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Introduction 

We consider a network of conduits through which a fluid is 

transported from a pump P to reservoirs R .• An example of such a 
i 

network is shown in f:i,g.1. 

---------------------~R 
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B 

I 

figo 1 

In the steady case the pump maintains a constant velocity in 

the conduits. 

When the pump conditions are suddenly changed, a pressure discontinuity 

is created, which travels through the conduits. This phenomenon is 

called water hammero To prevent water hammer causing serious damage 

to the system, surge tanks or air vessels Tare placed in the net

work. 

In this report we give a computational method by which the propa

gation of this pressure discontinuity can be calculated on an elec-

* tronic digital computer. ) 

Let a point P of some conduit C be characterized by the space 

coordinate x and the time coordinate t, then the hydrostatic pressure 

h(x,t) and the mean velocity v(x,t) over the cross-section of C 

satisfy the system of partial differential equations 

( 1 ) 

le.+..!. av =-.2... v.!vl - ..!. v av 
ax g at 2g . g ax 

2 
ah + !!:.._ av = Oo at g ax 

The first equation is the equation of motion with the friction term 

- ;g v.!vl, where a is a constant depending on the level of turbulence 

*) The inv-estigations originated from computations, carried out in 
behalf of "Gemeentewaterleidingen - Amsterdam" 
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and the roughness of the conduito In the cases considered here, a is 
-1 of the order 001 m o 

g is the constant of gravityo 

The second equation is the continuity equationo The constant a, which 

is called the wave celerity depends on the elastic properties of the 

conduit and the fluido In fact the following relation holds 

(2) 
a2 = __ _...g __ 

1 D 
w (~+Ee) 

where w is the specific weight of the fluid, Ethe modulus of 

elasticity of the fluid, D the diameter of the conduit (which we 

assume to be cilyndrical), Ethe modulus of elasticity of the 

material of which the conduit is constructed and e is the thickness 

of the conduit wall. See Bergeron [1] p.289 and Jaeger [2] p.279. 

In the cases treated here, the conduits are constructed of 

concrete or steel and the wave celerity for water has then the order 

of magnitude 1000 m/sec. 

It follows from the second equation in (1), that 

Assuming ir not too large, we may neglect this term in comparison 

with ~g Vo lvl, since v«a, and we obtain the system of partial 

differential equations 

( 3) 

ah a2 av +-- = 0 at g ax 

In section 1 the system (3) is transformed into a characteristic 

system and the formulae, by which the pressure and the velocity in 

each conduit can be computed, are presented in sections 2 and 3o In 

order to obtain an efficient calculation scheme it is very important 

to have a rule defining the order in which all the conduits should be 
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consecutively calculated; this rule is established in section 4. 
Section 5 may be useful for readers, who are familiar with ALGOL 60 
( see [3]) • Here we give a:i outline of the general ALGOL 60 program 

which has been used in an actual calculation on the X1 computer of 

the Mathematical Centre. It may be applied for the calculation of any 

other practical case. 

1 • Reduction of the system of differential equations 
I 

Considering the system (3), it is obvious, that the character

istics are given by straight lines with slopes! a. If we introduce 

characteristic coordinates 

( 1o 1) 0 =. X - at 

't = X + at 

the equations (3) become 

a(h - .!: v) o(h + .!: v) _ __,_g __ + ___ g __ = - ~ v ,I vi 
ao a. 2g 

o{h - .!: v) 
g 

ao 
o(h + .! v) 

g 0 a. = • 

After addition and substraction we obtain 

( 1. 2) 

o{h + .! v) 
a-rg =--tliv~jvj. 

Finally, integrating the first equation along a -r- characteristic 

from R to P and the second equation along a o-characteristic from 

Q to P (see fig.2), we get the equations 
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{h(P) - .! v(P)}-{h(R) - .! v(R)}= . g g J P a.a v. lvl 
2 ds1 

R 2g/(1+a ) 

{h(P) + .! v(P) }-{h(Q) + .! v(Q) }= -f p a.a v. lvl ds2 , 
· g · g Q 2g,(i+a2,) 

where s 1 and s2 are the arclengths of characteristic segments on RP 

respectively QP; see fig.2. 

t p 

Q 

X 

fig.2 

2. Numerical approximation 

In the (x,t) plane we draw a rectangular grid with grid widths 

l:J.x and l:J.t; l:J.x is chosen equal to a. l:J.t and hence the diagonals of the grid 

are characteristic lines (see fig.3). 

t 
nl:J.t 

l:J.t 

/J.x jl:J.x 

fig.3 
The grid points P(x,t) 

t = n l:J. t. 

ml\x x 

L l:J.x equals - where Lis 
m 

the length of the conduit 

C and mis an integer. 

