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Polycondensation and gelation: the general case

by

H.A. Lauwerier

ABSTRACT

The mathematical model of multifunctional polycondensation is consider-
ed by means of the method of the generating function as proposed by Pis'men
and Kuchanov. This paper is a sequel to an earlier paper in which we studied
the special case of polycondensation of trifunctional monomers. Here the
general case is considered. The results are similar as in the special case.
The model does not only describe the process of polycondensation up to the
possible gelpoint but does give quantitative information for the subse-
quent period during which the gel is built up. A technique has been devel-
oped for determining the main statistical characteristics of the mixture
before and after the gelpoint. This method has been worked out for the
special case of a mixture which originally contains molecules of type

03(3,0) and CI(O,Z) only.

KEY WORDS & PHRASES: nolycondensation, gelation, gelpoint, generating

function techniocue, explicit solutions.
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1. INTRODUCTION

In a previous paper we studied the mathematical model of the polycon-—
densation of trifunctional monomers by using the method of the generating function
as described by PIS'MEN and KUCHANOV [ 2] in their paper. In our analysis it was
made clear that the mathematical model describes the process of polymeri-
sation both before and after the gelpoint. In particular the model appears
to give quantitative information on the formation of the gel. In the case
of trifuctional monomers an explicit solution could be obtained for the
period up to the gelpoint and for the subsequent infinite period with a
continuous transition at the gelpoint. In particular we obtained simple
expressions for the first few moments in both periods.

In this paper we consider the general case of polycondensation of
polymers with an arbitrary number of functional groups of a first type and
of a second type. The reaction scheme is the same as that considered by
Pis'men and Kuchanov. Our notation corresponds very closely to that used
in their paper (often quoted as PK followed by the formula number).

It turns out that the ideas developed in our previous paper can also
be used in the general case. In fact, all essential points of the general
model are already present in the much simpler model considered before.

We have the impression that so far the potentialities of the mathema-
tical model have not been fully appreciated. Pis'men and Kuchanov rejected
the model for the period after the gelpoint and missed accordingly the
second part of the full solution. On the contrary also in the general case
the model neatly describes the possible formation of a gel. Gel formation
as described by this model is no instantaneous process but evolves rapidly
or slowly as the case may be.

The mathematical analysis in this paper is a generalization of that
in our previous paper. The general line is as follows. Using the technique
of the generating function the infinite number of kinetic equations is
transformed into a single partial differential equation. This equation
still contains the first moments u](t) and uz(t) measuring the total num-—
ber of free functional groups of either kind. For t < tg where tg is the
possible gelpoint these moments are simple functions of time that can be

determined in advance but for t > tg their determination requires complete



solution of the problem. However, by using well-chosen independent variables
it is possible to solve the partial differential equation without making ex-
plicit use of the first moments. This solution holds for all values of time,
irrespective of possible gelation. Assuming a known generating function the
first moments can be determined in a simple manner. But in reality for

t > tg the generating function which solves the partial differential equa-
tion contains u](t) and uz(t) still as unknown functions. Thus there exists
an implicit way of determining these moments. Eventually we arrive at solu-
tions of u](t) and uz(t) which are different in form before and after the
gelpoint but with a continuous transition at t = tg. In a similar way, we
may derive an expression for the zeroth moment u(t), which measures the
total number of free molecules reacting with each other and an expression
for the total number M of elementary units. Up to the gelpoint M is con-
stant as it should be, but for t > tg M is decreasing with time. This means
that the total mass initially present in the mixture is now divided between
the reacting molecules and the gel which in a sense may be seen as a mole-
cule with an infinity of functional groups.

