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Matrix elements of irreducible representations of SU(2) x SU(2) and vector
. *) valued orthogonal polynomials 

by 

T.H. l{oornwinder 

ABSTRACT 

The matrix elements of irreducible representations of SU(2) x SU(2) 

in a diag(SU(2)xSU(2))-basis are expressed in terms of vector-valued orthog-
1 

onal polynomials, which generRlize the Jacobi polynomials. 
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O. INTRODUCTION 

It is well-known (cf. VILENKIN [11, Ch. 3]) that the matrix elements 

of the irreducible representations (irr. reps) of SU(2) in S(U(l)xU(l))

basis can be expressed in terms of Jacobi polynomials, such that the 

orthogonality relations for these polynomials are equivalent to Schur's 

orthogonality relations for the matrix elements. More generally, let G 

be a compact Lie group with closed subgroup K such that each irr. rep. of 

G, restricted to K, is multiplicity free. Consider the matrix elements of 

the irr. reps of Gin a K-basis. Is it possible to express them in terms 

of some kind of orthogonal polynomials? For the case G = SU(2) x SU(2), 

K = diagonal in G, this paper will give a positive answer. (Note that this 

case is a covering of the pair (G,K) = (S0(4),S0(3)). The resulting 
I 

polynomials are vector-valued and orthogonal on [-1,1] with respect to a 

positive definite matrix-valued weight function. It would be of interest 

to generalize these results to the cases (G,K) = (SO(n),SO(n-1)) or (U(n), 

U(n-1)). 

The topic of this paper originated from work on the global approach 

to the representation theory of a noncompact semisimple Lie group G 

(cf. [7] for SL(2,JR), KOSTERS [8] for SL(2,a)). In this approach one needs 

some knowledge of the matrix elements of the principal series reps of Gin 

a K-basis (K maximal compact subgroup of G). These matrix elements have 

integral representations in terms of the matrix elements of irr. reps of K 

(cf. (4.1) in the case G=SL(2,a)). Manipulation of these integral represen

tations will be simplified if one can express the matrix elements for K 

in terms of orthogonal polynomials. Thus the results of the present paper 

will be useful for the analysis on so0 (4,1). 

It is the author's feeling that the highly nontrivial example of 

vector-valued orthogonal polynomials presented here is interesting for its 

own sake. Hopefully this paper will also be useful for phycisists, who 

have already studied the matrix elements for S0(4) for-a-long time (cf. for 

instance FREEDMAi& WANG [3 J, SMORODINSKI~ & SHEPELEV [ 10] , BASU & SRINVASAN [ 1 ] ) • 

Many authors start with the matrix elements of the principal series reps 

of so0 (3,1) (cf. [1],[10]) and then obtain the matrix elements for the 

compact case by analytic continuation. In the present paper, with its 
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emphasis on orthogonal polynomials, it seemed more natural to start with 

the compact case, but in the final section 4 the noncompact analogue is 

briefly discussed. 

The other sections have the following contents. In section 1 matrix 

elements for SU(2) are reviewed, both as a tool needed later and as a 

motivating example. In section 2 Schur's orthogonality relations for matrix 

elements for SU(2) x SU(2) are expressed as an orthogonality for vector

valued functions on [O,~] and good candidates are selected for the expected 

vector-valued orthogonal polynomials. In section 3 these polynomials are 

really obtained together with an integral representation and a power series 

expansion. There are two further matters of particular interest in section 

3: First, a trick to deform the integral of an analytic function over 

SU(2) into the complexification SL(2,~) 9y multiplication on the right of 

the integration variable with a particular element of SL(2,¢) (cf. the 

transition (3.3)+(3.6)) and, second, an unexpected symmetry (3.11) for the 

vector-valued polynomials. 

1 • THE MATRIX ELEMENTS FOR SU ( 2) 

Let l E ½ 7l+ := {O, ½, 1 ,t, ... }. Let H l be the space of homogeneous 

polynomials of degree 2l in two complex variables, made into a Hilbert 

space by the choice of orthononnal basis { 1i/ I n = -l, -l+ 1 , • • • , l}: 
n 

(1. 1) l -{,U )½ l-n l+n 
1/ln(x,y) := \l-n x Y 

Define a rep~ of GL(2,t) on H,e. by 

( 1. 2) (Tl(a. 6)f) (x,y) := f(a.x+yy,6x+oy). yo 

The Tl's form a complete system of representatives for (SU(2))-(cf.VILENKIN 

[ I 1 , Ch • 3 J) • 

Write ~(g)(ge:GL(2,<t)) as a matrix (t;n(g)) with respect to the basis 

functions ijl,e.: 
n 
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( 1.3) g E GL(2,CC). 

