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Krawtchouk polynomials, a unification of two different group theoretic 
. . *) interpretations 

by 

T.H. Koornwinder 

ABSTRACT 

The canonical matrix elements of irreducible unitary representations 

of SU(2) are written as Krawtchouk polynomials, with the orthogonality 

being the row orthogonality for the unitary representation matrix. Dunkl's 

interpretation of Krawtchouk polynomials as spherical functions on wreath 

products of synnnetric groups is generalized to the case of intertwining 

functions. A conceptual unification is given of these two group theoretic 

interpretations of Krawtchouk polynomials. 

KEY WORDS & PHRASES: K.rC(}.;)tchouk polyn,omials; can,onical matrix elements of 

irreducible representations of SU(2); spherical and 

intertwining functions on wreath products of syrronetric 

groups; metap lectic representat ·· ,m 

*) This report will be submitted for publication elsewhere. 





I. INTRODUCTION 

Let G be a compact group. Then matrix elements belonging to inequiva

lent irreducible unitary representations of Gare orthogonal to each other. 

This phenomenon is lying at the background of many instances of group 

theoretic interpretations of orthogonal polynomials. However, if~ E G and 

~ (g) denotes the matrix elements of~ with respect to an orthonormal m,n 
basis then there is also a discrete orthogonality relation for~ (g) m,n 
(g E G fixed) which is just the column or row orthogonality for the unitary 

matrix(~ (g)). By looking at~ (g) in this way we may identify it m,n m,n 
with a quite different system of orthogonal polynomials. For instance, in 

the case G = SU(2) or U(2) the first kind of orthogonality is a group 

theoretic form of the orthogonality relations for Jacobi polynomials and 

the second kind of orthogonality is similarly related to Krawtchouk poly

nomials. Surprisingly enough, although the first fact is well-known, the 

second fact seems to have been unobserved in literature until now. Section2 

deals with this result. 

Krawtchouk polynomials also have a group theoretic interpretation as 

spherical functions on wreath products of symmetric groups. It is no acci

dent that this class of special functions has two group theoretic inter

pretations of so different nature. In Section 3 we give a conceptual 

proof that, for one special g E U(2), the corresponding canonical matrix 

elements can be expressed in terms of spherical functions on the wreath 

product of s2 and SN. A similar explanation can be given for the occurrence 

of Bessel functions both as generalized matrix elements for discrete series 

representations of SL(2,JR) and as spherical functions for the group of 

Euclidean motions. Weil's metaplectic representation here plays an important 

role. These things are shortly discussed in Section 4. 

Not just spherical functions but also interwining functions on 

wreath products of symmetric groups can be written as Krawtchouk polynomials. 

This result, which seems to be new, is proved in Section 5. Finally, in Sec

tion 6 we describe a conceptual way to identify these intertwining functions 

with matrix elements for U(2), thus generalizing the results of Section 3. 

The interpretation of Krawtchouk polynomials as matrix elements for 

representations of SU(2) is a suitable point of departure for several 
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different lines of research. Here the author already announces some results, 

which he intends to publish in subsequent papers. First, the row orthogonal

ity for unitary matrices yields group theoretic interpretations for several 

other classical orthogonal polynomials, by choosing suitable groups and 

bases (or double bases) for the representation spaces. We mention Meixner, 

Laguerre and Pollaczek polynomials for discrete series representations of 

SL(2,lR), Charlier polynomials for the Heisenberg group, Hahn polynomials 

for SU(2) x SU(2) (Clebsch-Gordan coefficients), Racah polynomials for 

SU(2) x SU(2) x SU(2) (Racah coefficients). Next, a unification of two 

different_ group theoretic interpretations can also be given in the Hahn 

polynomial case (Clebsch-Gordan coefficients for SU(2) and spherical func

tions for the symmetric group, respectively). Finally, the group theoretic 

interpretations of classical orthogonal polynomials mentioned above lead to 

group theoretic proofs of certain formulas for these polynomials, for 

instance for the Poisson kernel. 

