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In this paper perturbation methods are used for the mathematical analysis of coupled 
relaxation oscillators. This study covers entrainment by an external periodic stimulus 
as well as mutual entrainment of coupled oscillators with different limit cycles. The 
oscillators are of a type one meets in the modeling of biological oscillators by chemical 
reactions and electronic circuits, Special attention is given to entrainment different 
from l: 1. The results relate to phenomena occurring in physiological experiments, such 
as the periodic stimulation of neural and cardiac cells, and in the non-regular functioning 
of organs and organisms, such as the AV-block in the heart. 

1. Introduction. Periodicity and synchrony play important roles in the 
temporal organization of activity in an organism. At the cellular level there 
is synchronization of neural and cardiac oscillators by cyclic inputs, as 
well as mutual synchronization (Holden, 1976; Ypey et al., 1980; Guevara 
et al., 1981; Cohen et al., 1982). At a higher level organs can be caused 
to follow the rhythm of an external pacemaker (Petrillo et al,, 1983). 
Finally, the organism as a whole exhibits periodic activity known as the 
circadian rhythm: the rest-activity cycle of about 24 hr, which is entrained 
by the external light-dark cycle. In all these examples we primarily think 
of 1: 1 entrainment. There is much literat4re on the mathematical modeling 
of this phenomenon; see Glass and Mackey ( 1979), Grasman and Jansen 
(1979) and Winfree (1980). However, entrainment with a frequency ratio 
different from 1: 1 is also observed at all three of the levels of organization 
mentioned above. Cardiac muscle tissue may oscillate with a period that is 
a multiple of the forcing period (Guevara et al., 1981; Ypey et al,, 1980). 
A heart may function in such a way that the contraction period of the 
ventricles and that of the atria have a ratio different from l: 1 (AV-block); 
see Keener ( 1981 ). In experiments one is able to entrain respiratory cycles 
of the lungs to the phase of a mechanical ventilator in a ratio different from 
1: 1 (Petrillo et al,, 1983 ). The rest-activity rhythm of humans driven by 
the light-dark cycle can also be different from the 1: 1 ratio. For infants 
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it may run 2: 1 or higher. It is reported that such a synchrony is already 
present for the embryo driven by the mother's rhythm; see Gear Luce 
(1971 ). Moreover, some humans, isolated from external dark-light cycles, 
exhibit a 2: 1 phase locking between body temperature and the rest-activity 
cycle (Wever, 1979). Compared with 1: 1 entrainment, there are fewer 
studies on the mathematical modeling of n :m entrainment for highly non
linear oscillators; we mention Ermentrout (1981) and Glass and Perez 
( 1982). Subharmonic entrainment by unidirectional coupling has been 
investigated by Yoshizawa et al. (1982). They found that the ordering 
of the ratios n:m is related to Farey-type series in number theory. This 
aspect is studied in more detail by Allen (1983). 

In this paper we analyze a system of n coupled relaxation oscillators 
with intrinsic frequencies close to a ratio h : h: ... : J~ with j i as integers. 
In our analysis we use singular and regular perturbation methods. The 
relaxation oscillator we consider is a Van der Pol-type differential equation 
with a small parameter e multiplying the second derivative. This makes the 
system of coupled equations singularly perturbed. A second parameter o 
is a measure for the deviation of the intrinsic frequencies from the ratio 
j 1 : h: . . . : j n. Entrainment is possible if the coupling is at least of the 
same order of magnitude as the deviation. In Grasman and Jansen (1979) 
the case of weakly coupled, almost identical relaxation oscillators was 
analyzed and it was proved that the asymptotic solution indeed approxi
mates an exact synchronized solution of the system. This proof, based on 
the work of Mishenko and Rosov ( 1980), also applies to the present con
figuration of coupled, non-identical oscillators. It is remarked that much 
of the mathematical results for 1: 1 entrainment of almost identical oscil
lators carries over to n :m entrainment. There is, however, one unexpected 
exception: in the case of periodic forcing of an oscillator with a smaller 
period the solution depends critically upon E, as appears in a numerical 
integration of the system for different e. The dependence is such that 
above a small value of E the entrainment breaks down. This critical de
pendence also affects mutual entrainment. From the point of view of model
ing entrained biological oscillators we obtain a better understanding of 
phenomena such as propagating phase waves, peaks in spectra of oscillatory 
systems and the phase fixation of an oscillator as a form of n :m entrainment 
with m = 00• 

