). A particular case of version (i) has 

already been proved by KAWAI in [9]. However, this case cannot be handled 

very well in the derivation of the Newton series. Therefore, it still has 

sense to present the theorem as it is done here. 
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The proof of the main theorem is very different from the proof in [16] 

of the similar theorem in part I [14]. In fact the last theorem in 2n vari­

ables is used in proving the former in then-dimensional case. The pattern 

of the proof is actually the same as that of Ehrenpreis' fundamental prin­

ciple [3], only here one deals with non-entire functions. While in the 

Ehrenpreis-Martineau theorem the injectivity of the map F (Fourier trans­

formation) presents no problem, it seems to be the most difficult part of 

the generalization given here. For this part and for the transition from 

version (i) to version (ii) cohomology with bounds is used. 

Together with the theorem on Fourier transforms some other theorems 

are given dealing with estimates for products of a polynomial matrix with 

a holomorphic non-entire vectorfunction similar to the case of entire func­

tions given by HORMANDER in [7]. These theorems as well as the main theorem 

itself may be useful in other applications, for example if one is interested 

in solutions of systems of partial differential equations that can be writ­

ten as boundary values of functions holomorphic in tubular radial domains. 

The main theorem yields all the tools for deriving the Newton series 

for non-entire functions in several variables. Now the domain of convergence 

in en is used completely, so that the most general class of functions 1s 

obtained for which the Newton series holds. This generalizes the case of one 

variable in NORLUND [13]. 

In section 2 the Ehrenpreis-Martineau theorem is discussed, and section 

3 describes how the Newton series can be derived from this theorem as it is 

done by KIOUSTELIDIS in [10], Section 4 deals with some properties of un­

bounded convex sets. Section 5 gives the space of holomorphic functions in 

cones in en of exponential type and the space of their Fourier transforms, 

which turns out to be the dual of some other space of holomorphic functions. 

These spaces are topologized in such a way that they are reflexive and that 

Fourier transformation is an isomorphism. A part of the version (i) of this 

isomorphism is also proved. In section 6 the main theorem of this paper, 

i.e. version (ii) of this isomorphism, is stated and the problems used to 

prove the main theorem are formulated. In section 7 these problems are 

solved, formulated so as to make them useful in other applications too, 

Here cohomology with bounds is derived and used. Section 8 gives some 
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corollaries and particular cases. Especially those concerned with functions 

holomorphic in tubular radial domains prepare section 9, where the Newton 

series is derived for these functions. The appendix deals with the problem 

how to extend local relations between holomorphic functions to global rela­

tions. It uses cohomology as derived from the existence theorems for the 

a-operator given by HORMANDER in [7]. Furthermore special coverings of open 

sets in Cn are constructed, adapted to the case of non-entire functions. 

Finally a short description of Ehrenpreis' fundamental principle is given. 

2. ENTIRE FUNCTIONS OF EXPONENTIAL TYPE 

This section deals with the relation between an entire function of 

exponential type and the carrier of its Fourier transform. It contains 

nothing new, but it is merely a rearrangement of some theorems of [7], 

stated in the appendix, in a way to make it suitable for generalization in 

section 5. 

Let Q c en be an open set and let A(Q) be the space of in Q holomorphic 

functions with the topology of uniform convergence on compact subsets K of 

Q. Elementsµ of the strong dual A'(Q) of A(Q) are called analytic function­

als in Q. A(Q) with the norm 

(2. I) sup 
i;;EK 

If <z: ).I , K cc Q 

is a linear subspace of C(K), the space of continuous functions on the com­

pact set K. Therefore, in view of the Hahn-Banach theorem and the theorem 

of Riesz, each analytic functional in Q can be represented as a measure in 

a compact set K of Q. We say that an analytic functionalµ in Q is con­

centrated on the compact set K of Q, when for all f E A(Q) 

I < JJ ' f > I $ MIi f II K 

with some positive constant M. In that caseµ can be represented as a mea­

sure in K. Thus every analytic functional JJ in en can be considered as an 

analytic functional in Q, where Q is an arbitrary open neighborhood of the 
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compact set K µ is concentrated on. We denote the space of analytic func­

tionals in en concentrated on the compact sets of n as 

Conversely, analytic functionals inn are analytic functionals in ~n too by 

means of their action on the restrictions ton of entire functions. This 

correspondence is 1-1, when n is a Runge domain (see def. AS), for then 

A(tn) is dense in A(n). Hence there is a map of A'(n) onto A~(tn), which is 

1-1 when n is a Runge domain. For example, when n =Ione can think of 

n = t \ {O}; then the map 

is surjective, but not injective. Here A~~~)= A'(t), since by the maximum 

principle for every compact neighborhood K of O with boundary Kint\ {O} 

(2.2) II fll K = II fll K' 

when f is entire. 

We now give a more rigorous exposition of the foregoing. Let n be an 

open set in en and Ka compact subset of n. Denote by 

A(K) 

the space of functions holomorphic in a neighborhood of K with the norm 

(2. I) and by 

the space of functions holomorphic inn with the same norm. It is clear 

that ~(n) is a linear subspace of A(K) and that both spaces are not Banach 

spaces. Since we are only interested in their duals, it doesn't matter if 

we consider these spaces or their completions, the Banach spaces A(K) and 



i\(Q), respectively, consisting of functions continuous on Kand holomor­

phic in the interior of Kif this is not empty. We denote by 

a sequence 
00 

{K} 1 of compact subsets of Q with int K c K c int K I c 
m~ m m ~ 

00 

5 

C K C Q 
m+I 

and with U K = Q. Then we have the following characterization 
m=I m 

of the space A(Q) 

A(Q) = proj lim 
K~Q 

~(Q) = proj lim 
K=-+Q 

~(Q) = proj lim 
K=-+Q 

A(K) = proj lim A(K). 
K~Q 

Both i\(Q) and A(K) are closed linear subspaces of A00 (l;K), see [14] B.4 or 

[18], so that according to [14] C.6 and C.7 the maps ~(Q) ➔ AS(Q) and 

A(K) ➔ A(S) are compact, SccK. Thus A(Q) is anFS-space (see [14] F.8), 

which is nuclear according to [14] G.7. Since ~(Q) is dense in AS(Q), the 

dual can be represented as 

(2. 3) A'(Q) = ind lim ~(Q) 
K=--i,Q 

according to [14] F. 12. However, in general an element of ~(Q) does not 

uniquely determine an analytic functional in any neighborhood Q' c Q of K. 

This is true for distributions: distributions in O with support in Kare 

also distributions in O', K cc O' c 0. Only when A(Q) is dense in ~(Q'), 

representation (2.3) of A'(Q) is the inductive limit of all analytic func­

tionals in any open neighborhood Q' of K concentrated on K. So we must find 

a sequence K ~ Q for which A(K 1) is dense in 
m+ 

dense in A(K) (see [14] lit.[2], §26,2,5), thus 

that case (2,3) can be written as 

(2.4) A' (Q) = ind lim A' (K) 
. Kee.,. Q 

A(K ), for then A(Q) is 
m 

also in ~(Q') c A(K), In 

the inductive limit of analytic functionals concentrated on K. It is not 

possible to find such a sequence {K }00 

1 for all domains Q, Only for pseudo­
m m= 

convex domains Q we will find one or, actually for domains of holomorphy, 
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but according to theorem A.3 the domains of holomorphy are just the open 

pseudoconvex domains. 

We define for any compact subset K of Q the set 

KQ = { s I s E Q , I f ( s) I not .... 
~ llfllK for all f E A(Q)} =Kc n, 

see (Al). Hence for f E A(Q) we have llfllK = llfllK, thus ~(Q) = ~(Q). Q is 

a domain of holomorphy, if 

(2 .5) R cc Q whenever K cc Q Q , , 

according to theorem A.I. In the sequel we will assume that Q is pseudo­

convex expressing that (2.5) is satisfied. Then the restriction map from 

~(Q) into A(R) exists. According to theorem A.4 ~(Q) is a dense linear 

subspace of A(K). Hence 

(2.6) (Q pseudoconvex). 

Thus for any sequence K =-+ n, KQ is the desired sequence satisfying (2.4). 

We have obtained that the closure of the space 

A ( ) def . 1 . ~( ) ,..,, ,Q = proJ 1.m Q 
~, K=-t Q' . 

equals 

= proj lim ~(Q) 
K=➔ Q' 

= proj lim A(R,..,). 
K~Q' ~, 

AQ,(Q) is a pre-FS-space, that means its closure is an FS-space. If Q' is 

such that K ~ Q' implies KQ cc...., Q we get AQ, (Q) = A(Q); for example AQ(Q) = 

= A(Q); another example is (2.2). However, we will consider cases where 

Ari. I {Q) 'f A(rl.). 

The strong dual of AQ 1 (Q) is the LS-space 

(2. 7) = ind lim A'(R,..,), 
K=-,Q' H 
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which yields (2.4) when Q' = Q. 
n 

Let QI c Q2 be both pseudoconvex open sets int; then the restriction 

maps 

A(Q2)- AQ (Q2) ~A(QI) 
I 

are continuous. The first map is a surjection from a Frechet space onto a 

pre-Frechet space and since ~(n2) is a linear subspace of ~(QI)' the 

second map is in fact the embedding of the linear subspace AnI(n2) into 

A(QI). The transposed maps are the continuous maps 

A' (Q )-+r A' (Q ) ~A' (rl 2), 
I QI 2 

where the first map is surjective according to the Hahn-Banach theorem and 
A 

the second map is injective. We always have KQ 

(2. 8) 
A 

=Kn, 
2 

I 

then in view of (2.3), (2.6) and (2.7) we have (see theorem A.7) 

(2.9) A' (QI) = 

When each component of Q2 contains a component of ~I' for example when both 

are connected, A'(Q 1) is dense in A'(Q2), for then A(n2) = A"(n2) is mapped 

injectively into A(n 1) = A"(Q 1). We do not ha.ve this in the case of dis­

tributions: E'(0 1) is not dense in E'(02), o1 c o2; E'(0 1) is even a closed 

linear subspace of E'(02), 01 c o2 and 01 convex (see [14], G.5). 

The linear hull L of the following set of entire functions ins 

is dense in A(n 2), when n2 is a Runge_domain, so this set is dense in 

An/n2) too. Indeed, differentiating eiz•s with respect to z and setting 

z = 0, we get is, so that we can approximate the polynomials by elements 
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of L. Therefore, the map 

F: µ E AQ (Q2)-------+ f(z) 
I 

iz•r; 
= <µ ,e > 

r; 

is an injective map from AQ (Q2) into some set of entire functions f. 
I 

Let~ be the function from en into lR 

= sup Im(-z•r;), 
l';EK 

n K cc C. 

We have HK= Hch(K)' where ch(K) is the convex hull of K, see section 4. 

Whenµ is concentrated on K, f = F(µ) satisfies 

(2. IO) lf(z)I ~ M exp HK(z). 

Hence we define the Banach space (see [14] B.4) 

Exp(K) 

and the LS-space 

Eip(Q) = ind lim Exp(K) 
K~Q 

We have Eip(Q) = Eip(ch(Q)) and·according to [14] G.7 E;p(Q) is nuclear. 

Hence Fis an injective map from AQ (Q 2) into Eip(Q 1) when Q2 is a 
I 

Runge domain. Also Fis a bounded map, which follows from (2.10) and the 

fact that AQ (Q2) being an LS-space is regular, see [14] F.15 and F.16. 
I 

Since AQ 1(Q 2) is bornological, Fis continuous. We will see that if QI is 

convex, Fis surjective and its inverse is continuous too. Convex sets are 

Runge domains (see [16] 16. II), hence with QI convex (2.8) is satisfied 

according to theorem A.6, so that then (2.9) holds. 

THEOREM 2.1. Let Q be a convex domain in tn. The map F from A'(Q) into 

E~p(Q) given by 

F(µ)(z) iz•r; = <µ , e >, 
r; 

µ E A'{Q), 



is an isomoy,phism. 

Before proving this theorem we write A~ (n2) in a different way. We 
• • I • 

have introduced the notion of an analytic functional in Q concentrated on 

the compact set K cc Q and ~(Q) was a linear subspace of C(K). However, 
00 

A(Q) also is a linear subspace of E(Q), the space of all C -functions in 

Q c a:n = JR.Zn with the topology of uniform convergence of all derivatives 

on compact subsets. Indeed, all the derivatives of holomorphic functions 

converge on compact sets of Q when the functions converge. So we can give 

A(Q) the topology induced by E(Q) and eachµ E A'(Q) can be extended to an 

element of some E'(K). Thenµ is a distribution with compact support Kand 

for f E A(Q) we get 

l<µ,f>I s M sup UDafUK 
lal::;k 

so Cauchy's formula yields for all E > 0 

(2. 11) l<µ,f>I s M 
€ 

9 

where K is a closed €-neighborhood of Kin a:n with K cc Q and M is a posi-
€ € € 

tive constant depending on E. When (2.11) holds we say that the analytic 

functionalµ in Q is carried by K. Thus an analytic functional in Q carried 

by K is concentrated on any.neighborhood of Kinn. Sometimes it is said 

thatµ is carried by such a neighborhood, see [15]. An analytic functional 

can be carried by several compact sets, but it is not true that it is carried 

by the intersection of all carriers, unlike the notion of support of a dis­

tribution, see [7] 4.5. 

We will now describe the topology of A(Q) using the concept of carrier, 

although this makes the description more complicated. Analytic functionals 

concentrated on compact sets are easier to describe, but analytic functionals 

carried by compact sets are easier to handle and are more natural as we will 

see. 

Let K cc Q be a compact subset of n. We define the pre-LS-space (this 

means that its closure is an LS-space) 
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(2.12) A_(Q) = ind lim ~ (Q). 
K £+0 £ 

The closure ~(Q) of ~(Q) does not consist of holomorphic functions in K, 

but the closure A_(Q) of A_(Q) consists of functions each holomorphic in a 
K _ K 

neighborhood of K. A_(Q) consists of all holomorphic functions in a neigh-
K ~ 

borhood of K when Q is pseudoconvex and K = KQ according to (2.6), for 

example when K is convex. The dual of A_(Q) is the FS-space 
K 

(2.13) A:(n) = proj lim Ai<_ (Q) , 
K £+0 £ 

the space of analytic functionals in Q carried by K. Now A~ 1 (n 2 ) 

inductive limit of the spaces A:(n), namely 
K 

ind lim A:(n2) = A~ (n2) = ind lim A'(n2). 
K~ Q 1 K 1 Kcc.,.Q 1 K 

is the 

Indeed, each AR(n2) can be mapped continuously into Ai<_£ (n2) and into 

A~ 1 (n2) successively and conversely for all£> 0 each Ai<_(n2 ) can be mapped 

continuously into Ai<_ (n2), thus into A~(n2), see [14] F.6. In this repre-
£ K 

sentation A~ (n2 ) is an LS-space too: a neighborhood of zero in A~(n 2), 
1 K 

that is a neighborhood of zero in some Ai<_ (n2), is mapped into a relatively 
£ 

compact set of AS (n2) for any n > 0, K cc Sand£ small enough, thus into 

a relatively comp~ct set of Ai(n2). This is in contrast with distributions, 

where the inductive limit E'(0)'= ind lim E'(K), K =-, 0, is strict, when 

0 and Kare convex, see [14] G.5. 

Along the same lines one can see that E~p(nt can be represented as the 

LS-space 

with 

~ Exp(Q) = ind lim Exp(K0) 
K~Q 

Exp(K0) def proj lim A00 (exp(-HK(z)-Ellzll ;G::n) = 
£+0 

proj lim Exp(K ). 
£+0 £ 
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We will now prove theorem 2.1. 

PROOF OF THEOREM 2.1. It is clear that F maps Ai(n2) continuously and 

injectively into Exp(KO). It is sufficient to prove that Fis a surjective 

map between the Frechet-spaces AR(n2) and Exp(K0 ), for then F- 1 is continu­

ous according to the open mapping theorem. When K is convex, this is exactly 

theorem 4.5.3 of [7] with n2 =en.Thus Fis an isomorphism between A;(cn) = 

= A'(n) and E~p(n), when n is convex. D 

Theorem 2.1 is due to EHRENPREIS [2] and MARTINEAU [12]; for polydiscs 

this theorem can also be found in [15] and [18], where analytic functionals 

are used concentrated on compact sets. The notion of carrier of an analytic 

functional enables us to prove the continuity of F-l by the open mapping 
z•s iz•s theorem. In [7], [15] and [18] e is used instead of e , but we use 

e iz•s ;n v;ew of h h 1· · · · 5 • L t et e genera ization in section • 

In the sequel we will start with a space of holomorphic functions of 

exponential growth. Let a(y,x) be a continuous function of z = x+iy on the 

unit sphere of en= lR2n, such that the following function, which is homo­

geneous of degree one, is convex 

a(z) def a(&, 11 :n) II zll. 

In that case we call a(y,x) itself convex, see section 4. This function 

determines a convex compact· set Kc en by 

n 
~ a(z), z = x+iy EC}, 

see section 4. With this compact set K we denote the space Exp(K) also as 

def Exp (a) ==-- Exp (K). 

The function a(y,x)+E on the unit sphere determines the function a(z)+d zll 

on en and we have 

Exp(a+E) = Exp (K ) • 
E 
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Similarly we denote 

def 
Exp(a+O) = Exp(K0). 

We conclude this section with a corollary about the difference between 

analytic functionals and distributions expressed in properties of the spaces 

of their Fourier transforms. 

Let a and b be two convex functions with a(y,x) ~ 6(y,x) on O::n and let 

they determine the compact sets Kand S, respectively; then Kc s. The LS­

space A8 (Q) is reflexive and it is mapped injectively into AK(Q): 

A~(Q). 
K 

Hence (see [15], corollary 5 to th.IS.I) ~(Q) is dense in A'(Q) and since 
K S 

Fis an isomorphism Exp(a+O) is dense in Exp(b+O). 

In [14] section 2 we have seen that the space of Fourier transforms of 

distributions with support in some compact set K1 in lR.n is a closed linear 

subspace of the space of Fourier transforms of distributions with support in 

a compact set s 1 with K1 c s1• Let us take the example when K1 =Kand 

s 1 = S: let Kand S be balls in the real part of tn with radius a and b 

respectively (a< b). Then a(y,x) becomes allyll and a.(z) = allyll, so that we 

get 

. 1 . A ( -(a+e)llyll-ellxll n) = proJ im 00 e ;C 
d·ense 

Exp(a+O)---Exp(b+O) 
e+O 

ind lim 
m+<x> 

( -allyll \ 
A e . O::n = 

oo\ ( I +II zll ) m ' } 

n closed 
H(a;C) linear 

subspace 

n H(b;C ). 

The difference between these maps is not a consequence of the different 

structure of the spaces Exp and H. For we can make them look similar without 

changing them. Namely, it follows from the second map that 

proj lim 
e+O 

( -(a+e)llyll \ 
ind lim A \e ; O::n} = 

m+<x> 00 (l+llzll)m 

n H(a;O::) 



and since the following injections are continuous 

- { -(a+E)llyll-Ellxll ) 
ind lim A e ;Cn -

m+oo co\ ( I +II zll )m 

-+ A (e-(a+n)llyll-nllxll ;Cn) 
00 

with E < n, we get, according to [14] F.6, 

(2. 14) proj lim 
E+O 

. d 1 _ A (e-(a+E)llyll-Ellxll. ~n\ __ 
m 1m --------,~) 

m+oo 00 
( ]+II zll )m 

Exp (a+O) • 

n It follows from [14] C.3 that H(a;C) can be mapped continuously into 

Exp(a+O). Hence the transposed map between the inverse Fourier transforms 

of these spaces, which are reflexive, is continuous: 

A_(a;n) 
K 

-+ E(K). 

A_ (a;n) is the space of all real analytic functions on K cc 1Rn in view of 
K A 

13 

(2.6) and the fact that K = K , because K is convex. Actually, every 

compact set in 1Rn is polynomf:uy convex in (Cn, see [II J. Since an analytic 

function, that vanishes in an open set in 1Rn, vanishes, the above map is 

injective. Therefore, the map from H(a;Cn) into Exp(a+O) is dense and this 

implies that the distributions with support in a compact set Kin ]Rn are 

dense in the space of analytic functionals carried by K. Even since Exp(a+O) 

is dense in Exp(b+O), the distributions with support in Kare dense in the 

space of analytic functionals carried by the connected compact set Sin (Cn, 

where K is any compact subset of S; for example K may consist of only one 

point of S. 

3. NEWTON SERIES FOR ENTIRE FUNCTIONS OF EXPONENTIAL TYPE 

In this section we derive the Newton interpolation series (see [14]) 

for entire functions of exponential type. The same is treated by KIOUSTELIDIS 

in [10]. However, the form given here yields a stronger result on the con­

vergence and serves as a good introduction to the generalization in section 9. 
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Each vector h 1.n a:n determines a convex open set Qh 1.n q;n by 

(3. 1) I n -h•s 
Qh=={s i;;EO:,le -lj<l}. 

LEMMA 3.1. For all z E a:n ands Ea; the sequence 

N 

I 
k=O 

~ ~1 t i(z+ish)·s ~nth A(n) d d f t· converges Jor ., ➔ 00 o e v e space ,.h regar e as unc 1.-ons 

of i;;. 

PROOF. The series converges uniformly on compact subsets of Qh' which 1.s 

the convergence of the space A(Qh). 0 

For h E a;n let f be a function 1.n Eip(Qh) and lets E «:. Then using 

theorem 2. 1 and lermna 3. 1 we derive the Newton series 

i(z+ish)·s iz • z: N k 
f(z+ish) = <µ ,e > = <µ e lira I (s)(e-h•i;;_l) > 

s s, 
N➔oo k=O k 

(3. 2) 

N 
iz · s -h • s k 

= lim I (s) <µ ,e (e -1) > = 
N➔oo k=O k s 

00 k i(z+imh)•i;; 
= I (s) <µ I (k)(-l)k-m = e > 

k s' m k=O m=O 
00 k· 00 

I (s) I (k) k-m I (s) k 
f(z), = (-1) f(z+imh) = llih k m=O m k k=O 

where llih f(z) def f(z+ih)-f(z), so that = 

k 
k t)(-1/-m llih f(z) = I f(z+imh). 

m=O m 

Ifµ belongs to A~(Qh)' K cc Qh' the sequence 
K 

N k I (s)(e-h·s-1) 
µs k=O k 

k=O 

converges weakly in each Ai<_ (Qh), hence it converges strongly in each 

= 

E/2 l.Z•s 
Ai<_ (QJ, thus in A~(Qh). Therefore (3.2) with f(z) = <µ ,e > converges in 

E K s 



the topology of Exp(K0). So we have found that if f satisfies for some 

K cc Qh 

(3.3) Vo > 0: I f(z) I :,:; Mo exp(HK(z)+oll zll), n 
z E C , 

the series (3.2) converges according to: 

(3.4) 

V£ > O, Vo> O, 3N0 (E,o) ~ N1(s), VN ~ N0 , 
n 

Vz E C 

N k 
lf(z+ish) - I (:) ~ih f(z)I < E A(s) exp(HK(z)+ollzll), 

k=O 

where N1(s) is determined by (5. I) in [14] and A(s) by (5.4) in [14]. Thus 

there is certainly uniform convergence on compact subsets of ~n, which is 

the convergence given in [IO]. 

