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1. INTRODUCTION

The theory of system representations is concerned with the various ways in which a ‘systemt’ (a
dynamical relation between several variables) can be described in mathematical terms. This paper
will concentrate on the class of lincar, time-invariant, dcterministic, finite-dimensional systems,
for which there cxists indced a variety of representations. The study of system representations is
of intcrest for two reasons, which correspond to two different points of view. First of all, cven
when representation types (or ‘modcl classes’) are mathematically cquivalent, the casc with which
a particular problem is handled may be quite representation-dependent. Also, it may happen for
instance that a problem is best understood theoretically in one representation, but that another
representation is most uscful for the numerical solution. Thus, onc should be able to switch from
onc representation to another. The study of the corresponding transformations belongs to repre-
scntation theory. The sccond reason for interest in system representations is conncected with the
modcling probl~m. Often, a model for a physical system is built up by writing down cquations for
the components and for the connection constraints. In this way, onc obtains a system representa-
tion. It may be uscful, though, to rewritc the cquations; the derivation of the Euler-Lagrange
cquations of mechanics could be cited as an example. Again, we have here a problem of transfor-
mation betwceen system representations.

Interest in the theory of system representations has been stimulated in recent ycars by a
scrics of papers by J. C. Willems [64, 68-70, 72, 73]. In this work, the ‘modcling’ point of view has
been emphasized. As noted by Willems, cven such raw data as an obscrved time scrics can already
be taken as a system representation, and the identification problem then becomes a problem of
transformation of representations. In this paper, we shall concentrate on representations by cqua-
tions rather than by mcasured data. A survey of system representations and transformations will
be presented in the spirit of [71]. We shall use the notion of ‘external cquivalence’, again following
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Willems.

The next scction contains a brief historical survey of system rcpresentations in connection
with control theory, centered on the description of lincar, finite-dimensional, deterministic sys-
tems. After that, we shall attempt to give an up-to-date account of the results concerning the rep-
resentation of this class under cxternal equivalence. Section 4 will be devoted to an application of

the theory to the idea of a factor system, and the paper will be closed with conclusions and
rescarch perspectives.

2. SYSTEM REPRESENTATIONS: A HISTORICAL SKETCH

The birth of mathcmatical control theory is often dated 1868, the year of the publication of
J.C.Maxwell’s paper “On Governors™ [42]. In this paper, Maxwell deals with a numbcr of con-
trivances that in his time were in usc to regulate the opcration of steam cngines. Maxwell uses
sccond order cquations to describe the motions of the enginc itself and the regulators. He takes
the coupling of the different parts into account and lincarizes to obtain a coupled sct of sccond-
order lincar differential equations. As an cxample, the following equations appear for a stecam

cnginc rcgulated by a combination of Thomson’s governor with Jenkin's governor (in Maxwell's
notation):
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Here, P — R dcnotes the cffective driving torque. The main variable is , which represents the
deviation of the main shaft angle from its nominal valuc. The variables ¢ and i correspond to the
two governors. Maxwell then writes the gencral solution for 0, which, by the standard theory of
ordinary diffcrential cquations, involves a lincar combination of cxponential functions. Thesc
cxponential functions arc dctermined by the roots of a polynomial cquation that can be derived

rcadily from the given system. Maxwell writes 12 for the unknown, and obtains a fifth-degree equa-
tion by sctting
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(a factor n has been cancclled right away in the seccond row). le is then confronted with the prob-
lem of dctermining conditions on the cocfficients under which all solutions of this cquation arc
located in the left half of the complex plane. This, of coursc, led to the work of Routh on condi-
tions for the stability of polynomials of arbitrary degree. We sce that Maxwell's fifth-order cqua-
tion ariscs from the application of a fourth-order controller to a sccond-order system, and that the
conditions for stability arc given by him in terms of thc zcros of a polynomial matrix that is
obtained dircctly from a standard modcling procedure.

Maxwell used sccond-order differential equations, but it gradually became standard in the
nincteenth century to write differential cquations in first-order form. The fact that a higher-order
differential equation in onc variable may be replaced by a first-order cquation in scveral variables
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was actually alrcady known in Cauchy’s tim?. The Lagrangian cquations of n1cchanics.wcrc later
put into a suitablc first-order form by Ilamn.lton; towzlrd§ the end of the century, Poincaré¢ and
Lyapunov uscd first-order vector rcprcsen‘tanons systematically. Naturally, thercfore, rcprcscnta—
tions of this type (called state Tepresentations later on) have dominated control-thcoretical work
that was donc in closc conncction with the theory of ordinary differential cquations. This con-
cerned mainly lincar stability theory at first, but later, in the first decades of the twenticth century,
attention shifted to nonlincar problems. This linc of rescarch was held up high cspecially in the
USSR (scc for instance the survey by Minorsky in {45]).

The work in connection with differential cquations had a natural tendency to emphasize
closcd-loop systems, obtained by combining a given system with a given controller. Indeed, for
such systems onc may rcadily apply the powerful mcthgd_s fror.n thc‘ t‘hcory of ordinary differential
cquations and allied disciplines, such as the thcor?' of difterential-dift f:rcncc (delay) cquations. The
analysis by Maxwell, as bricfly described above, is an example of this approach. The closed-loop
point of vicw is quitc satisfactory for many problems in mechanical enginecring,. To the communi-
cations cnginecr, however, it is more natural to use an open-loop point of view, in which a systecm
is viewed as an operation that acts on an input signal and produces an output signal. This ‘opcra-
tional’ point of view called for a representation which would express the output signal as the result
of some operator acting on the input signal. Such a representation is provided, at least for lincar
systems, by the convolution integral. Ilowever, competing representations were soon to appear.
Indced, the usc of complex quantitics for the representation of complex signals, the Fourier and
Laplacc transforms, and Heaviside's Operational Calculus were all in principle available by the
turn of the century. The valuc of these techniques was gradually recognized among clectrical
cnginceers, be it ccrtainly not without resistance (sec for instance [46]). I'rom thc mathematical
point of view, the usc of operational methods Ied to the introduction of techniques quite different
from the oncs usually found in the theory of differential cquations. Applications of complex func-
tion theory were limited at first to partial fraction expansions and computation of intcgrals, but
the appca}mlcc of the Nyquist criterion [47] made cngincers realize that full-ficdged function
theory was a natural tool to usc in the analysis of lincar systems [10, p.9]. Function-theoretic
tools, in particular Cauchy’s theorem, were used extensively by Bode in his book [9], which incor-
porated the cclebrated Bode gain-phase relation and the minimum phase concept. The develop-
ment of the root locus method by Evans in 1948 [18] firmly cstablished the view of the transfer
function as a function defined on the complex plane rather than just on the real frequency axis.
For a more cxtensive discussion of the development of frequency-domain methods, we refer to
[40]. We will not at all review the developments in the area of stochastic systems. In conncction
with what just has been said, however, it is intcresting to quote Wiener on some of the differences
between his own work and that of Kolmogorov:

... my work, unlike the explicitly published work of Kolmogoroff, concerns the instru-
mentation which is neeessary to realize the theory of prediction in automatic apparatus
for shooting ahcad of an airplanc. This engincering bias lcads mc to ecmiphasize morc
than does Kolmogoroff the problem of prediction in terms of lincar operators in the
scale of frequency, rather than in similar operators on the scale of time. [63, p. 308]

While the communication cngincers developed their own methods, work on the ODE-type
approach to control systems was still continuing, in particular in the Soviet Union. During the
Second World War, a rescarch centre was formed in Kazan where work on appliced problems was
donc by outstanding mathcmaticians such as L.S. Pontryagin, who had alrcady acquired fame
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becausc of his pre-war contributions to topological algebra. After the war, rescarch cfforts in con-
trol theory continucd at various mathematical institutes in thc USSR. Onc important research
direction centered around *Aizerman’s conjecture’ [1], a nonlinear generalization of the Nyquist
critcrion. This problem called for a representation of systems with an explicitly appearing input
variable, unlike the sctting that was mainly used before in the *ODE’ framework. Systems with
onc input were studicd first, in linc with the original work of Nyquist, but the extension to several
inputs was a natural one. I‘or instance, Letov {35] considered in 1953 the following system (in ori-
ginal notation):
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We recognize the first cquation (with hindsight, perhaps) as a linear state cquation with two
inputs.