The choice of the integer 

m depends on the accuracy 

required. 

will be denoted by P(j,n) where x = j l:J. x and 

Let us consider a point P(j,n), which lies not on the boundaries 

of the conduit , so that O < j < m. We shall derive formulae by which 

the values of hand vat the point P(j,n) are defined in terms of the 

values of hand vat the points P(j-1, n-1) and P(j+1, n-1). 



-5-

Putting h(P( j ,n)) = h. and v(P( j,n)) = v. , we obtain from 
J,n J,n 

equation ( 1. 3) 

a } a J P(j,n) _aa v.lvl 
{h. - - v. -{h. - - v. }= -------- ds J,n g J,n J+1,n-1 g J+1,n-1 ( )2g f 2) 1 P j+1,n-1 vl 1+a 

( 2. 1) 

{h. + .! v. }-{h. + .! v. }= _fP(j,n) .a!. v.jvi ds2 
J,n g J,n J-1,n-1 g J-1,n-1 k{j-1,n_1)2g /r1+a2) 

Both integrals in (2.1) are unknown, but they can be approximated if 

we estimate v along the path of integration. Let this estimate be 

given by: 

v(s 1):;: (v. 1 1 + v. )/2 
J+ ,n- J ,n 

(2.2) 
v( s2) ;:: ( v. 1 1 + v. ) /2 • 

J- ,n- J,n 

Then we get from (2.1) 

a a 
{h. - - V. } - {h. 1 1 - - v. 1 1} = J,n g J,n · J+ ,n- g J+ ,n-

= a" llx( v. + v. 1 1 ) Iv. + v ·+1 , I , g J,n J+ ,n- J,n J ,n-
(2.3) 

{h . + ,! V. } - {h. + ,! V } = 
J,n g J,n J-1,n-1 g j-1,n-1 

=-~llx(v. +v. 1 1 )jv. +v. 1 11 • og J,n J- ,n- J,n J- ,n-

Within the accuracy required, we may assume that 

(2.4) sgn(v. ) = sgn(v. 1 1) = sgn(v.+1 1) = sgn(v. 1). 
J,n J- ,n- J ,n- J,n-

When this is not true, v will be small and the error introduced will 

not lead to large deviations, at least when the grid is sufficiently 

fine. 

If Sis defined by 

(2.5) S = ~g llx sgn ( v. 1 ) OU. J,n-
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then we get from (2.4) 

h. = ... 21 {h. 1 1 + h. 1 1 + ~ ( v. 1 1 - V. 1 1 ) + J,n J- ,n- J+ ,n- g J- ,n- J+ ,n-

2 2 + S{(v. + v.+ 1 1) - (v. + v. 1 1) }}, 
J,n J ,n- J,n J- ,n-

V. = _.6,2 {h. 1 1 - h. 1 1 + ~ ( V. 1 1 + V. 1 1 ) + J,n a J- ,n- J+ ,n- g J- ,n- J+ ,n-

2 2 - S{(v. + v.+ 1 1) + (v. + v. 1 1) }}. 
J,n J ,n- J,n J- ,n-

Formula (2.7) is a quadratic equation in v .• 
J,n 

If we define A, B, C and D by 

2 2 
A= vj+1,n-1 + vj-1,n-1 'B = vj+1,n-1 + vj-1,n-1 ' 

C = ~ {h. - h } + A and D = -~ 
a J-1,n-1 j+1,n-1 a ' 

then (2.7) reads as: 

(2.8) 2 2 D v. + 2 (AD+ 1) v. + B D - C = 0 
J,n J,n 

from which we obtain the two solutions: 

(2.9) _-(AD+ 1) ±.{(AD+ 1)2 + 2 D (C - B D)} 112 
vj,n - 2 D 

We remark that the minus sign leads to a contradiction, therefore we 

take the solution with the positive sign. 