There exists a p < with for I'; E K 
E 

-h•r; le -II :,:; p, so that 

N 
C exp(H (z)+£llzll) I l(ks)lpk_ 

K k=O 

Hence the series (3.2) converges absolutely. 

We restate the results in 

THEOREM 3. I. For h E en, s EC and f E E~p(Qh) with Qh given by (3. I) the 

Newton series (3.2) is valia; the series converges absolutely in the topo­

logy of Eip(Qh) or more precisely (3.2) converges according to (3.4) when 

f satisfies (3.3); the series (3.2) converges uniformly ins on compact 

subsets of c. 

For a more detailed description of the function HK(z) when K cc Qh' 

see KIOUSTELIDIS [IO] Satz 9, when K is given by (40) and (41). 

4. CONVEX SETS 

15 

In this section we describe how a closed convex set O in lR.n determines 
. n* • an open convex cone C in lR. and a homogeneous convex function a on C and 
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that, conversely, C and a determine a closed convex set O in m.0 • 

A closed convex set O in m.0 is the intersection of closed halfspaces. 

Let H be the largest collection of halfspaces in m.0 such that O is the 

intersection of halfspaces HEH. Let y be the unit vector perpendicular to 

the hyperplane aH bordering a halfspace HEH, in other words y E m.0 * is 

the linear functional which vanishes on the translation of 3H to the origin. 

We identify the action of a linear functional yon~ E m.0 with the inner­

product: <y,~> = y•~. Then the halfspace H can be written as 

H (a)={~ I -y•~ ~ a} 
y 

with y E m.0 * and a a real number. Thus we have 

0 c H (a) c H (b) 
y y 

when b;?: a, 

that is H (a) EH 
y 

implies H (b) EH. 
y ~ 

The normals y to aH vary in a set pr C on the unit sphere S of lR , 

when H varies in H. For each y E pr C let a(y) be the smallest of all the 

numbers a with o c Hy (a). Thus for each y O E pr C and each sequence 

ak t a(y 0), there is a sequence ~k E O with 

( 4. I) -y -~ o k 

Let C be the cone 1.n m.0 * determined by pr C 

C = {y I y=,O, y E pr C} 

with the notation y = y /II yll • Hence any closed convex set O in JR.0 determines 
• O* • ( ) a cone C 1.n lR and a function a y on pr C such that 

(4.2) o = {~ I -y•~ ~ a(y) ~ a(y)Uyll, y E C}. 

It is clear that for y EC the function 

(4. 3) 
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satisfies I 0 (y) ~ a(y) and that O = {~ I -y•~ ~ I 0 (y), y EC}. Since a(y) is 

the smallest possible function determining the set O, we have 

(4. 4) a(y) = I 0 (y), y E C. 

The cone C is convex, for 

-(ty +(1-t)y ) ·~ 
I 2 

with~ E O, 0 ~ t ~ I and y 1,y2 EC, hence 

From this it also follows that the function I 0 (y) is convex, that is 

Taking into account (4.4) we find that a(y) is convex, hence continuous and 

a(y) is bounded from below on pr C. We say that the continuous function a(y) 

on pr C is convex, when the function a(y), which is homogeneous of degree 

one, is convex on C. 

It is possible that the cone C is contained in a linear subspace of 

1R.n* of lower dimension. Therefore, we consider C in the lowest dimensional 

space containing it. Then we speak of the interior Int C of C and we show 

that the open cone int C determines the same convex set O as C. We denote 

the closed convex set O determined by a cone C and a convex function a(y) 

on pr C according to (4.2) by O(a;C). 

It is clear that O(a;C) c O(a;int C). Now let ~0 be a point outside 

0 (a; C), then there is a vector y E pr C such that 
0 

-s . y > (y ) • 
0 0 0 

Hence there is an£> 0 with 
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Since a(y) is continuous on pr C, there is a y E pr int C with 

Hence 

la(y)-a(y )I < £/2 
0 

and D y-y II < £/ (211 s II). 
0 0 

-s •y = -s •y -s •(y-y) > a(y )+£-£/2 > a(y), 
0 0 0 0 0 0 

thus s 0 r/. O(a;int C) by (4.2). 

So we have found that each closed convex set in JR.n determines an open 
. n* ( . . n*) convex cone C in JR. open relatively to a linear subspace of JR. and a 

convex function a(y) on prC. Now we will prove that, conversely, each open 
• n* f . . convex cone C in JR. and each convex unction a on pr C determine a closed 

convex set O in JR.n by (4. 2) that satisfies (4. 4). 

Indeed, 0 is convex and closed being the intersection of closed half­

spaces and we only have to prove (4.1). Since a is convex and C is open, we 

can find for each y0 E pr C a linear function on C, say a.•y for some vector 

a., with a.•y ~ a(y), y EC and a.•y0 = a(y0). Then the point s 0 = -a. E JR.n 

satisfies -s 0 •y = a.•y ~ a(y) for ally EC, thus s 0 E o. Furthermore, 

-s0 •y0 = a.•y0 = a(y0), hence (4.1) holds. We have also obtained that in 

(4.1) we may take ak = a(y0 ) and sk = s 0 E O for all k, when y0 E pr int C. 

COROLLARY 4. I. Each closed convex set O in JR.n determines an open (with 

respect to some linear subspace of JR.n*) convex cone C -in JR.n* and a con­

tinuous convex function a on pr C by ( 4. 3) such that ( 4. 2) holds. Conversely, 

each open convex cone C in JR.n* and each convex /unction a on pr C determine 

a closed convex set O(a;C) in JR.n by (4.2), such that (4.4) is satisfied. 

We give some examples. Let C be an open cone in the first quadrant of 
2* . . . . 2* JR. • We consider the function a on some straight line £ n C c JR. • 



\C 
\ 

\ 

\ 
\ 

\ 

\ 

....... 

-- .......... 

Then the dual cone c* is c* = {~ I -y•~ ~ O, y EC} c :m2 • We have the 

following cases with different behaviour of the convex function a near the 

boundary of£ n C: 

I 

a 

0 

19 

a(y) is vertical at the boundary of C and the boundary of O is asymptotical­

* ly parallel to the boundary of C. 
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II 

a 

_,,.. 

/ 
I 

I 
I 

\ 0 

\ 
'-.. ---

a(y) is not vertical at the boundary of C and outside some compact set K 

* the boundary of O is parallel to the boundary of C. 

III a 

0 

0 

JI., 

a(y) tends to infinity when y approaches the boundary of C and the distance 

between the boundaries of O and c* increases to infinity. 

In cases I and III we say that the function a is vertical at the bound­

ary of C. In case II, when a is not vertical at the boundary, we may consider 
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the closed convex set O' = 0 n K', where K' is a compact set the interior of 

which contains K. Then O' is compact, so the cone C' determined by it is 

lR.n* and the convex function a' on pr lR.n* = S determined by O' coincides 

with a on pr C, that is 

(4.5) a' (y) = a(y), y E pr C. 

Thus when a is not vertical at the boundary of C, it can be extended to a 

convex homogeneous function a' on the whole of lR.n*. 

Finally we describe how we can exhaust Oby closed convex sets O not 
m 

(X) 

touching the boundary of O, namely O = Um=I Om with Om closed convex sets 

satisfying O c int O I c O I c int Oc lRn, m= 1,2, •••• Let {a }00 

1 be m m+ m+ mm= 
an increasing sequence of convex functions on pr C with a (y) < a 1 (y) < m m+ 
< a(y) for y E pr C and lim a (y) = a(y), y E pr C and moreover, either 

m+oo m 
there are positive numbers E with a(y) - a (y) ~ E , y E prC, or all the 

m m m 
functions a are vertical at the boundary of C. Then the sets O = O(a ;C) 

m m m 
satisfy the conditions. When the functions a are vertical at the boundary 

m 
of C, the boundary of each O approaches the boundary of O. Otherwise the 

m 
boundaries of O and O have a distance greater than E • 

m m 
When C does not contain a straight line (then c* is not contained in a 

proper linear subspace of lR.n and conversely) let Ck be a sequence of open 
- n* convex subcones of C with pr ck C pr ck C pr ck+) C pr ck+) CCC lR and 

U~=I Ck= C. We call Ck a relatively compact open subcone of C and we write 

* Ck cc C. When C 
. n 

is contained in a linear subspace of lR we take open 

* cones Ck in this subspace with pr 

Ck are defined by the interior of 

this case we call Ck a relatively 

* * * * Ck=> pr Ck+l => pr Ck+I => C and the cones 

the duals of c:: Ck= int(C:)*. Also in 

compact subcone of C. 

The functions a+l/k on pr C are also convex and the sets O(a+l/k;Ck) 

are of type II. Then 

00 

O(a;C) = kQI O(a+l/k;Ck), 

but none of the sets O(a+l/k;Ck) is contained in O(a+I;C). 

In the next sections we will regard tn as a Zn-dimensional real space 
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JR.Zn by the identification 

We identify the action of an element z in the complex dual space ccn* with 

the ordinary product of complex numbers 

. . f n* . h 2n and we 1.dent1. y CC w1. t lR by 

. n* n* n* 2n* z = x+1.yECC +-+ (y,x)ElR x:R = lR , 

2n* Then regarded as Zn-dimensional real vectors the action of z E lR on 
]R2n . 

I;; E l.S 

Im z,i;; = (y,x)•(s,n) = y•s+x•n, 

When C is a cone in lRn* the set TC = lRn + iC is a cone in ccn* con-

( C * . * . . taining a straight line. The dual cone T) 1.s the cone C contained 1.n the 
n imaginary subspace of CC • Relatively compact subcones, constructed in the 

n* . above way, are lR + 1.Ck, where Ck cc C. 

5. FUNCTIONS OF EXPONENTIAL TYPE HOLOMORPHIC IN CONES 

In this section we discuss the space of functions of exponential type, 

holomorphic in cones in (Cn and the space of their Fourier transforms (some­

times called Fourier-Borel transforms or Fourier-Laplace transforms). 

Let C be an open convex cone in Cn, which is identified with JR2n by 
. n n n 2n z = x+1.yECC +-+ (y,x)ElR xR = lR • Let a(z), regarded as a function of 

(y,x), be continuous on pr C, such that the function 
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is convex in C. A function f holomorphic in Cc tn is of exponential type a, 

when for all£> 0 and o > 0 and for all open relatively compact subcones 

C' cc C constants M(E,o,C') exist such that 

if(z)I ~ M(E,o,C')e~(z)+E:llzll, z E C' , fl zll > o. 

We denote the space of all such functions f by Exp(a+O;C) or sometimes by 
-Exp and we give this space a topology of an FS-space by means of 

Exp(a+O;C) = proj lim A (e-a(z)+1/kllzll ;C(k)), 
(X) 

k-+m 

(X) 

where C(k) = Ck n {z J llzll > 1/k} and {Ck}k= 1 is an increasing sequence of 

open relatively compact subcones of C exhausting C (see section 4). According 

to [14] G.7 this space can also be written as a projective limit of Hilbert 

spaces (Exp(a+O;C) is nuclear). 

We will construct a reflexive space A', which is the dual of some 

space A of holomorphic functions, such that Exp is the Fourier transform 

of A'. Assume that there is a continuous map Ft from Exp' into the comple­

tion A of A 

(5. 1) 
t F : Exp' ➔ A 

then the transposed map Fis a continuous map between the duals. So, since 

Exp is reflexive we get 

(5.2) F: A' ➔ Exp 

and since A' is reflexive, Ft is the transposed map of F. 
In order to get information about A we investigate Exp'. According to 

[14] C.3 and F.6 we can write Exp also as the FS-space 

Exp(a+O;C) = proj lim A 0 (exp(-a(z)-1/kllzll);C(k)), 
k➔oo oo, 

where A00 , 0 (M;Q) consists of functions holomorphic in Q and continuous on Q 
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-with Mlfl < 00 on n and with Mlfl = 0 at infinity. Hence by [14] B.5 Exp' is 

the inductive limit of spaces, whose elements cr can be represented as bounded 

measures cr(z) 1n C(k), namely for f E Exp 

(5.3) 

and 

<cr,f> = r f(z) exp(-a(z)-1/kllzll) dcr(z) 
) __ 
C(k) 

J__ I dcr ( z) I < 00 • 

C(k) 

Next we define the map Ft. Therefore we regard en with elements 

z = (y, x) as the dual IR2n* of some other space IR2n, whose elements are 

denoted by (s,n) and which is identified with en by r; = s+in. Then 

Im z•r; = <(y,x),(s,n)>. The cone Cc IR2n* and the convex function a(z) on 

d · 1 d " · n 2n b (4 2) pr C eterm1ne a c ose convex set ~, 1n (; ~ IR y • 

(5. 4) n not n (a; C) ~ { r; I Im z • r; s a ( z) , z E pr C}. 

Furthermore let us introduce the closed convex sets Qk either by 

(5.5) (i) 

or by 

(5.5)(ii) nk = Q(a+l/k;C). 

00 iz•r; In both cases n = kQI nk. It is easy to see that e belongs to Exp if r; 

belongs ton. Therefore, we can define the map Ft (5. I) by 

(5.6) t cr E Exp': F (cr)(r;) = iz · r; <cr , e > 
z 

for l; Erl. 

The representation (5.3) yields for some k 

(5. 7) t(r;) = Ft(cr)(r;) = J __ e-a(z)-1/kllzll eiz•r; dcr(z). 

C(k) 
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In both cases (5.5)(i) and (5.5)(ii) ~ is holomorphic in int Qk and satis­

fies there for some K > 0 

(5.8) 

where <\ = sin ak the minimum distance in radials between pr Ck+I and pr Ck, 

see [14] proof of lemma 6.3. Indeed, for 

we have 

(5.9) 

a= min (a(z)+l/k)} 
zEpr ck 

when z E C(k) and the set Qk n Uc is compact in both cases (5.S)(i) and 

(5.5)(ii), so that (5.8) follows. 

Therefore, we introduce the weightfunctions 

I 
~ ( 1';) = exp ok k 111'; II • 

Then it follows from (5.9) that the map Ft given by (5.6) is a bounded, 

hence continuous, map from Exp' into the LS-space 

(5. 10) ind lirn A00 (~; int Qk) 
k-+«> 

in both cases (5.5)(i) and (5.5)(ii), see [14] F.11, F.16 and C.7. 

Our aim is to choose such a space A that the map F (5.2) is an iso­

morphism. In [14] we have seen that, when the support of a distribution is 

contained in all the sets Qk' it is contained in Q. But when the analytic 

functionals in A I are concentrated o.n all the sets Qk, we cannot immediately 

conclude that they are concentrated on Q. Therefore, we do not yet know 
. 

which of the alternatives (5.5}(i) or. (5.5) (ii) we should take. 

Now we will define linear subspaces A. and A .. of {5. 10), depending on 
1 11 

(5.5)(i) or (5.5)(ii) respectively, such that the map F (5.2) is injective. 

In fact we give the lin.ear hull L of the set {eiz•l';} the topology of the 
ZEC 
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space (5. IO). 

Let Lk be the linear hull of the set 

of functions in r;;. We provide Lk with the norm 

II ,II = 
k 

~(r;;)l·(r;;)I 

and denote it by 

Then A. and A .. are defined as 
i i i 

A no_£ A (L) def . d 1· ' (L) -- - = in im •Q k , 
M;Q k➔oo 'k 

-
where Qk is given by (5.5)(i) or (5.5)(ii), respectively. The closure A of 

both spaces in an LS-space, namely 

-(5.11) A = 

since LS-spaces are complete (see [14] F.14). A consists of functions each 

holomorphic in a neighborhood int Qk of Q (compare 2.12). The duals Ai of 
-A. and A!. of A .. are FS-spaces 

i i i i i 

(5. 12) A' ~ot ~-Q (L) = proj lim ~s (Lk) 
' k➔oo rl(; Qk 

(compare 2.13). We only have to check that A is not too small, in other 

words that (5. 1) still holds. By letting o(z) be a-functions we see that L 
t is contained in the range of F and when we write (5.7) as a defining 

"Lebesgue sum", it follows from (5.9) that this sum converges in the topo­
t 

logy of A (Lk+I) to ¢(r;;). Hence F (5.1) has dense image, so that 
-~k+ I ; Qk+ 1 

F (5.2) is an injective map from A! and from A!., given by (5.12), into Exp. 
i i i 



The definition of F (5.2) as the transposed map of (5.1) yields for 

µ E A' 
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F def t Vcr E Exp': <cr, (µ )(z)> = <µ ,F (cr )(s)> 
z s s z 

iz•s = <µ ,<cr ,e >> = s z 

iz•s = <cr ,<µ ,e >> 
z s 

by Fubini's theorem, so that F (5.2) may as well be defined as 

(5.13) F(µ)(z) iz•s = <µ ,e >, s z E C 

like (5.6). 

Now Fis a continuous injective map from A! and from A!. into Exp. 
1. 1.1. 

Since A. can be continuously embedded into A .. , A! is a priori larger than 
1. 1.1. 1. 

A! .• So 
1.1. 

it is easier to prove that Fis also surjective from A! onto Exp. 
1. 

In that case the inverse map would be continuous according to the open 

mapping theorem, because A! and Exp are FS-spaces and F would be an iso-
1. 

morphism between A! and Exp. If we can also prove that Fis a surjective 
1. 

map from A!. onto Exp, then A!. too would be isomorphic to Exp, so that 
1.1. 1.1. - -A! . = A! 

1.1. 1. 
and A. = A ..• First we will prove the apparently weaker version 

1. 1.1. 

(i), theorem 5.1, of the main result of this paper, namely that Fis an 

isomorphism between A! and Exp. Then in a next section we investigate the 
1. - -spaces A. and A .. and 

1. 1.1. 
finally in section 7 we will show that F(A!.) = Exp, 

1.1. 

which is the stronger version (ii) of the main theorem of this paper, 

theorem 6. 1 • 

THEOREM 5. 1. Let a be a convex function on pr C for some open convex cone C 

in in and let Q and Qk be the closed convex sets in tn determined by (5.4) 

and (5.5)(i) respectively. Then the map F from 1)f.Q(L) (5.12) into , 
Exp(a+O;C) given by (5. 13) is an isomor>phism. 

PROOF. We only have to prove the surjectivity of the map F. So given an 

f E Exp, we have to find for each k = 1,2, ••. a linear functional µk on Lk 

with 

f(z) k iz•s 
= <µ 'e >' s z E C(k) 
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and with 

l 
sup exp(ok k II i:;11) I <P(i;;) I 

i;;dlk 

for~ E -¾tk;nk (Lk). 

Like in the proof of the theorem for entire functions (see HORMANDER 

[7], EHRENPREIS [3]) we try to extend fas a holomorphic function Fin 2n 

complex variables v satisfying a certain bound and apply a Paley-Wiener­

Schwartz type theorem. Precisely, choose an integer k and assume that we 

have found a function Fk of the complex variables v not (v 1 ,v2)Ed:nxcn = a::2n 

holomorphic in lR2n+iC(q) with q > max(k+2,(k+l)/ok+l) that satisfies for 

some m 

(5. 14) l 2 m 
IFk(v ,v) I s ~(l+llvll) exp(i(Im v)+l/qllim vH) 

for Im v E C(q) and 

(5. 15) Fk(z,iz) = f(z) for z E C(q). 

Then we can apply theorem 9.1 of [14] (remark 9.1 and formula (9.5) or in 

fact the sth line from below on page 61, since 1/q < ok+l/(k+l)), which 

says that Fk can be written as 

k . l • 2 
1.v •E;.+1.v ·n Im v E C(k+f) = <µc ,e >, 

"'' n 

with µk E (Sk++l*l(a+l/q;C ))'. This means that for~ E Sk+l*(a+l/q;C) 
m n+ q q 

sup 
lplsm+n+l 

(E;.,n)EO(a+l/q;C) 
q 

m+n+ l l p 
(l+II (E;.,n)II) exp(ok+l k+l II (E;.,n)II) ID <P(E;.,n) I. 

Identifying JR.Zn with «:n, (E;.,n) +-+ i;; = E;.+in, we get, because C(k) c C(k+l), 



with 

f (z) 
k iz • r; = <µ ,e >, 
r; 

sup 
lpl:,;m+n+l 

r;d2(a+l/q;C ) 
q 

(l+llr;ll)m+n+I exp(<\+I k~I llr;II) IDP<P(r;)I :,; 

I 
:,; ~ sup exp(<\ k II r;II) I <P(r;) I 

r;dlk 

k+l* 
for any~ E 1\ik;Qk(Lk) c S (a+l/q;Cq), since int Q(a+l/q;Cq) c Qk 

because q > k+2. 
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Now we have to find an Fk satisfying (5.14) and (5.15). For an arbitra­

ry£ we will construct a function Fk,£ that satisfies 

(5. 16) 
I 2 m 

IFk,t(v ,v )I:,; ~,t(I+llvll) exp(a(Im v)+I/£11Im vll),Im v E C(q). 

The construction follows the same pattern of the proof of theorem 4.4.3 of 
n .. 

[7], only here we have to be careful near the boundary of lR +iC. 

Since an open domain lRn+iB in a:n is pseudoconvex (domain of holomorphy) 

only if Bis convex (theorem A.2), we will use domains of the form 

lRn+ich(C(q)), where ch(C(q)) is the convex hull of C(q). This does not 

change anything, because for all q there is~ p with C(q) c ch(C(q)) c C(p). 

Let 

(5. I 7) C(q+l).r. = {(y,x) 
u,J 

0 
= x., 

J 

fork= j+I, ••• ,n and (y,x0) E ch(C(q+I))} ]R.2n 
C • 

Then ch(C(q+I)) = C(q+I).r c ••• c C(q+I).r . c •.• c C(q+l·).r 0 • We can 
u ,n u ,J u, 

choose o > 0 so small that there exists an integer p > q+l, such that 

(5. 18) c(q+1) 0 , 0 c c(p). 
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Let tk be a c2-function int between O and I which is equal to I in 

the disc with radius 1/2 o and vanishes outside the disc with radius o. We 

write the coordinates in C as w = u+iv. Then there is a constant Kk with 

1:t <w)I ~ ~, WE t. 

Let us define the (0,1)-form (see appendix section II) t'(w) = at/a;(w) dw 
I 2 - -I -2 and let w. = iv.-v., then dw. = -idv.-dv .• When f is regarded as an element 

J J J J J J 
of A0Jexp(-a(z)-I/J1,II zll) ;C(p)) we define the function Fk JI, as follows: , 

for certain functions u5:' in n+j complex variables. When Im v e: C(q+I), 

TTj=I tk(wj) vanishes fo: v1 = (Im v 1, Re v 1) t C(p) according to (5.17) and 

(5. 18), thus Fk JI, is defined for v e: 1R2n+ich(C(q+I)). When v 2 = iv 1, that , 
is w. = 0 for j = l, ••• ,n, we get 

J 

( I . I) 
FkJl,v,1.v , 

I for v e: ch(C(q+I)), 

so that (5.14) is certainly sat~sfied. 