The carly fiftics saw the risc of modern optimal control theory. Onc of the first problems to be
studicd was time-optimal control. In some applications, it is natural to consider control strategics
in which one switches between full power in onc dircction and full power in the reverse dircction.
This motivated a study of diflerential cquations with discontinuous forcing terms by
D.W.Bushaw at Princcton University [11]. Bushaw noted that the switching instant could be
optimized to obtain a transfer from onc statc to another in minimal time. Subscquently,
J.P. LaSallc obscrved that *bang-bang’ policics would be optimal among all possible control poli-
cics which lead from a given state to another. LaSalle used a nonlinear formulation, but later on
Bellman et al. considered lincar systems [7]. In this paper, Bellman and his co-authors required
invertibility of the input matrix (as we would now call it), so in particular they et the number of
inputs be cqual to the number of states. In independent work, Gamkrelidze [25) considered shor-
test time problems for linear systems with #1 states and r inputs. He writes the following state
cquation [25, p.451]:

X = AxH blul + oo b

which is practically the formula x = Ax + Bu that has becomc ubiquitous in control theory.

By the end of the fifties, the time had come for an amplification of the notion of ‘state’ far
beyond its meaning as the vector that appears when dynamic cquations arc written in a first-order
form. This was duc to the role that this concept had to play in Bellman’s dynamic programming
mcthod, but also to developments in the theory of automata (finite statc machines; Nerode cquiv-
alence).

In control theory, the announcement by Pontryagin of his Maximum Principle at the Inter-
national Mathematical Congress in Ldinburgh in 1958 had a tremendous impact on research in
optimal control. Bang-bang control problems, in which onc sccks to steer from onc statc to
another, naturally led to the formulation of the concept of controllability by R. E.Kalman. This
concept, and the dual notion of obscrvability, turned out to play a crucial role in what Kalman
called the redlization problen::
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Given an (cxperimentally observed) impulsc response matrix, how can we identify the
lincar dynamical system which generated it? [30, p. 153]

The word ‘realization’ is used here in a sensc that is different from the traditional usage in clectri-
cal engincering. There, one would look for realization of a given drivingfoim impcdax?ce as an
actual or idealized clectrical circuit (cf. also the use of the term ‘realize’ in the quotation from
Wiener given above). Although Kalman did advertize the state spacc realization as a ‘blucprint’
which could serve as a basis for implementation in an analog network [28], this connection was
hardly emphasized in subscquent rescarch.

In the newly founded SIAM Journal on Control, E. Gilbert argued that the transfer repre-
sentation was mislcading and could Icad to crroneous results. His point was that unobservable
and/or uncontrollable states could be created by system composition:

Thus transfer-function matrices may satisfactorily represent all the dynamic modes of
the subsystems but fail to represent all thosc of the composite system. Furthermore, the
loss of hidden responsc modes is not casy to detect because of the complexity of the
transfer-function matrices and matrix algebra. [27, p. 140]

To develop lincar control theory from the state space point of view, it had to be shown that the
familiar concepts from the frequency domain could be translated to state space terms. For this,
the new realization theory was an indispensible tool. Gilbert [27] used partial fraction expansion
(much in the tradition of IHeaviside, onc might say) to obtain a statc spacc rcalization for a
transfer matrix having only simple poles. This method can be extended to the general situation
(not necessarily simple poles), but then becomes somewhat involved (sce [50]). A more clegant
rcalization algorithm was published by Kalman and B.L.Io in 1966 [28]. The algorithm was
based on a new parametrization of the transfer matrix — ncw at lcast to control theory: in 1894,
A_A.Markov had alrcady uscd essentially the samc paramctrization for a study of continucd frac-
tions [41]. The *Markov parameters’ are the first (matrix) coefficients in the power scrics develop-
ment around infinity of a proper rational matrix.

For a while, ‘realization theory’ was, at Icast to the system theorist, practically cquivalent to
the determination of a state space representation from a transfer matrix given through its Markoy
paramctcrs. The scventics, however, brought a renewed interest in polynomial representations. An
important impetus for this development came from the appearence of Rosenbrock’s book [51] on
multivariable systems. In this work, Roscnbrock considered input/output systems given in the
form

T(s) = Us)u
» = V()4 Wishu

where all matrices are polynomial. Great cmphasis was placed on the study of equivalence notions.
Roscnbrock found a ‘lifting’ of Kalman’s system cquivalence concept to the more gencral repre-
sentation displayed above, which he called strict system equivalence. It scems safc to say that the
systematic development of the theory of system representations, system cquivalence and system
transformations starts with [51].

From Roscnbrock’s system matrix, the transfer matrix s rcpresented  as
V)T Ys)U(s) + W(s), i.c., as a ratio of polynomial matrices. It is not difficult to scc that, in
fact, every rational matrix can be written in cither of the two forms V()T (s) or T Ys)U(s),
where, morcover, a coprimeness condition may be imposed. These coprime fractional representa-
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tions were used very successfully by Kugera [31,32] and by Youla et al. [79, 80} to give a paramctr-
ization of all stabilizing controllers for a given plant. This is an example of a result that appcars
quite naturally in onc representation but would be awkward to derive in some other representa-
tions. At the same timc, fractional matrix representations were also used in work on infinite-
dimensional realization problems donc at Harvard University by R. W. Brockett, J.S. Baras, and
P.A.Fuhrmann (scc for instance [6]). In the infinitc-dimensional context, the available
mathcmatical tools strongly suggested to replace polynomials by functions analytic on the unit
disk (in the discrete-time casc — for continuous-time systems, the class to use would be the set of
functions that arc analytic on the right half planc). This idca was picked up by researchers in
finitc-dimensional system theory, who discovered that some difficultics with the Kuéera-Youla
paramectrization could be ironed out by using the ring of rational functions that have no poles in
the closcd right half planc (including the point at infinity) rather than the ring of polynomials (sce
for instance [16]). The fractional representation over the ring of proper and stable rational func-
tions was subscquently used cxtensively in the emerging /1™ -theory, which is in itsclf an example
of an application of function-thcorctic techniques to control problems in a way that would prob-
ably have been quite beyond the imagination of Nyquist and Bode. On the other hand, f{*-
theory has also rclicd heavily on state space representations, since the representation in terms of
constant matrices makes it possiblc to usc standard numerical software. The cooperation between
the two represcntations was facilitated by the discovery (attributed to D. Aplevich in [62]) that
there is an casy way to pass from a statc spacc represcntation to a fractional representation over
the ring of proper stable rational functions. (Fractional representations over the ring of polynomi-
als cannot be obtained in a comparable way from a state space representation.)