Moreover we see that, due to the smallness of D, loss of precision 

may occur in actual calculations. We therefore use the numerically 

better formula 

B D - C (2.10) 
vj,n =-(AD+ 1) - {(AD+ 1) 2 + 2 D(C - B D)} 172 

From the definitions of A, B, C and D, it follows directly that the 

formula (2.10) defines v. in terms of the values of hand vat the 
J ,n 

time t =·(n-1)~t. 
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The formula (2.6) together with (2.10) defines finally also h. 
J,n 

in terms of the values of hand vat the time t = (n-1)~t. 

3. Boundary conditions 

In the preceding section we have found a set of formulae for 

calculating hand v in the points of the conduit, not lying on its 

boundaries. To complete these formulae, it is therefore necessary to 

study the boundary conditions of the conduit. 

Each conduit has an a priori chosen fixed coordinate system (x,~), 

the point x = 0 is called henceforth the entrance and the point x = L 

the exit. (we emphasize that both names do not refer to the direction 

of the flow. ) 

We call a boundary point a junction point of the first kind when the 

conduit is only connected with other conduits at this point (see fig.1 

points B, D and E). 

Whenever, in contrast to this case, the conduit is also connected at 

the boundary point with some mechanism (e.g. a pump, a surge tank or 

a reservoir, see fig.1 points A, c, F, G, Hand I), we call this 

point a junction point of the second kind. The velocity and pressure 

satisfy certain boundary conditions at these junction points. The 

nature of these conditions are different according as the junction 

point is of the first or the second kind. 

3.1 Junction points of the first kind 

We consider a junction point S of the first kind. 

Let us assume that k conduits are connected with each other in the 

junction point S, that Sis the exit of k1 conduits, 

and the entrance of the k-k 1 conduits Ck + 1, ••• ~k; 
1 
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fig.5 

the number of grid points of the conduit C .• 
1 

this situation is 

illustrated by figure 5, 
where the arrows indicate 

the direction of increasing 

x. All the conduits C. have 
1 

their own grids with grid 

widths t:.x. and At .• 
1 1 

L. t:.x. 
1 1 x. equals - and At.=-. 

1 m. 1 a 
1 

L. is the length and m.+1 
1 1 

Inpractice Ax. is chosen large for long conduits and small for short 
1 

conduits. 

For 1 ~ i < k 1 the junction point S at the time nAt. corresponds to - = 1 
the point P.(m.,n) of the grid of c., while this point corresponds for 

1 1 1 

k 1+1 ~i~k to the point Pi(O,n) of the grid of Ci. 

We wish to calculate the conduit c. at the point P with P = 
J 

P = P. (m., A~ ) according as j > k1 or j ~ k1, assuming that t is an 
J J j 

integral multiple of At .• 
J 

Since the At. are different for different conduits, the point P will 
1 

in general not be a point of the grid of C. (i # j). 
1 

Let us assume that the neighbouring conduits C. of C. are already 
1 J 

calculated up to the times t = t., with 
1 

t. < t < t . + At . , 
1 = = 1 1 

while the conduit C. is calculated up to the time t = t. = t - At .• 
J J J 

In the figures 6 and 7 we show the x,t planes of the conduits C. for 
1 

i >k1 and for i ~ k1 respectively. 
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s X 

1 < i < k 1 ... "" 

fig.6 fig.7 

From equation (1.5) we obtain for i =_k1+1, ••• ,k 

(3.1) {h. (P) - .!:. v. (P) }-{h. (R.) - .!:. v. (R.)} 1 g 1 1 1 g 1 1 

and for 1 = 1, •• .,k1 

J P a.av. Iv- I 1 1 1 
= R. 2g/f 1+a2 ) 

1 

ds 1 

(3.2) {h. ( p) 
1 

f P a.av. Iv. I 
+ .!:. v. (P) }-{h. (Q.) + .! v. (Q.) }= - _21 1 12 ds2. 

g 1 1 1 g 1 1 Q. g /rt +a ) 
1 

For all i (i ~ j) the values of v and h in the points R. and Q. are 
1 1 

. in general unknown, but they can be calculated by interpolation 

between other points where v and hare assumed to be known. 

The two integrals at the right-hand sides of (3.1) and (3.2) may be 

approximated with the aid of the following estimation of v. 
1 

v.(R~) + v.(T.) 
vi(s 1)~ 

1 1 1 1 and 
{3.3.) 2 

v. (Q.) +v.(T.) 
vi(s2)~ 

1 1 1 1 
2 • 

t 

s X 
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The estimation (2o2), which is more accurate, will not be used 

here as this would lead to a system of quadratic equations, which 

are rather complicated to solve in this case. 