Now we choose the functions u: with 
- J 
aFk JI, = 

a suitable bound such that Fk JI, is , 
, holomorphic, that is such that 

JI, I I 
O. We can write Fk,JI, in a different 

way, namely let H0(v) = f(v) and let 

JI, I 2 2 
H.(v ;v 1, ••• ,v.) = 

J J 

for J = l, ••• ,n successively, then H~ = Fk,JI,• If Hl-l 1.s holomorphic 
I I 2 2 I I I ( Im v 1 , ••• ,. Im v , Im v 1 , ••• , Im VJ•_ 1 , Re v . , ••• , Re v ; Re v 1 , ••• , Re 

for 
I 

2 2 n 2 (j - I ) J def n n+ · - l 
Re v 1, ••• ,Re v. 1) E C(q+l).l' . 1x 1R. = B. I ct J , which is 

J- u,J- J-
true for j = 1 by (5.18), then H: is holomorphic in B. when u: satisfies 

V. I, J-

J J J 
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(5.19) 

It follows when j = n, that Fk,t is holomorphic in Bn = m2n+ich(C(q-1)) c 

c t 2n. Since by assumption H: 1 is holomorphic in B. 1, 1/w. is holomorphic 
J- J- J 

outside any neighborhood of zero, ~'(w.) = 0 in a neighborhood of zero and 
J 

since 

= - a~ . 1 2 . -1 -2 = a ~'(w.) a -;:;=-(iv.-v.)[-idv.-dv.J 
J oWj J J J J 

_(~_) 
av. aw. 

-1 -2 
dv. Adv. 

J J 
= (-i 02~ + 

\ -2 aw. 
J J J 

. 02~\ 
i -; -2 aw. 

J 

-1 -2 
dv. A dv. = O, 

J J 

- t we get ag. = O. Furthermore the domain B. is convex, thus pseudoconvex. 
J J 

Therefore we can apply theorem A.JO in order to solve (5.19). As a weight-

function we may take (t+llzll 2)-3(j-l) exp(-2a(z)-2/tllzll), since a(z)+l/tllzll 

is a convex function and log(t+llzll 2) is plurisubharmonic. Write zj = 
1 1 2 2 1 1 2n 

= ( Im v 1 , ••• , Im v , Im v 1 , ••• , Im v . , Re v . 1 , ••• , Re v ) E 1R and v [ j J = 
1 2 n +. J J+ n . 

= (v ;vf, ••• ,vj) E in J and let A(vlj]) be the Lebesgue measure in tn+J. 

Then by theorem A.IO there exists a solution u: of (5.19) with 
J 

~ J 
B. 

J 

Since ajc can be extended to a convex homogeneous function a' on m2n, 
p 

see (4.5), we get for x,y EC 
p 

a(x)-a(y) = Za(f+x;y)-a(y) ~ a(y)+a'(x-y)-a(y) = 

= II x-yll a' (x-ry) ~ All x-yll 

and also 
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a (y) ·-a (x) s II x-yll a' (y-x) s All x-yll 

for some constant A. We set 
• Q, • 

we can estimate H. in terms 
2 '/ J 

lw.l /(l+llv[jJII'-) s 2, 
J 

2 2 
M = exp(26A+26/£) and ck= 2(6 +16Kk)TIM, 

Q, 2 2 2 
of H. 1 using (a+b) s 2(a +b ), hence 

J-

. I . I 

then 

Q, 2 exp(-2a(zJ- )-2/£llzJ- II) 
I HJ.-I (v[j-1 ]) I --'-'--'--;__--'-'-----'- d11 (v[j-1 J) + 

( I +II v [ j - I J II 2) 3 ( j - I ) 

+ r 
B. 

J 
. I . I 

Q, 2 exp(-2a(zJ- )-2/£llzJ- II) 
IHJ._ 1 (v[j-lJ)I --'-_;_--'--=----=-----<-- d11(v[j-l]). 

(l+llv[j-JJll2)3(j-l) 

Since for J=n B = JR2n+ich(C(q+I)), HQ,= Fk £' v[n] 
n n Q, n , I 

I 2 = (v ;v) = v, 

z E ~n, zO = (y,x) = z, z = Im v and for j=O BO c C(p), HO= f, v[O] = v = 

it follows that 

f 
lR2n+iC(q+I) 

I 1
2 exp(-2a(Imv)-2/i11Imvll) d'(v) Fk Q,(v) · 2 3 n s 

' (1+11 vii ) n 

s c: f lf(z) 1
2 exp(-2a(z)-2/£llzll) d11(z). 

C(p) 

According to condition HS 2 (see [14] G.7) we can estimate the sup-norm 
2 by the L -norm and we find that (5.16) is satisfied with m = 3n, since also 

Exp can be written as projective limit of Hilbert spaces. 0 

REMARK 5. I. If we could choose for all k the functions Fk Q, satisfying (5. 15) 
( ) f 2n . ( )' . f h . and (5. 16) such that Fk+I ,£ (v) = Fk,£ v or v E JR +i C k , thus i t ere is one 

function F Q, holomorphic in JR2n+i C satisfying for all k 
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(5.20) Im \! E C (k), 

for some m and 

(5.21) for z EC, 

* then F£ would belong to H (a+l/(£+l);C) and we would have according to 

theorem 9. l [14] 

. I . 2 
£ 1.\! •!;+1.\! ·n 

<µ ,e > 
I;' n 

withµ£ E s*(a+l/(£+1);C)'. In that case 

f(z) 
£ iz • z;; 

= <µ ,e > 
z;; 

for z EC 

and since o£/£llz;;II is uniformly continuous on Q£' we get for 

q> E ~ •Q (1£) 
£' £ 

sup (l+llz;;ll)m+n+l exp(oH 1/(£+l)llz;;II) IDPqi(z;;)I:;; 
JpJ:;;m+n+I 

1;;EQ(a+l/(£+1);C) 

:;; Kt sup exp(of/£ll z:_;11) J<l>(z;;)J, 
1;;EQ£ 

where Q£ is now given by (5.S)(ii). Hence F would be a surjective map from 

A!. onto Exp. 
1.1. 

6. FORMULATION OF THE PROBLEMS AND STATEMENT OF THE MAIN RESULT 

In this section we reconsider the procedure followed in the last 

section and we formulate the problems to be solved in order that A. and A .. 
1. 1.1. 

given in (5. II) are indeed also given by (5.10), that is the space of all 

holomorphic functions satisfying the growth conditions in the sets int Qk' 

where Qk is given by (5.S)(i) or (5.S)(ii), respectively. Theorem 5. l says 
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that Fis surjective from A! onto Exp, from which it follows that Ft (5. 1) 
l. 

defined by (5.6) is injective. Since A. is reflexive (see (5.11)) the linear 
. l. 

hull of the set {e1.z•s} n is dense in Exp(a+O;C). On the other hand when sE~, 
the above problems are solved, we see that the linear hull of the set 

iz•s {e } C is dense in the space (5. 10) and the main result (theorem 6. 1) 
ZE 

follows. 

Anticipating on the results we will get we mean in this section by A! 
l. 

and A!. the dual A' of the spaces A. and A .. , respectively, given by (5.10) 
l.l. l. l.l. 

(6. 1) A= ind lim A00 (~;Qk), 
k-+oo 

where Qk is given in (5.5)(i) or (5.5)(ii), respectively. Then A is an 

LS-space. There are also other possibilities of writing A. as an inductive 
l. 

limit of spaces A~, or A .. as inductive limit of spaces A0 • We will choose 
l. k l.l. k N 

appropriate spaces Ai and A£. In the above Ai= A00 (~;Qk). 

In the last section we have embedded (a linear subspace, namely (5.11), 
k . *k+1 k of) A. 1.nto the space S (Qk 1). Roughly we can say that A. consists of 
l. + l. 

1 . *k+1( ) . - O those e ements ~ 1.n S Qk+ 1 with a~= and that any elementµ of 

s*(Q)' that satisfiesµ= at crk for some crk E (sk*(Qk)')n, is zero when 

restricted to A~. Hence the elements of A! can be identified with the equiv-1. l. 

alence classes of the elements in s*(Q)', when two 

equivalent if their differenceµ can be written as 

elements in s*(Q)' are 
-t 

µ=a crk in each 
*k *k ~ S (Qk)' for some crk E (S (Qk)') . Now we investigate this more precisely. 

First we write A. as inductive limit of spaces having the topology of 
k* k 1 

S (Qk), that is Ai now is the closed linear subsp~ce of 

00 

consisting of the functions holomorphic in int Qk and C on Qk with the topo-

logy heredited from Sk. Therefore, according to [15] prop. 35.5(a) the fol­

lowing sets can be identified 

(A~)' 
l. 
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and according to [15] prop. 35.6 this is also true for the topologies, when 

* we provide these spaces with the weak topology and the quotient topology 

* with respect to the weak topology, respectively: 

(A~)' === (Sk)' /4 . 
i cr cr k 0 

(A.) 
i 

On the other hand A~ is the kernel of the map a= (a/a~1 , ••• ,a/a~n) 

so that according to [15] prop. 35.4 (A~)O is the weak* closure in (Sk)' of 
i cr 

-t · k · fl . ( . . - ) h k* 1 f Im a • Since S is re ective it is an FS-space, t e wea c osure o 

Im at is equal to the closure in the strong topology in (Sk)', [15] prop. 

35.2. We denote the closure in (Sk)' of the range of the map 

-t 
by Im ak. So we get 

Finally we will obtain isomorphisms also for the strong topologies. 

Therefore, we consider this spaces only with the topology of weakly* 

converging sequences denoted by (A~)' and tsk)' Since Skis a Montel 
i cr,s cr,s 

space we get 

where (Sk)b is the dual of Sk 

to [14] theorem 9.1 ((9.6) and 

transformation F maps (Sk+l)' 
b 

provided with the strong topology. According 
th page 61 5 line from below) the Fourier 

continuously into 

Hk = ind lim Hm*(a+l/(k+l);Ck,k) 
m+oo 
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with 

m* def II II -m II 2n . H (a+l/k;Ck,k) = A00 ((I+ v ) exp(-a(Im v)-1/ Im vii); lR +i C(k)) 

and F-I maps Hk continuously into sP*(a+l/(k+l);Ck)', when 1/k < op/p, hence 

into (Sp)b. 
W ( ) h • I 2 I ➔k b Let = w1, ••• ,wn, were wj = ivj-"j' J = , ••• ,n and let W•H e the 

subspace of Hk consisting of functions f(v) that can be written as 

n 
f(v) = I 

j=l 
w. g.(v) 

J J 

with g. E Hk, j = l, ••• ,n. Then 
J 

-t ::-:Re 
F Im ak+I c W•H and 

when 1/(k-I) < o /p. Furthermore 
p 

➔k . k ➔ • 
for, let f E W•H be a Cauchy net converging to f EH. Then f = W•g with 

a a a 
➔ (Hk)n, so that f and hence f vanishes on ga E a 

vk = {lR2n+i C(k)} n {v I iv!-v: = o, j = I, ••• ,n}. 
J J 

The inclusion follows if we have shown 

PROBLEM 6.1. A function f E Hk vanishing on Vk can be written as 

➔k-1 f(v) = W•g (v), 

'th ➔k-I (Hk-I)n ' t' ~ th ' 't' N such that ➔gk-I w~ g E ; ~n par ~cu~ar ere ~s a pas~ ~ve E 

m+N* ID* EH (a+l/k;Ck-l'k-1), when f EH (a+l/k;Ck,k), 
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In that case we have 

proj lim (A~)' === proj lim (Sk)b' i ~ proj lim (Hk) ✓. , 
l.OS S --- S k+00 ' k➔oo ' -t k➔oo +k 

Im c\ W•H 

where (Hk) means that Hk is provided with the topology of convergent 
s 

sequences. 

Furthermore 

in (A~)' because 
1. 

weakly* converging sequences 1.n (A~+I)' converge strongly 
1. 

A~ is an LS-space, so that 
1. 

proj lim (A~)' 1. cr,s k+oo 
= proj lim (A~)' = (A.)' = A!, 

k+oo 1. b,s 1. b,s 1. 

where the last equality follows from the fact that the topology in the metric 

space (narnely the FS-space) A! is determined by convergent sequences. Thus 1. 
Fis an isomorphism between 

(6.2) F: A!~ 1. 

In case (ii) when rlk is defined by (5.5)(ii) we define S-spaces with 

L2-norms rather than with sup-norms. For, a continuous map from one Hilbert 

space into another is weakly compact, so that projective and inductive limits 

* * of sequences of Hilbert spaces (called FS -spaces and DFS -spaces, respec-

tively) are reflexive and they are dual to each other (see [19]). Also we 

apply th. 15 of [19J, where the isomorphism holds for the strong topo­

logies and not only for the weak* topologies.as in [15] prop. 35.6. Hence 

we do not have to restrict ourselves to the topology of convergent sequences 

(this also applies to case (i)). 

Let 

= ind lim ~((l+ll i;:11 )m exp c\ 1/kll i;:11 ;r.1£) 
k+oo 

and let A; be the closed linear subspaces; n A(QQ,). In virtue of [19] th. 7 

the topology of ind lim A~(k) with k+oo ,., 
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if finer than the topology in A~ induced by S~, but one easily sees that it 

is also less fine, hence AmJI, is a DFS*-space. Since A .. can also be described 
2 l. l. 

by L -norms ([14] G.7) we get 

Aii = ind lim AJI,, 
Jl,+co 

where AJI, = proj lim AmJI,. Although A .. is an LS-space, this fact is not ex-
m+oo l.1 

pressed by the above inductive limit, which is only a weakly compact sequence. 

Indeed, a neighborhood of zero in AJI, is bounded in AJl,+I' hence relatively 
m 

weakly compact in each AJl,+I (m = 0,1,2, ••• ), since Ai is reflexive ([15] 

prop. 36.3), and thus relatively weakly compact in AJl,+t• Therefore, 

(Aii)O = protJ,im (AJl,)b. However, the projective limit in AJI, has no nice 

properties, so we are forced to consider the weak* topology in (A .. )'. The 
11 

topology of (A .. )' is 
l.1 

. * . also determined by weakly converging sequences, hence 

(A .. )b' = (A .. )' = proj lim (AJI,)' • 
1.1. 1.1 cr,s t+co cr,s Any weakly* converging sequence in 

(AJI,)' converges weakly* in (AmJI,)' for some m and thus it converges weak-cr,s cr,s 
ly* in each A~(k), k = 1,2, •••• Since the embedding map from A;(k) into 

A;+l(k+I) is compact according to [14] G.7, the sequence converges strongly 

in (A;_ 1)' ([14] E.2), thus in in&+lim (A;_ 1)b s· Since (A;)' is a Frechet 
* m m ' 

space, namely an FS -space, (AJl,-l)b,s = (AJl,-l)b, so 

(A .. )b' = proj lim 
l. l. Jl,+co 

ind lim (A;)b • 
m+oo 

Now Am+I is the kernel of the continuous map JI, 

In virtue of [19] th.IS and [15] prop.35.4 we get 

(Arn+I)' 
JI, ~ (S~+))' I 

/im at 
m 

where the closure in (Sm+I)' of Im at equals the weak* closure, since Srn+I JI, m JI, 
is reflexive. 



Let 

ID* = proj lim H (a+l/£;Ck,k) 
k➔oo 

and let 

H; ind lim H; 
m+oo 

Then it follows from [14] th.9.1 (using D.2 instead of G.5) and G.3 that 

F(Sm)' m+n+l 
Q, C HQ, and 

As in case (i) problem 6.1 and the following problem imply that 

➔M 
C W•H 

Q, ' 

where the closures are taken in the corresponding spaces with m+l instead 

of m and where M > m+l+N. 

PROBLEM 6.2. When a function f E: A(JR2n+i C) -in each JR 2n+i C(k) can be 

written as 

➔ 

f = W•g 
k 

➔ ID* n 
for some gk E: (H (a+l/£;Ck,k)) , 

( obviously -in that case f E: H;), then f can be written in JR2n+i C as 

➔ 

f = W•g 

• 7 ➔ ( m+N)n ~ . . . d d f -in part-icu~ar g E: HQ, ;OY' some pos-it-ive N -in epen ent o f. 

Hence Hm+l /W•Hm-+ HM/W•HM-+ HM+I /W•HM and thus F is an isomorphism 
Q, Q, Q, Q, Q, Q, 

between 

(6.3) F: A!. ~ proj lim 
ii 

,Q,➔oo 

ind lim 
m+oo 

39 
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* . 1· * d 1 * . 1· k . d . Let H .. = proJ im H0 an et H. = proJ im H. Then the right han side ii t-+oo N i R➔oo 

* in (6.2) is equal to the equivalence classes of elements in H., when two 
i 

elements in H~ are equivalent if their difference f can be written in each 
i 

JR.2n+iC(k) as f = W•gk with gk E (Hk)n. The right hand side in (6.3) is 
. 1 1 . * . * . equal to the equiva ence c asses in H .. , when two elements in H .. are equiv-

ii . . 2n . ii ➔ 
alent of their difference f for each £, can be written in ]R +i C as f = W• g 

• ➔ (H~)n. withgi E x, 

Next we consider the set in JR.2n+iC where W = (w1, ••• ,wn) vanishes, 

namely 

and 

V { I ]R2n . C • I 2 O • I } = \/ \/ E +i , i \/. -v. = , J = , • • • , n 
J J 

V = V n {JR.2n+i C(k)}. 
k 

• ➔k . ➔* . . . Since W•H vanishes on Vk and W•Hi vanishes on V, we can define the contin-

uous restriction maps I 

I.: Hk/ k 
i W•H 

and 

- Ii*I £. V 

by If(v) = f(v 1 ,iv1). Here Hklv and H:1v are the spaces of restrictions of 

f · · k * k . h h 1 . d d k * unctions in H or HQ, to Vk or V wit t e topo ogy in uce by H or HQ,, 
I respectively. Then the maps I are surjective. When we regard z = v as the 

variable in V there are natural continuous injections J 

and 

J": 
i 

Hklv ~ Aoo(exp(-a(z)-1/kll zll) ;C(k)) 
k 

~proj lim 
k+oo 

A (exp(-a(z)-1/(t-l)llzll);C(k)). 
00 

£, 



Now the topologies of 

. 1· kl prOJ 1.m H V 
k-+oo I k 

= H:1v and 

become extremely simple, as they both coincide with the one induced by 

Exp(a+O;C), compare (2.14), thus H:lv = H:ilv is an FS-space. Finally we 

have obtained 

(6.4) A! ~proj limHk/ +k~proj limHklv ~Exp(a+O;C) 
1 k-+oo lw•H k-+oo k 

and 

(6. 5) A!. ~ proj lim ind lim 
l. l. 

m+oo 

J .. 
l. l. 

c___,. Exp(a+O;C). 

I.. 
l. l. 

proj lim ind lim H~lv 
£➔co ~oo 
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In theorem 5.1 we have proved that the map J. 
l. 

0 I. is surjective, hence 
l. 

J. is surjective. Remark 5.1 is concerned with the 
l. 

question whether J .. 0 I .. 
l. l. l. l. 

is surjective. Using the proof of theorem 5.1 we see that indeed J .. 0 I .. 
l.l. 11 

and hence J .. are surjective, if the following problem is solved. 
l. l. 

PROBLEM 6.3. Let the function fk E Hm*(a+l/£;Ck,k) satisfy for all 

k=l,2, ••• 

= o. 

Then there exists a function f EH; with for all k = 1,2, ••• 

For, in that case (5.20) and (5.21) can be satisfied. 

Problem 6.1 says that the map I. is injective. Problem 6.1 as well as 
l. 

problem 6.2 follow from problem 6.4, which says that the map I .. is injective. 
l. l. 
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PROBLEM 6. 4. A function f E H; vanishing on V can be written in JR. Zn+ i C as 

➔ 
f = W•g with ➔ * n g E (HQ,) • 

The next step is to investigate holomorphic functions vanishing on 

the set V, but before doing this we give an intuitive interpretation of the 

isomorphisms (6.4) and (6.5) in terms of the last section revealing the 

a priori difference between the spaces (5.11) and (5.10) in terms of this 

section. In section 5 we have shown that Exp is isomorphic to the dual of 

the closure (given in (5.11) and here denoted by A.) of the linear hull of 
l. 

{eiz•s}zEC in Ai and in this section Exp is isomorphic to H:lv• H~nce 

(H:lv)' is isomorphic to Ai and problem 6.3 implies the same for Aii. Indeed, 

let us examine what elements of (H*)' yield A or A under Ft defined in (5.6) 

(we do not distinguish between cases (i) and (ii) here). Let cp EA, thus 

00 

, iz • s 
c/>(s) = L ck e k 

k=l 

* with zk EC and with some constants ck. If for some a E (H )' 

• I . 2 
iv •,;+1.v ·n = 

<a ,e > 
V 

ct>Cs) 

then 

00 00 

a = I ck 8(v 1-z )8(v2-iz) = l ck 8(v 1-zk)8(v2-iv 1) 
\l 

k=l k k k=l 
00 

8(iv 1-v2) I I = ck 8(v -zk) , 
k=l 

= 

thus a acts on the restrictions of functions in H* to V, that is a E (H* IV)'. 
- * Now consider an element cp EA. If for some o E (H )' 

. I . 2 
l.V •,;+l.V •n ~(r) ' <a ,e > = ~ ~ 

V 

then we only know that 

. 1 . 2 iv •,;+1.v ·n 
<a ,w.e > = O, 

V J 
J=l, ••• ,n, 
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since 3.¢ 
J 

* ➔* = 0. The exponentials are dense in H, so that <o,W·H > = 0, thus 

see [15] prop.35.5(b). When we have shown that the map I is injective 

(problem 6.4), the spaces A (5.11) and A (5.10) coincide and we obtain a 

theorem similar to theorem 2.1. 

Vis defined as the simultaneous zero-set of the polynomials w1 = 
· I 2 · I 2 Th 1 . 1 . . d 1 . = iv 1-v 1, .•• , w = iv -v. ese po ynomia s generate a prime i ea in any n n n 2 

point of a pseudoconvex set Q c ~ n. Therefore, according to Hilbert's 

Nullstellensatz all holomorphic functions fin Q vanishing on V can locally, 

that is in a neighborhood w of any point in Q, be written as 

(6.6) 
➔ 

f = W•g 
w 

-+ n 
with g E A(w) , 

w 

see appendix (A. 18). With the aid of Cartan's theorem B (theorem A 14) it is 

shown in the appendix that f E A(Q) satisfying (6.6), satisfies (6.6) 

globally, that is f can be written as 

➔ 

f = W•g with g E A(Q)n. 

Problem 6 .. 4 asks for functions g EH~, so it is the analogue with estimates 

of the problem treated in the appendix. By (6.6) we can reformulate problem 

6.4: 

* PROBLEM 6 .. 5. If f E HQ, can ZocaUy (that is 1.,,n a neighborhood w of any point 
. c) b . 1.,,n T e wn tten as 

➔ 

f = W·g w' 
-+ n 
g E A(w) , 

w 

h h . ➔ ( *)n . h ➔ t en t ere exi,sts g E HQ, unt f = W• g. 

In the next section we will solve this problem for general polynomial 

systems P instead of W. Also in that case, a set V can be so defined (see 

EHRENPREIS [3]) that a function f vanishing on V can locally be written as 
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➔ 
f = P•g, see theorem A 17. Provided that J is surjective, the isomorphism I 

in (6.4) and (6.5) is the analogue with estimates of the isomorphism (A 19). 

Using (6.6) and the above mentioned problem of the appendix (theorem 

A 15) we can reformulate problem 6.3: 

PROBLEM 6.6. Let the functions fk E Hm*(a+l/t;Ck,k) satisfy for all 

k = 1,2, ••• fk+l-fk = W•gk in 1R2n+iC(k)., gkEA(1R.2n+iC(k))n., then there exists 

a function f EH; with for aU k = 1,2, ••• f-fk = w•lk in 1R2n+i C(k) for 

some lk E A(1R2n+i C(k))n. 