ACKNOWLEDGEMENT. I would like to thank prof.dr. T.A. Springer for calling 

may attention to the metaplectic representation and Richard Askey for 

suggesting the group theoretic interpretation of Krawtchouk polynomials as 

intertwining functions. 

2. THE CANONICAL MATRIX ELEMENTS OF THE IRREDUCIBLE UNITARY REPRESENTATIONS 

OF SU(2) 

Consider the natural representation T of GL(2,~) on a:2• The restriction 

Of T t U(2) Su(2) · "t t t· h consi0 der "'2 as o or is a uni ary represen a ion, were we ~ 

a Hilbert space with respect to the orthonormal basis e0 := (1,0), 

e 1 := (0,1). 
. N 

The N-fold tensor product 0 T of Tis a representation of GL(2,<C) on 
N,.,2 Th _.N f . . N,.,2 . . . b f 0 ~. e space v-· o symmetric tensors in & ~ is an invariant su space o 
N2 N N __ N 

& <C. Let T be the corresponding subrepresentation of QT. A model for v-
is given by the space of all homogeneous polynomials of degree Nin two 

complex variables with GL(2,«:) acting on v1'1 by 



(2. 1) (TN(ac b) ) d F (x,y) := F(ax+cy,bx+~y), 

F € ~' (~ ~) € GL(2,«:), x,y E ¢. 

The space VN has dimension N + 1. A natural basis for ~ is given by the 

tensors fN (n = 0,1, .•• ,N): 
n 

(2.2) fN •= _1 , 
n . N! l 

OESN 
e. 

1 o(I) 
® ••• ® e. ' 

1 o (N) 

We have 

(2.3) 

ii= 

N N-n n f (x,y) = X y, 
n 

= i = o, N-n 
i . = 
N-n+I 

x,y E a:. 

It follows from (2.2) that the Hilbert space norm of fN is given by 
n 

so we have an orthonormal basis 

(2.4) N e (x,y) n 

! 
N 2 N-n n 

:= (n) X y ' n = O,l, ••• ,N, 

for~- By construction, the restriction of TN to U(2) or SU(2) is a uni

tary representation with respect to this orthonormal basis. It is well

known (cf. for instance HEWITT & ROSS [6, Theorems (29.20) and (29.27)]) 

that the representations TN restricted to SU(2) are irreducible and that 

each unitary irreducible representation of SU(2) is equivalent to some TN 

(N = 0 , I , 2 , ••• ) • 

Consider the subgroup 

(2.5) 

of SU(2). We have 

3 
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(2.6) 

so TN restricted to K splits as a direct sum of inequivalent irreducible 

representations of K. We call {eN} a K-basis for~-
n 

For g € GL(2,~) let 

(2. 7) N 
T .(g) m,n 

N N N : = (T (g) e , e ) , n m m,n = 0, 1, ••• ,N, 

where(.,.) is the inner product with respect 

We call TN (g) the canonical matrix elements m,n . 
can be calculated from the generating function 

to the orthonormal basis {eN}. 
n 

of TN. These matrix elements 

(2.8) N i N-n n () (ax+cy) (bx+dy) 
n 

~ TN (a b) N ½ N-m m = l m,n C d (m) X y. 
m=O 

First of all, we conclude from (2.8): 

(2.9) TN (a b) _ TN (d ac). m,n c d - N-m,N-n b 

Binomial expansion of the left-hand side of (2.8) yields 

(2. 10) TN (a b) 
m,n c d 

mAn 

I 
t=OV(m+n-N) 

This expression goes back to WIGNER [13,(15.21)]. In view of (2.9) we can 

suppose m+n ~ N without loss of generality. Thus it is possible to rewrite 

(2.10) in terms of the hypergeometric function 

(2. 11) 2F 1 (a,b;c;z) 
r (a)k(b)k k 

:= k=O (c)k k! z , 

where (a)k := a(a+l) ••• (a+k-1). In general, the right-hand side of (2.11) 

is only defined if lzl < 1 and c € ~\{0,-1,-2, ••• }. However, for a= -n, 

n nonnegative integer, the infinite series in (2.11) terminates: 



(2. 12) 
n 

2F1(-n,b;c;z) = I 
k=O 

(-n)k(b)k 

(c)k k! 
k 

z 

and the right-hand side of (2.12) remains meaningful for all complex z and 

for all c E t\{0,-1, ••. ,-n+I}. 