The contents of this paper may be summarized as follows. The most im—
portant formulae and results are summed up in the second section. The reader
who wants to work out some specific case will find here all relevant mater-
ial. In the third section we consider the infinite set of kinetic equations
in the form considered by Pis'men and Kuchanov. It is shown that from these
equations the zeroth moment p(t) and the first moments u](t),uz(t) can
be determined only under the condition of finite second moments. In the
fourth section a general solution is obtained by means of the technique of
the generating function. Expressions for the first few moments and the to-
tal mass are given. In the fifth section the solution for the period t < tg
is worked out. Explicit formulae for the gelpoint are given. Our results
fully agree with those obtained by Pis'men and Kuchanov. In the sixth sec-
tion an essentially new addition to the theory, the case t > tg’ is dis-
cussed at length. A method has been developed by means of which all inter-
esting functions such as the first few moments can be determined in terms
of suitable auxiliary variables. Eventually this leads to a single ordinary
differential equation which can be solved analytically in specific cases

of course. In the seventh and last section the theory is applied to the



important case of a mixture containing initially molecules of type C3(3,0)
and C](O,Z) only. For this case considered earlier by FLORY [1] a complete
and explicit analytical solution is obtained. The symmetric case is worked

out numerically.

2. SUMMARY OF THE RESULTS

In order to facilitate further applications of the theory we summarize
the most important formulae. The concentration of molecules of type Ck(al’aZ)
at time t is denoted by Ck(al’aZ’t)' They are all combined in the generating
function

_ k a1 22
(2.1) g = Z Ck(ax,az,t)s X%,

The initially given mixture is described by
(2.2) g(s,x],xz,O) = h(s,x],xz).
The zeroth moment u, the first moments s and the total amount of elementary

units M are defined by (3.3), (3.4) and (3.6). Their initial values follow

at once from the given polynomial h. For t < tg they are explicitly given

by (3.14), (3.11) or in the symmetric case My T ou, by (3.13), (3.15) i.e.
_ _ 1
(2.3)  w(0) =, (0) =, IR
(2.4) (t) = u(0) = =ee £ <t
° H . U 9(t+9) 9 = g-

The gelpoint tg can be calculated from (5.11) in the general case or from
(5.13) in the symmetric case. However, in some cases a gelpoint is absent
what betrays itself in an imaginary value.

For the period t > tg we need auxiliary parameters C],C2 and an auxili-
ary time variable v. Using the notations

) 9
by =35 b (1’01’02)’ by = 5%

h (1,C,,C,),
1 9 1772



2
h]] = Jif h (1,C],C2), etcetera,
9x
1
we have (cf. 6.11)
u = h - vhlh2 ’
(2.5) Wy = Gy = vhih, o,
My = Cphy = Vb,
and
CE
(2.6) M= Y h (l,C],Cz).

The functions C](v), C2(v) follow from (6.8) and (6.9) or

j v(h , + /hllhzz) =1,
2.7) 1
/h]] dc, = /h22 dc,
where Cl = C2 = 1 at the gelpoint v = vg determined by
(2.8) vg{hlz(l,l,l) + /hll(l,l,])hzz(l,l,l)} = 1.

The relation between v and the real time t is given by the integral (6.10)

or (6.12) viz.

v
_ _ -1 - -1
(2.9) t - tg = J (C] th) (C2 vh]) dv.
‘ v
g

The full distribution function or generating function is determined by

(4.14). However, the parameters C »C, have a more general meaning since

1

they also depend on s, X, and Xy Therefore we modify the expression as

follows

h(s,l],kz) - vh](s,k

[ g ]
(2.10) 1 X0, = A] - vhz(s,kl,kz),

X - vhl(s,kl,k ),

1’>\2)h2(59)\],>\2)3

291 T M 2



where cl(t), oz(t) and v(t) are determined by (4.7), (4.8) as
t
Oi(t) = exp - f ui(T) dt,

(2.11) 0

t
v(t) f o]ozdw.
0o
For t < tg ci(t) and v(t) are simple functions as given by (5.1) and (5.2).