If g is a diagonal matrix then so is (tl (g)). It follows from (1.1), (1.2), mn _ 
(1. 3) that 

2l 1 l-n l+n t l a. S 2l I l-m l+m (. ) l 
(1.4) \l-n 2 (a.x+yy) (Sx+oy) = m!-l tmn (Yo) (l-m) z x y 

Expansion of the left hand side of (1.4) yields 

( 1 • 5) 

(l-n)A(l-m) 
I 

l l-m-r l-n-r m+n+r 
Cl. f3 Y / Q 

r=oY(-n-m) r!(l-m-r)!(l-n-r)!(m+n+r)! 

This implies the synnnetries 

(1. 6) 

( 1. 7) 

From (1.4) and (1.7) we obtain the integral representation 

(1. 8) tl (a. S) _ ( (l-n): (l+n) !)½ 
mn y o - \ cl-m) ! cl +m) ! · 

21T 

I ( icp a -icp)l-m( icp ~ -icp)l+m 2incf>d~ a.e +µe ye +ue e ~· 
21T 

0 

The following synnnetry is apparent from (1.8): 

(1. 9) 

Now specialize to SU(2). We will use the notation 
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(1. 10) 

(1. 1 I) 

( 1.12) 

Note that 

(1. 13) 

k(a,S) := (_;. :), where lal 2 + lsl 2 = 1, 

be := k(cos½e,sin½e), 

m<I> := k(eH<I> ,O). 

By the Cartan decomposition each element of SU(Z) can be written as m<I> b8 ml/J 

and the corresponding integration formula reads 
I 

1r 41r 41r 

(1.14) f f (g) dg = ½ J J J f e: C(SU(Z)). 

SU(Z) 0 0 0 

By Schur's orthogonality relations, (1.13) and (1.14) we obtain 

1f 

I l l' t (b0)t (be)sine de= o, mn m,n 
t,/:l'. 

0 

Suppose that m + n ~ O, m - n ~ O. Then the "lowest" element of the orthog

onal system {tl I l=m, m+l, ••• } is tm. From (1.5) we obtain: mn mn 

(1. 15) 

Hence, if l ,/: l': 
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l m By (1.5) tmn(b8)/tmn(b8) is a polynomial in cos e of degrees l - m. It 

follows that 

where the Jacobi poZynomiaZ P~m-n,m+n) is an orthogonal polynomial of degree 
,(..-m 

l - m with respect to the weight function (1-x)m-n(l+x)m+n on the interval 

(-1,1). Of course, this result has been derived in many other ways (cf. 

VILENKIN [11, Ch. 3]). 

2. THE MATRIX ELEMENTS FOR SU(2) x SU(2) 

Let K := SU(2), G := K x K, K* := di~g(KxK), A:= {ae := (me,m-e)} 

(m0 is defined by (1.12)). Then G = K*AK* is a Cartan decomposition. The 

corresponding integral formula is 

(2. 1) J f(g)dg 

G 

which is a special case of HELGASON [5, Prop. X.1.19] • ... 
representatives for G is given by the reps 

(2.2) 

l1,l2 
The representation space H.e. ® H.e. of T can be identified with the 

space of polynomials in fouf compiex variables x, y, u, v, homogeneous of 

degree U 1 in x, y and homogeneous of degree 2l2 in u, v. An orthonormal 

basis of H.e. 1 ® H.e.2 is given by the polynomials 

.e.1 .e.2 
(x,y,u,v) ~ •· (x,y) •. (u,v). 

J1 J2 
.e.1,.e.2 

PROPOSITION 2.1. (cf. [6, Theorems 3.1, 3.2]). The funations ~l,j (ll1 + 

-l2 ls~l1+l2,ljlsl) defined by 
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(2.3) 
l1,l2 

<Po • (x,y,u,v) 
-c..,J 

form an orthonormai basis of H,e 1 

l1,l2 l1,l2 
(2.4) T (k,k)cf> 0 ., = 

-c..,J 

® H,e such that 
2 

l l l1,l2 
l t. . ' (k)cp l . , 

j=-l J,J ,J 
k E: K. 