In Section 2 the discontinuous asymptotic approximation of a free 
relaxation oscillator is given. Furthermore, we consider the case where a 
periodic forcing term with an amplitude of order 0( o) is added to the equa
tion. The forcing is of a type that does not change the limit cycle of the 
oscillator in the limit E """ 0. In this way only the phase of the oscillator 
is influenced in the asymptotic approximation. Let T be the period of the 
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driving force. Then we consider the mapping of the phase at time t to the 
one at time t = T. For the case of piecewise linear relaxation oscillators 
one can compute this mapping explicitly. A stable fixed point of this map
ping corresponds with an entrained solution. Without any difficulty this 
method can be extended to coupled oscillators; see Section 3. 

In Section 4 we study configurations of oscillators with diffusion coupling. 
In three examples we explore the possible relation with synchronization 
phenomena in biological systems. The first example deals with n :m entrain
ment of two oscillators. The phenomenon of sudden cardiac death from a 
critical stimulus (Winfree, 1983) is described as a special case of an AV
block. In the second example the stability of propagating contraction waves 
in the gastrointestinal tract is discussed. In the final example we explore 
the spectrum of a densely coupled system of oscillators with widely different 
autonomous frequencies. This configuration exhibits a form of partial 
synchronization that is also found in populations of neural oscillators. 

In Section 5 we deal with chemical and electronic oscillators that are 
frequently used for modeling biological oscillations. It is shown that they 
belong to the class of relaxation oscillators analyzed in this paper. 

2. Free and Forced Oscillators. The relaxation oscillators we consider are 
of the type 

Edx/dt = y - F(x), 

dy/dt = a-x, 

(2.1 a) 

(2.lb) 

where E is a small positive parameter and F a continuous, piecewise differ
entiable function satisfying F(x) 4- ±oo as x 4- ±oo and with one local maxi
mum and minimum (see Figure la). Typical examples are the Van der Pol 
equation with F(x) = ~x 3 - x (a= 0) and piecewise linear differential equa
tions (see Figure 2). 

In Section 5 we deal with applications in chemistry and electronic net
works, where F follows, respectively, from the reaction dynamics and the 
diode characteristic. In this paper we concentrate on discontinuous approxi
mations of periodic solutions of (2.1) as E __,,. 0. In Figure 1 (a) we sketch the 
corresponding closed trajectory in the phase plane. The time-dependence 
of the x-component is given in Figure 1 (b ). The approximate solution over 
the two branches AB and CD satisfies 

F'(X0 ) dX0 /dt = -Xo. (2.2) 

For the Van der Pol oscillator this equation can be integrated, giving an 
implicit expression for X 0 as a function of t. For the piecewise linear oscil
lator of Figure 2(a) the approximate solution has period To= 2ln 3 and reads 
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Figure 1. (a) The limit cycle in the phase plane as e-+ 0. (b) The time 
dependence of the x-component of the limit solution: 
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Figure 2. Piecewise linear oscillators. (a) a= 0. (b) a= 1.5. 

X 0(t) = 3e-t for 0 < t <In 3, 

X 0 (t) = e-t for - ln 3 < t < 0, 

Yo(t) = F(Xo(t)). 

B 

(2.3a) 

(2.3b) 

(2.3c) 

For differentiable functions F the stable periodic solution of (2.1) is a limit 
cycle (Xe, "Ye) which approaches (X0 , Y 0 ) as e 4 0 and the period satisfies 
Te = T0 + O(e213 ). For a proof of this we refer to Mishenko and Rosov 
(1980). Stoker (1950) states that for the piecewise linear oscillator Te = 
T0 + O(elne). 

Next we take into consideration the periodic forcing of the relaxation 
oscillator (2.1) through its y-component: 

edx/dt = y - F(x), 

dy/dt =a - x + oh(t), h(t + n = h(t), 

(2.4a) 

(2.4b) 

with 0 < e ~ 8 ~ 1 and h(t) a piecewise continuous function. For E 4 0 
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the trajectories satisfy Y = F(x) or y is constant, so that the forcing term 
h will not change the closed trajectory in the phase plane. It may only 
influence the velocity of the oscillator on the limit cycle. Consequently, 
a solution of (2.4) is approximated by 

x = Xo(cf.>(t)), Y = Y 0(cp(t)), (2.5) 

where (X oU), Yo(t)) represents a discontinuous approximation of the free 
oscillator; see (2.3). Substitution in (2.4) fore= O yields 

dY0 dcp 
dcp dt =a - Xo(cf.>(t)) + 8h(t) (2.6) 

or, using (2.2), 

dcp = 1 + 8h(t) cp(O) = Ol(O)_ 

dt a -X0 (cp(t))' 
(2.7) 