1 2
the following way. In addition to (2.5) we have

However, for t > tg o, and o, can only be expressed as a function of v in

(2.12)

The following example, worked out in more detail in section 7, shows
the manner in which these formulae canbe applied. Starting from the sym—

metric mixture with monomers of type C3(3,O) and Cl(0,2) we have

2

33 + 1
X, X, -

2 1
(2.13) h = g s 3
Using

(0) =

w|ro

_5 ' i}
u(0) = 3 and ul(O) Ho

we obtain from (2.3) and (2.4) for the first period

J Ul(t) = uz(t) = EE-ETjg s

(2.14)
1 L(t) = 15 - 2t

T 9(2t+3)

The gelpoint is

t =3 (1+/2) = 3.62.
g 2

From (2.7) we obtain for t > tg



9 =2 _9 -3 _2
(2.15) C,=gv C,=gv +1 3/5.
Then using (2.5) we obtain for M and My
_2.3_4 2
My =36 T g vCCys
(2.16)
_2.2 4 2
My =3 Cy =g vC Gy

The relation between v and t has been determined by (7.22). It appears

that the equality of M and My stops at the gelpoint. For t > = My tends

to zero whereas Hy has a non-vanishing limit. In the limit situation the
gel has consumed all trifunctional monomers but a small amount of molecules
of type C](O,2) is still present.

Of course we should realize that the mathematical model considered
here is an idealization of the chemical situation. It may be expected that
with the formation of more and more complex polymers the model departs
gradually from the chemical reality. However, the merits of the mathema-
tical model can only be assessed by comparing the mathematical results

with chemical experiments.

3. THE KINETIC EQUATIONS

Let the symbol Cn(a],az) denote a polymer molecule with n units, a,
functional groups of a first type I and a, functional groups of a second

type II. The reaction scheme is assumed to be of the form (cf. PK 1)
(3.1) Ck(b]’bz) + CQ(C]’CZ) > Ck+2(b1+c]—l,b2+c2-l).

With a dimensionless time scale the kinetic equations are (cf. PK 3)

d
I Cn(a],az,t) = —Cn(a],az,t) Z (a]b2 + aZb])Ck(bl’bZ’t) +

(3.2)
1
+ E-Z (b]c2+b2c])Ck(b],bz,t)Cg(cl,cz,t) s



where Cn(al,a t) is the concentration of molecules Cn(al’aZ) at time t,

2’
and where the summations are taken with b] te = a, + 1, b2 + c, = a, +

k + 2 = n. For a fixed value of t and n,a,,a running through the set of

2

the natural numbers the concentrations Cn(a],a t) determine the concen—

2’
tration distribution function. Its first few moments are of considerable
importance both in theory and practice.

The zeroth moment
(3.3) u(t) = ¢ (a ,a,,t)

measures the total number of polymer chains. The first moment of either

kind

(3.4) ui(t) = Z aiCk(a],az,t), i=1,2,

measures the total number of free functional groups of type I or II. The

are defined as

three second moments “11’“12 = u21,u22 i

(3.5) uij(t) = Z aiajCk(a],az,t), i,j =1,2.

They measure in a sense the broadness of the concentration distribution
function.
The total number of monomer units involved in the reactions is

measured by

(3.6) M=) kC, (a,a,,t).

It is to be expected that M does not change in time. However, we shall
soon see that this so-called conservation law is not unconditionally im-
plied by the equations (3.2).

If the equations (3.2) are summed with respect to n,a ,a, ve obtain

2
without difficulty the single ordinary differential equation

(3.7) % = TH My

If the equation (3.2) is multiplied by a then summation gives



du
1
— I - + -—

g = TGy tHyg) G el T g,

However, the summations can only be justified under the condition of the
convergence of the second moments (3.5). Thus, only if uij(t) < o the
equation obtained above is true and can be replaced by

du

1
(3.8) TS Hilys

and similarly
du2
dt

(3.9) TH Hg
The conservation law, M = constant, can be derived in an analogous way.
In particular we obtain the result

(3.10)

dM
=0

provided

z kaIC o and Z ka2C ©,

' k *
Generally speaking there is a moment t = tg’ the gelpoint, where some or
all second moments become infinite and where the relations (3.8), (3.9)
and (3.10) are no longer true. The relation (3.7) remains true, however,
also for t =2 t .

g

During the initial period up to the gelpoint the moments u, u, and Mo

1
can be determined from the equations (3.7), (3.8) and (3.9). A simple in-

tegration shows that

rexp = A(t+6)
sinh 2 (t+8) °’

dexp A(t+6)
sinh A (t+6) °

(3.11) u](t) = Uz(t) =
where A and 6 are constants of integration.