Define the matrix elements 
{cpll :l2} by 

l1,l2 
of T with respect . * . to this K -basis 

l,J 

(2.5) 
l1+l2 

}: 
l=ll -l I l 2 

l l 1 ,l2 l 1 ,l2 'l to . o, • , <gH o 
j=-l -c..,J ,-c.. ,J -c..,j 

g E: G. 

Since the elements of A connnute with the elements (m8,m8) in K* and since 

by (2.4) and (1.12), we conclude that 

(2.6) ifj,/:j'. 

By (2.4), (2.6) and the decomposition G = K*AK* the matrix elements 

will be known if we know the functions t11~:1, . I . 
,J, , J A 

PROPOSITION 2.2. There are the orthogona"lity re"lations 

l1,l2 
t 0 • o, •• ,(,. ,J ;-c.. ,J 

PROOF. It follows from Schur's orthogonality relations, (2.1), (2.4) and 

(2.6) that 
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= 
.lAm .lAm 

I I 
j=-(i.Am) j'=-(.lAm) 

1T 

;1T I I I 
0 K K 

.lAm 
1T 

;1T J 
1 = -,---,,----,--,---,---,-

( 2.t + 1) (2m+ l) I 
j=-(lAm) 

.tl ,.e.2 .tl ' ,.e.2 1 2 
t 0 • • (a6)t 0 • • (a6) sin 6d6. 
.(..,J ;m,J .(..,J ;m,J 

0 

.tl ,,e_2 
It follows from (2.5) and (2.3) that t 0 • • (a6) is real. D 

.(.,,J ;m,J 

From now on fif lland m (l,md7l+, l-mE7l) such that l ::;; m. (Because 

f · · f 1' 2 ' 1 ,d" • • • 1 . o unitariness o T this ast ionlition is not an essentia restric-

tion). Then the indices .t1 , .t2 in t 0 
1:. 2 . (a6) can assume all values in ½7l+ 

.(..,J ,m,J 
such that 

(2.8) 

(cf. Figure l) 

m 

l 

l m 

Figure 1. 
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and j E {-l, -l+l, ••• , l}. Thus, (2.7) can be viewed as the orthogonality 

relations for the vector-valued functions 

(2.9) 

where (l1,l2) run through all values satisfying (2.8). Like at the end of 

section I we pick the "lowest" elements of this orthogonal family. Candi

dates for thE~se elements are all functions of the form (2. 9) with l 1 + l 2 = m. 

Suppose that we can prove that for all Sin (0,TT) the matrix 

(2. IO) (t½(~+p)~½(m-p)(a )) . 
l,J;m,J s J,P = -l, -l+l, •.• , l 

is nonsingular. Then, for n = O, I, 2, 

define the real vector-valued functions 

and k = -l, -l+l, ••• , l we can 

(2. I I) 
lm 

X t+ p ' (x) = n,k 

on (-I, I) by 

( 2. 1 2) 

Also define 

(2.13) 

Then 

l1,l2 
to . . (as) = ,{,,,J ;m,J 

vf,m(cosS) := 
p ,'I 

sins 
l 
I 

j=-l 

... , 

(2.14) := (vf ,m(cosS)) . fJ 

P, q P, q = -,{,,' ••• ' l 

pl,m (x)) 
n,k,l 

is a positive definite real symmetric matrix for all 8 in (0,TT) and it 

follows from (2.7), (2.12), (2.13) that the vector-valued functions Pl,m 
n,k 

satisfy the orthogonality relations 
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(2.15) 
l 1 

;Tr l I 
. p,q=-l -1 

pl,m (x)Pl:m, (x)w-f-,m(x)dx = 
n,k,p n ,k ,q p,q 

(U+l) (2m+l) 
= 2 2 O 'Ok k'. (n+m+l) -k n,n , 

In this paper we will show that the matrix (2.10) is indeed nonsingular 

fore in (O,rr) and that Pl,mk is a polynomial of degree n - lp+kl. Hence 
n, ,p 

the orthogonality relations (2.15) will characterize the vector-valued 

functions Pl,mk up to constant factors. 
n·, 

3. THE VECTOR-VALUED ORTHOGONAL POLYNOMIALS 

First we derive an integral representation for the canonical matrix 

elements. Consider (2.5) with g = a0 and evaluate both sides for 

(x,y,u,v) = (a,S,-8,a), where lal 2 + lsl 2 = 1. In view of (2.3) and (2.6) 

we obtain 

= 

:ll ,l2 l 
• to . . ( a9 )to o . (k ( a , S) ) • 

-L,J ;m,J ,t..2--Ll ,J 

Hence, by Schur's orthogonality relations: 