We obtain from (2.10) and (2.12): 

(2. 13) TN. (a m,n c 
b) = (m!(N-m)!)½(N-n) 
d n! (N-n) ! m 

N-n-m. n m • a b c F (-m -n · N-n-m+ 1 · ad/be) 
2 1 ' ' ' ' 

m+n ::::: N. 

Usually, this expression is rewritten in terms of Jacobi polynomials 

(2. 14) P (a, S) (x) := 
n 

(a+l)n 1-x 
n! 2F1(-n,n+a+S+l;a+l;-2-), 

by the use of the transformation 

(2. 15) 
-a z 

:ll (a,b;c;z) = (1-z) 2F1 (a,c-b;c;z_ 1), 

cf. [3,2.1(22)]. Thus (2.13) takes the form 

(2. 16) TN (a 
m,n c ~) 

• p(N-n-m,n-m) (l _ 2 ad ) 
m ad-be' m+n ::::; N. 

5 

For a,S > -l, Jacobi polynomials are orthogonal polynomials on the interval 

(-1,1) with respect to the weight function (1-x)a(l+x) 8 . For integer a,S 

this orthogonality property can be derived from (2.16) combined with Schur's 

orthogonality relations on SU(2) and an expression for the Haar measure on 

SU(2) in terms of suitable coordinates. The observation that the TN 'scan m,s 
be written in terms of Jacobi polynomials, goes probably back to GELFAND & 
V 

SAPIRO [4,p.280]. 

However, we may also transform (2.13) by means of the formula 

(2.17) 
(c-b) 

n 
2F1(-n,b;c;z) = (c) 2F1(-n,b;b-c-n+l;l-z), 

n 

n = 0,1,2, ..• ; c-b,c # 0,-1, ..• ,-n+l, 
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cf. [3,10.8(13)] together with (2.14). Then we obtain 

(2.18) TN (a b) _ (N)½(N)½ N-n-~n m F·(- _ ·-N·bc-ad) = 
m,n c d - m n a c 2 1 m, n, ' be 

where the second identity follows from 

(2. 19) 2F1(a,b;c;z) c-a-b 
= (1-z) 2F1(c-a,c-b;c;z), 

cf. [3,2.1(23)]. Thus we have proved (2.18) for m+n s N, but, in view of 

(2.9), the formula remains valid without this restriction. 

For N = 0,1, ••• , n = 0,1, ••• ,N and p E t\{0} the KPawtahouk polynomial 

K (x;p,N) is defined by 
n 

(2.20) 

By (2.12) this is a polynomial in x of degree n. For 0 < p < I Krawtchouk 

polynomials are orthogonal polynomials on the set {0,1, ••• ,N} with respect 

to the binomial distribution: 

(2.21) N ( )-1 N X N-x N n l K (x;p,N)K (x;p,N)( )p (1-p) = ( ><r> o 
x=0 m n x n -p m,n 

(cf. SZEGO [10,§2.82]; we follow the modern notation as used in ASKEY 

[1,(2.41)]). 

It follows from (2.18) and (2.20) that 

(2.22) 

In particular, put 

which is in U(2). Then 

sin 
-cos !), 0 < ip < ir, 



(2.23) TN (cos 1jJ sin iji) 
m,n sin 1jJ -cos 1jJ = 

7 

Thus, for each value of the parameter p € (0,1) and for each N we can 

realize the Krawtchouk polynomials Kn(x;p,~) in terms of the canonical 

matrix elements of the representation TN of U(2). Furthermore, the left-hand 

side of (2.23) being a unitary matrix, the row orthogonality 

(2.24) I TN (cos 1jJ sin w)TN (cos 1jJ sin 1jJ) _ 0 
n=O- m,n sin 1jJ -cos 1jJ m' ,n sin 1jJ -cos iji; - m,m' 

just yields the orthogonality relations (2.21) for Krawtchouk polynomials. 