Of course to (3.2) a given initial distribution should be added.
From this we may obtain p(0), u](O), u2(0) as given constants. Then (3.11)

gives

(3.12) 2\ = uz(O) - u](O), 2)6 = 1n uz(O) - 1n u](O).



For a stoichiometric mixture we have a symmetrical situation with A = 0.

Then (3.11) can be replaced by

1
t +6

(3.13) ul(t) = uz(t) =

From (3.7) we obtain

A sinh At

(3.14) u(t) = w0 = =57 sian A(cFe)

and in the symmetrical case

(3.]5) U(t) = pu(0) - g—(t—iﬁ

Assuming the validity of (3.11) and (3.14) for all values of t we

would find for t » =

Ae_lxle
pu(=) = p(0) - Sinh e
or
(3.16) pu(e) = u(0) - Min{ul(O),uZ(O)}.

According to (3.3) and (3.4) this would lead to a negative value of u(«)
in many situations. If there are molecules of mixed type only, i.e., of
type Cn(a],az) with a; > 1, a, > 1, (3.16) would give u(«) < 0 with the

equality sign for a=a, = 1 only. The obvious conclusion is that a nega-
tive value of the right-hand side of (3.16) implies the existence of a

gelpoint and the restricted validity of (3.11) and (3.14).

4., THE METHOD OF THE GENERATING FUNCTION

According to the method followed by Pis'men and Kuchanov in their
paper we introduce the generating function (cf. PK 1)
a) 42

k
(4.1) g(s,x],xz,t) = z Ck(a],az,t)s X, X,



10

Since from (3.3)

(4.2) u(e) = g(1,1,1,t),

the convergence of the right-hand side of (4.1) is guaranteed in the cube

|x1l <1, %, <1, |s| < 1. The next moments (3.4) can be derived from
(4.1) as

)
(4.3) e () = 3;; g(1,1,1,t)

The total amount of monomer units (3.6) is given as
d
(4.4) M(t) =5;g(],131’t)-

The second moments (3.5) follow in a similar way from (4.1) but we may

expect infinity for t 2 tg. By multiplying each of the equations (3.2) by

a; a .
snxllxz2 and summing them with respect to n, a ,a, we arrive at the partial

differential equation (cf. PK 13)

(4.5) dg _ og dg , 98 _dg

—= = -lu.X - u.xX .
t 271 ax] 172 8x2 Bxl sz

To this we may add an initial condition
(4.6) g(s,x,,%,,0) = h(s,x,x,),

where h is a given polynomial.

It should be realized that the equation (4.5) holds for all values of
t but that the first moments are known in advance only for the period up
to the gelpoint. Therefore we shall solve (4.5) by a method which does not
use the explicit form of ui(t) such as (3.11). We introduce the auxiliary

functions

t
(4.7) ci(t) = exp - J ui(r)dr, i=1,2,
0

and new independent variables u,v determined by



11

t
(4.8) u, = xloz(t), u, = xzo](t), v = J olczdr.
0

If now g is considered as a function of s,u, ,u, and v the equation (4.5)

1’72

takes the following simple form

dg _ 9g 3dg
(4.9) ov aul Buz ’

with the initial condition
(4.10) g = h(s,ul,uz) for v = 0.

The equation (4.9) can be solved by the standard method of Charpit-Lagrange.

The characteristics of (4.10) are determined by

du] du dv dg dp1 dp2 dq

2
P, P, 1 q 0 0 0
where
- 98 - %8
P Bu, 17 35 -

Integration gives

P = Ap 1 2V 1°

(4.12)

+
>
<

I
aQ

p2 = A2’ g + Bv D, u2 1V = Co»

where Ai’ B, C; and D are constants of integration.