(3.1) 
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Ha -Ha8 
l +l (e a e ) •'. ia 2 -ia 2 1 2-m m . 1 • . f <e lal +e Isl > to _o • _ -iia-:-8 2ia- • -L2 ~ 1 ,J e e a 

K . 

l --t0 _ 0 .(k(a,8))dk(a,8). 
-l-2 ~1 ,J 

Next, by some manipulations we will modify this integral representation 

into a form which is more suitable for our purpose. Substitution of (1.7) 

into (3.1) yields 

ll ,l2 
to . . (aa) 
-L,J ;m,J 

ll ,l2 
= cl,j ;m,j 

2,r 

dir I I 
K 0 

m-l +l 
• ( ½ ) • ( 1 ) ) m+! 1-£. . ( ½ ) • ( ½ ) l 2 ( i "'+ a 8 -i "'+2 a .. 2 ( -8 i <1>- a e:- i -"'+ a ) • ae 'I' + e 'I' _ - e +a. e 'I' 

2ij<I> l --e t 0 -l .(k(a,8))dk(a,B)d<I>, 
-l-2 l'J 

where 

(3.2) 

In this last integral representation consider the K-integral as the inner 

integral and make the transformation of integration variable k(a,8)-++ 

~ k(a,])m_2<1>. Then the integrand no longer depends on <I> and we obtain 

(3.3) 
ll ,l2 

to . . (aa) = 
-L,J ;m,J 

l • t 0 _o ,(k(a,B))dk(a,8). 
-l-2 ~1 ,J 
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LEMMA 3.1. Let K be a aonneated aorrrpaat Lie group 1uhiah has a aorrrpZe:cifiaa

tion K. Let f be a aorrrpZe:x: anaZytia funation on an open aonneated Zeft-K
c 

invariant subset V of K aontaining K. Then 
C 

(3.4) J f(k)dk = J f(kk')dk, k' ~ V. 

K. K 

PROOF. The right hand side is a complex analytic function of k' on V which 

is constant on K. D 

Now observe that the integrand in (3.3) is the restriction to SU(2) of 

the complex analytic function 

on SL(2,C). 

For O < e < n apply Lemma 3.1 to this function with K' chosen as 

-He He 
in/4 -!(e e ) 

(3.5) ge := e (2 sine) He _1ie • 
e e 2 

We obtain: 

(3.6) 
,el ,l.2 

to • . (ae) 
-L,J ;m,J 

.ll ,l.2 
= c.l,j ;m,j 

3nim/2(2 . e)m e sin • 

l l f 2 .tl+l.2-m . l t . (ge) J (21 SI cose+aS-aS) • 
p=-.l Pl 

K 
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PROPOSITION 3. 2. Tve have 

(3 • ]) Hm+p) ,Hm-p) ( ) = ((U+l) (m-j) ! (m+j) ! (m-p) ! (m+p) !)½ 
tl,j ;m,j aa (2m) ! (m-l) ! (m+l+l) ! • 

l+m 31rim/2 . m l 
• (-1) e (2sin0) t--,(ga). 

PJ 

For O < 0 < 1r the matrix (t½<~:p)!i(m-p)(a )). __ is non-singuZar. 
l,J ,m,J a J ,p- l, •.• ,l 

PROOF. Formula (3.6), together with (1.13) and the invariance of the 

integral in (3.6) under right multiplication by m~ yields_ 

t ½ (m+p), ½ (m-p) ( ) = ½ (m+p), ! (m-p) 31rim/2 ( 2 • e).m 
o • • a8 Co , , e Sl.n • ,,J;m,J . ,,J;m,J 1 · 

l I m-p - m+p l • t .(g0 ) 8 (-8) t (k(a,S))dk(a,8). 
PJ -p,p 

K 

The integral can be evaluated by using (1.5), (1.14), the beta integral and 

the Chu-Vandermonde sum 

(3.8) 

Finally use (3.2). D 

(c-b) 
n 

(c) , n = 0,1, ... ; c-b, C'·f- o,-1, ... , -n+I. 
n 

THEOREM 3.3. Forrrru.Za (2.12) hoZds 'IJJith 

(3.9) 

where 

(3. 1 O) Al,m := (-l)U((2m+l) ! (n+m-l) ! (n+m+l+l) ! (m-l) ! (m+l+l) !)½ 
n,k,p .n!(n+2m+l)!(m-k)!(m+k)!(m-p)!(m+p)! • 