The right-hand sides of (3o1) and (3o2) take on respectively 

the form: 
2 2 13. { V. ( R. ) + V. ( T. ) } and - B • { v. ( Q. ) + v. ( T. ) } 

l l l l l l l l l l 

with 
a. t-t. 

(3o4) Bi= °Si Axi At. 1 0 sgn (vi(Ti)). 
l 

Putting 

and 

A. =h. ( R. ) - a v. ( R. ) + B • { v. ( R. ) + v. ( T. )} 2 for i > k _ 
l l l g l l l l l l l 1 

A.=h. (Q. )+ .! v. (Q. )-e. {v. (Q. )+v. (T. )}2 for i ~k1 l l l g l l l l l l l 

then (3.1) and (3.2) may be rewritten as 

(3.5) 

(306) 

h. {P)- .! v. (P)=A. (i > k 1 ) 
l g l l 

h.(P)+ .! v.(P)=A. (i!k1 ) 
l g l l 

The expressions A. contain only values of v. and h. at the time t., 
l l l l 

and hence, they are assumed to be known. 

The equations (3.5) and (3.6) constitute k linear algebraic equat

ions with 2 k unknowns, and thus there are still k additional condi

tions required. These are obtained from the condition of continuity 

at the junction point. 

Let the area of the cross-section df the conduit C. be denoted 
l 

by F .• Then the equation of continuity may be written as 
l 

F.v.(P) = 
l l 

k 
l F.v.(P) 

i=k +1 l 1 
1 

while we may assume for the pressures 
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If we multiply the formulae (3.5) and (3.6) with F. and add, we get 
1 

k 

l 
i=1 

k kl k 
h.(P)F. - .!{ l v.(P)F. - l v.(P)F.}= l A. 

1 1 g i=k +1 1 1 i=1 1 1 i=1 l 
1 

In view of (3.7) and (3.8) we obtain finally 

(3.10) h. (P) 
J 

k 
=( LA-F.)( 

. l 1 1 1= 

Furthermore we have 

(3.11) v.(P) = ~ (h.(P) - A.) 
J a J J 

and 

k 
\ )-1. l F . 

i=1 l 

when j >k1 

(3. 12) v . ( P) = ~ ( -h . ( P) + A . ) 
J a J J 

when j ~ k1• 

F .• 
1 

These fo.rmulae enable us to calculate the pressure and the 

velocity in the boundary point P of the conduit c., provided that 
' J 

the neighbouring conduits are already calculated up to the times 

t = -ri' with 

(3.13) 'T • < 'T < 'T • + tit . 
1- .. l 1 

and that the conduit C. itself is calculated up to the time 
J 

t = 'T. = 'T - tit .• 
J J 

3.2. Junction points of the second kind 

At a junction point S of the second kind the system is directly 

connected with a mechanism M, which imposes a certain functional 

relation between the pressure hM and the velocity vM at the mechanism, 

viz.: 

(3.14) 
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Let the area of the cross-section, of the short pipe which 

connects Mand S, be FM. 

We adopt the same notation as in section 3.1. The junction 

point Sis shown in fig.8. 

fig.8 

we have the equalities 

(3.16) 

The continuity equation 

reads now as 

k 
(3.15) l F.v.(P) = 

i=k +1 ii 
1 

k1 

= l Fivi(P)+FMvM(P). 
i=1 

and for the pressures at S 

Of course, the equation (3.9) is still correct in this case, so 

that we obtain in view of (3.15) and (3.16) 

k k 
)-1 (3.17) h. (P) = {~ F v (P) + l A. F.} ( I F. • 

J g MM i=1 i i i=1 
]. 

Sub~traction of (3.17) from ( 3. 14) yields 

k k 
(3.18) g(vM) = H(vM,r) .. a I A. F.} ( l F.)-1 {g FMvM + = 0 

i= 1 i ]. i= 1 i 

A numerical value of vM can now be obtained by solving this equation 

with the aid of e.g. the Regula Falsi. 