Also this problem will be solved in the next section for general 

polynomial systems P instead of W. Therefore, J .. is surjective and we have 
11 

proved the main theorem of sections 5, 6 and 7, namely 

THEOREM 6. 1 • Let a be a convex function on pr C for some open convex cone C 

in en and let n and nk be the closed convex sets in en determined by (5.4) 

and (5.5)(ii)., respectively. Then the map F from A'., the dual of the space 

A (6.1)., into Exp(a+O;C) given by 

F (µ)(z) = iz • z;; 
<µ 'e >, 

z;; 
µ E A' 

is an isomorphism. 

We have also shown that Exp is isomorphic to A!, hence A.= A ..• Taking 
1 1 11 

into account theorem 5.1 we can conclude that the linear hull of the set 

{eiz•z;;} Cis dense in A (6.1) in both cases (i) and (ii)~ 
ZE 

Theorem 6.1 is a generalization to non-entire functions of the theorem 

of EHRENPREIS [2] and MARTINEAU [12] of section 2 which deals with entire 

functions as Fourier transforms. A particular case of this theorem with 

(5.5)(i) instead of (5.5)(ii) has already been proved by KAWAI in [9]. 

7. COMPLETION OF THE PROOFS 

In this section we solve problems 6.5 and 6.6. For that purpose cohomol­

ogy with bounds is introduced. The solution requires estimates in the steps 

of the proof of a similar statement without bounds in the appendix. We for­

mulate the theorems in a more general way making them useful in other 
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applications too. 

Let Q be an open pseudoconvex set in «:n such that there is an increasing 

sequence of open pseudoconvex subsets Qk with union Q and with 

where Qk(E) is the E-neighborhood of Qk. Moreover, in some theorems we 

require that there is a continuous plurisubharmonic function o in Q with 

(7. I) Qk = {z I o(z) < k}. 

This is only a special condition on Q ([7], th.2.6.7.ii), if the sets Qk 

are unbounded. 

For example, we may take for Qk suitable E-neighborhoods of each other, 

since the function d(z) = -log o(z,Qc) (here o(z,Qc) is the distance between 

z E Q and the complement of Q) is plurisubharmonic when Q is pseudoconvex. 

We show that in some sense also the sets lR2n +i C (k) c a:2n of the last 

section are an example. Therefore, we say that two increasing sequences 

{Qk}~=I and {Qk}~=I exhausting Qare equivalent if for every k there is an£ 

with Qk c n; and Qk c Q£. Then it is clear that any function on Q that is 

bounded in some norm on all subsets Qk is also bounded on the subsets Qk and 

conversely. 

LEMMA 7.1. The increasing sequence {lR2n+iC(k)}~=i exhausting Q = JR2n+ iC c 

c c2n is equivalent to an increasing sequ~nce {Qk}~=I satisfying (7.1). 

PROOF. Choose a vector a in C c JR2n and a number c > J and consider the 

I 2n hyperplane H = {y a•y = c} c lR • Let for each y E C 

* C 
y = a•y y 

be the intersection of the vector y with H. We define a plurisubharmonic 
* * C (even convex) function x in C by x(y) = d(y) = -log o(y ,C ). Then the sets 

Ck= {y I x(y) < k}, k = 1,2, ••• , are relatively compact subcones of C 

exhausting C. Now we set for z = x+iy 
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o(z) = max(d(y),x(y)), 

which 1.s plurisubharmonic (even convex) and we have 

oo 2n oo 
Hence the sequence Hlk}k=I is obviously equivalent to {JR +i C(k) }k=l • D 

Let¢ be a plurisubharmonic function in Q. In some theorems¢ will be 

such that for every z e Qk and llz'-zll < E(k) 

(7.2) ¢ ( Z I ) -¢( Z) :5 ~, 

where the constant~ does not depend on z and z', but may depend on k. For 

example the function m log( 1+11 zll 2) + 2a(y) + 2/£11 yll is plurisubharmonic in 

JR2n+iC and satisfies (7.2) for every sequence {Qk}~=I equivalent to 
2n . 00 

{JR +1. C(k) }k=I. Finally let P = (Pjk), j = I, .•• ,p, k = I, ••• ,q, be a 

matrix of polynomials. 

Then problems 6.5 and 6.6 follow from lemma 7.1 and the next two theo­

rems, theorem 7 .. l(a) and theorem 7.2, respectively. In theorem 7.1 we form­

ulate a part (b) with uniform bounds, which we do not need here, but which 

may be useful in other purposes. Part (b) is derived in the same way as 

part (a). 

THEOREM 7.1. If f e A(Q)P can locally (that is in a neighborhood w of any 

point in Q) be z,.,ritten as 

f = Pg 
w' 

g e A(w)q 
w 

then there is a number N, such that 

(a) there is a function v e A(Q)q with f = Pv and with 

00 

exp-¢(z) dA (z) < oo, 

(I+llzll 2)N 
k=l,2, ••. , 

when Q = U Qk satisfies (7.1) and¢ is a plurisubharmonic function in 
k=I 



Q such that 

j lf(z) 1
2 exp-cjJ(z) dA(z) < 00, 

Qk 
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k=l,2, •••. 

(b) For all k = 1,2, ••• there are constants~, integers £k 2 k and functions 

vk E A(Qk)q with f = Pvk in Qk and with 

J Iv (z) I 2 exp-¢(z) dA (z) :5 ~ r 2 j lf(z)I exp-cjJ(z) dA(z), 
Q k (l+llz11 2l 

k Q£ 
k 

when the right hand side is finite for some plurisuhharmonic function¢. 

In part (b) the pseudoconvex subsets Qk of Q do not have to satisfy (7.1). 

THEOREM 7.2. If fk E A(Qk)P, k = 1,2, ••• , are 

in Qk' 

f-f = 
k 

gk •~ A(Qk) q, then there are a number N 

Pgk in Qk' gk E A(Qk)q, and with 

I /f(z) 1
2 

Qk 

exp-¢ (z) dA (z) < oo, 
(J+llzll 2)N 

functions with fk+l-fk = Pgk 

and a function f E A(Q)P with 

k=J,2, ••• , 

co 
when Q = U Q satisfies (7.1) and¢ is a plurisubharmonic function satis­

k==I k 
fying (7.2) such that 

I lfk(z) 12 exp-cjJ(z) dA(z) < 00 , 

Qk 

k=l,2, •••• 

2 2 2 p 
Here /f(z)I means lf 1(z)I + ••• +If (z)I when f = (f 1, ... ,fp) E A(Q) 

p n 
and A(z) denotes the Lebesgue measure int • 

First we need similar theorems as theorem AJ3 and Castan's theorem B, 

theorem A 14, but now with estimates. Let U(A) = {U~A)}. 1 , A= 0,1,2, •.• 
l. l.E A 

be the coverings of Q given in the appendix section V satisfying properties 

(AIS)(i),(ii),(iii),(iv),(v) and (vi) and let for every k U(A) = 
( ) k 

= {U. A n f2k}. 1 be the corresponding coverings of Qk. When F is an analytic 
l. l.E A ( ) 

sheaf on Q, we denote by cP[U A ,F,¢] the set of alternating cochains 

c = {c} 1.n Q, s E rf+l, c E r(u(A) F) satisfying for all k 
s I\ s s'' 

2 def 
llcll k­¢, I 

lsl=p+I I 
u(A)nQ 

s k 

le (z) 1 2 exp-cjJ(z) dA(z) < co 
s 
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and by cP(U~A),F,¢) the set of all alternating cochains c in Qk with 

II ell: k < 00 • By qDN we will mean the plurisubharmonic function ¢N(z) = ¢(z) + 
~ ' 2 

+ N log ( 1 +II zll ) ., 

Lemma 7.2 will be obtained in the same way as theorem A 13, only we 

* write down explicitely the construction of the map cS (AJO), so that we 

can bring estimates in the statements involving o*. We do not work with the 
00 • 

sheaf E of germs of C -functions, but rather with the sheaf L of germs of 

locally square integrable functions. Then we may use theorem AlO instead of 

theorem A 9. So let L be the sheaf of germs of (O,q)-forms with locally 
q 

square integrable coefficients and let Z be the subsheaf of 3-closed forms 
q 

of type (O,q). Again we have a part (a) with globally defined functions on 

Q and a part (b) with functions in Qk and uniform bounds. 

LEMMA 7.2. 

(a) Every cocha1.:n c 1,n P uCA) A J > . h b . C [ , ,¢ , p _ 1., 1.;nt cSc = 0 can e wr1,tten as 

(b) 

c = cSc' for a c' E 

satisfies (7.1). 

Cp- 1 [ U (A) A ,1, J h . ( ) h { r. } 00 

, ,~ 2m ., w ere m = min p,n ., w en "k k=l 

P (A) A • For aU k every cochain c in C [U , ,¢]., p ~ 1., w1,th cSc 
p-1 (A) A written in nk as c = cSck for a ck E C (Uk , ,¢ 2m) such 

constants 1), 

II ck.II q) 2m' k ::; 1)_ II ell¢ ,k ., 

= 0 can be 

that for some 

where m = min(p,n). Also for fixed kevery cocycle c E cPcu?) ,A,¢) 

satisfies the above property (b) for this k. 

PROOF. A section c E f(Q,L 0) with 3c = 0 determines a holomorphic function 

c E A(Q) (this follows by repeated use of lemma 4.2.4 in [7]). For c E 
p (A) p-1 (A) 

EC [U ,zq,¢] with cSc = 0 we want to find a c' EC [U ,Zq,¢ 2mJ such 

that cSc' = c, when q = 0 or rn part (b) cochains ck E Cp-l(U~A),zq,¢ 2m) such 

that cSck = c in Qk. We assume that this has already been proved for smaller 

values of p and all q, when p > 1, m = p and when the constants 1)_ in part 

(b) depend on p .. 

First we give estimates in the construction of gin theorem Al 2. For 

each k we choose£= £(k) such that, when u?) n Qk =I= r/J, u?) c QQ, according 



49 

to property (AI S) (iii). Since also all sets in U(;\) contained in Qk have 

a minimum size (say 
00 

a partition{¢} 1 v v= 

they contain a ball with radius Ek(A)), we can construct 

of unity subordinate to the covering U(A) of Q (¢ has its 
\) 

support in u{A)) such that for all k iv , 

(7. 3) - 2 
maxlo¢ (z)I ~ ck z \) 

for those v with UiA) n Qk I 0. Here 
\) 

- 2 lo¢(z)I = 
n 
L 

j=I 

- 2 1a.¢(z)I . 
J 

00 

For example let for each v E IA+l xv be a C -function equal to one in 

U~A+l) and to zero outside the ££(kv)(A+l)-neighborhood of U~A+l) (which 

OR.(k ) 

" 

I •'.HI) I 

figure 7. 1. 

u<>.> 
p(v) 

(A) 
certainly is contained in Up(v) with p = PA,A+l'Abecause of property (AlS) 

(v)), where k is the smallest integer k with U(()) n Qk I 0, see figure 
v (A) p v 

7.1. Then for those v with U () n Qk I 0 maxl3x (z)I depends on 
p v (A 1) z v 

££(l)(A+l), ••• ,££(k)(A+l). Since U + is a covering of Q, 
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¢, (z) = 
\) 

co 

X (z) 
\) 

I xµ(z) 
µ=1 

\) = 1 , 2, ••• 

is a partition of unity subordinate to the covering U()..) with i = p (v), 
\) 

that satisfies (7.3). Note that for each z not more than M terms in the 

denominator differ from zero because of property (AIS)(ii). 

As in the proof of theorem A12 we set for s Err 

g = I: ¢, c. , 
s \) \) 1. s 

\) 

when c E cP[U(A) ,z ,¢,]. Then as 1.n theorem A12 g E Cp-l(U(A),L) and og = c, 
q q 

if oc = O. Furthermore writing¢, = ;;p-.~ and using I:¢, = I we find 
\) \) \) \) \) 

not 2 exp-~(z) dA(z) _ Ilg II ks 
s ~, 

¢, (z) le. (z) I 2 exp-~(z) dA (z) s \) 1. s 

sI:llc. 11 2 
v 1.s~,k 

\) 

\) 

for all plurisubharmonic functions~ for which the right hand side is finite. 

Since not more than MA,A+l(k) different v's are mapped by p onto the same i, 

when u?) n rlk 1, 0, (property (AIS)(vi), we get by summing up 

Let ag 

2 
llgll k ~, 

= f be the cochain 1.n Cp-l(U(A) Z ) defined by 
'q+I 

f = ag 
s s 

I: cl¢, 11 c. 
V V 1.S 

\) 



Then 

llf 11: k::;U::llacp Ac. II k} 2 ::;Nk(A) rllacp Ac. 11 2 k 
S ~, V V i S cp, V V i S cp, 

V V 

where at most N(A) 
k 

terms in the sum are different 

to property (AIS)(iv). If u(>-) 
s n nk I 0 according 

so that for all i E I with u~A) n u(A)I 0 
A i s 

Hence using (7.3) in the above estimate we get with~ 

II fll 2 k _< K_'II cll 2 
<P, -k <P,k• 

Now of= aog = ac = O. If p > I, by the inductive hypothesis of case 

(a) we can find a cochain f' E cP-2cuC>-) Z cp J with of'= f and by 
' q+I' 2p-2 

the inductive hypothesis of case (b) we can find cochains f' E 
k 

E cP-2cu~A) ,zq+l'cp2p-2) with ofk =fin nk and with 
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for some constants~ depending on k. By theorem AIO and property (AIS)(i) 

for every s EI~-] we can find (g')s E r(u~A) ,Lq) so that a(g')s = (f')s in 
u(>-) and 

s 
II (g') 11 2 

s 
<P2p 

::; ll(f') 11 2 
s <P2p-2 

and since the sets Qk are pseudoconvex, theorem AIO yields (gk)s 

E r(u~A) n nk,Lq), such that a(gk)s = (fk)s in u~A) n nk and 
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llc'II: k 
't'2p' 

:s; M, , 1(k)llcll 2 k + pN(A)llf'll 2 < co 
A,A+ <Pzp' k cp 2P_2 ,k 

and for some constants~ 

2 (A) , 2 2 
:s; MA A I (k) II ell k + pNk llf II k :s; ~II ell k. 

'+ <Pzp' <Pzp-2' <P, 

Furthermore oc' = og = C and ac' = f-oag' = f-of' = f-f = O, hence 

c' E cp-l[U(A) z ~ J and also oc' = og = C and ac' = f-oag' = f-of' = 
'q''t'2p k k k k 

· ' p-1cu<A) z > = f-f = 0 1n nk, hence ck EC k , q'<Pzp • 

It remains to consider the case p = 1. The fact that of= 0 then means 

that f defines uniquely a (O,q+l)-form fin n with af = O. In case (a) we 

cannot immediately apply theorem AIO, but we need a modification, where the 

integrals are performed in the sets nk. Assume that this may be done. Then 

we can find g E r(n,L) with ag = f and for all k 
q 

J I g(z) I 2 exp-cjJ ~z)2 dA (z) < co • 

nk (1+11 zll ) 

In case (b) we use theorem AIO and obtain (O,q)-forms gk E r(nk,Lq) in nk 

with agk = fink and 

Putting 

exp-<P(z) dA (z) 
(l+llzll 2) 2 

(c')s = gs-glu(A) 
. s 

and 

:s; J lf(z)l 2 exp-cjJ(z) dA(z). 

nk 

for s E IA, we obtain cochains with the required properties (using (AIS)(ii) 

in the estimates for g). 

In fact we only haven induction steps, since all (O,n)-forms g satisfy 

ag = O. Therefore, the estimates hold already when pis replaced by 

min(p,n) and the constants~ in part (b) may be taken independent of p. 

We only have to prove the modification of theorem AIO. D 
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00 

LEMMA 7.3. Let Q be an open pseudoconvex set, let {Qk}k=l be an increasing 

sequence of subsets of Q satisfying (7.1) and let¢ be a plurisubha1"111onic 

function in Q. For every (0,q+1)-fo1"111 g with locally square integrable 

coefficients and with ag = O, there is a (O,q)-fo1"111 u in Q with locally 

square integrable coefficients, such that au= g and for all k 

I lu(z) 12 exp-<jl(z) dA(z) < 00 

Q (I+llzll 2) 2 

k 

provided that for each k 

I lg(z)l 2 exp-¢(z) dA(z) < oo. 

Qk 

PROOF. Let x be a convex majorant of the nonnegative function x 

2(a) = { :x{O,log[2k J 
Qk+l \Qk 

k = 1,2, •.•• Then ~(z) def x(o(z)) is 

for a< 1, 

2 lg(z)I exp-<jl(z) dA(z)]}fork:Sa<k+l, 

plurisubharmonic in Q, so that we may 

apply theorem AIO in the domain Q with the plurisubharmonic function¢+~. 

This yields a (O,q)-form u in Q with au= g and with for each k 

I lu(z) 12 exp-¢(z) dA(z) s; ex(k) I lu(z) 12 exp(~<jl(z)-Hz)) dA(z) s; 

(l+llzll 2) 2 (t+llzll 2) 2 
Qk 

Jr lu(z) I 2 exp(-<jl(z)-Hz)) dA(z) s; ex (k) Jr I g(z)I 2 exp(-<jl(z)-~(z))dA(z) = 
Q (t+II zll 2/ Q 

= ex(k) (I+ kil I ) lg(z)l 2 exp(-¢(z)-~(z)) dA(z) s; 

QI Qk+l \Qk 

s; ex(k)[ f lg(z)l 2 exp-¢(z) dA(z) + I -\z] < 00 • 

k=I 2 
QI 

□ 

REMARK 7.1. In general lemma 7.3 is not true, if we consider different 

weightfunctions ¢kin the sets Qk' or in the same set Q. For example assume 
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that ag = 0 and that for every k 

(7.4) I lg(z)l 2 exp(-ct>(z)-1/kllzll) dJi.(z) < oo, 

Qk 

where Qk c Qk+l c Q or Qk = Q for all k. Then it is not true that there is 

a form u in Q with au= g and with for all k 

(7. 5) I lu(z)l 2 

Qk 

exp(~cl>(z)-1/kllzD) dJi.(z) 
(1+11 zll 2) 2 

< CX). 

For if this were true, using theorem 4.4. 2 of [ 7] as in section 5, we could 

extend the entire function 

. "'I . f . 1.n"' sat1.s y1.ng 

lf(z)I I/£ dzll 
:,; 2E: e e for all E: > 0 

to an entire function Fin a: 2 satisfying 

F(z,iz) = f(z) 

for all£> O. 

But then according to VLADIMIROV [16] 29.1 F is a polynomial, hence f would 

be a polynomial, that is 

k f a. . 
f(z) = I -.+ el.Z•Z'; dz-; 

j=O z-;J 

for some k and constants a. contradicting the definition off. 
J 

In [9] KAWAI has shown that for each (O,q+l)-form g with ag = 0 

satisfying (7.4) there does exist a (O,q)-form u with au= gin Q satisfying 

(7.5), when Q satisfies 

sup IIIm zll :,; K < 00 

ZEfi 
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for some constant K. 

Next we derive Cartan's theorem B with bounds. Let F be either the 

sheaf of relations of Pon Q, thus F = RP or the image under P of the sheaf 

Aq, thus F = PAq, see (AS) and (A6). 

LEMMA 7.4 .. Let the plurisubharmonic function qi in the pseudoconvex open 

set Q sat·Z:sfy (7. 2). There is a positive integer N ( depending on P), such 

that for all\ there is aµ>\ with the following properties 

(a) when moreover the subsets Qk of Q satisfy (7. 1 ), every cochain 

f E cPcu<A) ,F,qi] with of= O, p ~ 1, can be written as of' = o: f for 
some f' E cp-l[U(µ) ,F,qiNJ; ,µ 

(b) for aU k there are integers ,Q,k > k and constants KA k' such that every 

cochain f E cPcu(\) ,F,qiJ with of= o, p ~ I, for all'k can be written 

as of' = o* fin Qk with fk' E cp-l(U(µ) F qi) and with 
k \,µ k ' 'N 

llf k' II k :::; K, k 11£ II ,Q, • 
qiN' /\' qi' k 

PROOF. First we change theorem A16 into a formulation with L2-estimates. Let 

K = w+z be so that Un Qk / 0 and V = (t+l) w+z c Q,Q, for some ,Q, ~ k, where 

tw is the enlargement of w by a factor t with respect to some center in w. 

Then V contains some E-neighborhood of tw+z, where E depends on the size of 

w. The condition HS 1 ([14] G.7 with M! = exp-qiN+m' Qp = Qm = U and M~ = 

= exp-qiN+m+(n+l)/ 2) and by .(7.2) the condition HS 2 ([14] G.7 with M~ = 

=exp-qi, Q = V and M2 = exp-qi , Q = tw+z and with d = E) are satis-
m p m m m z 

fied. Hence instead of (Al4) we get 

J lv(w) 1 2 exp-qi(w) d\(w):::; c 1 sup lv(w) I exp-H\7) :,:; 
(l+llwll 2)N+m+(n+l)/ 2 WED (l+llwll) +m 

u 

(7. 6) 

IP(w)u(w)I exp-lqi(w) (l+llzll)N < 
( 1 + II wll ) m I + II wll -

:,:; c 1 c( I+ sup II r;II )N sup IP(w)u(w)I 
exp-lqi(w) :,:; 

i';EtW WEtw+z ( I +II wll )m 

:,:; c2 f IP(w)u(w) I exp-qi(w) d\(w), 
(l+llwll 2)m 

V 
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since 

-¢N (w)+¢N (v) ~ some constant for w EU and v E tw+z +m +m 

follows by repeated use of (7.2) and since the estimates with (l+llwll 2)m and 

(J+llwll ) 2m are equivalent and lv1 (w) I+ ••• +Iv (w) I ~ vq lv(w) I when 
q q 

v = (v 1, ••• ,v) E A(U) • The constants c 1, C and c 2 do not depend on z, 
q -n 

C depends on the size of wand c2 depends moreover on E, in fact c 2 ~ E 

(see [18], proof of HS 2), but E depends on the size of w. 

For p ~ M (see (AIS)(ii)) the theorem is true, since there are no 

non-zero cochains f E CM[U(A) ,F,¢]. Thus assume that the theorem has been 

proved for all P when pis replaced by p+I and when the constants N andµ 

and in part (b) the constants£ and K depend on p. 