There are the symmetries 



(3.11) 

(3 .12) 

Pl,m = pl,m = Pl,m 
n,k,p n,p,k n,-k,-p 

= Pl,m 
n,-p,-k' 

pl,m (-x) = (-l)n+k+ppl,m (x). 
n,k,p n,k,p 

13 

PROOF. Formula (3.9) follows from (3.7), (3.6) and (3.2). The symmetries are 

der'ived from (3.9) by the use of (1.6) and (1.9) in the case of (3.11) and 

by (1.13) in the case of (3.12). D 

Of course, by the use of (2 .12) and (3. p, the symmetries (3 .11) imply 
• • f h . 1 l ,l2 I ld b • certain symmetries or t e matrix e ements t 0 ••• A" It wou e interest-

,t.,J ,m,J . 
ing to get a deeper understanding of the first of these symmetries. 

Now expand the integrand in (3.9) with respect to x and use the invari

ance of the integral under right multipli~ation with m~ and (1.13). We 

obtain 

(3. 13) 

where 

pl,m (x) = Al,m 
n,k,p n,k,p 

I dl,m xn-q, 
q=lp+kl n,k,p,q 

q+p+k even 

dl,m 
n,k,p,q 

(-l)m-k+}(q-k-p) 2n-qn! 
= """'( .... ½ .... (q---k---p--.) .... ) ..... ! .... ( .... ½(..,...q_+.,..k+-p .... ) ..... ) .... !"""'(n-_-q .... )..,...! .• 

J ½ (q+k+p) .... ½ (q-k-p) 8m+n+½ (k-p-q)-z,-m+n+½ (-k+p-q) 
• Cl. Cl. p • 

K 

l 
• ~P (k(a.,B)) dk(a.,B). 

By using (1.5), (1.14) and the beta integral we obtain, for k+p ~ 0: 

(3. 15) dl,m 
n,k,p,q 

= dl,•m = (-l)l+m+½(q+k+p)2n-qn!(l+m+n- ( +k+ ))! 
n,-k,-p,q ( (q-k-p))!(n-q)!(k+p)!( +m+n+l)! 



14 

/ (l+k):(l+p). F (-l+k,-l+p,½(q+k+p)+l I ) 
• U-k)!(l-p) 3 2\k+p+l,-l-m-n+½(q+k+p) 1 • 

For q = p + k use (3.8). Then, fork+ p ~ 0: 

(3.16) dl,m 
n,k,p,k+p 

= dl,m 
n,-k,,-p,k+p 

l+m+p+k n-p-k 
= (-1) 2 n:(m+n-k):(m+n-p)! 

(m-l+n)!(m+l+n+l)!(p+k)!(n-p-k)! · 

( (l+k)!(l+p)!\½ =f, 
• (l-k)!(l-p)!} o. 

lm Hence P 'k is a polynomial of degree n - I p+k I . 
n, ,P 

THEOREM 3.4. 

(3. 17) 

(3.18) 

I 

The veator-valued polynomial Pl,mk satisfies 
n, 

l-m n n 
(-1) 2 (m-k+ 1) (m+k+ 1) dk x l m n n ,-E 

P , (x) = -------,.----------+1-
n, k, P (n! (2m+2) _ (m-l+ 1) (m+R.+2) ) 

n n n 

+ polynomial of degree less than n, 

l 1 

I f 
p=-l -1 

l m n' i m P 'k (x)x w-, (x)dx = O 
n, ,P p,q 

for all q in {-l, •.• ,l} and all n' in {O, ..• ,n-1}. 

the aonditions 

PROOF. Use (3.13), (3.16) and (3.10) for (3.17), and (2.15) together with 

(3.17) for (3.18). D 

Note that (3.17) and (3.18) completely determine Pl,mk. They also imply 
n, 

(2. 15) for n =f, n' • However, from the point of view of Theorem 3. !+ ,, the 

orthogonality relations (2.15) for n = n', k =r k' are rather unexpected. 

REMARK 3.5. Le11m1a 3.1 can also be applied in order to extract the factor 

t:O(b9) from the integral representation (1.8) for t~(b9). Substitute 

a:= cos!e, 6 := sin½e in (1.8) and make the successive transformations of 



2"cj> integration variable cj> .+- z i+ ~ t+- x, where e i 

( (l-m)!(l+m)!)½ t~(b8) = 
(l-n) ! (l +n) ! 