Finally h.(P) can be calculated with the aid of (3.17) and 
J 

v.(P) with the aid of (3.11) and (3.12). 
J 
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3a3o The case of a reservoir 

Let us now consider the end point Sofa conduit C which is 

connected with a reservoir for which the pressure is constant (say h) 
0 

see figo9o 

,r-
I 

h I 

' O, 
I 
y 

C 
I " 

-

fig.9 

This is of course a special 

case of the preceding investi

gations in section 3.2. 

(k1=1, k=1, ~=H(vM,t) = h0 ) 

The reason, however, why we 

treat this case independently 

is, that we can use, due to 

the simple boundary conditions, the better estimation (2.2) :instead 

of (3o3) which was applied aboveo Let Shave the space coordinate 

m Ax. Assume that we have already calculated pressure and velocity 

in Sat the time t = (n-1)A t. From the equations (2.3) and (2.5) 

we get 

(3. 19) h + ~ v = h + ~ v -B (v + v · ) 2 
m,n g m,n m-1,n-1 g m-1,n-1 m,n m-1,n-1 • 

When we substitute h for h we find in the same way as in the 
o m,n 

deriv~tion of formula (2.10) 

2 a 
v = (- Bv + - v m,n m-1,n-1 g m-1,n-1 h + h ) • o m-1,n-1 

(3.20) r13 + ..!_ + {( 13 + .!..)2 + 13 (~ V + ~vm-1,n-1 2g vm-1,n-1 2g g m-1,n-1 

- 13v 2 - h + h ) } 1 /2] - 1 
m-1,n-1 o m-1,n-1 ' 

which is the desired formula. 

Recollecting the resu~ts, we tnay conclude that we have found 

the f~rmuluae (2.6) and (2~10), by which we can calculate the conduits 

in inner points. 

Furthermore we derived formulae for the boundary points. All these 

formulae are approximate formulae, since we have estimated the 
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friction tei:;n 

J -aa v • Iv I ds o 

2gv'{°1+a2 ) 

Although this term is not so small as to be neglected, it is however 

small compared with the other terms and therefore our approximation 

is fairly good. 

By dimishing the grid widths, the error, due to the approximation, 

is reduced. 

However, we observed during actual calculation that a rather rough 

grid gives already satisfactory results. 

4. The computation scheme 

This section is devoted to the arrangement in which the calcul

ation may actually be perform~d. 

Assume there are N conduits in the network. 

We order these cond¥its according to increasing at, say 

Moreover, let us denote all the neighbouring conduits 

at its entrance as at its exit, byC ,c , .•• , 
s. 1 s. 2 1, 1, 

ordered in the same way as above, i.e. 

at < 
s .• -

at 
1,J s. ·+1 1,J 

for j = 1,2, ••• ,1.-1 . l 

of C • , as well 
l 

C , which are s. 1,1. 
1 

Let us assume that the velocity v and the pressure hare known in 

all the conduits at the time t = 0 (e.g. up to the time t = 0 the 

steady state is maintained). 

Using the same notation as in section 3, all t'i are zero: at t = o. 
A consequence of ordering the sequence c1, c2 , ••• ,CN according to 

increasing at. is, that the conditions (3.13) are automatically 
l 

satisfied for the conduit c1• Hence c1 can be calculated in all 
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its grid points at the time t = 6t 1• 

The formulaet needed for the calculation of velocity and pressure 

at inner points have been derived in section 2, while those for the 

boundary points have been treated in section 3. Whether these calcu

lations are performed. from left to right or vice versa is irrelevant. 

c1 being calculated, we raise the value of t 1 by an increment 

of magnitude 6t 1, whereas the other ti remain zero. 

If the conditions (3.13) are still satisfied for c1, c1 can be 

calculated again and the value of t 1 becomes 26 t 1 • We repeat this 

procedure until the conditions (3.13) are violated, the conduit c2 
may now be calculated and the value of t 2 becomes 6t2 • The conduit 

to be calculated next is one of the conduits c1 , c2 and c3 and we 

proceed in the same way as before. A flow-diagram illustrating the 

course of the calculation, is given below. The conditions (3.13) are 

expressed in the following form 

t 
s •• 

< t < t 
== - s •• 

l. ,J 1.,J 
+ 6t 

s •. 
1.,J 

for j = 1,2, ••• , 1. 
l. 

where t = t. + 6t. is the time at which we wish to calculate the 
l. l. 

conduit C .• 
l. 