Neverthceless, polynomial representations were cmphasized again in the mid-scventics when
Fuhrmann worked out an clcgant procedurc to go from a polynomial matrix fraction rcpresenta-
tion to a statc spacc representation [23). The discovery of this procedure, now known as
Fuhrmann’s realization, spurred considerable rescarch on the relation between state space con-
cepts, as developed in particular in the ‘geometric approach’ to linear systems [77), and polyno-
mial or transfer matrix conccpts. For an introduction to this, scc for example Chapter 1 of [24].

Polynomial matrices, cven when less suitable for a number of purposcs than stable proper
rational matrices, arc important in system thcory becausc they arisc naturally in modcling.
Indced, a polynomial matrix representation can be written down immediatcly from a sct of lincar
differential and algebraic cquations describing a given system. Maxwell’s cquations for the con-
trolled stcam cnginc, as given above, may serve as an cxample. Of course, by the old trick of
replacing higher-order derivatives by new variables, it is also possible to obtain a first-order repre-
scntation. Instead of the Rosenbrock form discussed above, one then gets a representation in the
form

Ex = Ax + Bu
y = Cx 4 Du,

where E, A, B, C, and D arc constant matrices. The variable “x™ which appears here was called the
descriptor variable by Lucnberger, who was first to make an extensive study of this representation
in system theory |37, 38]. Contrary to the standard statc space representation, the descriptor form
is capablc of representing systems having a non-proper transfer function (also called ‘non-causal
systems’ or ‘singular systems’). Through the years, the term ‘descriptor system’ has come to be
uscd almost exclusively for such systems, although this was certainly not Luenberger’s original
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intention — hc was trying to cmphasize the modeling issue, rather than the question of causality.
The descriptor form was used by Verghese [60] to define an equivalence concept which deals
ncatly with pole/zero canccllations at infinity. This clcared up a problem which had remained
unsolved in Roscnbrock’s work. Alternative solutions were given later by Anderson, Coppel and
Cullen [2] and by Pugh, Ilayton and Fretwell [48,49]. The fact that the notions of cquivalence
defined by these authors are indeed the same was cstablished by Ferreira [19]. Further comments
on descriptor systems will be given in the next section.

In recent years, the study of system representations has been stimulated by the work of
J.C. Willems. There arc several important points where his approach is different from other
approaches discusscd above. First of all, Willems uses an intrinsic definition of system equivalence
(i.c., onc that docs not depend on a specific representation). e docs this by defining a ‘system’
simply as ‘a family of trajectorics of given variables’ (such as the port voltages and currents of an
clectrical network, or forces and displacements in a mechanical system). The given variables
which appear in the definition arc also denoted as ‘cxternal variables’, to distinguish them from
‘internal variables’ which are possibly uscd as auxiliary quantitics in a description of the system.
The external variables may consist of what arc usually called ‘inputs’ and ‘outputs’, but, as shown
in scction 4 of this paper, other interpretations can sometimes also be uscful. The family of trajec-
torics is also referred to as a *behavior’ 4.

In this approach, there is some flexibility associated with the choice of the function space to
which the trajectorics that make up the system arc supposed to belong. In the study of differential
cquations, onc normally uscs function spaccs that allow for cxponcntially growing solutions (such
as C*, or the spacc of distributions). In the context of system theory, however, it also makes sensc
to consider for instance only thosc trajectorics that arc squarc integrable. Different choices of
function spaccs Icad, in this way, to diffcrent notions of system; put in another way, they Icad to
diffcrent equivalence relations on system descriptions. More on this will be said below. Willems
has shown [68] that, if onc interprets ‘external variables” as ‘inputs and outputs’ and uses the clas-
sical function spaccs alluded to above, the cquivalence relation that ecmerges is in fact different
from the cquivalence relations that were mentioned above.

It should be noted that the dcfinition of a ‘system’ as a family of trajectorics is not new.
Compare, for instance, McMillan’s dcfinition of a 24-pole:

The constraints imposcd by a general 2i#-pole N on voltages and currents arc com-
pletcly described by the totality of pairs [v, k] which N admits. We shall define a genceral
2n-pole, thercfore, as T

(i) a collection of 11 oriented idcal branches, asin4.11, and

(ii) a list of pairs [v, k] of voltages and currents admitted in these branches.

[44, p.228] T

(The oriented ideal branches in §4.11 of McMillan’s paper scrve just to define the pairing of the
terminals.) In recent work in system theory, the equivalence notion as used by Willems has in fact
occurred in several places; scc |4, p. 513] (‘external cquivalence’) and [8. p.92] (‘input-output c-
quivalence’). Nevertheless, there is no doubt that the consequences of the acceptance of this
intrinsic dcfinition of what a system is have been explored to the fullest in the work of Jan Wil-
lems.



389

3. A ROAD MAP OF REPRESENTATIONS

In this scction, we shall review the available representations for a specific class of systems, viz., the
class of finitc-dimensional, deterministic, time-invariant, real, linear systems in continuous timc,
without further special structure. (The addition ‘without further special structure’ refers to the fact
that we shall not consider special propertics that arisc, for instance, for systems defined on a sym-
plectic space.) This is the class that has scrved as sort of a standard in system theory during the
last three decades, except that causality is often imposed as an additional requirement. This condi-
tion was not included in the list above for two rcasons. First of all, we arc sometimes interested in
cxternal variables that are not to be considered as ‘inputs’ and ‘outputs’ (cf. Section 4 of this
paper, for instance), and in such cascs causality need not be a relevant issuc. Sccondly, even when
we do distinguish inputs and outputs, there are no simple ways to tell, at a general level of repre-
sentation such as Rosenbrock’s system matrix, whether a given system is causal or not [51, p-5S1L

Imposing causality as a constraint on such general lincar system representations would therefore
be awkward.

3.1 Notions of equivalence

When discussing system representations, we will have to specify under which circumstances we
shall say that two representations arc equivalent in the sensc that they correspond to the same sys-
tem. There arc three main options. There is the notion of strong equivalence, which boils down to
Kalman's concept of cquivalence for causal input/output systems in standard state spacc form.
Definitions of this cquivalence (by specification of a list of allowed transformations) were given at
the level of descriptor systemis by Verghesc [60] and by Pugh et al. [48,49), and by Anderson ez al.
at the level of the Rosenbrock system matrix [2]. Secondly, for cvery class of representations that
have a given input/output structurc and that definc a transfer matrix, onc has the notion of
transfer equivalence according to which two representations are cquivalent if and only if they
define the same transfer matrix. Finally, if onc considers representations that define a family of
trajectorics of the external variables (an ‘external behavior’ in the sense of [68]), then there is the
notion of external equivalence according to which two representations are cquivalent if and only if
they induce the same cxternal behavior.