This also holds for the column orthogonality, since 

K (n;sin2ip,N) 
m 

(cf. (2.20)). 

= K (m;sin2ip,N) 
n 

3. IDENTIFICATION OF SPHERICAL FUNCTIONS ON A HAMMING SCHEME OVER AN 

ALPHABET OF TWO LETTERS WITH CANONICAL MATRIX ELEMENTS FOR SU(2) 

Consider the abelian group of two elements F := {O, 1} = 7l(mod 2) and 

its N-fold direct product FN (N = 1,2, ••• ). Write elements of FN as 

x = (x1 , ••• ,~), xi€ F. The space of all complex-valued functions on FN 

becomes a Hilbert space 1 2(FN), where the inner product is taken with 

respect to the normalized Haar measure on FN: 

(3.1) (f,g) := 2-N l f (x)g(x), 
X€FN 

2 N f,g € L (F ). 

Note that L2 (FN) can be identified with the tensor product 0N L2(F). 

(3.2) 

The characters on Fare x0 and x1, defined by 

Xo(x) := 1, 
X 

X1 (x) := (-1) , X € F, 

and they form an orthonormal basis of 12 (F). The characters on FN are 



8 

(3.3) 'Ay := 'Ay Iii 'Ay 0 ••• 0 'Ay , 
1 2 N 

i.e. 

Xy(x) = 'Ay (x1)Xy (x2) ••• 'Ay (~) = 
1 2 N 

xly 1+x2y 2 + • 0 0 + ~YN 
= (-1) ., x,y E FN, 

and they form an orthonormal basis of L2(FN). Since 

the dual group of FN can be identified with FN. The 

L2 (FN) is giv,en_by 

I N 
X X = X , y ,y E F , 
y y' y+y' 

Fourier transform F on 

_IN 
: = 2 2 l N f (x) 'Ay (x) , 

XEF 

(3. 4) (Ff) (y) 

-lN 
where we chose the constant 2 2 such that F 1.s a unitary transformation 

from L2 (FN) onto itself. 

h . f h' FN by T e symmetric group 8N acts as a group o automorp 1.sms on 

(3. 5) cr(x1, •.. ,~) := (X 1 , • • • 'X -1 ) ' 
cr - ( 1 ) cr (N) 

(x1,····~) E FN, cr E SN. 

N N Let G be the semidirect product F 0 SN corresponding to this action. Then F 

can be identified with the homogeneous space G/SN. This homogeneous space 

is called a Hamming scheme over the alphabet F of two letters. The terminol

ogy stems fro:m coding theory, cf. for instance MAC WILLIAMS & SLOANE [7, 

Ch.21,§3]. Let A be the regular representation of G on L2 (FN), i.e. 

(3.6) {
(A(O,cr)f)(x) = f(cr- 1x), 

(A(y,id)f)(x) = f(x-y), 

cr E SN, 

N 
y E F ' 

where f E L 2 (FN), x E FN. Then 

(3. 7) A(O,cr)F = FA(O,cr), N 
0 E S • 

Hence, if f E L2 (FN) is synnnetric in x 1, .•. ,~ then Ff is synnnetric and 



(3. 8) (Ff)(y) 
-lN I f(x)-xy(x) = 2 2 = 

xe:FN 

-lN I f(x)(N\ I -xyccrx) ). = 2 2 

xe:FN cre:SN 

The Hamming distance on FN is defined by 

(3.9) d(x,y) IU Ix. :I y.}I, N := x,y e: F • 
l. l. 