Fitting of the initial condition (4.10) requires

D = h(S’CI’CZ)’
(4.13)
Ai = hi(s,C],Cz),
where
_ oh T
]hl—au s 1_],2.

BIBLIOTHEEK MATHEMATISCH CENTRUM
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The final solution is determined by (4.12) and (4.13). Using C] and C2 as

independent parameters we obtain the following result (cf. PK 21,22)

( g(s’u]’uzsv) = h(s’cl’cz) - Vh](s,cl’cz)hz(sicl’cz)’
(4.14) J u, = C] - VhZ(S’CI’CZ)’
| u, = C2 - vh](s,C],Cz).

Elimination of C1 and 02 can be carried out explicitly in a few special

cases only. The determination of the first few moments is much simpler. The

zeroth moment (4.2) is determined by (4.14) for s = X, =X, = 1. This means
that u = oz(t) and u, = o](t). Thus we have
(4.15) u(t) = h(l,Cl,Cz) - vhl(l,C],Cz)hz(l,C],Cz)
with
6, = C, = vhy(1,C ,C,),
(4.16)
O =

C2 - vh](l,Cl,Cz).

For the first moments we have from (4.3), (4.12) and (4.13)

Y _ 3 N -
Wy o= ax] g(l,1,1,t) 9y 3“1 g(l,oz,o],t) czA1 ozh]
so that
U] = Ozh](]’C]’CZ)’
(4.17) ’
Hoy = olhz(l,C],Cz),

where Cl’CZ satisfy the equations (4.16).

If we are in the initial phase of the process of polymerisation the
form of ul(t) and uz(t) is known in advance. So (4.17) only may confirm
the expressions (3.11). But in the subsequent phase of gelation no such
knowledge is available. Then the equations (4.16) and (4.17) can be used

to determine M and My for t > tg.
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The total amount of monomer units follows from (4.4) and (4.14). By

2
tions depending also on s. Thus we proceed as follows. Starting from

the second and third relations of (4.14) C] and C, are determined as func-

— - -] - —
g = h(s,C],Cz) v (C] ul)(C2 u,),

we differentiate with respect to s. This gives

3C aC aC aC
3g _ dh 1 2 _ -1 _ 1 -
— + h, — +h, — - v (02 u2) 55 "V

The right-hand side simplifies to %% so that eventually

d
(4.18) M= sg-h(l,cl,cz)

5. THE INITIAL PERIOD UP TO THE GELPOINT

During the initial phase of the polymerisation process the second
moments (3.5) are finite and the first moments are given by (3.11). Then

for the auxiliary functions (4.7) we obtain the explicit expressions

. At . -\t
sinh AB.e sinh Af6.e
- = <
.1 o1 (8) = Sah o (ee0) ° 0y(t) = Toh A (tee) t=t
For v(t) we obtain without difficulty the following expression
sinh A6.sinh At
= <
(5.2) v(t) A sinh A (t+8) ? t= tg

The known expressions of ui(t), ci(t) and v(t) should be compatible

with the system (4.16) and (4.17). It follows at once that

(@}
|

=g, + vu,/o,,
(5.3) 2 2'71
C, = oy + vul/cz.

A simple calculation gives the rather surprising result that
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(5.4) C.=¢C,=1.

However, this result can be obtained in a much simpler way. If the first

equation (4.16) is differentiated with respect to t we find

C. +h

C, =0, + h, v+ v(h21 i 2202),

1 2 2

but in view of (4.17) we have

02 + h2v = —u202 + 0]02h2 = 0.

With a similar argument for the second equation we obtain

(1=vh ,)C, = vh,,C,,
(5.5)

(l—vhlz)C2 = Vhllcl'
This set has the almost trivial solution with constant values of C1 and C2.
For t = 0 we have c]= 02 =1 and v = 0 so that (4.16) gives C1 = C2 = 1.