As noted before, external cquivalence can in fact be understood in various ways, depending
on the choice of a function spacc for the trajectorics, and on the choice of external variables.
There is also some frecdom that arises from the interpretation of the external variables. For exam-
ple, if we allow only permutation transformations on the cxtcrnal variablcs, this mcans that these
variables arc interpreted as quantitics which cach have there own meaning and are measured on a
fixed scale. On the other hand, if we allow general invertible lincar transformations, then the
implication is that the vector of cxternal variables is understood as an clement of a gencral lincar
space. It goes without saying that, depending on the problem one has at hand, some of the exter-
nal variables can be interpreted in onc way and others in another way. (The same might be said
about the choice of a function space.) The term ‘external equivalence’ will be uscd for what might
be called the “classical’ interpretation: the function spacce is such that exponentially growing solu-
tions arc admitted (we shall use C* to make lifc a little bit casicr), and only permutation opera-
tions will be allowed on the cxternal variables. We call this the “classical’ form becausc it would
scem that the notion of cquivalence that is used (often implicitly) in treatments of ordinary
differential cquations is of this type. If onc uses an Ly-space rather than a C*-spacc as a trajec-
tory space, then (cf. [74]) the corresponding notion of external cquivalence turns out to be an
cxtension of transfer cquivalence, in the sensc that it coincides with transfer equivalence on the
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class of systems that define a transfer matrix. Supposc now that onc has a system of equations in
the form

ox = Ax + Bu 3.1
» = Cx + Du 3.2)

Onc might proposc to takc u, y, and x as external variables following C % -trajectorics, to interpret
uand y in a ‘classical’ scnsc, and to interpret x as a variable in a general linear space. The resulting
concept of cquivalence is Kalman's cquivalence. It may be suspected that a similar re-
interpretation in terms of external cquivalence is also possible for strong equivalence.

To keep the presentation manageable, we shall consider transformations under ‘classical’
external cquivalence. For other types of equivalence, the picture will be different but similar. We
will discuss special representations for systems cquipped with an i/o structure, but the particular
representations that are available only for causal systems will be omitted.

3.2 A catalog of representations

We start by listing a number of representations. A number of basic types will be distinguished
that arc differcnt by appearance; within these, we distinguish subtypes that do not differ notation-
ally but that arc subject to morc or less scvere constraints.

The most unspecific type of representations we shall take into considceration is the AR/MA
class. An AR/MA representation is specified by two polynomial matrices P (s) and Q(s), which
determine the external behavior consisting of all trajectories w of the external variables for which
there cxists a trajectory £ of the internal variables such that

P@¢=0
w = Q(0) (3.3)

In the continuous-time interpretation we usc here, ¢ stands for d/dr. The class is called AR/MA
becausc of the discrete-time interpretation in which o is the shift: in this casc, (3.3) implics that the
cxternal variables are expressed as a moving average of the internal variables, which themsclves
satisfy an autorcgressive cquation. Lvery representation of this kind can trivially be rewritten as a
‘system with auxiliary variables’ [68] (later also called an *ARMA’ representation by Willems [73]),
which is dcfined by an cquation of the form

P'(0)} + Q%o = O 3.4)
simply takc
ro= [0 ew=[2) (35

On the other hand, it is also casy to write an AR/MA rcpresentation for a system with auxiliary
variablcs, by extending the space of internal variat.les and writing

P@s) =[Py Q@@L Q=10 [I] (3.6)

We sce that the AR/MA representation is, in general, less parsimonious in the use of internal vari-
ables than the representation as a system with auxiliary variables. Since we arc looking for an
unspecific representation, this might be construed as an argument against the representation in
the form (3.4). Actually, when dealing with systems described by partial differential equations, one
casily runs into clear-cut cascs in which an AR/MA representation appears much more naturally
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than a representation with auxiliary variables as in (3.4).

For systems with an i/o structure, another general representation is RSM (Rosenbrock sys-
tem matrix [51]). An RSM representation is specificd by four polynomial matrices T(s), U(s),
V(s), W(s), where 7'(s) is square and invertible. The external behavior defined by an RSM repre-
scntation consists of the sct of all input trajctorics v and output trajectories y for which there
exists an internal-variablc trajectory § such that the following cquations hold:

T(0) = U(o)u
y = V(o) + W(au (3.7)

il

il

The third polynomial representation we shall consider is the AR rcpresentation [69]. An AR
represcntation is specificd by a single polynomial matrix R(s), which should have as many
columns as there are external variables. The external behavior it defines is simply the sct of all
cxternal-variable trajectorics w satisfying

R (a)w = 0. (3.8)

We shall always require R (s) to have full row rank; this simply mecans that the cquations specified
by the rows of R(s) arc indcpendent. An AR representation given by R(s) will be said to be
minimal if the sum of the row degrees of R (s) is minimal in the sct of all AR representations of the
same system. Onc can show (sce for instance [69, Thm.6]) that a matrix R(s) is minimal in this
scnsc if and only if it is row proper. The class of minimal AR representations will be denoted by
ARpyn. If the cxternal variable is partitioned into inputs and outputs, the defining matrix R (s) of
an AR representation will be divided into two blocks R j(s) and R;(s), which correspond to out-
puts and inputs respectively. If R(s) is squarc and nonsingular, the representation so obtained
will be called an LMF representation (‘left matrix fraction’).
By introducing new internal variables, it is casy to transform an AR/MA representation to a
first-order form
oG¢ = IE
w = I§ 39

(F, G, and If arc constant matrices). This representation, specified by the three matrices £, G, and
H, will be called the pencil representation ([33]; cf. also [4, 56]), and the corresponding class of rep-
resentations will be denoted by P. To be complete, one should also indicate the spaces on which
the various mappings arc defined, and so we shall somctimes also give a P representation as a six-
tuple (F, G, H: Z, X, W) where £ and G are mappings from the ‘intcrnal variable spacc’ Z to the
‘cquation spacc’ X, and M maps Z into the external variable space W. A descending chain of
subclasscs can be formed by putting morc and more strict requirements on the triple (£, G, ). If
G is surjcctive, the corresponding class will be denoted by Pg,, because this class is closely related
to the DV representations that will be discussed below. The class of representations which in addi-
tion satisfy the condition that [GT /7" is injective will be denoted by Pjo; in a representation of
this type, onc can casily sec which partitionings of the external variables into inputs and outputs
will lead to a causal i/o structure (cf. [33], Lemma 5.1 and Lemma 6.1). Finally, pencil representa-
tions that also satisfy the requirement that [sG™ —F' 1 T]" has full column rank for all s&C
form a class that will bc denoted by Py, It has been shown in [33] (Prop. 1.1) that a pencil repre-
sentation is minimal under external cquivalence if and only if it belongs 10 Ppp.

Next in our collection of representations is the DV (driving-variable) representation
[4, 68, 69, 73], which, as alrcady mentioned, is closcly related to the Py, class. A DV representation
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is spccified by four constant matrices 4, B, C, and D’, which dcterminc an cxternal behavior by
the equations

o = A¢ + Bn
“' o Cl£ + D/T, (3.10)
(¢ and 7 arc auxiliary variables). The class of DV representations for which the matrix D’ is injcc-
tive will be denoted by DV, If also the requircment is imposed that the *system pencil’

sI—A B
c D

has full column rank for all 5, then we obtain a class of representations that will be denoted by
DVpin. It has been shown in [68] that a DV, representation is minimal in the class of DV repre-
sentations, in the sensc that both the length of € and the length of 7 are minimal.

‘ot input/output behaviors, there arc further special representations that may be used. A
well-known form is the descriptor representation [37, 38]. The class of such represcentations will be
denoted by D. A descriptor representation is specified by five constant matrices E, A, B, C, and D,
and dctermincs an input/output behavior by the equations

oEE = AE+ Bu

y = C{+ Du G.11)

The domain of the mappings £ and A will be denoted by X 4 (descriptor space), the codomain will
be written as X', (cquation spacc).