In the flow-diagram we abbreviate the phrase: 

"Set the value of a equal to b" by 11 a:= b". 

Moreover w~ adopt a square-bracket notation for subscripted 

variables, e.g. 

means t • s. . 
1.,J 

The ALGOL procedure COMPUTATION SCHEME, corresponding to this flow 

diagram is given in the following section. 
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Set all -C[i] equal to zero 
i:= 1 

Are the conditions (4 .1) 

satisfied by the conduit C. ? 
l 

.-----~ NO YES-----.-------. 

Calculate the conduit c1 
't'[i]:= 't[i] + At[i] 

Are the conditions (4.1) 

satisfied by the conduit C [· . 1? 
S l,] 

NO YES _..__ __ 
i := s [i,j] 

NO 

Does Cj belong to 

the neighbouring 

conduits of Ci ? 

YES 

Flow diagram of the Computation scheme 
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5 . The ALGOL 60 program 

In this section we give an outline of the ALGOL 60 

program used in an actual calculation. It can be used in 

any practical case if proper values are assigned to the 

variables listed at the beginning of the program and if 

the procedures hstar and CAlC are properly defined. 

begin ~a, g, epsh; integer N, Nl, N2, M; real array beta, tau, dt, he, 

F[l:N], v, h, V, H[l:N,0:M], FM, va, vb[l:Nl]; integer array m, 1(1:N], 

s[l:N,1:N], k[l:N2], J[l:N2,1:N]; Boolean fi; 

procedure NSl (i, j); integer i, j; 

comment NSl calculates the velocity and pressure in the point 

x = j x 6 x. of the conduit C at the time t = tau[i] + dt[i], according 
1 1 

to the formulae (2.6) and (2.10); 

begin ~A, c, Beta, d, B; 

c:= v[i,j+l] x v[i,j+l]; d:= v[i,j-1] x v[i,j-1]; Beta:= beta[i] x sign 

(v[i,j]); A:= (h[i,j-1] - h[i,j+l])/a x g + v[i,j+l] + v[i,j-1]; B:= -

Beta/a x g; V[i,j]:= (B x (c + d) + A)/(-B x (v[i,j+l] + v[i,j-1]) + 

1 + sqrt ((B x (v[i,j+l] + v[i,j-1]) - 1),1.2 - 2 x B x (B x (c + d) 

+ A))); H[i,j]:= (h[i,j+l] + h[i,j-1] + a/g x (v[i,j-1] - v[i,j+l]) + Beta x 

(V[i,j] x 2 x (v[i,j+l] - v[i,j-1]) + c - d))/2; v[i,j-1]:= V[i,j-1]; 

h[i,j-1]:= H[i,j-1] 

~NSl; 

procedure NS2 (i, n, K); integer i, n, K; 

comment NS2 calculates the velocity and pressure in the conduit c1 
at a junction point S, according to the formulae of section 3. 2. 

There are N2 different junction points in the network, which should be 

ordered in some way. The junction point S considered here is the nth 

one. There are k[n] conduits connected in S, denoted by Cabs(J[n,p]) 

where p = 1, •.• , k[n]. S is the exit or entrance of a conduit according 

as sign(J[n,p]) is +1 or -1 (so i is one of the numbers abs(J[n,p])). 

If K > 0 then S is moreover connected with the mechanism ~. NS2 
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uses the non-local procedure hstar.; 

begin ~hl, t, S1, S2; integer p, q, 1, si; array R, x, vv, hh[l:N]; 

integer array nj, sj, j[l:N]; 

procedure IP (p, s, q, n); integer p, s, q, n; 

begin real a, b; !!_n = 2 ~ 

begin a:= x[p] x (x[p]-1)/2 x (v(p,s] - 2 x v[p,s+q] + v(p,s+2xq]); 

b:= x(p] x (x[p]-1)/2 x (h[p,s] - 2 x h[p,s+q] + h[p,s+2xq]) 

~~a:= b:= O; vv[p]:= v[p,s] + x[p] x (v[p,s+q] - v(p,s]) + a; 

'hh[p]:= h[p,s] + x(p] x (h(p,s+q]-h(p,s]) + b 

end IP; 