In case F = RP there is a polynomial matrix Q, such that F = QAr by 

(A6) and according to theorem All we can write f E cP[U(µ) ,F,¢] as f = Qg 
s s 

where g E cP(U(µ) ,Ar). In case F = PAq we write Q = P and r = q, then also 

f = Qg with g E cP(U(µ) ,Ar) according to theorem AIS. Let v ~ µ+ 2log(t+I), 

then for every i EI (t+I) times U~v) is contained in UP(µ) (i), where tis 
V 1 µ,v 

such that (7. 6) may be applied with U = Uiv) and V = U~µ) (i}. From theorem Al 6 

and (7.6) we obtain 

s' = p ( s) , hence µ,v 
some £(k) (property 

p (v) r µ,v 
C (U ,A) with Qg = Qg, = f , where s s s 

When u<v) n n = 0 then u(µ) c n for 
s k ' s' £(k) 

a cochain g E 

* p f = Qg. µ,v 
(AIS)(iii)), so that (7.6) yields 

I~ 12 ~ d' os exp-~N +m h ~ If, 12·exp-¢ d\ 
s m 

I 

for some N1 and all m. The constant ck,µ depends on the smallest and the 

largest size of the sets u<v) with u(vJ n n I 0 and this depends on k and 
s s k 

v, but v depends onµ; Ck does not depend on s. Since not more than a 
,µ 

finite number of different s are mapped by p onto the sames' (property µ,v 
(AIS)(vi)), we get by sunnning up 

(7. 7) llgll k ~ 
¢N +m' 

I 
ck,µ 11 fll ¢ ,i(k), 

m 
k=l,2, •••• 
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~ p (v) Ar Thus g EC [U , ,c/>N +m]. When cSf = O, cSQg = QcSg = O, whence together 
1 . p+ 1 (v) 

with (AIS)(iv) it follows that cSg = c is a cocycle in C [U ,Rq,¢N1+mJ. 

By the inductive hypothesis of case (a) we can findµ' > v, N2 and 

a cochain c' E cP[U(µ') ,RQ,¢ J with cSc' = p* ,c in Q and by the in-
N2+N1+m v,µ 

ductive hypothesis of case (b) we can find moreover constants Q,k > k, K" 

d h . I p (U ( µ' ) R ) . s: ' * . d ~, k an coc ains c E C k , 'Q'cpN N with uc = p , c in Qk an with k 2+ 1+m k v,µ 

* ~ I cP[u(µ') Ar J h s: Weputgo=p\) ,g-c E , ,¢N+N1+m•sotatugo= 
* * ,µ * p 2 r 

= p ,c-p ,c = O, and gk = p ,g-ck' EC (Uk(µ'),A ,¢N2+Ni+m) so that v,µ v,µ v,µ 
cSgk = P~,µ,c = 0 in Qk. According to lemma 7.2 (a) and (b) there are 

g' E cP-:[u(µ') ,Ar,cpN] with cSg' = go and g~ E cp-I(U~µ') ,Ar,c/>N) with cSgk = 

= gk in Qk' respectively, where N = N2+N 1+m+2 min(n,p) and with moreover 

s K. II gkll k. 
-K cpN +N +m' 

2 I 

p-} (µI) 
Finally we put f' = Qg' EC [U ,F,¢N3+NJ 

p-1 (µ') 
EC (Uk ,F,¢N3+N) with N3 depending on Q. Then 

0 f I = QcSg' 

and f' = 
k 

Qg' E 
k 

in Q and similarly cSfk = p:,µ,f in Qk. Furthermore -for all m andµ we get 

K II fll , 
µ,k ¢ ,£ 

m 

where Q, = Q,(Q,k) depends on Q,k according to (7.7) and where Kµ,k is a constant 

depending on k,v andµ', butµ' depends on v, Q,k depends on k and v depends 

onµ; N3 depends on Q, N2 on p by the inductive hypothesis and N1 on P, but 
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Q depends on P. 

Hence the lemma is proved when N, µ and in part (b) moreover£ and K 

depend on p. But there are only finitely many induction steps, so that we 

can take the largest N, µ,£and K. We start the induction when p = M, 

µ=\and m = O. Therefore, the lemma is true for all p with constants N 

(depending on P), µ (depending on\) and in part (b) £ (depending on k) and 

K (depending on\ and k). D 

Now we are able to prove theorems 7.1 and 7.2. 

PROOF OF THEOREM 7.1. It follows from theorem A15 that for alls E IO we 

can take f = Pg in u(O) E uCO) with g E A(U(O))q. As 
s s s 

7.4 we set v ~ 2log(t+I), so that (t+I) times u<v) is 
s 

in the proof of lemma 

contained in U(O) for 
s' 

s ' = p O, v s E I 0 • As in (7. 7) we can find g E 

,Aq,¢N 1J with Pg =fin U(v) for alls EI and with (7.6) instead 

alls EI , where 
V 

E c0cu(v) 

of (7.7) 

(7.8) 

S S V 

2 
lg(z)I 

s 
exp-¢(z) 

2 N 
( I +II zll ) I 

d\(z) :S I f(z) 

U(O) 
s 

2 exp-¢(z) d\(z), 

m= 1,2, ••• , 

where f is regarded as a cocycle in c0cu(O) ,AP,¢]. Consider 

c of the functions g in the overlaps of the sets U(v) for 
s s 

the differences 

s EI , that is 
V 

c = og. Since not more than a finite number of different s are mapped by 

Po onto the sames', there are constants C' with ,v m 

II ell :S C' 
¢N ,m m 

I 
I 

r2£(m) 

lf(z)l 2 exp-¢(z) d\(z) • 

Then Pc= Pog =of= 0 and also oc = O, hence c is a cocycle in 
I (v) . 

C [U ,RP,¢N ]. According to lemma 7.4(a) there are v > µ, N2 and 
I 

(7. 9) Ct E 

where N = N1+N2 , with oc' = p* c in r2 and according to lemma 7.~(b) there v,µ 
are moreover constants~ (also depending on v), integers m > k (depending 



( 7. I) :s: K. lid 
.. k c/>N ,m 

I 

f if(z)l 2 exp-cj>(z) dA(z) 

Q ,Q, 

where ,Q, > m > k depends on k. 

Finally for alls E I we put v (z) = g ,(z)-c'(z) for z EU(µ) with 
µ s s s s 
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s' = Pv,µs which by (A9) defines a function v E A(Q)q because {vs I s E \) E 

E cO(u(µ),Aq) and ov = p* og-p* c = O. Furthermore for all k 
v,µ v,µ 

J lv(z)l 2 exp-cj>(z) dA(z) :s: 
(J+llzll 2)N 

Qk 

II vii k < 00 

c/>N' 

by (7.7) and (7.9). Similarly, for each k (vk) (z) = g ,(z)-(ck') (z) for s s s 
z EU~µ) n Qk defines a function vk E A(rtkfland there are constants~ and 

,Q,k > k with 

I 2 exp-cp(z) dA(z) :s: ~ r 
if(z)i 2 lvk(z) I j exp-cp(z) dA (z) 

Qk 
(l+llzll 2)N 

Q,Q, 
k 

by (7.8) and ( 7. 19) . Moreover, for alls E I in u(µ) we have µ s 

so that Pv =fin Q and similarly Pvk =fin Qk. D 

PROOF OF THEOREM 7.2. Let F be the sheaf PAq. We construct a cochain h E 

E c0cu(O) ,A.P,cpJ as follows: for alls E 10 , when U(O)c rt 1 we define h (z) = 

= f 1(z) for z E U(O); fork= 1,2, ••• successively: when U(O) n Qk I 0, 
U(O) ¢ Qk' let ,Q, ~e the smallest integer with U(O) c Q0 orswhen U(O) c 

S C S ~ S (Q) 
c Qk+I n Qk' let ,Q, be !l = k+I, then we define hs(z) = f,Q,(z) for z E Us • 

By (AIS)(ii) we obtain for all k 

11h11 k :s: M 
cp ' 

max 
I :s:j :s;,Q, 

J lfj(z) 1
2 exp-cj>(z) dA(z) < 00 , 

Q. 
J 

where !l = !l(k) depends on k according to (AIS)(iii). 
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Since fk+m-fk = P(gk+m-l+ ... +gk) ~n Qk for all m ~ b' the differences 
of the functions h in the overlaps U~ ~ of the sets U~) are either zero 

s (0) q I 2 I (OJ 
or Pgs for some gs s E A(Us s) • Hence oh EC (U ,F). 

1s2 I 2 I 2 
Now theorem 7.2 follows from the next theorem and theorem AIS. D 

THEOREM 7.3. Let F be the sheaf PAq in the pseudoconvex set Q, where Q is 

the union of the subsets Qk satisfying (7.1) and let¢ be a pZurisubharmonic 

function in Q satisfying (7.2). If for some>.. h E c0[U(>..) ,AP,¢] with 

oh E c1(U(>..) ,F), then there is a constant Nanda function v E A(Q)P with 

for aii s EI, v(z)-h (z) = P(z)g (z) for z EU(>..) and for some g E 
I\ s s s 

E c0 (u<>..) ,Aq) and with 

r 2 j lv(z) I for all k = I , 2,... . 
Qk 

PROOF. We can estimate the cocycle f = oh E c1(U(>..) ,F) in terms of h by use 

of (AIS)(iv), hence f E c1[U(>..) ,F,¢] and of= O. According to lemma 7.4(a) 

there is a cochain f' E c0[U(µ) ,F,¢N] with of'= p;,µf in Q for some integer 

N andµ>>... 

Let for all i EI and z EU~µ) 
µ l. 

v.(z) = h ,(z)-f!(z) 
l. s l. 

wheres'= p, (i). Then 
I\'µ 

* ' * * . ov = p oh-of = p f-p f = 0 1.n Q, thus 

{v. I i EI} determines 
l. µ 

>..,µ >..,µ >..,µ -
a function v E (Q)P. Moreover, using (AIS)(vi) we 

obtain for all k 

J lv(z)l 2 

Qk 

::;; M, (k) II hll k+II f' D k 
/\,µ ¢, ¢N' 

Fors EI, let I'(s) c I be the set of those i EI 
/\ µ µ 

n U(>..) f 0. For all i E I'(s) and z EV. we have 
s l. 

'th V def u(µ) 
Wl. , -- , n 

l. l. 

v(z)-h (z) = h ,(z)-f!(z)-h (z) s s l. s 

· r(u(>..) nu<>..) F) ' ( (µ) F) · Si.nee h ,-h E , and also f. Er U. , , we obtain s s s' s 1. 1. 



v-h I E r(v.,F) . 
s V. I. 

I. 

As V. 1.s pseudoconvex, theorem AIS yields 
I. 

v-h, EPf(V.,Aq) 
s V. I. 

I. 

and again by 

because also 

theorem AIS v-h = Pg in U(A) for some g E f(U(A) ,Aq), 
s s s s s 

U(A) is pseudoconvex (property (AIS)(i)). D 
s 

8. COROLLARIES AND EXAMPLES 
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In this section some corollaries and particular cases are given of the 

theorem on Fourier transforms in section 6, theorem 6.1. We can survey this 

theorem by: let 

( 8. I) Exp(a+O;C) def proj lim A (exp(-a(z)-1/kllzll);C(k)) 
00 

k➔oo 

and 

(8.2) def A(a+O;C) ind lim A (exp 1/kll~II ;n(a+l/k;C)) , 
00 

then 

(8.3) F A(a+O;C)' = Exp(a+O;C) 

where A(a+O;C)' is the strong dual of A(a+O;C) and Fis an isomorphism; n 1.s 

given by formula (5.4). Here we have used the fact that the sequences of 

weightfunctions 

and 

induce the same topology on the space A(a+O;C). 

Let w E pr C, * C then w E pr Ck for some k; since n(a;C) n (Ck+l) 1.s 
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* bounded and since for s E Ck+l 

o II rJ s Im w • s s II s II 

for some o > O, also the system 

(8.4) 

induces the same topology on A(a+O;C). These weightfunctions ~ satisfy 

~ = exp-<jlk' where ¢k(r,:) = -1/k Im w·s 1.s a plurisubharmonic function. 

Therefore, the theorems of the appendix and of section 7 may be applied to 

the space A(a+O;C), because all the LP-norms are equivalent, p = 1,2, ••• , 00 

(the space A(a+O;C) is nuclear (see [14] G.7)). 

It follows from (8.3) and (8.4) that any f E Exp(a+O;C) satisfies for 

all E > 0 and o > 0 

If (z) I 
iz • s = I<µ , e > I s s 

M le i(z-sw)•s1 sup s 
s,o /',;Erl(a+o;C) 

s M ea(z-sw)+ollz-Ewll 
E,0 

when z E Ew+C. Now let a be bounded on pr C, then a can be continued as a 

continuous function to pr C and thus a is uniformly continuous on pr C. That 

means that for all o > O, there is a E(o) > 0 with for E s E(o) 

Hence 

,,,..---..__,,, 
I a(z·-Ew)-a(z) I < o. 

a(z-Ew) s a(z)llz-Ewll+ollz-swll s oE(o)+E(o) sup !a(z)l+a(z)+ollzll. 
zEpr C 

so that f satisfies for z E Ew+C, all E > 0 and o > 0 

lf(z)I s M' 
E,0 

a(z)+2oll zll 
e • 
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We can choose w E pr C so, that the sets {Ew+C} 0 are just the subsets of 
E> 

C consisting of all the points of C with distance larger than n to the 

boundary of C, n > 0 and n ➔ 0 if E ➔ 0. Thus we have found that as sets 

(8.5) Exp(a+O;C) = proj lim A (exp(-a(z)-1/kllzll);l/k w+C), 
00 

when a is bounded on pr C. Since the topology defined by (8.1) is obviously 

weaker than the one defined by (8.5) and since both topologies turn Exp(a+O;C) 

into an FS·-space, both topologies coincide (see [15] corollary 2 to th.7.1), 

so that (8 .. 5) also holds for the topologies. A similar property holds for 

* the spaces H(a;C) and H (a;C) of [14] provided that then a is uniformly 

continuous on C, which is true when a is not vertical at the boundary of 

prC (see section 4), for example when a is constant. This surprising prop­

erty of functions of exponential type in cones is difficult to establish 

without Fourier transformation. 
-

Another surprising corollary is that, as topological spaces, A. = A .. , 
1 11 

as we have already seen. It means that it does not make a difference if we 

use Q(a+l/k;C) or Q(a+l/k;Ck) in the space A(a+O;C): any function¢ holo­

morphic in int Q(a+l/k;C) with 

s E int Q(a+l/k;C) 

is holomorphic in some larger set int Q(a+l/m;C) u int Q(a+l/k;C) and 
m -

satisfies there 

for some£~ k depending on k and Cm and some M2 depending on M1, k and Cm, 

but not on¢. 

Now we imagine an open convex set Qin tn being given or equivalently 

an open convex cone C in tn and a convex homogeneous function a in G (~ such 

that it does not contain a straight line, whence the cone C is open in tn). 

Let {Q }00 

1 be an increasing sequence of closed convex sets with union Q and mm= 
such that the points of Q are those points in Q with distance larger than 

m 
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£ from an (see section 4). The sets Q determine convex homogeneous m m 
functions a on C with for some n ~ £ m m m 

a(z)-n ~ a (z) ~ a(z)-£ , m m m z E pr C 

£m > £m+I > O, £m ➔ 0 and nm> nm+I > O, nm ➔ 0 form ➔ 00 • We define 

(8.6)_ Eip(a;C) = ind lim Exp(a +O;C) , 
m+oo m 

where we may use (8.5) instead of (8.1) when a is bounded. An equivalent 

definition is 

Eip(a;C) = ind lim proj lim A (exp-a (z);C(k)). 
m+oo k➔oo oo m 

We also define 

A' (a;C) = ind lim A(a +O;C)' 
m 

m+oo 

or equivalently 

A'(a;C) = ind lim [ind lim A00 (exp 1/kllrJ ;Q(am;C))J' • 
m+oo k+oo 

It easily follows that F is an.isomorphism: 

(8.7) Eip(a;C) = FA'(a;C). 

Exp and A' are inductive limits of nuclear Frechet spaces, so they are 

nuclear themselves. 

In particular we may take for the cone in ~n a tubular radial domain 

TC c en, where TC = JR.n+i C with now C an open convex cone in JR.n. A relativ­

ely compact subcone of this domain is lR.n+iCk with Ck cc C and the domains 

C(k) become 



see section 4. Let a(y,x) be a convex homogeneous function on TC which is 
C 

bounded on each pr T k. Then a(O,x) exists and is finite; so A= 

= max a(O,x) < 00 • Then the domain C not . n(a;T) = n(a;C) is bounded in the 
II xii =l 

imaginary direction, that is n(a;C) c JR_Il+i BA, 

radius A in JR.n. This case will be used in the 

Newton interpolation series will be derived. 

where BA is the ball with 

next section, where the 

We can consider boundary values of functions f holomorphic in JR.n+i C. 

When these are finite order distributions the function f satisfies 

(8.8) 
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for some m depending on f. When moreover f E E;p(a;Tc), f is the Fourier 

transform of an analytic functional in Z' (see [14] H.4) carried by n(a;C). 

Indeed, in the same way as theorem 6.1 was obtained, using polynomials as 

weightfunctions instead of (8.4) one can show 

(8.9) v;(a;C) = F Z'(a;C) 

with Z'(a;C) the dual of 

Z(a;C) = proj lim A ((l+ll~ll)m;n(a ;C)) 
co m 

ffi+OO 

and with 

v;(a;C) (
exp-a (z) ) 

= ind lim proj lim A00 m -m ; JR.n+i Ck , 
m+oo k➔co 1 + II y II 

where JR.n+ick may be replaced by {JR.n+iCk} u {JR.n+i(l/ky0+c)} with y0 E pre, 

when a is bounded on pr C. Z' (a;C) and hence also v;(a;C) is a nuclear LS­

space, so that for example they are reflexive (compare the spaces in section 

6 [14]). 

Finally we give three examples with a contained in JR.n illustrating the 

differences between analytic functionals and distributions. For simplicity we 

assume that the function a is constant on pre, so that (8.4) holds. 

Firstly, let f be holomorphic in JR.n+iC and satisfy for all E > 0 and k 
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lf(z) I :;; K(E,k) e(a+E)llyll+dxll, y E ck, 11 yll > € , 

then f satisfies these inequalities (with other constants K(E)) also for 

y E Ey0+c, y0 E pr C and f = F(a) with a carried by 

Q = {1;; I n=O, -y•I;:;; allyll, yEC} c a:n, 

such that for all E > 0 a can be represented as a measure o in 
€ 

with 

Q - {1;; I II nll:;; E, -y•I;:;; (a+E)llyll, y E c} 
€ 

I exp-d 1;;11 
Q 

€ 

ld0(1;;)l<co. 
€ 

Secondly, let f satisfy for all E > 0 and k and some m 

lf(z)I:;; K(E,k) /a+E)llyll+Ellxll(a+llyll-m), 

then f satisfies these inequalities (with other constants K(E,k)) also for 

y E Ck u {Ey0+c} and f = F(µ) withµ E Z' carried by Q, that is for all 

E > 0 µ can be represented as a measure µE in QE with 

Idµ (t;;)I < co 
€ 

for some£> m (actually£= m+n+2, see [14] (6.10)). 

Finally, let f satisfy for all E > 0 and k and some m 

lf(z)I :;; K(E,k) e(a+E)llyll (l+llxll)m (l+llyll-m), 

then f satisfies these inequalities (with other constants K(E,k) and 

(l+llxll )m replaced by (l+llxll ,2 for some £ > m) also for y E Ck u {Ey0+c} and 

f = F(g) with g ES' having its support contained in O = {!; I -y•I;:;; allyll, 

y EC}, so that g can be represented as a finite combination of derivations 



of measures g. in O with 
J 

I (l+U~U)-1 ldgj(~) I < 00 

0 

for J = 0,1, ••• ,1 (1 = m+n+2, see [14] (6.10)). 

As in section 2, in the first two examples we have when b > a 2 0 

C dense Exp(a+O;T) 

while in the third example 

C Exp(b+O;T ), 

H(a;C) closed linear subspace> H(b;C). 
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Even, since the restriction map from A(b+O;C) into S(a;C) is injective, we 

have 

H(a;C) 
dense C Exp(b+O;T ). 

9. NEWTON SERIES FOR FUNCTIONS HOLOMORPHIC IN TUBULAR RADIAL DOMAINS 

In this section we derive the Newton interpolation series for functions 

in E;p(a;Tc). He give the most general class of holomorphic functions for 

which the Newton series is valid for h in a convex cone C in ]Rn. However, 

since the detailed description becomes quite complicated, we discuss a 

particular case, namely a class of holomorphic functions of constant expo­

nential type and we give a uniform bound on the length of h. The bound for 

UhU will not be the best possible, but still this case gives a good idea 

of the generalization of the validity of the Newton series discussed in this 

paper. Finally we make some general remarks on the validity of the Newton 

series. 

In [10] KIOUSTELIDIS derived the Newton interpolation series (and 

similar series) with the aid of Fourier transformation. The adventage of 

this method against the classical one (Cauchy's integral formula, NORLUND 
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[13], GELFOND [SJ) is that it treats the case of several variables as well. 

However, his treatment is valid only for entire functions. This is not a 

restriction due to the method, for, as we have shown here, one has to extend 

the method (namely the formalism of Fourier transformation) to non-entire, 

functions. Then we are able to derive the Newton series (and the similar 

series of KIOUSTELIDIS [10] or [14] remark IO.I) in several variables for 

non-entire functions as well. Moreover, 1.n some way we obtain the largest 

possible class, for which the formalism is valid, since we use the domain 

of convergence completely (that is we do not cut off a compact subset of 

this domain as it is done in [10]) and since outside this domain the formal­

ism is not valid, see Satz 5 in [10]. 

As we have seen in [14], section 5, we have to restrict the vector h 

to a real open convex cone C in ]Rn in order to get the Newton series for 

non-entire functions. Moreover, let 11h11 be bounded by a positive number b. 

Let the convex (unbounded) open set Qin ~n be the interior of one of the 

components of 

{ I;; I I;; E ~n, le-h•l;;_II < I, Vh EC with 11h11 s b}, 

see figure 4.1 of [14]. Then Q is bounded in the imaginary direction,because 

lh•nl s (2k+l)n for some k and for all h EC with 11h11 s band also Q is 

contained in 

( 9. I) { I;; J -h • E: s log 2, Vh E C with II hll s b}. 

Hence Q determines the convex cone lRn+iC 1.n ~n and the convex homogeneous 

function HQ on lRn+i C by 

(9.2) sup - Im z- i;;. 

l;;EQ 

HQ(z) is continuous up to y = O, that is HQ(x) exists for x E ]Rn and it 

follows from (9.1) that HQ(z) is bounded by (log 2)/b+B, where Bis a bound 

for llnll, thus (8.5) may be applied. Also we have, see (4.2), (4.3), (4.4) 



Let Q be an increasing sequence of convex closed subsets of Q such 
m 

00 

that some E-neighborhood Q of Q is contained in Q and Q = 
m,E m U Q • Let 

m=I m 
H be the functions H~, 

m "m 
m= 1,2, ..•• For y EC, h EC lets Ea; be such 

that 

z+ish E JR.n+i C, 

so that Re s ::::: -a for some non-negative number a depending on y and h. 

LEMMA 9. I • Let z E JR.n +i C, h E C and s E a; as above. Then the sequence 

i z. l; 
e 

N 

I 
k=O 

converges for N ➔ 00 to exp i(z+ish)·~ in all the spaces A(H +O;C), 
m 

m= 1,2, ••• 

PROOF. The space A(H +O;C) is defined by (8.2) so that according to (5.9) 
m 

exp iz•l; E A(H +O;C) when z E JR.n+iC, hence exp i(z+ish)•l; and 
m 
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exp(iz,r;-kh•r;), k = 0,1,2, •.. , belong to A(H +O;C) for all m. Since A(H +O;C) m m 
is a Frechet space, we have to show that for some E > 0 small enough 

(9.3) sup 
l;EQ 

m,E 

I <jJ ( l;) I exp E II r; II :;:; K , 
N,z 

where K is independent of N. 
n:ot In section 5 of [14] we defined subsets Q(E) = S\(d of 

-h · r; le -11 < I} 

by 

def I Qh(E) - {r; -h·~ < log(2 cos h·n-E)} 

and we showed that for all E > 0 there is a El (here El = E/(6b)) such that 

the E1-neighborhood of Qh(E) is contained in Qh(½E) c Qh. On the other hand, 

we will show that for all E > 0 there is a E2 such that the boundary of the 

E-neighborhood of 
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(9.4) 
hEC 

llhllsb 

is contained in Qc. 