Quitc a few special properties have been used in the literature in connection with this repre-
sentation (see for instance [5, 13,36, 52, 61, 78]. We shall usc the following conditions. The repre-
sentation (3.11) is said to be controlluble at infinity if

mEg 4 imB + Akerk) = X.. (3.12)
It is said to be reachable at infinity if

imE + imB = X, (3.13)
It is called observable ar infinity in the sense of Verghese if

ker NkerC N4 imE] = (0) (3.14)
and observable at infinity in the sense of Rosenbrock if

ker 2 M ker C = {0}. (3.15)
The representation (3.11) is said to have no nondynamic variables if

A(kerE) C im L. (3.16)

These arc all properties that relate to the point at infinity. We note that, for representations that
satisfy (3.10), therc is no difference between controllability and reachability at infinity or between
the two notions of obscrvability at infinity. In conncction with the finitc modes, we shall nced the
following condition: a representation of the form (3.11) is said to have o finite unobservable modes
if

ranhy [SEC—A] = rankgy, [JLE/IJ foralls e C. (3.17)



393

In principle, a considerable number of descriptor representation types could be formed by taking
combinations of the six conditions mentioned above. We shall consider just four types, which
together scem to present a reasonable hicrarchy. The most unspecific type is the gencral descriptor
form, for which the symbol D has alrcady been introduced. The symbol Dy; will be used for the
class of descriptor representations that arc reachable at infinity. Descriptor representations that
have no nondynamic variables and that arc both controllable and obscrvable at infinity will be
denoted as Dy representations (‘minimal at infinity’). Finally, the class of Dy, representations
consists of the Dy, representations that have no finite unobservable modes. It is shown in [34] that
a descriptor representation is minimal under external cquivalence if and only if it belongs to this
class.

3.3 The road map
To indicatc the conncctions between the somewhat vast number of representations introduced
above, we shall now present a map. The following organizational principles have been applicd:

O  polynomial representations are on the left, first-order representations on the right;

O representations that do not distinguish between inputs and outputs are in the middle, i/0
representations arc on the extremes;

O more spccific representations arc higher up in the diagram than less specific ones.

Morcover, arrows have been used to indicate known transformation procedures (including the

trivial oncs, which involve no transformation at all, and thc very casy ones, such as the transfor-

mation from AR to AR/MA). The organization of the diagram is such that arrows going up
represent the heaviest computational loads. The result is shown in Fig. 1 below.

O

[ RSMH AR/MA )(———){ P

I'IGURrE 1. Representations and transformations of lincar systems.

The arrows going down in this diagram all correspond to trivial rewritings or re-
interpretations. For instance, an LMF representation is a special casc of an RSM representation,
obtained by taking V(s) = I and W (s) = 0. The conncction between LMF and AR is also quite
clear. Onc gets from an RSEM representation to an AR/MA representation simply by identifying
the inputs with new internal variables. It is quitc obvious how to transform the various types of
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DV representations to the P representations on the same level, and vice versa. The transformation
from AR/MA to P is by the standard trick of replacing highcr-order derivatives by new variables.
Most of the other transformations requirc more work, howcever, and some of the corresponding
algorithms will be discussed below.

3.4 Algorithms
We start with the transition from an AR/MA represcntation to an AR represcentation. For this, we
have the following procedure.

ALGORITHM 1 Lct an AR/MA representation be given by (P (s), Q (s)). For instance by the algo-
rithm of reduction to Hermite form ({39, pp. 32-33]: scc also [29, pp. 375-376] or [12, p.34)), find a
unimodular matrix U(s) such that

UnG) UnbG (Ps)
Uals)  Un()| |Qs)

(3.18)

{T(s)

where T'(s) has full row rank. Let R(s) bec a maximal sclection of independent rows from [/55(s).
Under these conditions, R(s) gives an AR representation that is externally equivalent to the
AR/MA representation (P (s), Q (s)).

For a proof of this, scc [68, Prop.3.3] or [33, Lemma 4.1]. The algorithm in [68] is actually bascd
on the Smith form; from a computational point of view, this presents a considcrable amount of
overkill. In the algorithm given above, is is casy to scc that Uy,(s) will automatically have full row
rank (so that we simply have R (s) = {/5,(s)) when P (s) has full row rank, which is a natural res-
triction to impose.

The passage from AR to ARpy;, is just the reduction of a polynomial matrix to row proper
form. The standard algorithm to do this is described for instance in [76, pp.27-29] and in [29,
p-386]. This algorithm csscntially requires only opcrations on constant matrices, and the compu-
tational load involved is in gencral much less than in a transition from AR/MA to AR form.

The steps lcading from P to DV, from DV to DVj,, and from DV, to DVyyn are detailed in
[56]. These steps can be “lifted’ to the level of P representations, and, in fact, it turns out that they
can be derived quitc naturally in this context. We shall now cxplain this in some detail.

First, consider the transition from a gencral P representations to the Py, represcntation.
From the cquation 0G¢ = F¥, it follows that any £-trajectory satisfying this cquation must belong
to the subspace F '[im G]. This implics, of course, that G£ belongs to GF '[im G]. From that
fact, it follows that any trajcctory £( - ) satisfying ¢G¢ = I'¢ must actually belong to the subspace
F [GF '[imG]}, which obviously is contained in / '[im G]. We can go on in this way; a sub-
spacc recursion emerges which can be summarized as follows. Let the space on which G and Fact
be denoted by Z. Define

o'=2z (3.19)
and
Qk+1 =F V]GQk. (3.20)

Wehave Q% 'T < QF for all k, and so a limit must be reached after finitely many (in fact, at most
dim Z) steps. The limit subspace will be denoted by Q* (¥, G) or simply by Q* if there is no risk of
confusion. We arrive at the following algorithm to obtain a Py, representation from a P represen-
tation.
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ALGORITHM 2 Let (F, G, H:Z, X, W) be a P representation. Computc the subspace Q* of Z as
the limit of the scquence of subspaces defined by (3.19-3.20). Take Z = Q*, X == GQ*, and dcfinc
F, G, and H as the restrictions of the respective mappings to Z and X. (Notc that, by the dcfinition
of Q* F docs indeced map Q* into GQ*.) Under 1hcsc condmom a Py, rcpresentation that is
equivalent to the original P representation is given by (F, G, H; Z, X, W).

Next, we consider the transformation from a Py, to a Pj, representation. Let
(F, G, 1. Z, X, W)bea Py, representation, and suppose that (GT H 1" is not injective. We can
then split up the internal variable spacc Z as Z = Z, © Z;, where Z, = kerG Nker M is
nonzero. With respect to this decomposition, writc G =[Gy 0], F =[F; F), 4 =[l{; 0).
The cquations 6G§ = F§, w = HE then appear in the following form:

0G & = F\§ + by (321
w = H§. (3.22)
Since there arc no restrictions on §;, the above cquations are cquivalent to
TG & = TF\§ (3.23)
w = H, & (3.29)

where 7 is any map satisfying ker 77 = im F5. [t is natural to let 7 be surjective, and we sce that
the above transformation achicves a reduction of the dimension of the internal variable spacc and
perhaps also a reduction of the dimension of the equation spacc. In more geometric terms, what
we have done is the following. Define $' = kerG N kerld, and let Z; = Z/S', X| = X/ FS.
With these definitions, the factor mappings G2 21 — X1, F1: Z1— X, and H: Z) — Warc all
well-defined, and the representation (Fy, Gy, H; Z,, Xy, W) is equivalent to the original repre-
scntation.