It is translation invariant. The synunetric functions in x e: FN are just 

the functions-which only depend on d(x,O). The expression 

X (crx) y 

occurring in (3.8) is synunetric both in x and y. Hence, for n = O,1, ••• ,N, 

we can define functions cj>: on FN and~: on {O,1, ••• ,N} such that 

(3. IO) 
~N 
cj>d(y,O) (d(x,O)) =cj>:(y,O)(x) :=~, l Xy(crx), 

• cre:SN 

N x,y e: F • 

Note the similarity between these functions on the one hand and the 

Bessel functions in connection with the Fourier transform of rotation in

variant functions on ]Rn on the other hand. In fact, the functions cj>N are 
n 

the sphe-r>icaZ functions on FN with respect to the group G, i.e.: 

9 

PROPOSITION 3.1. L2 (FN) is an orthogonaZ 
N N I H, n = O,1, ••• ,N, where H := span{x__ 

direct sum of G-inva-r>iant subspaces 
N 

d (y, 0) = n}. In each subspace H 
n n 7 n 

there is a unique SN-inva-r>iant function which takes the vaZue 1 in O, 

nameZy the function cj>N. The subspaces HN are irreducibZe under the action 
n n 

of G. 

that 

The proof is immediate, by the use of (3.10). It follows from (3.10) 

nAm 
= n! (N-n) ! \ 

N! l 
k=O 

= (N-m)!(N-n)! F (-n -m·N-m-n+l•-1) 
N ! (N-m-n) ! 2 I ' ' ' • 
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Hence, by (2.17) and (2.20): 

(3. 11) ~N(m) = K (m;½,N), n n 

i.e., the spherical functions on FN are Krawtchouk polynomials of order 

p =½.This result goes back to VERE-JONES.[10]. 

On comparing (2.23) and (3.11) we find that 

2-½ 2-½ ½ I 

(3.12) TN ( . ,) = 2-½N(N) (N)iiN(n). 
m,n 2-½ _2- 2 m n m 

We will give now an other, more intrinsic proof of 

using the group theoretic characterization of TN m,n 

this relation, only 
-N and$ and not any 
n 

a priori knowledge that they can be expressed in terms of Krawtchouk poly-

nomials. 

Consider the natural action of U(2) on L2 (F) with respect to the 

2 = (ac bd) basis x0,x1 of L (F), i.e. if T € U(2) then 

action of U(2) on L2(FN) = &N L2(F), which coDllll.utes 

on L 2(FN). Hence the space L2 (s \FN) of symmetric 

This yields a unitary 

with the action of SN 
f · FN . . . d h 

N 
unctions on is invariant un er t e action of U(2). We can make the 

following identification between the concepts from Sections 2 and 3, 

respectively: 

(3.13) 

U(2)-module cc2 ++ U(2)-module L2 (F), 

{eo,e1} ++ {xa,x1}, 

U(2)-module &N t 2 ++ U(2)-module L2 (FN), 

U(2)-module" 

fN 
n 
N 

e n 

++ 

++ 

++ 

U(2)-module L2 (SN\FN), 

N 
$n' 

(N) ½ $N. 
n n 



Now the crucial point is to identify the Fourier transform F with the 

action of a certain element in U(2). Consider first the Fourier transform 

acting on f E L2 (F): 

-1 
(ff)(x) = 2 2 (f(O)x (O)+f(l)x (1)) = 

X X 

Hence 

i.e., F corresponds with the unitary matrix 

(3. 14) 

1 1 

Since F acting on L2 (FN) is the N-fold tensor product of F acting on L2 (F), 

this correspondence is also valid on L2 (FN): 

(3.15) 

It follows from (3.13), (3.15) and (2.7) that 

(3.16) 

The left-hand side of (3.16) can be evaluated by means of (3.10) and (3.4): 

n! (N-n) ! = -.........,.----
N! l (FXy) (x) = 

d(y,O)=n 

_ n! (N-n) ! 
- N! I 

d(y,O)=n 

lN 
2 2 n! (N-n) ! 