First let us remark that Qh c QSh when S s I, since 

S log(2 cos x) s log(2 cos Sx) , lxl < ½1r . 

Thens E: 8Q(E 2) means, that there is an h E: C, depending on sand o, with 

11h11 =band with 

-h·~;::,: log(2 cos h•n - E2) - o. 

Now we choose E2 = min(b 2E2/16, 1/171), o = ¼E 2 and 

4 ~ 
s0 - s + i sign(sin h·n) b ~ h, 

where sign(O) = I. Then ls-s0 1 s E and for some integer k 

so that when IIm h·s0+2k1rl not lxl < ½1r 

= log{2 cos(lxl-4~)-E2}-h2 ;::,: log(2 cos Im h·s0), 

for, E2 s 1/171 implies sin 4~ s 63/16 ~• so that the following estimates 

with !xi < ½1r hold 

2 cos(lxl-4~)-E2 2': 2 cos x-16E 2 cos x + 2lsin xJsin 41½° -E 2 2': 

and the right hand side is larger than 
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2 cos x + E2 ~ 2 cos x exp ¼E2 

if 

¼ 136 ~ x2 + 2x - 8~ ~ 0, 

which is true when 

Hence soi n and also 

defined by (9.4) with 

From the formula 

small such that n 

when ½TT s lxl < '½TT+4~, soi n. Thus the sets n(l/m) 

E2 replaced by 1/m may serve as the sets nm. 

above (5.3) in [14] we get for s En E sufficiently m, E:, 

m,E 

I <PN z ( s) I s C 1 ( E: 1 ) exp a h • s exp - Im z • s, 
' 

a > 0 

a = 0 • 

Fors En outside a compact set and E again sufficiently small 

hence there is a constant K such that for s En 

-Im Z•s + ah•~ s K - E:ilsll' 

since llnll is bounded inn. Now (9.3) follows when a> 0 and for a= 0 it 

follows by replacing E: by ½E. D 

With the aid of lemma 9.1 and formula (8.3) the Newton series is 
~ C derived for functions f belonging to Exp(Hg,T) given in (8.6), where Hn is 

defined by (9.2): 

f(z+i(s+a)h) 
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N 
-ah•s l1.'m eiz•s ~ 

= <e µs' l 
N+oo k=O 

00 

(9.5) I (s) -ah•s iz·s -h•s k = <e µ ' e (e -1) > = 
k=O k s 

00 00 

I (s) -ah•s -h•s k iz•s I <s> k f(z+iah) = <e (e -1) µ ,e > = tiih 
k=O k s k=O k 

valid for z E ]Rn+i C, h E C, 11h11 s b, Re s+a 2: O, a 2: 0 arbitrary. The 

sequence 

converges weakly in A(H +O;C)' for some m depending onµ, which depends 
m 

on f, and since A(H +O;C) is a Mantel space (see (8.2)), this sequence 
m 

converges strongly in A(H +O;C)', hence according to (8.7) the series (9.5) 
m 

converges in the topology of Eip(HQ,Tc). Thus, reminding (8.5) we get, when 

f satisfies 

(9.6) Vk,'v'y E Ck with llyll > 1/k: lf(z)I s ~ exp Hm(z), 

for Res 2: -a with a 2: O, h EC with 11h11 s b: ... 

(9. 7) 

'v'E > o, 'v'£ > m, 'v'p, 3No(E,£,p) 2: Nl(s), 'v'z E ]Rn+i(l/pw+C), 'v'N2:No 

N 
lf(z+i(s+a)h) - I (:) tith f(z+foh) I < E A(s) exp H!l(z) , 

k=O 

where N1(s) is determined by (5.1) [14] and A(s) by (5.4) [14]. 

(9.8) 

Replacing z+iah by z in (9.5) we see that the Newton series 

f(z+ish) = 
00 

,· (s) tik f (z) 
k:O k ih 

valid for y E nw+C, h EC, 11h11 s b, when Res 2: -a, a> 0 depending on n > 0 

and h, such that y-ah E ow+C for some o > O, converges according to 

(9.9) 

'v'E > 0, 'v'£ > m, 3N0(E,£) 2: NI (s), 'v'z E ]Rn+i(nw+C), 'v'N ~ NO 

N 
lf(z+ish)- I (:) tith f(z)I < E A(s) exp H£(z-iah) • 

k=O 



73 

We restate the results in 

~ C THEOREM 9.1. Leth EC with 11h11 ::; band let f be an element of Exp(Hn,T) 

where Hn is given in (9.2). If a> 0 is such that y-ah E ow+C, o > O, when 

y E nw+C for some n > o, then the Newton series (9.8) is valid for this y 

and h, when Res~ -a. The series (9.8) converges absolutely in one of the 

norms of Eip(Hn,Tc)or, more precisely, it converges according to (9.9). 

When Res~ -a with a~ 0 arbitrary, the Newton series (9.5) holds for all 

y EC, h EC, 11h11 ::; b; then the series (9.5) converges absolutely in the 

topology of Eip(Hn,TC) or, more precisely, it converges according to (9.7) 

when f satisfies (9.6). In both cases (9.5) and (9.8) converge uniformly 

ins on compact subsets of {s s E C, Res ~ -a}. 

Using (8.8) and (8.9) as in [14] section 7 we can derive the Newton 

series (9.5) for functions f satisfying 

lf(z)I -m ::; ~( ]+II yll )exp Hm(z). 

This series holds for z E 1Rn+iC, h EC and Re s+a ~ O, a~ 0 arbitrary and 

it converges in the topology of v;(a;C), namely according to 

Ve.> o, vi> m, Vp, 3No(e:,t,p) ~Nl(s), VzE ]Rn+i{Cpu {1/pw+C}}, 

VN ~ NO 
N 

lf(z+i(s+a)h) - L (:) f(z+iah)I < £ A(s)(l+llyll-t)exp HQ.,(z), 
k=O 

where t = m+n+2 if a> 0 or t = m+n+3 if a= O. This yields the convergence 

of the series (9.8) similarly to section 7 [14]. 

Actually, theorem 9.1 gives the condition f should satisfy in 

order that the Newton series holds when h ranges in a given ·domain. How­

ever, the function Hn(z) (formula (9.2)) arising in condition (9.6) is not 

given explicitely. This would be quite complicated (see [10] for entire 

functions and h complex). Therefore, we now start with a given class of 

functions and determine the domain of h the Newton series is valid in. For 

simplicity we will not give the largest possible domain, but still we get 

a considerable generalization of theorems 7.1 and 10.1 of [14]. 
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The domain of convergence Qh = {s I le-h•s-1 I < 1} is determined by 

-h•~ < log(2 cos h·n) 

for h E :IR.n, see 4.1 and figure 4.1 of [14], here figure 9.1 when k = 0. 
-h•n 

I 
3" 

log 2 - - - - ·\, 
\\ 

t 
-----------------f0~--3~lo~::..2 ___ --=.r-h•t 

figure 9.1 

Figure 9.1 gives the component of Qh that contains the origin. We approximate 

this domain from the inside by 

(9.10) 
1 l 

± log2 h • n < 3 TI log2 when -h • ~ > 0 and I h • n I < 3 TI 

when -h•~ :o; O} c Qh. 

Now let a convex homogeneous function a(z) be given on ]Rn+iC with C 

a convex open cone in ]Rn, such ·that a(O,x) exists for x E pr ]Rn. This 

function determines an open set Q by 

(9.11) Q = int{ s I -Im z• s :o; a(z), z E :IR.n+i c}. 

Let {am(z)}:=l be an increasing sequence convex homogeneous function with 
C limit a(z) and with a (z)+£ :o; a(z), z E pr T, for some£ > O. Let Q be m m m m 

the domain determined by the function a. Then from (9.10) and (9.11) it 
m 

follows that Q c Qh when h EC satisfies 

1 I 
II hll . { 3 TI log2 3 TI } 

:o; min 1 ~ ~ , ~ • 
a( 3 Tih,±log2 h) a(O,±h) 

(9.12) 

Hence in that case Qm c Qh for all m and we obtain 
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COROLLARY 9.1. For functions f E Eip(a;Tc) the Newton series is valid, when 

h EC satisfies (9.12). 

However, when a is a rather constant function, a better condition for 

11h11 than (9.12) is obtained by approximating nh from the inside by 

{1'; I 2 2 (h•~) +(h•n) < 
2 log 2 when -h• ~ > 0 and lh•nl < log2 

when -h•~ :SO} c nh. 

This inclusion follows from 2 2 2 
!vi !1r, which is log 2 :S log (2 cos v)+v, < 

true because 

2 2 log 2-log (2 cos v) = (log2 - log2 cos v)(log2 + log2 cos v) :S 

2 2 
:S log2•(2-2 cos v)•2 log2 :S v 2log 2 :S 

For 1'; En and h EC such that -h·~ > O, we get 
m 

hence 

-----llhll a (a.h,Sh) 
m 

0.98 2 2 
V :S V • 

+ for some a. E lR and S E lR. This is smaller than log2 when we require that 

(9.13) II hll :S min+ 
( a. ' s) d lR ' lR) 

2 2 a. +S =1 

log2 

a(a.h,8h) 

~ 
In case 1'; E n and -h•~ :SO, ]h•nl :S 11h11 a (0,±h), so that ]h•nl < log2 if m m 
h satisfies (9.13). Thus for h EC with (9.13) satisfied, the domain n (9.11) 

is contained in nh. 
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~ C COROLLARY 9.2. For functions f E Exp(a;T) the Newton series is valid, when 

h EC satisfies (9.13). 

For example, when a(z) is a constant a on pr(lRn+iC), the Newton series 

holds for h EC with 11h11 ::;; log2/a, if the function f satisfies 

v'k: I f(z) I ::;; ~ exp amll zll, y E ck, 11 yll > 1 /k, a < a. 
m 

I I 2 2 -1 
This is a better bound than condition (9.12) since yr log2{(yr) +log 2} 2 < 

< log 2. This condition for 11h11 generalizes the one dimensional case of .. 
NORLUND [13] p.237. 

In sections 7 and IO of [14] we have seen that the bounds for 11h11 were 

determined by the value of the convex homogeneous function a on Cat the 

point h, namely 11h11 ::;; log2/a(h) when a(h) > 0 or 11h11 arbitrarily large when 

a(h)::;; O, where the function f was of polynomial growth for llxll large. Here 

the function f is of exponential growth also for llxll large and the bounds 

for 11h11 are determined by the values of a on 

- - 2 2 {Sh+iah I a 2: O, SE JR, a +S =I}, 

see conditions (9.12) and (9.13). This bound is always positive and finite, 

except in one case, where the Newton series is valid for h EC with 11h11 

arbitrarily large, namely for functions f of exponential type, holomorphic 

in lRn+i C, satisfying 

2 2 1 
VE > 0: I f(Sh+icxh) I ::;; M exp E(a +s ) 2 ' 

E 
a > 0, S E lR. 

This generalizes the case that a(h)::;; 0 in sections 7 and IO of [14]. 

Finally we consider the case a< 0 more carefully and we will find that 

in that case too the Newton series (9.8) is valid for ally such that 

y-ah EC, even if y does not belong to C. But first we have to modify the 

meaning of all the terms occurring in the series. We assume in the remaining 

of this section that for a< 0 

Re s ;;:;: -a > m0 , 



where mO is a non-negative integer. 

Firstly, we consider the series 

co 

(9.14) I 
k=O 

-sh·s 
e 

for s E ~h. We will show that we can rearrange some of the terms in this 

series. The'.refore, we remark that the series 

mo co 

I I 
m=O k=m 

is absolutely convergent for arbitrary numbers .\m' m = 0,1, ... ,m0 , since 

by ( 5 • I ) [ I 4] 

co 

mo 
~ I 2 I.\ I •I (s)I 

m=O lr(-s+m)I m m 

co 

I 
k=I 

a+m-1 
k < co, 

because a+m < O. Hence 

co co 

(9.15) I + 
m=O k=m 

exists. Now we write (9.14) in the following way 

N mO 
L (:)[ L (~)(-l)k-m 

k=mO+1 m=O 

N k 
= lim L (:)[ L (k)(-l)k-m µ ], 

N+00 k=O m=O m m 

77 
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where µm = exp-·mh• i;: for m > mO and µm = exp(-mh· i;:)-,\m for m :,; mO• In order 

to compute ~(s;,\ 1, ••• ,Am0) we derive from (9.15) and from Res> m 

~(s;,\ 1 , ••• ,A ) = 
mo 

for any numbers A • Choosing A = exp-mh•i;: we obtain m m 

(9.16) 
-sh•i;: 

e = 

00 

I 
k=m 

0 

co 

= I 
k=O 

-mh•s e = 

k 

I 
m=O 

where µm = exp-mh•i;: form> mO and µm arbitrary form:,; mO. In fact, we 

have rearranged the terms in (9.14) so, that first the summation is performed 

over all the terms with exp-mh·i;: form:,; mO and it turns out that the series 

is independent of these terms. 

Secondly, we give bounds to the functions 

N 

I 
k=O 

when Re s;:;: -a > mO• From p.27 [14] we get for i;: E S\(c) 

with p = 1-h: exp-Re h·i;:, whence 

-ah•s Therefore, we may conclude as in lemma 9.1 that the series e ¢N 2 (1;:) 

' converges in every space A(H +O;C), when y is such that y-ah EC, h EC and 
m 

that forµ E A(H +O;C)' the series 
I;: m 
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I 
k=O 

converges strongly in A(H +O;C)'. 
m ~ C Now using (9.16) we derive that for f E Exp(HQ,T) the following 

Newton series converges in the topology of Exp A(Q,TC) 

(X) 

f (z+i (s+a)h) = L c:) < 
k=rnO+1 

(X) 

= 
k 

I (k)(-1)k-rn f(z+i(m+a)h). 
m 

Replacing z+iah by z and using the second part of (9.16) we find that the 

Newton series 

(9.17) 
(X) 

f(z+ish) = l 
k=O 

( s) k* f ( ) 
k L'lih z ' 

where the asterix means that in the points {z+imh Im= O,I, ••• ,m0} where 
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f is singular or undefined we may take zero instead of f(z+imh), is valid 

for all h EC, 11h11 ~ b, Res~ -a.> m0 ~ 0 and ally such that y-ah EC and 

that it converges according to (9.9). 
~ C It may happen that f E Exp(HQ,T) can be continued analytically outside 

the domain lRn+iC, so that f(z+imh) is defined for all m. But in fact, this 

is not essential and the series (9.17) has a meaning even if f is singular 

or undefined in some points z+imh, m ~ m0 , as long as Res> m0 • Obviously, 

this is the generalization to several variables of the one dimensional case .. 
given in NORLUND [13] p.237 in the first example 123. 

We conclude with 

* THEOREM 9.1 • When Res~ -a> m0 ~ O, theorem 9.1 also holds for ally 

such that y-ah EC; then the modified Newton series (9.17) converges accord­

ing to (9.9). 
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APPENDIX 

PASSAGE FROM LOCAL TO GLOBAL RELATIONS 

In this appendix we discuss some well-known properties in the theory 

of functions of several complex variables. Except section I all sections are 

devoted to the problem how to extend local relations between holomorphic 

functions to global relations. As some readers may not be familiar with the 

topics used to solve this problem, we will go more into detail than merely 

copying definitions and theorems from litterature. We give those proofs that 

show how to use the various concepts (as sheaves and cohomology) in deriving 

the main result. In fact, since we want a quantitative result in section 7, 

we perform the same steps there as in section IV of this appendix, then 

taking care of estimates. Therefore, we also give the quantitative theorems .. 
these steps start from. Almost the same method HORMANDER [7] uses in his 

book is applied here and we repeatedly refer to this book. 

I. DOMAINS OF HOLOMORPHY 

In this section we give some definitions and theorems which are used 

in section 2, the case of holomorphic functions on compact sets. 

Let n be an open set in tn. We denote by A(n) the space of all holomor­

phic functions inn with the toµology of uniform convergence on compact sub­

sets K of n. All functions holomorphic in a certain domain n in en, n ~ 2, 

might be continued analytically into a larger domain. Domains for which this 

is not possible are called domains of hoZomorphy. Thus n is a domain of holo­

morphy if and only if there exists a function f E A(n) which cannot be con­

tinued analytically beyond n, that is, it is not possible to find n 1 and n2, 

with 0 I n 1 c n2 n n and with n2 connected and not contained inn, and 

f 1 E A(n 2) so that f = f 1 in n1• One can decide whether a domain n is a 

domain of holomorphy by other means too. We will discuss some of these means 

which are most useful in applications. 

For a compact set K of an open set n we define the A(n)-hull Kn of K by 

(Al) Kn= {z I z En, lf(z) I :e:; sup lf(z) I for all f E A(n)}. 
ZEK 
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.... 
If we choose f(z) = exp z•~ we find that KQ is contained in the convex hull 

ch(K) of K. Domains of holomorphy can be characterized by the following 

theorem, th.2.5.5(ii) of [7]: 

THEOREM Al. Q is a domain of holomorphy if and only if from K cc Q it 
.... 

follows that KQ cc Q. 

Hence convex open sets in ~n are domains of holomorphy. Conversely 

Bochner's theorem (th.2.5.12 of [7] or 17.5 of [16]) yields: 

THEOREM A2. A tube domain lRn+i o, where O is a domain in lRn, is a domain 

of holomorphy if and only if O is convex. 

A more geometrical characterization of domains of holomorphy is obtained 

by regarding them as pseudoconvex sets. These sets can be defined with the 

aid of plurisubharmonic functions. Rather than giving a precise definition 

(2.6.I of [7]) we state some results. As in (AI) one can define a P(Q)-hull 
.... p 
KQ of K by requiring that f is plurisubharmonic instead off E A(Q). Then 

like theorem Al an open set Q is pseudoconvex if and only if from K cc Q it 

follows that K~ cc Q. Since the function lf(z)I is plurisubharmonic if f is 

holomorphic, domains of holomorphy are pseudoconvex. The converse is also 

true (th.4.2.8 of [7]): 

THEOREM A3. An open pseudOCOYfVex set is a domain of holomorphy. 

.... 
Actually, if K is a compact set of an open pseudoconvex set Q, then KQ 

.... p 
equals KQ (th.3.4.3 of [7]). Therefore, we will not distinguish between the 

concepts of pseudoconvex open set and of domains of holomorphy and we assume 

Q to be one or the other where necessary. 

n THEOREM A5. Let Q be a pseudoconvex open set in~ and Ka compact subset 
.... 

of Q, such that KQ = K. Every function analytic in a neighborhood of K can 

then be approximated uniformly on K by functions in A(Q). 

This is theorem 4.3.2 of [7]. 

DEFINITION A5. A domain of holomorphy Q c ~n is called a Runge domain if 

polynomials are dense in A(Q), that is if every f E A(Q) can be uniformly 
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approximated on an arbitrary compact set in Q by analytic polynomials. 

Since polynomials are dense in A(~n) we might as well have considered 

arbitrary entire functions instead of polynomials in definition AS. For a 

compact set K we define 

~ I n K = {z z EC , IP(z) I :S sup IP(z)I for all polynomials P}. 
ZEK 

.... ~ 
Then K = K~n and compact sets K with K =Kare called polynomially convex. 

However, we even have ( th. 2. 7. 3 of [ 7]): 

THEOREM A6. Q is a Runge domain if and only if for every compact set K in Q 

This theorem is a special case (namely when QI= Q and Q2 

following theorem (th.4.3.3 of [7]): 

n =~)of the 

THEOREM A7. Let QI c Q2 be domains of holomorphy. Then every function in 

A(Q 1) can be approximated by functions in A(Q2) uniformly on every compact 

subset of Q1 if and only if for every compact subset K of QI we have 
.... .... 
KQ = KQ. 

2 1 

II. THE a-OPERATOR 

In this section we define the a-operator and give some existence 

theorems. 

Let u be a complex valued differentiable function in Q c ~n. We denote 

z = x+iy E Q also as z = (y ,x) with x E ]Rn and y E JR.n, where now Q is 

regarded as an open set in JR.2n (the reason for not writing z = (x,y) is, 

that, when we do so for s = ~+in E ~n, s = (~,n), then -Re(iz•s) can be 

written as inproduct between the vectors (y,x) and (~,n) in JR.2n). The com-

ponents of z are denoted by z. = x.+iy. and i. 
J J J_ J 

= x.-iy .• When differentia-
J J 

tion takes place, we rather use z. and z., j = 
J J 

1, ••• ,n, as coordinates than 

(y ,x), so that 

a 
--= 
az. 

J 

1( a . a ) ~ ---1 --ax. ay. 
J J 

and _a_ = !(-a-+ i _a_) 
az. ax. ay .• 

J J J 
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Then we get 

n 
au 

n au -
du = I -a- dz. + I a=- dz. 

j = I z. J j=I z. J 
J J 

and with 

n 
au 

n 
au -au = I -a- dz. and au I rdz. 

j=I z. J j=I z. J 
J J 

we may also write 

du = au + au 

When we write au= 0 in rl, we mean that every component aju = au/a~j must 

vanish in rl. These are exactly the Cauchy Riemann equations, so that we get 

THEOREM A8. A function u in c1(Q) is hoZomorphic in the open set Q if and 

only if au= 0 in Q. 

In the above au is a (0,1)-form. We call g a (0,1)-form in Q if it can 

be written as 

n 
g(z) = I gk(z) dzk, 

k=I 
Z E Q, 

where gk, k = l, ... ,n, are functions in Q, We will give a condition when a 

(0,1)-form g can be written as au for some function u. A necessary condition 

on g is ag == O, where we define 

ag = 
n n agk _ 
I I y- dz A dzk 

m=I k=I zm m 

when the functions gk are differentiable. Here we may use the rule 

(A2) k,m = l, ... ,n 

and 3g = 0 if the coefficients of all the dz A dzk (m < k) vanish. It is 
2 - - m 

easy to see that for any u E C (Q) a au = 0, so that indeed 3g = 0 is a 
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necessary condition. When Q is pseudoconvex, it is also a sufficient con­

dition. This we state in a theorem, which we give in a more general form, 

namely for (O,q)-forms. We say that g is a (O,q)-form in Q (q = 0,1, ••• ,n) 

if it can be written in the form 

\' -I g = l g1 (z) dz, 
IIl=q 

Z E Q 

where I= (k1, ••• ,kq) is a multiindex and di1 = dik A ••• Adik and where the 

sunnnatition is performed over all multiindices I wi~h k 1 < k~ < ••• < kq 

(for again we may use the rule (A2)). Thus g has (:) coefficients g1 • We 

define 

ag = 

where (A2) should be used. It is clear that a a g = O. Now the following 

existence theorem for the a-operator holds (cor.4.2.6 of [7J): 

THEOREM A9. Let the coefficients g1 of the (O,q+l)-fo.1"17/ gin the pseudo-
oo -

convex open set Q be C -functions and let ag = O. Then there exists a 

(O,q)-fo.l"m u with C00-coefficients inn such that au= g. 