There is no guarantce that, after this step, the reduced representation is of the Pyy type, and
in general the reduction will have to be repeated a number of times. For instance, the reduction in
the sccond step is determined by the subspace

kerG; NkerH; = {zmod S'| Gz e FS' and 1z = 0)
=(G '"FS'NnkerH)ymod S (3.25)
The subspacc recursion that emerges is the following;:
s% = {0) (3.26)
Sk =G 'FS* O ker . (327

We have ¥ "1 D S¥ at every step, and so after finitcly many (<< dim Z) steps a limit is reached.
The limit subspace will be denoted by $*(F, G, H) or simply by §* if the context is clear. The
algorithm to go from a Py, to a P;, representation can now be formulated as follows.

ALGORITIIM 3 Let (1, G, H : Z, X, W) be a Py, represcntation. Define the subspace $* of Z as the
limit of the scquence defined by (326-327). Define Z = 2/S*, X = Z/FS*. With thesc
dcﬁmtlons the factor mappings G:Z—X I Z - X and H:— W arc well- dcfined, and
(F, G, 11; 7, X, W) forms a Py, representation that is equivalent to the original Py, representation.

The final transformation in this scrics is the onc that leads from Py, to Py representations.
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To achicve this reduction, we note that a redundancy in Py, descriptions is associated with sub-
spaccs N of the internal variable spacc Z that satisfy the two properties

FN C GN (3.28)
and
N C ker /1. (3.29)

Indeed, if N is a nonzero subspace having these properties, then we can decomposc the internal
variable spacc Z and the cquation space X in such a way that /f = [H; 0] and thc mappings G
and F take the form

Gy 0 Fy 0
=10 Gyl a0 Pl (3.30)
Of course, both G; and G 5; must be surjective. The equations become
0G 1§ = Fii§ 3.31)
0Gpé = Fud + Fab (3.32)
w = I §. (3.33)

Because G, is surjective, the sccond equation can always be satisfied by a suitable choice of £;;
therefore, no constraint is imposcd on £;. This means that the second cquation as well as the vari-
able £ may be removed without altering the cxternal behavior. Speaking geometrically, this
mcans that we replace Z by Z=Z/Nand X by X = X/GN, and that the mappings F, G and M
arc replaced by the respective factor mappings.

The reduction that is obtained in this way increases with N, and so we arc intcrested in the
largest clement of the sct of subspaces satisfying both (3.28) and (3.29). (The fact that this set
indeed has a largest clement follows from the fact that the sct is closed under subspace addition.)
Let us denote this largest clement by N*(F, G, I1). The question is, how to computc this subspace.
The answer to this is provided by the following cquality, which expresses perhaps the most basic
result in the geometric theory of lincar systems:

N*(F, G, H) = 0*( [ﬂ [,’1]) (3.34)

Indecd, this gives us an algorithm to compute N*. The proof of (3.34) is not difficult, and may
essentially be found in the standard reference [77, p.91]. A considerable amount of translation of
terms is nceded, though, and the reader may find it casicr to construct a direct proof. Rewriting
the algorithm (3.19-3.20) a littlc bit to suit the special form which appears in (3.34), we finally
obtain the following algorithm.

ALGORITHM 4 Let (£, G, 1 ; Z, X, W) be a Py, representation. Define a sequence of subspaces of
Zby

N =Z (3.35)
N* 1= F 1GNK O ker 1l (3.36)

Dcnotce the limit subspacc by N*, and define Z =2/ N*, X = X/ GN*. With these definitions,
the factor mappings G: ZoX FiZoX and H:Z—W (corresponding to G, F, and !/
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respectively) arc well-defined, and the representation (1:‘, f], i, 2, X, , W) is a Py representation
that is cquivalent to the given representation.

It has been proved in [56] (using somewhat different terminology) that this algorithm does indced
Icad to a minimal represcntation.

There is a trivial way to pass froma gencral pencil representation to a gencral descriptor rep-
resentation. If (F, G, H) is a P representation, and H = [H ,T Hl]T is the drcomposition of /{
associated with a given partitioning of the external variables into inputs and outputs, then an
cquivalent D representation is obviously given by

Gl _ | F
"[0]* - [uu

» =18 (3.38)

£+ [0)]u (337

The main virtue of this transformation is that it docsn’t require computation. A transformation
that does a better job at preserving minimality propertics is given by the following algorithm.

ALGORITHM 5 Let (F, G, H: Z, X, W) be a pencil representation, and Ict an i/0 structure be
given, so that 1/ = [11.,‘. . Dccompose the internal variable space Z as Z,® Z, & Z,
where 2y =ker G Mkerlf,, and Z, & Z; = ker G. Accordingly, write

G=1Gy 0 0, F=[Fy Fy Fy (3.39)
][,)' = [11_\'() ]1,1'1 ]I_l’2]’ ]]u = [11110 0 11112]- (3-40)

The matrix /4, has full column rank, and by renumbering the w-variables if nccessary, we can
writc

H "
1,y = [ll;z}a H,; = [Hz} (3.41)
wherc /15, is invertible (or empty, if ker G C ker 4,)). Definc descriptor paramcters by
Gy O Fo— Fyllyn'H oy F 0 Fyly,)!
LE=1¢ of 4 Hy—HpHyp'Hy 0 B=1_, Hyp k'
C = [Hy ~Halyn'Hy Hyl, D =10 HoHy'Hyl (3.42)

These parameters define a D representation without nondynamic variables that is cxternally
cquivalent to the original P representation. Morcover, if the given representation is of the Py, (Pjo,
Pmin) type, then the obtained representation is of the Dyj Dy, Diin) type-

The proofs of the statements above are given in [34]. At the ‘Pg,’” level and higher, it might be said
that the algorithm in fact uses the driving-variable representation as an intermediate step, so that
the DV representations fit into the picture as shown in Fig. 1. The converse transformation is
obtainced as follows.

ALGORITHM 6 Lct a D;; representation be given by (£, A, B, C, D) (so that[E B]is surjective).
Choosc coordinates in such a way that

] I 0 Ay An
E="19 of =

/‘2] A22’ BZ] BZZ ’

[Bn By
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C=[Cy G}y, D=[Dy Dy (3.43)
where B, is invertible. Define matrices A%, 87, €/, and D’ by
sl—A" -5 _
C’ DT
I 0 0 BpByp'|@sl—-4y, -4 -8By
0 I 0 ~—D,By! C C, D,
=10 o 1 0 0 0 i (3.44)
0 0 0 By A Axn By

The DV representation given by the four-tuple (4/, 87, €7, D’) is externally cquivalent to the given
D represcntation. Morcover, if the given descriptor representation is in the Dy (Dmin) class, the
resulting driving-variable representation is in the DVjy (DVigin) class.

For a proof of these statements, sce again [34]. Morc refined statements could be made; for
instance, it is clear that to obtain a DV, representation from the algorithm above, it is sufficient
that the D representation we start with is rcachable at infinity and obscrvable in the sensc of Ver-
ghesc.

The corresponding reduction to minimal form in the ‘DV’ branch can be thought of as a
rcformulation of the above in special coordinates. The details have been worked out in [56]. The
reductions takc a somewhat diflcrent form at the ‘D’ level. Verghese [60] already gave a simple
algorithm to remove nondynamic variablcs. It has been shown in [33] (Lemma 7.3 and Lecmma
7.4) how to reduce a given descriptor representation in casc it does not satisfy cither onc of the
conditions {£ B ]surjective or 1£" €' injective’. Clearly, by repeating these reduction steps
if nceessary, it is always possible to arrive at a situation in which thesc conditions are satisficd.
The final passage to Dy, comes down to removing the finitc unobscrvable modes. This might for
instance be donc via reduction to the Weicrstrass canonical form of the pencil s£ — 4 [26] fol-
lowed by an application of the well-known procedure to remove unobscrvable modes in standard
statc space systenis.