!2!:,_p:= 1 step 1 ~k[n] ~ 

begin sj[p]:= sign (J[n,p]); nj(p]:= (sj[p] + 1)/2; j(p]:= abs (J[n,p]) 

end; t:= tau[i] + dt[i]; x[i]:= 1; Sl:= S2:= O; q:= O; 
B: q:= q + 1; p:= j(q]; l:= nj[q] x (m[p] - 1); !!_p f i ~ 

begin x[p]:= (t-tau[p])/dt[p]; IP (p, 1 + nj(q], -sj[q], !!_m[p] > 1 

~2~1) 

end else 

begin si:= sj(q]; vv[i]:= v[i,l+nj(q]-si]; hh(i]:= h[i,l+nj(q]-si] end; 

R[p]:= hh[p] + sj[q] x a/g x vv[p] - sj[q] x beta[p] x x(p] x sign 

(v(p,l]) x (v(p,l] + v[p,l+l])il,2; S1:= Sl + F(p] x R(p]; S2:= S2 + F(p]; 

if q < k[n] ~ goto B; hl:= S1/S2; !!_K > 0 ~ 

begin ~vl, hal, h2; vl:= 2 x va[K] - vb[K]; fi:= ~ 

RF: h2:= hstar (K, vl, t, hal) - hl - FM[K] x a/g x vl/S2; hal:= 

hal - a/g x FM(K]/S2; vl:= vl - h2/hal; fi:= false; !f..abs (h2) 

> epsh x abs (hl) ~goto RF; hl:= hl + FM[K] x a/g x vl/S2; 

vb[K]:= va[K]; va[K]:= vl 

end; !f...si > 0 ~ 

begin v[i,m[i]]:= (R(i] - hl)/a x g; h[i,m[i]]:= hl; v[i,m(i]-1]:= 

V[i,m[i]-1]; h[i,m(i]-1]:= H[i,m[i]-1] 

~~ begin V[i,O]:= (hl - R[i])/a x g; H[i,O]:= h1 ~ 

~NS2; 

procedure NS3 (i); integer i; 

comment NS3 calculates, with the aid of formula (3.20), the velo

city at an endpoint x = m[i] x l1 xi of the conduit q , the pressure 
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is equal to he[i] = h0 • ; . 

begin ~Beta; Beta:= beta[i] x sigrt· (v[i,m[i]]); v[i,m[i]]:= (-Beta >< 

v[i,m[i] - 11,µ + a/g 'x v[i,m[i] -1] - he[i] + h[i,m[i] - 1])/(Beta x 

v[i,m[i]-1] + a/g/2 + sqrt ((Beta x v[i,m[i]-1] + a/g/2),t.2 + Beta 

x (a/g x v[i,m[i]-1] - Beta x v[i,m[i]-11,µ - he[i] + h[i,m[i]-1]))); 

h[i,m[i]]:= he[i ]; v[i,m[i]-1 ]:= V[i,m[i]-1]; h[i,m[i]-1]:= H[i,m[i}-1] 

~NS3; 

real procedure hstar (K, v0, t, hst); ~ v0, t, hst; integer K; 

comment hstar should calculate the value of the function h = H (v0, t), 

belonging to the mechanism MK (see formula (3.13)), and the deriva

tive of this function with respect to v0. The results should be stored 

in hstar and hst resp. Since hstar is called several times in NS2 

during the iteration proces, it is worth while to know when hstar is 

called for the first time. This is the case when fi = ~. the other 

times fi = false . ; 

procedure CALC (i); integer i; 

comment CALC should define the calculation of the conduit q and the 

output desired.; 

procedure COMPUTATION SCHEME; 

begin integer i, j; Boolean array B[l:N]; 

Boolean procedure COND (i); ~i; integer i; 

begin integer n; !2!_.n:= 1 step 1 ~l[i] ~ 

begin !!,_ 7 ((tau[s[i,n]] ~ (tau[i] + dt[i])) /\ ((tau[i) +· dt[i]) ~ 

(tau[s[i,n]] + dt[s[i,n]]))) ~begin COND:= false; goto A ~ 

end; COND:= true; 

A: end COND; 

i:= 1; 

AA: !!,_COND (i) ~goto A2 ~ 

begin !2!_.j:= 1 step 1 ~l[i] ~ 

begin !!,_COND (s[i,j]) ~~i:= s[i,j]; goto A2 ~~ 

end; !2!_.j:= 1 step 1 ~N ~B[j]:= true; !.2!:_j:= 1 step 1 

~l[i] 22,_ B[s[i,j]]:= false; 

Al: if i = N then i:= 0; i:= i + 1; if B[i] then goto AA else goto Al; 
A2: CA.LC (i); tau[i]:= tau[i] + dt[i]; goto AA -
~COMPUTATION SCHEME; 



.,. 