Integration gives the following approximation valid for bounded t: 

cp(t) = CX(O) + t + 8 jt h(i) - df + 0(82 ). (2.8) 
Jo a -X0(0l<0> + t) 

Over one period T the forcing causes a phase shift 81/l(Ol<0>) with 

l T h(t) 
1/J(cx) = dt. 

o a-X0 (0:'.+t) 
(2.9) 

Considering the value of </> at times t = kT, we obtain the iteration map P 
for the phase Ol(k+t) = POl(k) or in a explicit form with accuracy 0(82 ): 

(2.10) 

From the iteration map we analyze the limit behavior of the system. In 
the simplest case it has a stable fixed point that corresponds with a periodic 
solution of period T. Other possibilities are higher stable subharmonic 
solutions (see Figure 3c) and chaotic solutions for 6 = 0(1) (see Gucken
heimer, 1980). Clearly a fixed point & satisfies 

1/1(&) = (mT0 - T)/8 (2.11) 

for some integer m and is stable if 1/1'(&) < 0. Phase locking will occur if 

min 61/;(0l) < mT0 - T < max 81/;(0l). (2.12) 

°' °' 

3. Coupled Oscillators. We are now in the position to handle systems of 
coupled relaxation oscillators satisfying 
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Figure 3. (a) The iteration map P. (b) The phase shift function lf;. (c) A 
higher order fixed point of the map P. 

dy)dt = cJo)(ai - xi) + o I Hii(x1. Y1. xi. Yi), 
f>F-i 

(3 _ 1 a) 

(3 _ I b) 

where Hii is assumed to be continuous. Each oscillator describes a free 
oscillation given by (XiO(<f>to(t)), YtoC<f>to(t))), with 

(3.2) 

In case the oscillators are coupled, the phase functions are approximated by 

<f>1U) = <f>to(t) + o L f,t Hi/<f>to(t\ c/>io_Ct)) dt + 0(8 2 ). (3 .3) 
i+-t o ai - X1(</>;o(t)) 

Let us assume that the unperturbed oscillators (o = 0) have autonomous 
periods Tie satisfying 

(3.4) 

where k i = 1, ... , n are integers. The fact that c1(o) = c/0) + O(o) results 
in autonomous periods of the perturbed system that make O(o) differ :frorn 
this ratio. Next we introduce the common unperturbed period T, the smallest 
number for which the quotients T/Ti0 , i = 1, ... , n are positive integers. 
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The phase shift function is defined by 

'''··(O'· O'·) = J'T Hi/O'i + ci(o)t, cx.j + ci(o)t) 
'+' l} l> 1 x ( dt' i =I= j. 

0 i Qi+ ci(o)t) 
(3.5) 

For the iteration map P of the phases cx.}k) at times t = kT we obtain 

O'~k+l)= O'}k) + ci(o)T + o L i/;;;(O'~k), cx.~k)) (mod)T0 (3.6) 
j,,,,_ i I 

for i = 1, ... , n or O'(k+l) = PO'(k)_ More specifically, the phase shift function 
i/;;; depends upon (3;; = O'; - O';, as seen from (3.5) by shifting the integra
tion interval over O';. If we set 0'1 = 0, then all phase differences (3i; are 
uniquely determined from the remaining n - l phases O';. The system (3.1) 
has a periodic solution with a period of about T if the following system 
of n algebraic equations for 0'2 , ••. , cx.n and q has a solution: 

c;(o)T + 8 L i/;i;(f3i;) = oq(mod)To, i = 1, ... 'n. (3.7) 
;+ 1 

The period of the approximation fore~ 0 takes the value T + oq. 
Example. As an example we deal with two coupled oscillators, which for 