= N! 0d(x,O)n" 

Hence 
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N 
(3.17) I 

m=O 
N , 

Now multiply both sides of (3.17) with T (s0), sum over p and use that 
N p,n . 

T (s0) is a unitary matrix with real entries (by (2.8)). It follows that m,n 

This settles (3.12). 

4. CONNECTION WITH THE METAPLECTIC REPRESENTATION OF SL(2,JR) 

Let us put the results of Section 3 in a more general framework. Let F 

be a locally compact abelian group and let F be isomorphic to the dual group 

F* via the isomorphism y + Xy• Let G be a locally compact group and let n 

be a unitary representation of G on L2 (F) with the following properties: 

(i) For some s 0 E G, n(s0) is the Fourier transform Fon L2(F). 

(ii) For some closed subgroup Hof G there is a function con HxF such that 

(n(h)f)(x) = c(h,x)f(x), 2 f € L (F), x € F, h € H, 

and 

c(h,x) = c(h,y) for all h € H-=> x = y. 

Then the Dirac measures on F form a (generalized) H-basis for L2 (F) and 

n(s0) has (generalized) canonical matrix elements (x,y) + Xy(x) with respect 

to this basis. 

Next suppose that for each natural number N there is a compact group 

~ of automorphisms of FN such that: 

(i) ~ acting on L2 (~) commutes with ®N n(G). 

(ii) If c(h,x1) ••• c(h,~) = c(h,y 1) ••• c(h,yN) for all h € H then 

(x1, ••• ,~) and (y 1, ••• ,yN) are in the same ~-orbit. 

Let HN be the subspace of L 2 (FN) consisting of ~-invariant functions. 

Let nN be the corresponding subrepresentation of 0Nn. Write x for the 
N ~-orbit through x € F and put 

~y~ (x) = <I>- (x) := J x__ (k•x1) ••• x (k•~)dk, 
y ·-yl YN 

~ 

N x,y € F. 



Then ~y is a spherical function on FNo~/~. Now the Dirac measures on 

~\FN form a (generalized) H-basis for HN and nN(s0) has (generalized) 

canonical matrix elements (x,y) • ~Y(x). 

13 

In Section 3 we had F = {0,1}, G = U(2), His the subgroup of diagonal 

elements, n is the natural representation of U(2) on L2({0,1}), ~ is the 

symmetric group and the spherical functions ~-(x) were Krawtchouk polyno-. y 
mials. 

For another example let F = JR, G a two-fold covering group of SL(2,1R) 

and n the metaplectic representation of G on L2 (1R) (cf. WEIL [12] for the 

definition). Let K__ be the rotation group SO(N). Then the functions ~-(x) . -~ y 
can be expressed in terms of Bessel functions and the representations nN are 

irreducible and belong to the discrete series. Thus we have a conceptual 

interpretation that discrete series representations of SL(2,1R) or its 

covering groups are related to the Hankel transform. See SALLY [9], GROSS 

& KUNZE [5] and RALLIS & SCHIFFMANN [8] for further information. 

The analogy between the cases F = {0,1} and F = 1R is not perfect, 

since U(2) is not contained in the metaplectic group related to {0,1}, so 

n is not a metaplectic representation in this case. 

5. KRAWTCHOUK POLYNOMIALS AS INTERTWINING FUNCTIONS ON HAMMING SCHEMES 

N 
Let G be the wreath product (Sk+l) 0 SN 

d f (s )N d S . h SN . pro uct o k+l an N wit acting on 

(k,N E :N), 
N 

(Sk+l) by 

i.e. the semidirect 

••<01,···,oN) := (o.-1(1), ••• ,o.-l(N)), 

Let X := {0,1, ••• ,k}. G acts transitively on Jf by 

and 

• (xl' ••• ,~):=(x_1 , ••• ,x_ 1 ), 
T (1) T (N) 

• E sN, a 1 , ••• , oN E sk+ 1 • 

k+l 
a.ES ,x.EX, 

i i 

T E SN, x. E x . 
i 

Let Sk denote the stabilizer of OE X in Sk+t· Put O := (0,0, ••• ,0) E Jf. 
Then the stabilizer K of OE Jf in G equals (Sk)N°SN. The homogeneous space 
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~ = G/K is called a Hamming scheme over the alphabet X of k+l letters. 