But, this is not the only solution of (5.5). There may exist a second

solution where C] and 02 are changing in time and where

2 2 ;
(5.6) {1 - vhlz(l,C],Cz)} =v hll(l,C],C2)h22(1,C],Cz).

We shall soon see that this second solution holds for the period after the
gelpoint.

So far nothing new has been found. The first moments are already known
in advance. Also the zeroth moment pu(t) can be determined without making
use of the solution (4.14). However, checking of the conservation law and
the calculation of the second moments necessitate the use of the full so-

lution (4.14). Let us try to calculate the moment ull(t). This requires

2
knowledge of 2 g(l,0,,0,,t) but, since 28 h,, it is sufficient to
au% 2 1 au] 1
. ) - = = -
determine oo hl(s,C],Cz) for s = 1, u, Ogs Uy = 0. From (4.14) we ob

1

tain by differentiation with respect to u,
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8C] 3C2
(1=vh,,) e vhoo B, b
(5.7)
BC] aC
Vhyp g, T Uvhyy) 5 = 0
1 2
This set has to be considered for s = 1, u, = 0y, Uy = 0. But this means
. 3C) 9Cy .
that also C, = C, = 1. The corresponding values of —— and —— which are
1 2 Bul au2

needed for the calculation of the second moments can be solved from (5.7).
However, the solution breaks down when the determinant of the system

vanishes at some time. This happens when

2
(= vh,(,1,01% = v2h11(1,1,1>h22(1,1,1),
or when
-1
(5.8) v = {h, (1,1, + /RO, T, DR, (L, D).

The function v(t) increases monotonously from v(0) = 0 to a finite value.

In fact, assuming the validity of (5.2) for all t we would have

_ 1 - exp - 2[A8 _
v(w) = ST < 1.

Thus there may be a value t = tg for which v equals the right-hand side of
(5.8). If this happens there is an instant at which the second moments be-
come infinite, i.e. the gelpoint is determined by (5.8) (cf. PK 45).

From (5.2) and (5.8) a formula can be derived which expresses tg in

terms of the h-derivatives. We obtain in the first place from (5.2)
(5.9) cth At + cth 26 = — .
Using the relations (3.12) or

ul(O) + u2(0) = lcth A8,
(5.10)

|
>
-

-u](O) + u2(0) =
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we arrive at the following expression for the gelpoint (cf. PK 46)

1 o hlz(],l,]) + /hll(l,],])hzz(l,l,l) - ul(O)

(5.11) t =
' g 1, (0) - u (0) -
2 1 hy,(1,1,1) + /h]](l,l,l)hzz(l,l,l) u, (0)

In the symmetric case there are a number of simplifications. From

(3.13) and (5.1), (5.2) we have for A >~ 0

1 6
w () =, () = = > 0,(t) =0,(t) = >
(5.12)
ot
vie) = 55

Next (5.8) may be written as (cf. PK 47)

)
e{hlz(l,l,l) + /h]](l,l,l)hlz(l,l,l)} -1

(5.13) t

6. THE SUBSEQUENT PERIOD AFTER THE GELPOINT

The solution (4.14) is also valid for t > tg. The only problem is

that the form of ui(t), ci(t) and v(t) is not known beforehand. We repeat

that up, u, and v are given by
't

(6.1) u, = x]cz(t), u, = xzol(t), v = J clozdr.
0

In section 4 we have shown that the first moments are implicitly determined
by (4.16) and (4.17). We shall start from these relations using the auxi-

liary variables W, determined by

H
(602) w] _0—'2‘, w = T e
Further we shall take v as an independent time variable. Then (4.16),

(4.17) can be replaced by (cf. 5.3)

Cp =0y * vy,

02 op + vw],

(6.3)
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and
(6.4) W, o= hl(l,Cl,Cz), w, = hz(l,C],Cz).

From the definition of oy and v we obtain by differentiation

<o
|
Q

(6.5) o, = —c]ozw], 0y = =0,0,W,,

By taking appropriate combinations we have
(6.6) w, = - —, W, = = — ,

These relations can be used to eliminate Ty Oos Wis W, in (6.3) and (6.4).