Next we state a similar theorem, where besides the existence of u also 

estimates of u in terms of estimates for g are given. We use the measure 

e-¢dA, where dA is the Lebesgue measure in ~n, and ¢(y,x) is a plurisub­

harmonic function. We do not give the definition of a plurisubharmonic 

function (see 2.6.1 of [7]), but we merely state that a convex function 

a(y,x) is plurisubharmonic, that log(l+llzll 2) is plurisubharmonic and that 

a¢+S~ is plurisubharmonic for a~ O, S ~ 0 whenever¢ and~ are plurisub­

harmonic. These facts will be sufficient for the applications we make. For 

a (O,q)-form fin Q (q = 0,1, ••• ,n), where the coefficients f 1 are locally 

square integrable functions, we write 

and 

Z E Q 

llfll¢ = I lf(z)l 2 e-¢(z) dA(z) • 

Q 



We remark that for such an f we must take the weak derivative in af, thus 

derivatives in distributional sense. Then we state the following theorem 

(th.4.4.2 of [7]): 

n 
THEOREM AIO. Let Q be a pseudoconvex open set in~ and¢ any plurisub-
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harmonic function in Q, For every (O,q+I )-form g with locally square 

integrable coefficients, with II gll ¢ finite and with 3g = 0, there is a (O,q)­

form u in Q with locally square integrable coefficients, such that au= g 

and 

f lu(z)l 2 e-¢(z) (l+llzll 2)-2 dA(z):,; 

Q 

Here u depends on¢, when the right hand side ~s finite for more than one 

function ¢. 

III. ANALYTIC SHEAVES 

In this section we discuss some properties of analytic sheaves and we 

formulate the main problem of this appendix. We do not give a general 

definition of a sheaf on an open set Qin ~n, but we just give the properties 

we need in this paper. A more complete description can be found in [6] or [7]. 

For z E Q we denote by A the set of equivalence classes of functions f 
z 

which are analytic in a neighborhood of z, under the equivalence relation 

f ~ g if f =gin a neighborhood of z in Q. The residue class f off in A 
z z 

is called the germ off at z. 1) It is clear that A is a ring. Let 
z 

A = u 
ZEQ 

A z 

I) Since an analytic function is determined completely when it is given in an 
open set, the residue class off is trivial: it consists off only. But 
when we consider the restriction off to a variety Vin Q, we get a sheaf 
on V (Vis a simultaneous zero set of holomorphic functions in Q) and the 
equivalence classes are no longer trivial, see [6] def.IV D.5, p.143 and 

00 

see also section VI. Also, when we consider C -functions instead of ana-
lytic functions, it has sense to define the germ off at z as a residue 
class. 
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where the rings A are considered as disjoint sets. Furthermore, let the 
z 

collection of subsets of A of the form 

{f J z E w c Q, where w is open and f E A(w)} , 
z 

where w runs over the collection of open subsets of Q and f runs over the 

elements of A(w), be a basis for the topology of A. Then for every open sub­

set w of Q and every f E A(w) the map¢ from w into A with ¢(z) = f is 
z 

open and continuous. 

Let TT be the map from A into Q which maps A onto z. Then TT¢= identity. 
z 

In general we call the image of a subset U of Q under a continuous map¢: 

U ➔ A, with TT¢= identity, or the map¢ itself, a section of A over U. The 

set of all sections of A over U is denoted by r(U,A). In fact an element of 

r(U,A) is the restriction to U of a holomorphic function in a neighborhood 

of U in Q or if U itself is open, it is a holomorphic function in U. 

The space A is an example of a sheaf on Q. Since A is a ring for each 
z 

Z E Q, we can consider a sheaf F such that F is an A -module for each ZES"i 
z z 

and such that the product of a section in A and a section in F is a section 

in F. Such a sheaf is called an analytic sheaf. In particular we will con-

sider ideals in A 
z 

and modules in AP. Since the ring A is a noetherian 
z z 

ring ([7] th.6.3.3 or [6] 

are finitely generated. 

th.II.B.9) the ideals in A and the modules in 
z 

For example, let Ube an open subset of Q with~ i U ¥ Q and let an 

analytic sheaf F be given by F = A if z EU and F = 0 if z E Q\U. A 
z z z 

section of this sheaf over a connected open set intersecting Q\U must be 

zero by the uniqueness of analytic continuation. In any point Z E Q' F 
z 

is 

finitely generated, but in any neighborhood w of a boundary point of U in Q 

Fis not finitely generated by the sections over w. 

Thus although F is finitely generated in any point z E s-2, we cannot 
z 

always use the same generators for all z in a neighborhood of any point. 

However, we consider sheafs where this property indeed is satisfied. Namely, 

an analytic sheaf Fis said to be locally finitely generated if for every 

given point in Q there exists a neighborhood win Q 

sections f 1, ••• ,f E r(w,F) so that F is generated 
q z 

an A -module for every z E w. In particular we will 
z 

and a finite number of 

by (f 1) , ••• ,(f) as 
z q z 

consider locally finitely 



generated subsheaves F of AP, so that then in the above definition for 

k = I, ••• ,q fk is a p-tuple of analytic functions ft E A(c11) in w, 
- ] p j = 1, ••• ,p with (fk)z - (fk(z), ••• ,fk(z)). 
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Let F be a locally finitely generated analytic sheaf, let f 1 •••• fq be 

sections over an open set U of Q and let for any z EU 

- I q Aq R (f1,···,f) - {(g , ••• ,g) E z q z 

R is a submodule of Aq z z' called the module of relations between f 1, •••• fq 

at z. Then 

is a subsheaf of Aq on U, called the sheaf of relations between f 1, ••• ,fq. 

A locally finitely generated analytic sheaf Fis called a coherent 

analytic sheaf, if R(f 1 , ••• ,fq) is locally finitely generated for all Uc Q, 

all fk E f(U,F), k = I, •.• ,q and all q. When Fis a locally finitely gener­

ated subsheaf of AP, the last condition is always satisfied. For by Oka's 

theorem ([7] th.6.4.1 and th.7.1.5 or [6] th.IV.C.I and IV.B.7 and 8) every 

locally finitely generated subsheaf F of AP is coherent; that is for any 

point in Uc Q one can find a neighborhood w c U and finitely many elements 
] q 

G1, ••• ,Gr E r(w,R(f 1, ••• ,fq)} (thus for 1 = l, ••• ,r G1 = (g1 .,,,g1) e 

E A(w)q and for z E w 

(A3) j=l, ••• ,p, 

1 = 1, ••• ,r), so that R for every z E w is equal to the A -module generated z z 
by (G1) , ••• ,(G) • z r z 

If two of the sheafs of the exact sequence (that is the image of one 

map is the kernel of the next map) 

are coherent, then the third sheaf is coherent too, see [6] th.IV.B.13. 
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From now on we only consider coherent analytic sheaves and we do not state 

this all the time. 

Let now in (A3) the functions fl E A(U) be polynomials Pjk = fl, 

j = l, ••• ,p, k = l, ••• ,q and let U = n. Then we consider the sheaf homo­

morphism 

defined by mapping (g 1(z), ••• ,gq(z)) E Aq to 
z 

q k q k 
( l P1k(z) g (z), ••• , l Ppk(z) g (z)) EA~, 
k=l k=l 

Z E Q. 

We have seen that the image and the kernel of this map are coherent analyt­

ic sheaves and in particular it follows from the proof of the Oka theorem 

(th.6.4.1 of [7]), that the functions gk in (A3), £ = l, ••• ,r, k = l, ••• ,q, 
p 

can be chosen to be polynomials. Thus the kernel RP of this map is generated 

by the germs of all q-tuples Q = (Q 1, ••• ,Qq) with Qk polynomials for 

k = l, ••• ,q, such that 

(A4) 
q 

l Pjk(z) Qk(z) = O, 
k=l 

Z E Q. 

Furthermore, since the polynom~al ring (overt) is noetherian, the module 

of all Q = (Q 1, ••• ,Qq) with Qq polynomials satisfying _(A4) is finitely 

generated over the polynomial ring. Thus since all the generators, that is 

in a neighborhood of all the points of n, are polynomial q-tuples Q, RP is 

generated by a finite number of such Q, say by Qt= (Q 1i,•••,Q 1£), 

£ = l, ••• ,r, where Qkt is a polynomial. Summarizing we get the exact 

sequences of sheaf homomorphisms 

(AS) 

where Fis the image of P and 

(A6) 0-+ R -+ Ar~ R - o. Q p 



89 

A section f = (f 1, ••• ,fp) in Fis a p-tuple holomorphic functions in 

Q, thus f. E A(Q), j = l, ••• ,p, satisfying locally, that is in a neighbor­
] 

hood w of each point in Q, 
s 

(A7) f. (z) = 
J 

In w n w the 
s t 

functions 
t 

E A(wt), for they may gk 

g~ E A(ws) 

differ by 

z E w, gks E A(w ), j 
s s 

l, ... ,p. 

are not necessarily equal to the functions 
. hst . R We a section in over w n wt. p s 

would like that hst = O, thus that (A7) holds globally, that is we would 

like to find gk E A(Q) such that (A7) holds for all z E Q, The main problem 

of this appendix is to prove that such functions gk' k = l, ••• ,q, exist. 

We can formulate this as: the problem is to prove that the following 

sequence of sections is exact 

That the sequence is exact in the first two places is clear, but our atten­

tion is paid to the exactness in the last place, thus to prove that the 

map Pis surjective. We will find that (A8) is indeed exact, when Q is 

pseudoconvex. Then starting with (A6) we would at the same time have solved 

the problem: 

THEOREM All. If the function,fk E A(Q) satisfy 

q 

I Pjk(z) fk(z) = O, 
k=l 

ZEQ,J=l, ... ,p, 

then there are functions g£ E A(Q), £ = l, ... ,r, such that 

r 

fk(z) = I Qk£(z) g£(z), 
£=) 

uJhen S'l is ps:eudoconvex. 

z E Q, k = l, ••• ,q, 
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IV. COHOMOLOGY GROUPS WITH VALUES IN A SHEAF 

In this section we define cohomology groups and show how they are used 

to solve the problem formulated in section III. 

We consider the sheaf Fas an additive connnutative group. 

Let U = {I.}. I be an open covering of the open set Qin tn. If pis a non-
l. l.E + I 

negative integer, we denote bys= (s , ••• ,s) any element in Ip and we 
o p p+l 

set U = Us n ••• n Us. A map assigning to every s EI a section 
s O p 

c E r(u ,F) so that c is an alternating function of s (that is, c changes 
s s s s 

sign if two indices ins are permuted) is called a p-aoahain of the 

covering U with values in F. Here we define f(0,F) = O, the abelian group 

with one element. Then the set cP(U,F) of all p-cochains is an abelian 

group. 

A map o from cP(U,F) into Cp+l(U,F), called the aoboundary operator, is 

defined as follows: if c E cP(U,F), then for s E Ip+Z 

p+l 
(oc) = I (-I)j 

s • 0 J= 

where the notations. means that the index s. should be removed. We intro-
] J 

duce the group of p-aoayaZes 

zP(U,F) = {c I c E cP(U,F), oc = O} 

and the group of p-aoboundaries 

where C-I = O. Since for all c E cP(U,F) ooc = O, BP is a subgroup of zP. 

We can, therefore, define the quotient group 

HP(U,F) = zP(U,F)/ , 

which is 

/ BP (U,F) 
th called the p aohomoZogy group of U with values in F. 

For example, if c is a 0-cocycle, then c -c 
SO sl 

= 0 in U 
so 

for all 
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so and SJ' which means that there is a section f E rcn,F) with the restric­

tion c to U for every s. Hence 
s s 

(A9) n°cu,F) ~ r(a,F) • 

Let V = {V.}. J be another covering of n, which is a refinement of U. 
J JE 

This means that there is a map p from J into I such that V. c U (') for 
J p J 

every j E J. If c E cP(LJ,F), we can then define a cochain pc E cP(V,F) by 

setting (pc)s equal to the restriction of cp(s)p•••P(sp) to Vs. One easily 

sees that p commutes with the coboundary operators in cP(LJ,F) and cP(V,F) 

and, therefore, it induces a map p* from HP(LJ,F) into Hp(V,F). This map p* 

is independent of the choice of p (see prop.7.3.1 of [7]). 

Let Ebe the sheaf of germs of C00-functions on n (see the footnote on 

page 85). 

THEOREM Al2. Let F be a sheaf of E-modules on Q 3 then HP(LJ,F) = 0 for p ~ 

and every covering U of n. 

PROOF, Let¢ be a partition of unity subordinate to the covering U, that is 
V 

00 

i) ¢ is a C -function with compact 
V 

support in Ui for a certain index i ; 
V V 

ii) all but a finite number of functions¢ vanish identically on any com­
v 

pact subset of a; 

iii) I ¢v = 1 on n. 
V 

For c E zP(LJ,F) we put, when s E IP, 

gs= l ¢v ci s• 
V V 

which defines a cochain gin Cp-l(U,F). Since withs E Ip+I 

we get 

p+I 
(oc). = c 

1 S S 
+ l (-] )j+l 

V 

Cog) 
s 

j=O 

p+I 
= I I cti <- 1 ) 3 

V 
V j=O 

Thus c is a coboundary. D 

C, A = 0 
1 so· •• s ..•• s 

V J p 

C • 
s 
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Let F, G,- H be three sheaves of abelian groups on Q and let¢ and w be 

sheaf homomorphisms such that the sequence 

0-+ F-L- G-24 H-+ o 

is exact (thus¢ is injective, w is surjective, the kernel of w is the image 

of¢). This defines exact sequences between sections; thus we get the exact 

sequence 

but the last map is not necessarily surjective. We denote its image by 

cP(LJ,H) and call it the group of liftable cochains. We then have an exact 
a 

sequence 

Since o conunutes with 1/J, C~(LJ,H) is mapped by o into C~+ 1(LJ,H) and we can 

define the cohomology groups 

HP(LJ H) = zP/ 
a ' a p ' B 

a 

where zP(Bp) is the group of all liftable p-cocycles (coboundaries of liftable 
a a 

(p-1)-cochains). Then we have the conunutative diagram with exact columns: 

0 0 0 

l l l 
cp- l (LJ F) 0 cP(LJ,F) --L+ cp+l (LJ F) -1¢ ' 1¢ 1¢ ' 

Cp-l(LJ,G) -.L.+ cP(LJ,G) -.L+. Cp+l(LJ,G) 

lw lt 
0 

lw 
cp-l (LJ H) -L cP(LJ,H) - Cp+ I (LJ H) 

a ' a a ' 

l l l 
0 0 0 



Now we construct a map o* from Hp(U,H) into Hp+l(U,F) as follows: If 
a 
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f E zP(U,H), then f = ~g for some g E cP(U,G) and ~og = o~g =of= o, hence 
a +1 * og = ¢c for some c E cP (U,F). We put of= c and we have ¢cc= o¢c = 

= oog = O, hence 6c = O, that is c E Zp+l(U,F), since¢ is injective. 

Another representative off in Hp(U,H) differs from f by a coboundary 
a 

f 1 E B~(U,H). Then f 1 = ~gl 

f' E cP- 1(U,H). Furthermore 
a 

for some g1 E cP(U,G) and also f 1 = of' for some 
P-1 there is a g' EC (U,G) with ~g' = f' and we 

have ~(g 1-og') = ~g 1-o~g' = f 1-of' = O, thus g 1-og' = ¢c' for some c' E 
P . p+I EC (U,F). Let c 1 = 6c' EB (U,F), then og 1 = 6¢c'+Mg' = ¢6c 1 = ¢c 1 , hence 

* - p+I o f 1 - c 1 EB (U,F). 

Thus indeed o* is a homomorphism between the cohomology groups 

(Al 0) 

The kernel of o* consists of those f E zP(U,H) mapped by o* on cobound-

Bp+l(U,F). 
a 

aries C E For such an f we have o*f = C = oc" with c" E cPcu,F); 

hence w(g-cpc:") = ~g = f and o(g-cpc") = cpc-cpoc" = o, thus f is the image 

under ~ of a cocycle in zP(U,G). Conversely, the image funder~ of a co-

cycle g in zP(U,G) is mapped by o* to o, since 0 * = og = ¢6 f and ¢ is in-

jective. 

The image of o* consists of those c in Zp+l(U,F) mapped by¢ into co­

boundaries of Bp+l (U,G), because it follows from the construction of o* that 

¢o*f = ¢c = og. Conversely, {f c E zP+ 1 (U,F) is such that ¢c = og for some 

g E cP(U,G), then O = ~¢c = ~og = o~g, thus ~g = f i~ a cocycle in zP(U,H) 
a 

* with of= c. 

Therefore, we have obtained an exact sequence 

(A I I) 
* * * * 

o - Ho cu, F) L Ho cu ,G) L Ho cu ,H) ~ HI cu, F) L HI cu ,G) 
a 

* * J__. H1 (U,H)~ H2 (U,F) ._ .•. , 
a 

where the maps¢* and~* are obtained from¢ and~ 1.n the, obvious way, using 

the fact that the maps of cochains defined by¢ and~ commute with the co­

boundary operators. 
-We shall now prove that existence theorems for the a-operator are equiv-
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alent to statements involving HP(U,A). 

THEOREM Al3. When n E ~n is covered by an open covering U = {U.}. 1, where 
1 1E 

each U. is pseudoconvex, then for p ~ I HP(U,A) is isomorphic to the quo-
1. 

tient space 

{f f is a (O,p)-forrn with C00
-

coefficients inn and with 

°af = O} {ag g is a (O,p-1)-forrn with 

C00-coefficients inn} 

00 

PROOF. Denote by E the sheaf of germs of (O,q)-forms with C -coefficients 
q 00 

and by Z the sheaf of germs of (O,q)-forms f with C -coefficients and with 
- q 
af = O. Then it follows from theorem A9 that the sequence 

o- Z - E ~ Z 1~ O q q q+ 

is exact and that this also holds for the sequence of sections 

o- cPcu,z >- cPcu,E )-+ cPcu,z +i>--+ o, q q q 

since intersections of pseudoconvex sets are pseudoconvex. Thus C~(U,Zq+I) = 

= cP(U,Zq+I) and using (All) and (A9) we get the exact sequence 

o- r(n,z )-+ r(n,E )--+ r(n,Z +I)-+ H1(U,Z )-+ H1(U,E )--+ q q q q q 

- H1(U,Z +I)-+- H2 (U,Z )-+- H2 (U,E )-+ •••• q q q 

Theorem Al2 yields Hp(U,E) = 0 for p ~ I and, therefore, we get 
q 

and 

Hp(U Z ) ~ Hp+l(U Z) p ~ 
'q+l 'q' 

H1 (U,Z ) 
q ~ r(n,z +i>/ • 

q r(n,E) 
q 
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So using theorem A8 we get for p ~ I 

D 

In particular, it follows from theorem A9, that if Q itself is pseudo­

convex 

(A12) p ~ 

for all open coverings U of Q consisting of pseudoconvex sets. 

This result holds more generally for all coherent analytic sheaves F, 

which is Cartan's theorem B (th.7.4.3 of [7] or th.VIII,A.14 of [6]). We 

will prove this only for subsheaves F of AP that are finitely generated by 

polynomial vectors in A(Q)p I), which is all we need in this paper. For the 

general case we only indicate where the proof follows the same pattern, which 

will be sufficient to show why F should be coherent. Moreover, we assume 

that the covering U is such that more than M distinct sets U. EU have empty 
i 

intersection, although this requirement is not necessary (see the footnote 

on page 98). 

THEOREM Al4. Let Q be an open pseudoconvex set in ~n, let Ube an open 

covering of Q consisting of pseudoconvex sets such that the intersection 

of more than any M elements of U is empty and let F be a subsheaf of AP 

on Q finitely generated by polynomial vectors. Then 

for p ~ 1. 

I) The fact that a coherent analytic sheaf Fis generated in each point by 
sections over Q is Cartan's theorem A (th.7.2.8 of [7] or th.VIII.A.13 
of [6]). Here we only assume that there is a finite number of sections 
generating Fin all points of Q and that these sections consist of poly­
nomials. 
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I r 
PROOF. Let F be generated by h1~ ... ,hqEf(Q,F), thus each~= (1\,•••,hk) E 

E A(Q)r, k = 1, ••• ,q and each h~ not Pjk is a polynomial. Let us suppose 

that the problem of section III is solved, that is the sequence (A8) is 

exact when Q is pseudoconvex. This means that the cochains in cP(U,F) are 

liftable, hence from the exact sequence 

we get the exact sequence 

As in (All) we obtain the exact sequence 

From (A12) it follows that the right and left hand terms are zero for p ~ 1, 

thus 

' 
From (A6) it follows that also.RP is a sheaf which is finitely generated by 

polynomial vectors. Thus if we have shown that Ht+l (U,_G) = 0 for every 

sheaf G finitely generated by polynomial vectors, it follows that Ht(U,H) = 0 

for every sheaf H finitely generated by polynomial vectors, t ~ p, in partic­

ular that Hp(U,F) = 0. But HM(U,G) = O, hence the theorem is proved. D 

The above proof is based on the fact that when Fis a sheaf which is 

finitely generated by sections h 1, ••• ,hq, then also R(h 1, ••• ,hq) is a sheaf 

with this property. For that reason we had to require that the vector hk 

consists of polynomials (see (A6)). In the general case, Fis just a coherent 

analytic sheaf. Then it follows from Cartan's theorem A (see footnote on 

page 95) and the Heine-Borel theorem that Fis finitely generated by sections 

h1, ••• ,hq E r(n,F) in the interior Q' of any compact subset of n. Let U' 
be the covering of Q' consisting of the sets U! = U. n Q. Since Fis coherent, 

1- 1-
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also the sheaf R(h 1, ••• ,hq) is finitely generated inn' by sections over n, 

and the above shows that Hp(U',F) = 0 for p ~ 1. For the passage from U' to 

U see parts (a) and (b) of the proof of theorem 7.4.3. in [7]. 

We still have to prove that (A8) is exact. Briefly we can say that by 

definition all cochains are locally liftable and that by theorem A14 locally 

liftable cochains are globally liftable inn, when n is pseudoconvex. Let 

us investigate this statement more precisely. 

We assume that either n is an open pseudoconvex set whose closure is 

compact in the open pseudoconvex setn'and that Fis a coherent analytic 

sheaf on n', or that n is an open pseudoconvex set and that Fis a coherent 

analytic sheaf on n such that Fis generated in any point of n by finitely 

many sections Hj, j = 1, ••• ,q, over n, such that RH is generated in any 
. j - j 1 jq point by finitely many sections s 1 - (s 1 , ••• ,s 1 ), j = 1, ••• ,r! over 

n, ••• , such that Rs is generated by finitely many sections s3 = 
· 1 3·r m-1 m 

= (SJ c m-l) • - 1 n 2 3 F 1 h F , ••• ,~ , J - , ••• ,r, over aG, m = , , •••• or examp e, wen m m m 
is generated by polynomial vectors, we deal with the last case. In both 

cases we can find for any z. En, any m and any f E 
J m 

k 
r(n,F), (c ) 2 j E (Rsk)Zj' 

k = 0,1, ••• ,m-1, s 0 = 

the following sequence 

H, an open neighborhood w. 
J 

of z. inn, such that in 
J 

(Al 3) 
r S r S 

A(w~) m __ m_ A(w~) m-1 __ m_-_1___.. 
J J 

-+ A(w~/ l_s_t_ 
J 

m q H m 
A(w.) - r(w.,F) 

J J 
r 

f j m belongs to the image of H and ck E A(w~) k belongs to the image of Sk+ 1 for 
W• m J J.: 

k =JO,l, ••• ,m-1 (r0 = q). wj depends moreover on f and c, k = O, ••• ,m-1 and 

it is clear that the above property also holds with w~ replaced by an open 
m m+I m (k) k J 

subset of wj, hence w3• cw .• Now U = {w. I z. En} is an open covering 
( ) J (k) J J 

of n and U £ is an open refinement of U when£> k; we denote the 

restriction map from cP(u(k) ,G) into cP(U(£) ,G) induced by the map from U(£) 

into u(k) by pk£ (G is any sheaf on n). 