Finally, we comec to the transformation from AR to Py,,. This is cssentially the Fuhrmann
rcalization [23,24]. In [33], the transformation is given the following form.

ALGORITHM 7 Let an AR representation be specificd by R(s). Consider the following spaces of
rational vector functions in a formal paramcter A (w7 denotes projection onto the proper rational
functions, I is the space of external variables, & is the number of rows of R (s)):

XK= (wdeX "WIN |7 RA)WwEA) = 0) (3.45)
Xe = (pMeRAIwN)er TWIA Ts.t.pA) = RMwO)) (3.46)
NE = e TWIA T ROOwA) =0). (3.47)

The following mappings (G and F from X* /X 'N® to Xz, H from XX/X "N to W) arc well-
defined:

G:wX) modA TN ROOW) (3.48)
FrwymodA 'N® o RO7m Aw(\) (3.49)
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H:w@)modA 'NR w w | (3.50)

With these definitions, (£, G, /{) is a minimal pencil representation that is externally equivalent to
the AR representation given by R (s).

This version differs from [Fuhrmann’s original onc in two respects. First, the resulting representa-
tion is given in pencil form rather than in standard state space form, so that it becomes possible to
consider noncausal systems. (The Fuhrmann realization has been used before in a noncausal con-
text [ 14,75], but only by scparating finitc and infinite frequencics, and under the assumption that
a transfer matrix cxists.) Secondly, the procedure is presented as onc under external equivalence,
rather than as onc under transfer equivalence.

The transformation algorithm given above is abstract, and may be uscd very well in theoreti-
cal considcrations. Howcver, a morc computational form can also be given (sce [33, §8]). This
requires the given representation to be in ARy, form, and produces a representation in DV,
form, which explains the arrow betwceen the corresponding boxcs in our map of lincar system rep-
resentations.

4. THE FACTOR SYSTEM

In [67], J. C. Willems has pointed out that there is a close connection between the notion of an
‘almost controlled invariant subspacc’ and that of a *factor systent’. Before discussing the connee-
tion, let us bricfly recall what these two notions mean. To define the factor system, following the
development in [65], let first X be a finite-dimensional vector space over R. Also, et 4 be a lincar
mapping from X into itsclf, and Ict B be a lincar mapping ranging in X. The smooth system
2(A, B) on X determined by A and B is the following sct of C*-functions from R into X:

(A, B) = {(x(-)eCH(R: X) | x(t) — Ax(r) eim B forall ¢}. 4.1)

Let 2 be a smooth system on X and let K be a subspace of X. Consider the following set of trajec-
torics on the factor space X/ K:

S/K:={x(-)mod K |[x(-)eZ}. 4.2)

If this sct of trajectorics is a smooth system on X/ K, then 2/ K is called the factor system deter-
mincd by X and K.

The notion of an almost controlled invariant subspacc can be defined in the same context.
So let us assumc that a state space X, a statc mapping A, and an input mapping 5 have been
given. A subspacc K is said to be almost controlled invariunt |66} if for every € > 0 and for every x
in K there exists a trajectory x( - ) in (4, B) such that x(0) = x, and dist(x(z), K) < ¢ for all

= 0. This concept has many applications in control theory, of which some arc reviewed in the

contribution by J. L. Willcmis to this volume.

Given a smooth system 2(A, B), onc would of coursce like to know under what conditions on
K the sct 2/ K is a factor system. It is claimed in [67] (Theorem A) that this will hold if and only if
K is almost controlled invariant. In the cited paper, only a sketchy proof is provided for the ‘iff
part of this statcment, and the ‘only if° part is given without proof. Later on, a dctailed proof of
the ‘i’ part has been provided in [59], but a complcte proof of the reversc implication is still lack-
ing in the literature. Our goal in this scction is to provide a short proof of Theorem A of [67],
using a result in [56). This proof is essentially based on manipulation of representations.

In the previous section, algorithms were presented for the removal of redundancics in pencil
representations. In these algorithms, certain subspace recursions played a key role. We will also
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need thesc recursions below, as well as somie related recursions which we will introduce now. To
the sequence of subspaces S* defined by (3.26-3.27), another scquence S¥ can be related by

Sk =G 'FS*, (43)
From (3.26-3.27), we sce that this scquence might also be defined by the recursion

§% = kerG (44)

§5'1 =G VFIS* NkerM). (45)

Denoting lim S¥ by §*, we also scc from the definitions that $* = S* N ker H. It is furthcrmore
uscful to introducc two subspace recursions that do not take place in the ‘intcrnal variable spacc’
Z but in the ‘cquation space’ X. The first of thesc is obtained if we define

vk = GN*. (4.6)
The corresponding recursion is

ve=x %)

vl = GIFO'WE N ker H). (4.8)
Similarly, we define

T = G§* (= F$¥) (4.9)
with the corresponding recursion

TV = (0) (4.10)

T = FIG 'T* Nker H). (4.11)

The limit subspaces resulting from thesc recursions will be denoted by V* and 7%, respectively.

The subspaces that have now been introduced play a role in the characterization of some
important system invariants in tcrms of the parameters in a Py, representation. If
(F, G, 1. Z, X, W)is aPy, rcpresentation of a behavior %, we define the degree of this behavior,
to be denoted by deg(), as dim X. Also, we define the order of %, to be denoted by ord(%), as dim
Z. Since a Py, representation is determined up to isomorphisms of the internal variable space
and the cquation <pacc, the degree and the ordcer are clearly independent of the choice of a partic-
ular P, representation. There arc of coursc many other cquivalent charactcrizations; for
instance, the degree is also cqual to the sum of the row degrees of the matrix R (s) in any ARy,
representation of &, and to the dimension of the state spacc in any minimal statc space represen-
tation of any causal input-output behavior that can be obtained from % by partitioning the exter-
nal variables in inputs and outputs. (For a catalog of such results, sec [69], Thm.6.)

From the fact that the internal variable space in a Py, representation is obtained from the
internal variablc spacc in a given Py, representation by successively factoring out the subspaces
S$* and N*, it might be suspected that the degree is given in terms of a Py, representation by
codim (N* + S*). It has been cstablished in [56] (Thm.4.1) that this is indeed the casc. The
rclevant result may be summarized, with some rephrasing, as follows.

PROPOSITION 4.1 Let u behavior B be given by a Py, representation (F, G, 11, 2, X, W). Define sub-

spaces 8* N*, and S of Z, and subspaces V* and T* of X by the recursions (3.26-3.27), (3.35-3.36),
(4.4-4.5), (4.7-4.8), and (4.10-4.11) respectively. We then have the following equalities:
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deg (%) = codim(N* + §*) = codim(V* + T*) (4.12)
ord (%) = codim (N* + S*). (4.13)
In case ker H contains ker G, an alternative formula for the order is
ord(#) = codim(V* + (T* N G (ker H))). (4.14)
Our next concern is to characterize a ‘smooth system’ in terms of system invariants. This is
described in the following lemma.

LEMMA 4.2 A lineur time-invariant behavior 8 with external variable w has a representation in the

form

I

ox = Ax + Bu (4.15)

W= X (4.16)

if and only if B has no static constraints (i.c. for all wy € W there exists a w € @ such that
w (0} = wy), and dim W is equal to ord (%).