E -+ 0 have the same limit cycles in the phase plane and with autonomous 
frequencies that differ by about factor 3. We take a type of coupling that 
the simplifies the computations: 

edxi/dt = y 1 - F(x 1 ), dx 2 /dt = y 2 - F(x 2 ), (3.8a) 

dyifdt = -(1 - od)x1 + oa1X2, dYi/dt = -3x2 + OG-iX1' (3.8b) 

with F(x) as given by Figure 2(a). Carrying out the computations set out in 
the foregoing section, we arrive at the phase shift functions i/; 12 and i/; 21 

satisfying 

a11/Ji1(f3) = a1iJ!12(-(3), (3 = 0'1 -az, 

i/; 12 ((3) =a 1 {eil(-4/3 --y) + 4/3e3il} for 0 ~ {3 < 1/3 ln 3, 

with 'Y = r 1/3 + 3213 - 31/3 - 32/3 . For 1/3 ln 3 < (3 < 0 we have 

i/; i;((3) = -J; i/(3 + 1 /3 In 3 ). 

(3.9a) 

(3.9b) 

(3.9c) 

Let us compare these asymptotic results for € = 0 with numerical solu
tions of 3.8 for fixed small parameter values (E = 10-3 and o = 0.25). In 
Figure 4(a) we present the result for (a 1 , a 2 ) = ( 1, 0). It is observed that the 
values of the entrained numerical solutions (d, {3(e)) are close to the stable 
branch of the phase shift function if; 12((3). The value {3(€) is found as the 
difference in time at the successive intersections of x 1(t) and Xz(t) with 
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Figure 4. Numerical(++) and asymptotic solutions of (3.8). (a) (ai, a2 ) = 
(1, 0). (b) (a1> a2 ) = (O, 1). (c) (a1, az) = (1, 1 ). 

the line x = 0. For the case (a 1, a2 ) = (0, 1) the outcome is quite different 
(see Figure 4(b )). The phase shift curve turns out to be very sensitive to the 
value of E. For E = 0.002 the bandwidth of entrainment is reduced by a 
factor of 2; this occurs again at E = 0.004. At e = 0.005 entrainment vir
tually breaks down. Finally, in Figure 4(c) we sketch the result of mutually 
entrained numerical solutions, (a 1, a2 ) = (1, 1). The values (d, j3(e)) for the 
numerical solutions are away from the stable branch of the relative phase 
shift function x(i3) = 1/1 di3) - ljJ 21 (-j3). A further comparison shows that 
the outcome of the numerical solutions is consistent with the results for 
(ai. a2 ) = (0, 1), (1, 0). 

4. Diffusion Coupling in Biological Systems. From a biological point of 
view it is worthwhile concentrating on a specific type of coupling. Let us 
assume that the two components x and y represent a biochemical reactant 
which may diffuse from one compartment of the biological system to the 
other. When diffusion of the component x can be neglected we arrive at 
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a system of type (3.1), with 

H11 (x,, Yt• X;, Y;) = p(y; - Y;), i =I= j, p > 0. (4.1) 

We analyze the dynamics of such a system of coupled oscillators for diffe
ent types of configurations. The following three choices have been made for 
a system of oscillators with identical limit cycles (see Figure 2b) and widely 
different autonomous frequencies. As in the example given in Section 3, 
analytical expressions for the phase shift functions can be computed. How
ever, this is quite laborious and not necessary for obtaining quantitative 
results on entrainment. 

n :m entrainment. We consider two mutually coupled oscillators with 
c 1 (5) = 1 and c2(5) = c. In Figure 5 we give the domains in the c, p-plane 
where the algebraic equation (3.7) has a solution for T = T0 , 2T0 , 3T0 , 

4T0 , 6T0 and 12T0 . These solutions come in pairs (a stable and an unstable 
one). Each domain corresponds with an entrained solution of synchronized 
period ratio n :m. Note that the domains overlap and that oscillator 2 can 
be fixated in two different phases for c small. 

This configuration of two coupled oscillators can be seen as a model 
for n :m entrainment in biological systems, as we mentioned in the intro
duction; see also Ermentrout (1981). 

Winfree (1983) and Van Meerwijk et al. (1983) investigate a mechanism 
by which an oscillator stops after receiving a stimulus at a critical phase 
of its cycle. From the present model we conclude that an oscillator can 
also be stopped by a non-critical periodic stimulus. The problematic point 
in the critical stimulus mechanism is the instability of the phaseless set 
in the state space. Van Meerwijk et al. (1983) observed a tendency of the 
system to return to the stable oscillatory state; Winfree postulated the 
presence of a black hole at that spot. In the present model the stopping 
of a coupled oscillator is a stable mechanism, occurring in two different 
states. Compared with other entrained solutions at those parameter values 
they may have a small domain attraction, so that also in this case a critical 
stimulus may be needed. In terms of cardiac arrythmias, it can be seen 
as an AV-block with ratio 1: oo. 