Fix an integer such that Os q s k-1. Let Sq+l x Sk-q denote the 

stabilizer of the subset {0,1, .•. ,q} of X in Sk. Let L2(x) be the space 

of all complex-valued functions on X provided with the inner product 

(f,g) := (k+l)-l l f(x)g(x), 
. 2 
f,g e: L (X). 

xe:F 

Let x0 ,x1, ••• ,xk be an orthonormal basis of L2(X) such that 

(5. 1) x0 (x) := 1 , X E: X, 

(E:51)½ 
. q+l ' x=O, ... ,q, 

(5.2) X1 (x) := 

-(:J±J_Y k-q , x = q+ 1, ... ,k. 

Note that x1 is Sq+l x Sk_4-invariant. 

The Hilbert space L2 (xN), provided with the inner product 

(f,g) := (k+l)-N l f(x)g(x), 
xe::xN 

can be identified with the tensor product ®N L2(X). Put 

(5.3) x.y(x) x= (xl' ... ,~) e: ~, 

y = (yt,•••,YN) e: ~. 

Then the functions Xy (ye: XN) form an orthonormal basis of L2 (~). The 

Hamming distance on~ is defined by 

(5. 4) x,y e: ~. 

PROPOSITION 5 • 1 • 

(a) L2 (~) is an ort"ftogonaZ direct S1.DTI of G-invariant subspaces H!, 

n = 0,1, ••• ,N, where 

(5.5) H: := span{~ I d(y,O) = n}. 



(b) Each space HN contains 
n 

a unique function ~N,q which (i) is invariant 
n 

(Sq+lxsk-q)N°SN of G and (ii) takes the value under the subgroup H := 

1 in OE~-

N 
(c) The spaces H are irreducible under G. 

n 

N PROOF. Part (a) is evident. For the proof qf (b) let f € H satisfy (i). 
n 

Then f is a linear combination of functions of the form 

x -+ X l (x. ) x1 (x. ) • • • X l (x. ) , 
11 12 in 

< ••• < i ~ N, n 

because of the (Sq+lxsk-q)N-invariance. By SN-invariance we get 

f(x) = N~ l X1(xT(l)) ••• X1(xT(n)) 
TESN 

for some constant C. If f also satisfies (ii) then 

Hence (b) holds with 

~N,q(x) = (q+I)½n __ I , 
"'n k-q N! l X1 (xT(l)) •.• X1 (x.(n)). 

TESN 
(5.6) 

Finally (c) follows from the case q = 0 (i.e. K = H) of (b). D 

The functions ~N,q are called intertwining functions because the 
n 

G-intertwining operators from 1 2 (G/K) into 1 2 (G/H) can be written in terms 

of these functions. The functions ~N,O are called the spherical functions 
n 

on the homogeneous space G/K. 

By using (5.6) we can evaluate the intertwining functions in terms of 

special functions. First note that an H-invariant function on~ only 

depends on 

(5. 7) 

Write 

X := l{i I q+l ~ x. ~ k}I, 
1 

X € .JI. 

15 
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(5. 8) 

It follows from (5.6) and (5.2) that 

•n 
= n!(N-n)! q+l) 2 

N! k-q 

= (N-m)!(N-n)! 
N! (N-m-n) ! F (-n -m·N-m-n+ I· - q+ 1) 2 I ' ' ' k-q. 