Proor Consider the ‘if” part first. If dim W equals ord (%), then there existsa I, representation
0GE = F¢ 4.17)
w = HE§ (4.18)

in which the matrix /1 is squarc. I'rom the requirement that & has no static constraints, it follows
that 7/ must be nonsingular. Let G ' denote a right inverse of G, and et  be a mapping satisfying
im F = ker GG. The equation (4.17) is then equivalent to

08 = G ' FE+ Fy (4.19)

where 7 is a new internal variable. Using a nonsingular transformation of the £-variable, we can
replace /1 by the identity mapping. and then the desired form is reached.

IFor the ‘only if® part, we first note that the behavior defined by (4.15-4.16) has no static con-
straints. To determine the order of the behavior represented by (4.15-4.16), we have to take into
account the fact that this representation is not minimal. Let 7" be any surjective mapping such that
ker T = im B; then (4.15) is cquivalent to

oTx = TAx. (4.20)

Morcovecr, the representation (4.20-4.16) is minimal and we sce that dim I is cqual to ord (%), as
claimed.

To obtain the main result of this scction we combine the above characterization of smooth sys-
tcms, the result that gives the order in terms of a Py, representation, and a characterization of
almost controlled invariant subspaces in terms of subspace recursions, taken from [66].

THEOREM 4.3 Let a smooth system 2(A, B X) be given, and let K be a subspace of X. Under these
conditious, the set of trajectories of ¥ modulo K, X/ K, is a smooth system if and only if K is almost
contiolled invariant.

PROOE Let C: X —» X/ K be the factor mapping. Obviously, a representation of the behavior 2/ K
is given by
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ox = Ax + Bu “4.20
w = Cx 4.22)

and so wc have to find the conditions on K undcr which this is a smooth system. First of all, note
that the behavior 27K can have no static constraints because otherwise the original system =
would also have static constraints, which we know is not the casc. Therefore, from the above
lemma and the proposition we scc that 2/ K is a smooth system if and only if

dim X/ K = codim(V* + (T* N G(ker H))) 4.23)
where everything is taken with respect to the parameters '
G=(1 0, F=[4 B H=[C 0 (4.29)

(Notc that indeed ker // contains ker G, so that the above formula applics.) Rewriting the V*- and
T*-algorithms for the above special values of the Py, paramcters while keeping in mind that
kerC = K, we obtain

v =x (4.25)

vEkil=Kknd4 Y(V*+imB) (4.26)
and

70 = {0) 427

T = 4[T* N K] + im B. (4.28)

The algorithm (4.25-4.26) is recognized as the invariant subspace algorithm [77, p.91]. If we define
T% = Th N K, then the associated recursion is

7 = (0) (4.29)
TF U= KN (AT* +im B) (4.30)

and this is recognizcd as the controllability subspace algorithm (77, p. 107], also known as the almost
controllability subspuce algorithm [66). Noting that Glkcr /] = ker C = K, we sce that we always
have

KD V*+(I'"NK) (4.31)
so that the condition (4.23) may be rewritten as
K=V*+(T*NK)=V*+ T (4.32)

But this is cxactly the condition given in [66] for a subspace K to be almost controlled invariant
with respect to (A4, B).
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5. CONCLUSIONS
It should be emphasized that our ‘road map’ of system representations covers only a small arca in
the large ficld of representation theory. We have only been looking at the “classical’ form of cxter-
nal cquivalence, thereby excluding representations such as the matrix fractional form over the ring
of proper and stable rational functions, which is onc of the main tools in the latest developments
in control theory [21,43]. Also, there are many other classes of systems for which representation
theory lcads to uscful results. This of course includes the gencralizations to nonlincar and
infinite-dimensional systems, but important ncw aspects also arisc if onc considers systems with
particular propertics. A simple cxample is provided by the casc of lincar systems with a Hamil-
tonian or a gradicnt structure, such as appear in the modcling of mechanical structures and clectr-
ical networks. The problem of sctting up state equations for such systems, starting from (higher-
order) differential cquations and algebraic constraint equations, is in fact a classical one. For a
treatment following lines as presented here, sce [57]. Of course, the Hamiltonian structure is
important in the nonlincar context as well, and the problem of dealing with systems with mixed
differential and algebraic cquations comes up naturally for instance in sctting up models for
robots. F'or gencral nonlincar systems, the relations between systems of higher-order differential
cquations on the onc hand and the standard state spacc form on the other have been widely dis-
cussed; an carly reference is [22), and [15, 20,55, 58] provide a sample of recent contributions. It
has been shown in [54], a nonlincar system of algebraic and differential cquations in a DV-type
form can be reduced to a minimal representation in standard state space form if and only if cer-
tain intcgrability conditions arc satisficd. In the nonlincar case, the partitioning of cxternal vari-
ables into inputs and outputs to obtain a causal i/o structurc is, in general, a local construction.
This could be one of the reasons for interest in a nonlinear version of the pencil form. Such a non-
lincar pencil form might be specificd by giving a submanifold of the tangent bundlc of a manifold
of internal variables, plus a mapping from that manifold to thc manifold of cxternal variables.
Representation theory for stochastic systems is a very well developed subject. ‘The richer
structure of stochastic systems allows for a varicty of representations, some of which are discussed
in the contribution by J.I1. van Schuppen to the present volume. However, it scems that not so
much study has been made of questions concerning nonminimal representations, such as some-
times appear in modeling problems. As an example, consider an clectrical network with lincar cle-
ments containing some noisy resistors. Writing down network cquations in the usual way, onc
could write down a representation in the form

GE= Ft+Jq (5.1

I

w = 1§ (5.2)

where 7 is ‘white noise’, and w represents the port variables. It requires proof to show that this can
be rewritten in the standard form

X = Ax + Bu + Ny 5.3)

il

y = Cx + Du+ My (5.4)

where v is whitc noisc, and w has been partitioned into inputs « and outputs y. Representation of
stochastic systems is also the subject of debate in cconometric circles (scc for instance (3, 17]).
Somic aspects of the representation of infinite-dimensional lincar systems are discussed in the
contribution of R.I*. Curtain to this volume. A great dcal of cffort has been spent by the infinite-
dimensional systems community on trying to fit into the standard (4, B, C, D) framcwork
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cquations like the following one (the normalized string equation with forces and displacements at
both cnds as external variables):
0

2
-i—z—ﬂx, 1) = —a—;{tﬁ(,\', t) (5.5)

(0. 7)
([)(1, 1)
v = |00l (5.6)

(1, 1)

(The variable x is uscd here as the spatial variable, and the prime denotes differentiation with
respect to x.) Such an cquation would fit morc naturally into representations of the pencil type.
This advantage docsn’t come without a price, however; whereas standard scmigroup theory is
available for writing down solutions of the cquations in (4, B, C, D) form, another route will have
to be taken for systems in pencil form. Nevertheless, it would scem to be worth the cffort to pur-
suc this dircction. It should be noted that a representation which casily incorporates cquations
like the string cquation above has been proposed by D. Salamon under the namie ‘boundary con-
trol systems’ [53}; howcvcr, this class was introduced by Salamon for specific purposes, and the
restrictions he imposces arc consequently more severe than onc would like to sce in a pencil repre-
scntation.

The theory of system rcpresentations can be viewed as a theory of modcling. System-
theorctic ideas may be applicd to modeling problems as well as to control problems, and it may
cven be that some problems that are now considered as control problems will cventually be looked
at rather as representation problems (modcl matching might fall in this catcgory). In the process,
it may be necessary to abandon somc conventional wisdom. This paper has been written as a tri-
butc to Jan Willemis, onc of the best abandoncers of conventional thinking that I know.
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