This phenomenon has also been noticed by Ypey et al. (1982). In their 
study the periodic stimulus needed to have a high frequency. Presumably, 
the domain of attraction of the driven oscillatory state then vanishes and 
the state of phase fixation takes over. 

A chain of oscillators with decreasing autonomous frequency. It is assumed 
that for n oscillators equation (4.1) is satisfied for j = i ± 1, 1 ~j ~n and 
that H11 = 0 in all other cases. Moreover, we set 

c1(5) = c0 + if:i..c, i = 1, ... , n. (4.2) 
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Figure 5. Domains of n:m entrainment. 

Instead of trying to solve the algebraic equation (3.7) with T necessarily 
very large, we compute numerically the iteration map P for T = T0 and 
carry out a number of iterations until a stable pattern of actual phases and 
phase velocities arises. The phase velocities are averaged over the last 1 2 
iterations. In the simulation the pattern is independent of the choice of 
initial phases. About n iterations are needed to arrive at such a pattern. 
Depending on the gradient of ci, we observe the formation of compart
ments of oscillators with equal phase velocities (see Figure 6). For a small 
gradient the compartments, also called plateaus, are large (see Ermentrout 
and Kopell, 1983). In the extreme case we have one compartment being 
the complete chain in a fully synchronized state. For larger gradients the 
compartments shrink and increase in number. The size of the compartments 
is not equally distributed over the chain. In the present situation the one 
at the slow end dominates. In Grasman and Jansen (1979), where a differ
ent type of coupling is analyzed, the one at the fast end dominates. The 
present study differs from the ones mentioned above at the point where 
widely different autonomous frequencies are allowed. In this way we in
clude the effect of large gradients in c1• From simulations in this range 
we found that, although the compartments were shrinking and synchrony 
decreased, the pattern of phase waves, running from the fast to the slow 
end, persisted. From the point of view of biological applications, this is 
an important observation. The above configuration can be seen as a model 
for the gastrointestinal tract. In this system the same type of distribution 
of autonomous frequencies of contraction is present. It is concluded that 
the gradient may be quite large to guarantee the desired (direction of) 
propagation without risking a breakdown of the wave pattern because of 
decreasing synchrony; see also Sarna et al. (1972). 



MATHEMATICAL MODELING OF ENTRAINED BIOLOGICAL OSCILLATORS 417 

1.2 

V; 

(a) 

a, 

{ b) 

Figure 6. Entrainment in a chain of oscillators satisfying (4.2) with n = 50, 
o = 0.3, c0 = 1.9 and Lie = 0.004 after 156 iterations of the map P. (a) The 

phase velocity. (b) The phase. 

Large populations of coupled oscillators with widely different frequencies. 
Next we consider a system of n oscillators, all mutually coupled, as given by 
( 4 .1 ). They are assumed to have autonomous phase velocities that are 
uniformly distributed over the c;-interval (0.5, 1.5). Again we analyze the 
iteration map P with the phase velocities averaged over the last 12 itera
tions. As seen in Figure 7, the spectrum of phase velocities exhibits peaks 
spaced in such a way that their relative positions have a ratio n:m. Other 
oscillators move forwards and backwards over the spectrum without locking 
in at any of these peaks. There is some analogy with neural oscillators 
forming a densely coupled system. In theoretical studies of the EEG it is 
postulated that peaks are due to the mechanism of entrainment. Wiener 
(1958) speculates that a combination of three peaks could be explained 
from entrainment of oscillators with nearby frequencies (the central peak). 
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Figure 7. Distribution of phase velocities in a population of 100 mutually 
coupled oscillators with intrinsic phase velocity homogeneously distributed 

over the interval (0.5, 1.5). 

The two side-peaks consist of oscillators with frequencies too far away 
to get entrained. This idea has been elaborated by Kreifeldt ( 1970) and 
Kuramoto (1975). Our numerical simulations suggest that peaks may also 
occur as a result of n :m entrainment in cases where the oscillators have 
different frequencies. Lopes da Silva et al. ( 1976) observe such peaks in 
their model of an interacting neural population. 