,. 

-20-

INPUT: comment this part of the program should assign values to all the 

non-local variables except V, H and fi. 

When a variable A refers to the corresponding variable B, occurring 

in, say, formula (n) or section n, then we denote this by: A -➔ B: f(n) 

respectively by: A -➔ B: s.n. 

We have: a-➔ a: f(l), g -➔ g: f(l), N -➔ N: s.4, tau[i]-➔ t;_: s.3.1, 

dt[i]-➔ At1 : f(3.13), he[i] -➔ h0: f(3.20), (see the comment of NS3), 

F[i] -➔ F : f(3. 7), v[i,j] -➔ v: f(l), h[i,j] -➔ h: f(l), (v[i,j] and h[i,j] 

are the velocity and the pressure in the point x = j x · t. x. of the con-
1 

duit Cat the time t = r:.), FM[K]-➔ F.M : f(3.15), m[i]-➔ m: s.3.1. 
1 1 K 

epsh corresponds to the relative accuracy needed for calculating the 

pressure in NS2. 

Nl corresponds to the number of different mechanisms. 

N2 ., ., ., ,. ., junction points. 

k[i] ,, ,. ,. ,. ,. conduits connected at the 

ith junction point, J[i,j] defines the k[i] conduits connected at this 

point (See the comment of NS2). 

M corresponds to the maximum of all m[i]. 

beta[i] corresponds to the absolute value of p belonging to the ith 

conduit (see formula (2. 5)). The value of the velocity in the mecha

nism MK at the initial time should be assigned to va[K] and vb[K]. 

The definitions of s[i,j] and l[i] are given in section 4, the following 

program however, calculates from known arrays J and k the arrays 

s and l; 

begin ~TAU; integer t, K, I, p; array taul[l:N]; integer array 

ss[l:N ,1:2x(N-1) ]; 

procedure MIN; 

begin ~r, s; t:= j:= 1; !!.J :s._l[i] ~s:= taul[ss[i,j]]; goto C; 

B: j:= j + 1; r:= taul[ss[i,j]]; !Lr < s ~ .begin s:= r; t:= j end; 

C: if j < l[i] ~ goto B 

~ 
for i:= 1 step 1 ~N !:!2,_l[i]:= O; t:= 1; !2!:,_i:= 1 step 1 ~N2 !:!2_ 
beg!n K:= 1; AA: I:= abs (J[i,K]); !2!:,_j:= K + 1 step 1 ~k[i], 1 

step 1 ~K - 1 do begin ss[I,l[I]+t]:= abs (J[i,j]); t:= t + 1 end; 
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l[I]:= l[I] + t - 1; t:= 1; K:= K + 1; !!_K ~k[i] ~ goto AA 

end; TAU:= O; for i:= 1 step 1 ~N ~ 

begin K:= 1; AA: for j:= K + 1 step 1 until l[i] ~ 

begin if ss[i,K] = ss[i,j] ~ 

begin for p:= j step 1 ~l[i] - 1 ~ss[i,p]:= ss[i,p+l]; 

l[i]:= l[i] - 1 

end 

end; K:= K + 1; !!_K < l[i] ~goto AA; taul[i]:= tau[i]; 

TAU:= TAU + tau[i] 

end; for i:= 1 · step 1 ~N ~ 

begin p:= O; A: p:= p + 1; MIN; s[i,p):= ss[i,t]; taul[ss[i,t]]:= TAU; 

!!_p < l[i] ~ goto A; for j:= 1 step 1 ~N ~taul[j]:= tau[j] 

end 

end; 

The actual calculation is started by: COMPUTATION SCHEME 

end 



,. 

References 

Bergeron, L. 

2 Jaeger, C. 

-22-

Water hammer in Hydraulics and Wave 

surges in Electricity. Wiley, New York 

(1961) 

Engineering fluid mechanics. 

Blackie, London (1956) 

3 Backus, J. W. et al-. Revised report on the Algorithmic Language 

ALGOL 60.Regnecentralen, Copenhagen (1962) 

typ: JvS 