Differentiation of the first relation of (6.3) with respect to v gives

dcC do dw
) 2 d
™ @ TtV TV R (1,6C))

Thus we arrive at the following pair of equations (cf. 5.5)

dac, ac,
(1 = vhy,(1,6,,C5)) <7 = vhy, (1,C1,C)) —=
6.7)
dc dc

2 _ 1
(1 - vhlz(l,C],CZ)) e vh]](],C],Cz) v

Also this system holds for all values of t. For t < tg we had the trivial
solution C] = C2 = ] but for t > tg we have a second solution where C1 and
C2 may vary with v. From the vanishing of the determinant of the system we

obtain in view of (5.6) and (5.8)

. A
(6.8) <= h,(1,¢,,C) + /A (T1,C,CHh (1,C,C,)

which in contrast to (5.8) should be considered as a time dependent rela-

tion between C](V) and CZ(V)' We know already that for t = tg’ and accord-
ingly v = vg, C] = C2 = 1. From (h.7) we may derive a second independent
equation
dC] dC2
hy (58158 g = Vhyy (1,650 &



18

or

1
dc h..(1,C.,C.)\°
(6.9) 1 _ ( 22° 271072 )

ac, ~ \n; [ (1,C,C)

The equations (6.8), (6.9) enable us to determine C1 and C2 as func-
tions of v. Of course the integration can be carried out explicitly in a
few simple cases only. As soon as Cl(v) and Cz(v) are known the auxiliary
variables w](v) and WZ(V) can be determined using (6.4). Next o](v) and
oz(v) follow from (6.3). At this stage it is possible to recover the real

time by determining v as a function of t from (6.5) as

v
- | ——dw
(6.10) t - tg J ENOINC .
v
g

In practical applications one might be interested only in the time

behaviour of u, Hps M and M. In that case it 1s not necessary to use ex—

2

plicit expressions of Ops Oys W, and W, By (6.8) and (6.9) C1 and C2 are

determined as functions of v. Next from (4.15), (4.16), (4.17) and (4.18)

we have
H = h(l’cl’cz) - Vhl(]’cl’c?_)hz(]’cl’cz) ’
6.11 < '
u, = Czhz(]’c1’cz) - vhl(l,Cl,Cz)hz(l,C],Cz) ,
M = -2 h(l,C.,C.)
. 9s s R

Finally from (4.16) and (6.10)
v
_ _ -1 _ -1
(6.12) t tg f (C1 th) (C2 Vhl) dv.

v
&

7. A SPECIAL CASE

We consider the polymerisation of a mixture consisting initially in

monomers of type C3(3,0) and C1(0,2). Thus for t = 0 the generating func-
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tion is given as

2 33 .1 2
(7.1) h(s,x],xz) =3 as’x| + S-bsxz.

The stoichiometric case corresponds with a = b. For future use we note that

N

2 2

(7.2) h](],xl,xz) =3 ax), hz(l,x],xz) = §-bx2,
and
(7.3) h,, (l,x,,x.) = é-ax h . (l,x ,x.) =0 h, . (1,x.,x.) = g-b.
: 11271272 3 1’ 1227271772 ’ 22071272 3
According to (3.12) we have
1 b
(7.4) A= 3'(b—a), 228 = 1n S
so that
At -\t
_ 2a)e _ 2bxe
(7.5) w0 = —% =it ’ Mp(8) = —% Y-
be - ae be - ae
Next from (5.1) and (5.2)
At -At
_ (b=a)e _ (b-a)e
(7.6) °1(t) Tt -\t °2(t) Tt -t
be - ae be - ae
and
_ 3 sinh At
(7.7) v(t) = T =T -
be - ae

The possible gelpoint is given by (5.11) as

3/2 | /a(/T6 - /a)
b-a " A/72a - /)

.8 =
(7.8) tg

There is only a real value under the conditions

(7.9) -% b <a< 2b.