Hence, by (2.17) and (2.20): 

(5.9) 

The spherical function case q = 0 of (5.9) is due to DUNKL [2]. The general 

case is probably new. Note that the set { (k-q) / (q+ I) I 0:5:q:5:k-1, k= I, 2, ... } 

is just the set of rational numbers between O and I. R. Askey suggested me 

that Krawtchouk polynomials of rational order might have a group theoretic 

interpretation as intertwining functions. 

6. THE CONNECTION BETWEEN TWO DIFFERENT GROUP THEORETIC INTERPRETATIONS 

OF KRAWTCHOUK POLYNOMIALS OF GENERAL ORDER 

Let F be the set {0,1}. Fix O < p < I and let w be the weight function 

on F given by 

( 6. I) w(O) := 1-p, w(l) := p. 

2 Let L (F;w) be the space of complex-valued functions on F with inner product 

(f,g) := L f(x)g(x)w(x), 
XEF 

2 
f, g E L (F; Yi J • 

We will now extend the results of Section 3 to the case of this weighted 
2 L -space. Let N be a natural number. Let 



(6. 2) 

Then L2 (FN;W) = ©N L2 (F;w). Let 

(6. 3) Xo (x) := I , X E F, 

I C:pr, 
(6.4) X1 (x) := I -e;pr, 

X = 

X = 

O, 

I. 

N 
X E F . 

Then {x0 ,x 1} is an orthonormal basis for L2 (F;w) and the functions xy 

( N) . b y E F , given y 

(6.5) 
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form an orthonormal basis of L2 (FN,W). By synnnetrization of the basis func

tions (6.5) we obtain a basis for the sytmnetric functions in L2(FN,W): 

(6.6) N,p ( ) 
t/ld(y,O) X 

I 
:= N! 

X (ox) 

l : (O) , 
OESN y 

X E 

where the Hatmning distanced on FN is defined by (3.9). It follows from 

Section 5 that the intertwining functions ~N,q are special cases of (6.6): 
n 

(6. 7) 
--N q 
(~ , 

n 

There is a natural unitary action of U(2) on L2 (F;w) with respect to 

the basis x0 ,x 1, just as in Section 3. Via the tensor product this yields 

a unitary action of U(2) on L2(FN,W), which commutes with the action of SN 

on L2 (FN,W) .. Thus, similarly to (3.13), we can make an identification 

between concepts from Sections 2 and 6, respectively: 
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U(2)-module 0:2 U(2)-module 2 
~ L (F;w), 

{eO,el} ~ {xo,x1}, 

U(2)-module 0 N a:2 ~ 2 N U(2)-module L (F ;W), 

(6.8) 
v1i 2 N U(2)-module ~ U(2)-mod~le L (SN\F ;W), 

( yn fN ~ 
_£_2 Np 

n 1-p ipn' ' 

N I( yn e ~ 
(N)i _£_ 2 ijJN,p 

n n 1-p n 

2 The "Fourier" transform Fon L (F;w), defined by 

(6.9) (Ff)(y) = I I 
w(y) 2 XEF 

f(x)x (x)w(x), y 

is clearly a unitary transformation from L2(F;w) onto itself. A calculation 

using (6.1), (6.3), (6.4) shows that this unitary transformation is given 

by the matrix 

(6. IO) 

Let F acting on L2(~;W) be defined as the N-fold tensor product of F acting 

on L2 (F;w). Then 

(6. I I) (Ff) (y) = ---r IN f (x) Xy (x)W(x). 
W(y) 2 XEF 

Just as in (3.15) we have the correspondence 

( 6. I 2) 

It follows from (6.8), (6. 12) and (2. 7) that 

(6.13) 
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The left-hand side of (6.13) can be evaluated by means of (6.9) and (6.6): 

Hence 

Now we use that (TN (s )) is a real orthogonal matrix (cf. (2.8)). Finally m,n p 

(6. 14) N 
T ·n (s ) r,.x. p 

In particular, by combination of (6.14) with (6.7), we have given a concep

tual explanation that both the canonical matrix elements of SU(2) and the 

intertwining functions on Hamming schemes can be expressed in terms of the 

same special functions. 
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