Actually w; will show that there is an open refinement V of U(O) such 

* that in the exact sequence (All) f is liftable and that o maps f onto a 

coboundary of B1(V,RH), that is o*f = O, so that His surjective. The proof 

is in fact the same as that of theorem A14, only we develop the sequence 
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(All) explicitely using (AIO). 
0 0 0 0 ro 

Let f e r(a,F), then f = Hg. in w. for some g. e A(w.) , and we regard 
o (O) J Jo o J J 

f as a cocycle in C (U , F). The set g = { gj z. e Q} determines a cochain 

in CO(U(O) ,ArO). Let co= ago, then HcO = oHgO = oi = O, hence co is a 

cocycle in c 1(U(O) ,RH) (in fact co= o*f by (AIO) and (AS) with P = H). 
I I (I) rl . 0 I 

According to (A13) there is a g e C (U ,A ) with Po 1c = S1g Let 
I ,, I h I "S I ,, 0 _ O h I 2 (U (I) R ) (. f c =ug tens 1c =u 1g =pO,luc - , encec eC ,s1 in act 
I * 0 c = o PO,Ic by (AIO) and (A6) with 

k Generally we find cochains g e 

ck= ogk E ck+l(U(k) ,Rs), 
k 

P =Hand Q = s 1). 
k (k) rk 

C (U ,A ) and cocycles 

k = 0,1, ••• ,m, 

k 
since Skc 

k-1 
= pk-I kOc = O, so that 

' 

k = 0 , I , ••• , m- I • 

In the next section we show that any open covering of Q has a refinement 

consisting of pseudoconvex open sets such that the intersection of more 

than M of these sets is empty. Let m = M-1 and let V be such a refinement 

of U(m); we denote the restriction map from cP(U(k) ,G) into cP(V,G) by pk. 

N M-1 O I) . l . M-1 ,,_M-1 . h ow c = , so certain y we may write pM_ 1c = uc wit 
_M-1 M-1 c e C (V,Rs ). Assume that fork~ M-1 

M-1 

ck e ck(V,Rs) 
k 

L ~k k ~k h ,,_k k k O et 5 =pkg-~ , ten ug = pkc -pkc = • 

(Al2) there is a cochain fk-l e ck-l(V,Ark) 

ck-I= Skfk-l, so that ck-I e ck-l(V,Rsk-1) 

Since Q is pseudoconvex, by 

with gk = ofk-l. Then we define 

and 

k-1 
= pk-le 

I) The Hilbert syzygy theorem says that Rs= O, hence en= O, see [6] 
IV.C.th.4. So, neither here nor in theo¥em Al4 we have to require that 
more than M sets of the covering have empty intersection. However, the 
Hilbert syzygy theorem is not proved here. 



Thus this holds for all k, in particular fork= 0: 

0 * (that is p0c is a coboundary, thus o p0f = 0). Hence we have 

while 

yields 

f 0 0 = H(gk-cj) 

f 0 0 = H(gt-ci) 

0 (oc ) .. 
J1 

= c?-c? 
1 J 

in V, k pO(j) v. E = 
J 

in v. V, R, p0 (i), E = 
1 

0 
= (poc ) .. 

J1 

in V. n V. 
J 1 

Thus there is a holomorphic vector function g E A(Q)q with f = Hg in Q, 

namely for all j 

in V. E V • 
J 

So we have solved the main problem of this appendix: 

THEOREM AIS. When Q is pseudoconvex, the following sequence is exact 

(AS) 
p 

- f(Q,F)--+ o. 
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We have proved theorem All too, so that the sequence (Al3) is exact for 
m any open pseudoconvex set w .• In the general case when Fis not generated by 
J 

polynomial vectors, theorem A of CARTAN (see footnote on page 95) and con-

sequently theorem B, as we have shown, follow from the next result due to 

CARTAN ([7] th.7.2.1.(ii)): 
.... 

Let Q be pseudoconvex and Ka compact subset of Q with K = KQ (see (Al)) 

and let h1, ••• ,hq be sections over a neighborhood of Kofa coherent analytic 

sheaf Fon a neighborhood of K, which generate F there. If f is an arbitrary 
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section of F over a neighborhood of K, then there are g1, ••• ,gq analytic 

in a neighborhood of K so that f = l~=l hk gk there. 

In section 7 we give a quantitative version of theorems Al4 and Al5, 

when His a polynomial matrix. For that purpose we need a quantitative 

version of the: above semilocal result. This is the following modification 

of th.7.6.5 in [7], which is actually proved there (or th.III 3.4.(3) when 

p = q = 1 and the general case is contained in th.III 3.6 in [3]): 

THEOREM A16. For any polynomial matrix P, there is an integer t > 1, such 

that for any neighborhood w of O and every u E: A(tw+z)q, z E: a;n, there is 

av E: A(w+z)q with Pv = Pu and 

(Al 4) sup 
wE:w+z 

lv(w)I s C (l+Hztt)N sup 
WEtw+z 

IP(w) u(w) I , 

where C is a constant depending on P and w (the smaller w the larger C) and 

where N only depends on P. Here tw+z denotes { w I w = t1:;+z, r,; E: w} and 

lv(w)l 2 = I:=l lvk(w) 1
2 • 

In section 7 we perform all the steps of the proofs in this section 

again, then taking care of the bounds. The sets w+z. and tw+z. in theorem 
-1 J J 

Al6 in fact will be just the sets w~ and w~ , respectively, in a quanti-
J J 

tative semilocal version of (Al3). 

V. SPECIAL COVERINGS 

In this section we show that any open covering of the open set Q has a 

refinement that satisfies properties (Al5)(i) and (ii) below. This is based 

on a theorem of dimension theory, th.3,§2,Ch.7, p.278 [4]. Moreover, we 

construct a special covering of Q with refinements satisfying some additional 

properties needed in section 7. The essential idea for this construction has 

already been used by WHITNEY in [17], whcih can be found in [8] too. 

Let Q be an open set rn ]Rn and let O = { 0 } A be an open covering 
a aE 

of Q. Each point in Q has a bounded open neighborhood whose closure in ]Rn 

is contained in some open set O. Hence there exists an open refinement 
a 

of O consisting of open sets whose closure is compact and contained in Q, 
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Since Q is paracompact, we can find a locally finite open refinement 
00 

V = {V.}. 1, where each V. is compact and contained in Q (such a refinement 
J J= J 

is necessarily countable, because Q is separable). According to [4] 7.2.th.3 
00 

and 7.3.th.13 V has an open shrinking W = {Wj}j=l (which, therefore, is 

w. also locally finite and W. cc Q), such that more than n+I distinct sets 
J J 

at most n). Since Q is have empty intersection (that is the order of Wis 
00 

normal, letmna I to th.3,§1,Ch.5 [4] yields an open shrinking W' = {Wj}j=J 

of W such that the closure with respect to Q of each W! is contained in 
J 

w., but since w. C Q, this yields w! Cw. for all j. Of course W' is a 
J J J J 

locally finite open covering of order at most n. 

For each j W! is compact and contained in W. and, therefore, we can 
J J 

find finitely many open convex sets U 
m• 

. k' k = l, •.• ,m. with U. kc w. and 
J, J J, J 

wj c Uk!l uj,k' such that more than M' distinct sets U. k have empty inter­
J, 

section, where M' is a positive integer independent of j. For example, this 

can be done by covering W! by sufficiently small closed hypercubes in W. 
J J 

(so, that the vertices form a rectangular lattice) and by taking sufficient-
n ly small convex open neighborhoods of these cubes. Then we get M' = 2, but 

it is also possible (by choosing sufficiently small convex open neighbor­

hoods of some cubes and sufficiently large convex open sets contained in 

the other cubes) to obtain M' = n+I. 

Since each point in Q has a neighborhood that intersects a finite 

number of the sets W., this neighborhood also intersects a finite number of 
J 

the sets U. k• Furthermore, each point in Q is contained in at least one 
J , -

set W! and in at most n+I sets W., thus in at least one and at most 
J J oo ID• 

M = (n+l)M' sets U. k• Therefore, the covering U = {U. k}.=I kJI is a J, J, J , 
locally finite open refinement of O consisting of convex open sets, such 

that more than M distinct sets of U have empty intersection. 
n Since convex sets in~ are pseudoconvex, we have obtained the 

COROLLARY. Let Q be an open set in ~n and Zet O be an open covering of Q. 

Then there exists a ZoaaZZy finite open refinement U = {Ui};=I of O with 

the properties 

(AI 5) 
(i) for every i U. is pseudoconvex and U. cc Q, 

1 1 

(ii) there is an integer M such that more than M distinct sets 

in U have empty intersection. 
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Now we construct coverings of Q that satisfy some additional properties. 

Let Q be an open set in ~n and let {Qk}:=I be an increasing sequence of open 

subsets with union Q and with 

where Qk(E) is the E-neighborhood of Qk. 

Choose positive integers~ with ~+I >~such that a cube with side 

I/~ is contained in the ball with radius dk), fork= 1,2, ••• and let 

m =I.Divide ~n into a collection U' of closed cubes with side I (such 
0 

that the vertices form a rectangular lattice) and select those cubes con-

tained in Q1• Call the collection of these cubes U0. Divide the remaining 

cubes and parts of cubes of U' into a collection of cubes with side l/m1 

and let U1 be the collection of those cubes that are contained in Q2 • 

Generally when we have defined sets U0, ... ,Uk-l of cubes, we define the set 

U' of cubes obtained by dividing the remaining cubes and parts of cubes of 
k 

U' into a collection of cubes with side I/~ and by selecting those cubes 

that are contained in Qk+I" 

Then the union of U0,u;, ... covers Q, since Qk is covered by the union 

of U0,U1, ... ,U1:. For, a point x E Qk either belongs to one cube of U0 or 

..• or Uk-I' since these cubes are all contained in Qk' or it belongs to 

some cube of U'k, since any cube with side I/~ containing xis contained 

in Qk+I. Hence any cube in Uk can intersect only cubes of u; for£= k-1, 

h . . f h 22n d. . b . k or k+I. Furthermore, t e intersection o more tan istinct cu es is 

empty. 

Now we will define sufficiently small open neighborhoods of the cubes 

of U0,Uj, •.• , so that we get an open covering. Define the map a by mapping 

a cube K' E Uk to the enlargement of the interior of K' by a factor 

]+~/~+]' the center kept fixed. Then aK' = K is an open cube. Let for each 

k u(O) be the set u< 0) = {aK' I K' E U'} and let 
k k k 

Then U(O) is a covering of Q that satisfies besides properties (AIS)(i) and 

(ii) the following properties for A= 0 



103 

(AIS) (iii) all the sets in the covering U(A) intersecting Qk have a minimum 

size and are contained in Q£(k) with £(k) = k+3; 

( . ) · LIO) · · · iv when a set in intersects Qk, it intersects not more than 

N~A) elements of the covering LJ~A), where N~A) is some number 

depending only on k .. 

The proof follows from the fact that 

non-empty intersection if and only if 

two cubes K. and K. in U(O) have a 
-I J i -I 

a K. = K! intersects a K. = K!. To 
J J i i 

prove this, assume that K! E Uk', K! E 
J i 

U~, £ ;:c: k, thus £-k = m ;:c: 0 and that 

K! n K! = 0. Since 
J i 

cubes in U' can intersect cubes in 
p 

U' only when q = p-1, 
q 

p or p+I, the distance between K! and K! is at least 
J i 

I I ·--+--+ ••• + --- ;:,: 
1 

~+1 ~+1 ~+2 

when m ;:c: 2, or 

I 

·~+1 

~+m-1 

when m equals zero or one. The distance from the boundary of K. to K! is 
J J 

by definition of a 

(Al 6) ![_I ( 1 +-~-) __ 1 J = _I_ 
2 ~ ~+1 ~ 2~+1 

and the distance from the boundary of Ki to Ki is 1/(2m£+ 1), so that the 

distance between K. and K. is at least 

I 

~+1 

when m:?: 1, or 

J i 

2~+1 

1 --- - ---
r~+1 2~+1 

I 

2~+m+1 
> ---

1 ---= 0 
2~+1 

~+1 2~+1 

1 ---= 0 
2~+1 

when m = O. Only in this case the boundaries of K. and K. might touch each 
J i 

other, but since K. and K. are open, K. n K. = 0. 
J i J i 

Now property (AIS)(ii) follows from the same property for the cubes of 
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u0,Uj,••· • Let the cube Kin U(O) intersect Qk. If a-JK does not intersect 

Qk+l' a- 1K does not intersect the elements of Ub,···,U~, hence K does not 

intersect the elements of U60) , .•• U~O), the union of which contains Qk. Thus 
-1 . -J . . d . n h K . a K intersects Qk+l' hence a K is containe in "'k+2 , sot at is con-

tained in Qk+3 • Thus K has a minimum size, namely the size of a- 1K is at 

least 1/~+2• Property (AJS)(iv) follows from property (iii) and the same 

property for Ub,Ui,··• • 
· 1 f" u°') f h · u< 0) · Final y we construct open re inements o t e covering satis-

fying besides the properties (AlS)(i),(ii),(iii) and (iv) the following 

properties 

( ) ) U(A+J) · f" f U(A) d AlS (v for each A is a re inement o an moreover each open 

(vi) 

cube K~A) E U(A) enlarged 2A-µ times with the center kept fixed is 
J (µ) u<µ) - • contained in some Ki E for everyµ - 0,1, •.. ,A-I, wedenote 

the map p between th~ index sets of U(A) and U(µ) with p(i) = i 
µ 

by p µ'A; 
when K{A) 

J 
E U(A) . n h intersects "'k' t ere are at most 

i with p, (i ) 
p A,µ p 

= j, p = I, ••• ,M, (k) (µ > A). 
A,µ 

MA (k) indices 
,µ 

Eventually by taking larger integers~• we may assume that each ~+I= 

= Pk+! mk for some integer pk+! ~ 2, k = 0,1, •••• Let ~O) = :11lz and let 
m.(A) = 2Am. for A= I 2 then m.(A) = 2p m.(A-l) and m.(A) = 2m.(A-l). 

k k+A ' , ••• , k k+A k k k+l ' 
(~A))-l, k = 0,1, ••. , will be the length of the ~ides of the closed cubes 

the covering U(A) is constructed from similarly to the construction of U(O). 

Namely, let K; be a closed cube with side (~A))-l, then the enlargement 

with a factor (l+~A)/~:~) of the interior of K; will be a cube KA of U(A) 
. h . f u< 0) h u(A) . f" . as int e construction o • Ten satis ies the same properties on 

U(O). So, let us assume that the coverings U(O), ••. ,UC\-!) with the desired 

properties have been constructed in the same way as U(O) have been construct­

ed from closed cubes. 

We divide the closed cubes K;_ 1, with side (~A-I))-!, the sets KA-] E 

(A-1) . . 2n 
E U are constructed from into (2pk+A) closed cubes K~ with side 

(~A))-l and the covering U(A) is defined as the set of open cubes KA being 

the enlargement of the interior of the cubes K; by the above factor, 

k = 0,1, •••• Then the difference of two times half the side of KA and half 

the side of K' satisfies 
A 
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(A) 

[ •( ~ ) I ] 1 I 2 2 I +(1) (1) - 2 (1) $; 

~+I ~ ~ 

I I 
(1) = -2 -(-A --1-) ' 

~ ~+I 

where the right hand side equals the distance from the boundary of KA-l to 

K~-I according to (Al6). Hence two times KA, with the center kept fixed, is 

contained in KA-l' so that property (Al5)(v) follows. Furthermore, K~-I 

contains (2pk+A) 2n cubes K~, hence pA-i,A maps not more than (2pk+A) 2n sets 

KA onto thei same KA_ 1• From this and from property (Al5) (iii) the above 

property (Al5)(vi) follows. 

REMARK. Although we use property (AIS)(iv) in section 7, this could be 

avoided. However, the coverings U(A) satisfy (Al5)(iv) anyhow. 

VI. NULLSTELLENSATZ AND FUNDAMENTAL PRINCIPLE 

In this section we discuss Hilbert's Nullstellensatz, Ehrenpreis' 

generalization and fundamental principle. 

Consider an ideal I' in A generated by the germs (h 1) , ••• ,(h) at z z z z q z 
of functions h 1, ••• ,hq holomorphic in some neighborhood U of z. We define 

the set 

and let V be the equivalence class of V under the equivalence relation 
z 

V ~ W if th1ere is a neighborhood w of z with V n w = W n w. V is called the 
z 

germ at z of V. It is clear, that the ideal I' is 
z 

not trivial only if 

h 1(z) = ... = h (z) = O. When f q z 
in a neighborhood of z such that 

EI' we denote by fa holomorphic function 
z 

f is the germ off at z. Then for any 
z 

f EI', z EV, there is a neighborhood w of z with 
z z 

f(w) = O, w E V n w. 

Conversely, let us consider the ideal I in A of all the germs at z of 
z z 

holomorphic functions vanishing on V, that is 
z 

(Al 7) I = {f 
z z 

there is a neighborhood w of z and f E A(w) with 

f(w) = 0 for w EV n w}. 
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It is clear that I 
z 

is an ideal and that I' c I . z z 
Hilbert's Nullstellensatz says that, if f EI , there is a positive z z 

integer m with fm EI' or 
z z 

I -· rad I ' = { f z z z 
fm EI' for some m depending on f }, 

z z z 

see [6] II.E.th.20. Obviously, when I' is a prime ideal this yields 
z 

([ 6] III.A. 7) 

(Al 8) I'= I z z 

that is, fz E Iz can be written as f(w) = I~=I gk(w) hk(w) for win some 

neighborhood w of z and for some gk E A(w), k = 1, ••• ,q. 

EHRENPREIS has generalized this result in the following way (see [3] 

chapter II): let the functions h 1, ••• ,hq be polynomials, let for example 

(of course, 

clhl 
(z) = 0 

a z I 

also h 1 (z) ... = h (z) = q 

V' {w I 
clh 1 

= -a -(w) = O, W E 
zl 

Then we require that f 

,.,af (w) = o, 
oz 1 

z 
E I moreover z 

w E V' n w. 

0) and let V' be the germ at z of z 

U}. 

satisfies in some neighborhood w of 

Now let W be defined as (V ,V'), where this should be understood in the z z z 
following way: a function f holomorphic in a neighborhood w of z vanishes 

on Wz if f vanishes on V n wand clf/az 1 vanishes V' n w. 

z 

The same can be done for higher order derivatives and the other poly­

nomials hk. The characterization of Wz is not immediately clear from the 

polynomials h 1 , ••• ,hq (see example 4,II.2 in [3]). Anyhow, Wz can be defined 

in such a way that, if I is the ideal in A of germs of functions vanishing z z 
on W, we always have (Al8), that is I is the ideal in A generated by z z z 
(h 1) , •.• ,(h) (th.II 2.4 of [3]). 

z q z 



V in the Nullstellensatz is called the germ at z of a variety and 
z 

W in Ehrenpreis' formulation is called the germ at z of a multiplicity 
z 

variety. In case of modules in AP instead of ideals, it is possible to 
z 
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define p germs (W1) , ••• ,(W) of multiplicity varieties and so we get the 
z p z 

➔ 

germ W 
z 

= ((W1) , ••• ,(W) ) of a vector multiplicity variety. This can be 
z p z 

done in such a way, that the analogue of (A18) holds, namely (th.II 2.6 of 

[3]): 

THEOREM A17. Let Pjk be polynomials, j = 1, ••• ,p, k = 1, ••• ,q. Then it is 

possible for each z to define the gePm W at z of a vector multiplicity 
z 

variety, such that each p-tuple of functions f., j = 1, ••• ,p, holomoPphic 
J 

in a neighborhood of z, whose gePm at z vanishes on W, can be written as 
z 

f.(w) = r PJ.k(w) gk(w), 
J k=l 

J = 1, ••• ,p 

for win some neighborhood w of z and for some functions gk E A(w), 

k = 1, ••• ,q. 

Next we consider a sheaf 1' of ideals generated in each point of an 

open pseudoconvex set Q by polynomials h 1, ••• ,hq, thus p = 1. Their simul­

taneous zero-set defines a variety V = Un V in Q (at points z where some 
ZE•G Z 

hk(z) ¥ 0 Vz is empty). Similarly we can define~ multiplicity variety W 

in Q (see [3]). We will con~ider sheafs of functions on V; the same can be 

done for a multiplicity variety W. Let 1 be the she.af on Q 

I= Un I , 
ZEoG Z 

where I is defined by (A17); note that I = A when z E Q\V. We can define z z z 
a sheaf Fon Q by 

F =A I z z I ' 
z 

Z E Q, 

that is the following sequence is exact 
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For z E Q\V I =A, thus F = O. Thus Fis only non-trivial in points z z z 
of V, so we consider the restriction F' to V 

F' = U F 
ZEV z 

which is a sheaf on V. In accordance with the footnote on page 85 we can 

regard F' as the sheaf of germs of analytic functions on V. A section f 

in r(v,F') is a holomorphic function in V; regarded as a section f 1 in 

f(Q,F) we would have f 1(z) = f(z) for z EV and f 1(z) = 0 for z E Q\V. So, 

we may just as well consider the sections in f(Q,F) as the holomorphic 

functions in V. In case I' is a prime ideal for all z E Q, (AI8) holds and 
z 

the sheaf I is finitely generated by polynomials. This also holds when we 

consider a sheaf of ideals on a multiplicity variety. Hence theorem Al4 may 

be applied. Also, generally for any sheaf I of ideals Cartan's theorem B may 

be applied, since I is coherent ([6] IV.D.2). However, in the case occurring 

in this paper I' is prime for all z E Q. Hence in the same way as theorem 
z 

Al 5 was obtaineid from Cartan' s theorem B we here get 

so that 

(Al 9) r (V, F') • 

Thus any function holomorphic in Vis the restriction of a function in 

A(Q) and in case (Al8) holds any function fin A(Q) that vanishes on V can 

be written as f(z) = ~~=I hk(z) gk(z), z E Q for some gk E A(Q). In this 

paper we will derive a quantitative version of (AI9) for a special varietyV. 

When Q = ¢n, when I' is an ideal generated by polynomials and when W 

is its associated multiplicity variety (thus (Al 8) holds), the isomorphism 

(Al9) with V replaced by Wand with bounds (that is all the occurring 

functions satisfy moreover certain estimates at infinity) is Ehrenpreis' 

fundamental principle (theorem IV 4.1 in [3]; a survey of this theorem and 

its proof can be found in [I] IV). The fundamental principle holds for 



modules generated by polynomials too (th. IV 4.2.[3]), however, in that 

case the definition of global vector multiplicity varieties is a more 

delicate question (see page 100 [3]). 
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