X = 2~: 

f l-m l+m n-l-1 . 
(z cos ½e+sin ½e) (-z sin ½e+cos ½e) z dz = 

(0) 

= (sin ½e)m-n(cos ½e)m+n. 

0 

'IT 

• '!T
l J ( . . e)l-m 2nix ( • )l+m d cos x+i sin x cos e sin x X• 

0 

Now assume m ~ n and use [2, 1.5 (29)]. Then 

(3.19) tl (be)/tm (be)= mn mn 
'IT 

I ( . . )l-m 2nix( . )l+md = const. cos x+i sin x cos e e sin x x 

0 

15 

with nonzero constant. Again by [2, 1.5 (29)], the right hand side of (3.19) 

is a polynomial of degree l - min cos e which takes a nonzero value if 

cos e = 1. In GREINER & KOORNWINDER [4, § 1.3] the integral representation 

for Jacobi polynomials resulting from (3.19) is obtained in a quite different 

context. 

4. THE NONCOMPACT ANALOGUE 

Let now G := SL(2,C) with Iwasawa decomposition G = KAN such that 

K = 
. eh o 1 

su(2), A= {at:= (0 e-h) It E JR}, N := {(0 ~) I z € c}. 
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Let k(a.,S) in K be defined by (1.10) and m<I> by (1.12). M := {m<I> IO~ <I>< 4,r} 

is the centralizer of A in K. 

Let ,rA'k(A.e:<C,kd?l) be the rep of G which is induced by the rep 

-ik<I> At f . . l . Th A,kl . . m<I> at n t+ e e o MAN: a principa series rep. en ,r K is unitary 

I Ak . 
and decomposes as l=k,k:l, ••• T-. Choose a K-basis for which ,r' has matrix 

A k 
elements ,r 0 ' (l,m=k,k+l, ••• ;p=-l, ••• ,l;q=-m, ••• ,m) such that 

,c..,p;m,q 

A,k (k) 
,r l,p;m,q 

(4.1) 

•• 

= o tl (k), 
l,m p,q k e: K. Then 

cf. RUHL [9, § 3-5], KOSTERS [8, § 3.1]. 

Similary to (3.3) we derive from (4.1) that: 

(4. 2) A k J -ti 12 ti 12 -A-m-1 ,r o' • • • (at) = ck o • (e a. +e S ) • ,c..,J ,m,J ,,c..,m,J 
K 

-½t h m+k -½t- ½t- m-k l 
• (e a.-e S) (e a.+e S) tkj(k(a.,S))dk(a.,S), 

where 

(4.3) ·= ( (2l+l )(2m+l )(m-j) ! (m+j) !\½ . 
ck,l,m,j • \ · (m-k)!(m+k)! /,'• 

Fors> 0 let 

(4. 4) 

is -½s i(e e ) hs := (2 sh s)- -is is . 
e e 



Then we can apply Le1Illlla 3.1 to (4.2) with k' 

obtain: 

:= h for O < t < s. We 
s 

(4.5) m -m 
ck O • 2 (sh s) ,.(..,m,J 

l 
I 

p=-l 
l t . (h ) • 
PJ s 

· f (cht-coths sh t(lal 2-lel 2)+(af3-f3a) shht)-A-m-l. 
K s s 

m+k - - m-k • (ash½(s-t)-f3sh½(s+t)) (ash½(s-t)+f3sh½(s+t)) • 

l • tkp(k(a,f3))dk(a,f3), 0 < t < s. 

If ReA ~ m-1 then the limit passage s~t is certainly allowed in (4.5): 

(4.6) A,k ( ) 
,r o • • at .(..,J ;m,J 

2m m l l 
= ck o • (-1) (2sht) l t . (ht). 

,.(..,m,J p=-l PJ 

J I 12 - - -A-m-1 m+k - m-k l 
• (2 f3 cht+af3-f3a) f3 (-f3) tkp(k(a,f3))dk(a,f3). 

K 

Closer examination of the integral, using (1.14), shows that (4.6) holds. 

with convergent integral if ReA < 0. Thus it is meaningful to study the 

vector-valued function xi+ (Pl,mk (x)) __ o o, defined by (3.9), for 
n, ,P p- .(.., ••• ,.(.. 

complex n, Ren> 0, and for x > 1. In particular, this function has a 

nice asymptotics as x + =. 
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