5. Applications in the Theory of Chemical and Electronic Oscillations. 
The physiology of periodic phenomena in organisms can be quite complex, 
and in most cases is not understood in sufficient detail. In the process of 
investigation one uses prototypes of biological oscillators in order to gain 
more insight in the mechanism of entrainment and related phenomena. 
Besides abstract mathematical models there are prototypes of oscillators 
orginating from inorganic chemistry, e.g. the Belousov-Zhabotinskii reaction 
(Tyson, 1976), and from electronic circuit theory (Van der Pol and Van 
der Mark, 1928; Hoppenstead t, 19 81). In this section we show that two 
such models can be cast in the fonn of relaxation oscillators of the type 
we study in this paper. 

First we consider a hypothetical chemical reaction with periodic fluctua
tions in the concentration of some of the reactants: the Bruxellator (see 
Auchmuty and Nicolis, 1976). Schematically we have the following re
action: 
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ki 
A~ X, (5.la) 

k_l 

k1 
B+X Y+D, (5.lb) 

k_z 

k3 
2X + Y 3X, (5. lc) 

k_3 

k4 
X E. (5.ld) 

k_4 

(eeping the reactants A, B, D and E at a constant level and setting the 

·everse reactions all zero, we obtain for the concentration of X and the 

:um of X and Y the following system of dtfferential equations in dimension
ess variables: 

du/dT = 1 - u - Pu+ au 2 (w - u) = Pf(u, w; p), 

dw/dT = 1 - u = g(u, w). 

(5.2a) 

(5.2b) 

fhis system has the equilibrium point Cu, w) = (1, 1 + P/cx.), which is stable 
for p < 1 + a. Varying p, we find that the equilibrium point is unstable 

ibove the critical value Pc = 1 + Cl'.. Then a stable limit cycle with amplitude 
I 

:p - Pc )2 branches off. For P > Cl'. + 1 ~ 1 with P - Cl'. = 0(1) the limit 
::ycle turns into a relaxation oscillation (see Figure 8). The two stable 
branches depend in this case on the large parameter. They approximately 
;atisfy 

Pu - 1 . P 
w1(u) = --2- and w 2 (u) = u + -. 

Cl'.U Cl'.U 
(5.3) 

The contributions to the period from these branches are 

f bi 1 dwi 
----du 

Gj 1 - U dU ' 
i = 1, 2, (5.4) 

with 

a 1 = a/P2 , b 1 = 1/~, a2 = P2 /4a and b 2 =ylpfcx.. (5.5) 

Consequently, we find for the period of the autonomous Bruxellator 

p2 p3 p4 
T. =---+- +lnP-lncx.+0(1). (5.6) 

0 4CI'. Cl'.2 Cl'.3 

For the analysis of weakly coupled Bruxellators we may proceed as in 
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Figure 8. Limit cycle of the Bruxellator for Cl!== 5 and f3 == 7. 
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Figure 9. Oscillations in an electronic network with two tunnel diodes. 
(a) The circuit. (b) The characteristic of the tunnel diode. 

Sections 3 and 4. In Grasman and Jansen (1979) such a system of relaxation 
oscillators was analyzed with the asymptotic method of Section 3 and gave 
rise to bulk oscillations and stable phase wave patterns. These regular oscil
latory patterns agree qualitatively with numerical results by Auchmuty 
and Nicolis ( 1976) for Bruxellators with diffusion coupling. There are 
also other approaches to the mathematical analysis of coupled chemical 
oscillators; we mention Torre (1975) and Neu (1980). 

Finally, we discuss the occurrence of entrained oscillations in an electronic 
circuit. Gollub et al. ( 1978) analyzed the circuit given in Figure 9(a). The 
two tunnel diodes have characteristics as sketched in Figure 9(b). For this 
circuit the voltage and current satisfy the system of differential equations: 
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~ 1 dVi/dt = 11 -F(Vi), C2dV2/dt = 12 -F(V2 ), (5.7ab) 

L 1 dl1/dt = E - Vi -RU1 + lz), L2 dl2 /dt = E- V2 - R(I1 +12 ). (5.7cd) 

<or R small and C1 and C2 of even smaller orders of magnitude this system 
> of the type we studied with asymptotic methods. In Gollub et al. ( 1978) 
ntrainment phenomena are observed similar to that of piecewise linear 
>scillators. 
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