Thus only when there are enough monomers of either kind gelation is possible.

It may be of interest to construct a table which shows the values of tg for
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various combinations of a and b. In the following table we have given the

values of (a+b)tg for a number of values of b/a.

(a+b)tg b/a
o0 0.5
9.88 0.6
8.24 0.7
7.59 0.8
7.32 0.9
7.24 1.0
7.30 1.1
7.47 1.2
8.11 1.4
9.29 1.6
11.66 1.8
o 2.0
Table 1

It appears that a minimum is reached for a symmetric mixture.
If we consider the special case a = b = 1 we have from (5.12) and

(5.13)

- - _2__ — r— =——————-—3
(7.10)
3t
vt =53
and
=3 =
(7.11) t, =7 (1 +/2) = 3.62.

From (3.15) we obtain for the total number of molecules

4t

(7.12) p(t) =—;——m.

Next we analyse the situation in the second period but we shall con-
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sider here the symmetric case a = b = 1 only. From (6.8) and (6.9) we obtain
(7.13a) +=2 /3¢
.13a 53 -
and
dc, -
(7.13b) ac—z = (2Cl) .

This gives at once

(7.14a) Cl = %—v_z ,
and
(7.14b) c, = %v':’ +C,

where C is a constant of integration. But we know that at the gelpoint

v = 3_ - 1.061 we should have C, = 1. This gives

(7.15) c=1 - % VZ = 0.057.

Next from (6.4) we obtain

€
]
<

(7.16)

From (6.2) there follows

o, = 5%—v 3 +C,
(7.17)
o, = -§-v.2 - E-Cv
2 8 3 ’

Wy “95g vV~ — Cv ,

(7.18)
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The zeroth moment can be obtained from (4.16), (7.1), (7.2) as

2 4 2
C2 -9—VC]C2 o

_23,1
(7.19) 11—9C1+3

The total amount of free monomers participating in the reactions is deter-

mined by (4.18) and (7.1) as

2.2 1
(7.20) M=3C]+3C,.

We note that the relatioms (7.17), (7.18), (7.19) and (7.20) are valid at

all times. For t < tg we have simply C] = C2 = 1 which incidentally gives

M= 1, but for t 2 tg C] and C2 are dependent on t in a way yet to be de--

termined.

The real time scale follows from (6.10) as

v
dv
(7.21) t -t =f - .
g 2 3 3,722
Vg(32 v + C)(8 v 3 Cv)

This is an elementary integral. A simple calculation shows that

(7.22) t =-—l§ In (9-*32Cv3)-](9 —16Cv3)“2 + constant.

6C
In table 2 we have combined v, His M, M in their dependence on t for a num-
ber of values either for t < tg as for t = tg.

For t + «» we observe the following behaviour

1
V(=) = (151 ¢y 3 = 2.143,

b @) =0,
2
uy(=) = 3¢% = 0.010,
u(®) = ¢% = 0.0033,
2

M(=)

]
N
a

1
o
o
N
o



t LB H, o M
0 0 0.67 0.67 0.56 1
0.5 0.38 0.50 0.50 0.39 1
1 0.60 0.40 0.40 0.29 1
1.5 0.75 0.33 0.33 0.22 1
2 0.86 0.29 0.29 0.18 1
2.5 0.94 0.25 0.25 0.14 1
3 1.00 0.22 0.22 0.11 1
tg 1.06 0.20 0.20 0.08 1
4 1.09 0.16 0.17 0.07 0.85
4.5 1.13 0.13 0.14 0.06 0.71
5 1.16 0.11 0.13 0.05 0.61
5.5 1.18 0.10 0.11 0.05 0.53
6 1.21 0.08 0.10 0.04 0.47
6.5 1.23 0.07 0.10 0.04 0.42
7 1.25 0.07 0.09 0.03 0.38
7.5 1.27 0.06 0.09 0.03 0.35
8 1.29 0.06 0.08 0.03 0.33
L 2.14 0 0.01 0.00 0.02
Table 2
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