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. . *) Polycondensation and gelation: the general case 

by 

H.A. Lauwerier 

ABSTRACT 

The mathematical model of multifunctional polycondensation is consider­

ed by means of the method of the generating function as proposed by Pis'men 

and Kuchanov. This paper is a sequel to an earlier paper in which we studied 

the special case of polycondensation of trifunctional monomers. Here the 

general case is considered. The results are similar as in the special case. 

The model does not only describe the process of polycondensation up to the 

possible gelpoint but does give quantitative information for the subse­

quent period during which the gel is built up. A technique has been devel­

oped for determining the main statistical characteristics of the mixture 

before and after the gelpoint. This method has been worked out for the 

special case of a mixture which originally contains molecules of type 

c3 (3,0) and c1(0,2) only. 

KEY WORDS & PHRASES: polycondensation, gelation, gelpoint, generating 

function technioue, explicit solutions. 

*) This paper is not for review; it is meant for publication elsewhere. 





I • INTRODUCTION 

In a previous paper we studied the mathematical model of the polycon­

densation of trifunctional monomers by using the method of the generating function 

as described by PIS'MEN a11ct KUCHANOV [2] in their paper. In our analysis it was 

made clear that the mathematical model describes the process of polymeri­

sation both before and after the gelpoint. In particular the model appears 

to give quantitative information on the formation of the gel. In the case 

of trifuctional monomers an explicit solution could be obtained for the 

period up to the gelpoint and for the subsequent infinite period with a 

continuous transition at the gelpoint. In particular we obtained simple 

expressions for the first few moments in both periods. 

In this paper we consider the general case of polycondensation of 

polymers with an arbitrary number of functional groups of a first type and 

of a second type. The reaction scheme is the same as that considered by 

Pis'men and Kuchanov. Our notation corresponds very closely to that used 

in their paper (often quoted as PK followed by the formula number). 

It turns out that the ideas developed in our previous paper can also 

be used in the general case. In fact, all essential points of the general 

model are already present in the much simpler model considered before. 

We have the impression that so far the potentialities of the mathema­

tical model have not been fully appreciated. Pis'men and Kuchanov rejected 

the model for the period after the gelpoint and missed accordingly the 

second part of the full solution. On the contrary also in the general case 

the model neatly describes the possible formation of a gel. Gel formation 

as described by this model is no instantaneous process but evolves rapidly 

or slowly as the case may be. 

The mathematical analysis in this paper is a generalization of that 

in our previous paper. The general line is as follows. Using the technique 

of the generating function the infinite number of kinetic equations is 

transformed into a single partial differential equation. This equation 

still contains the first moments µ 1(t) and µ 2 (t) measuring the total num­

ber of free functional groups of either kind. Fort< t where t is the 
g g 

possible gelpoint these moments are simple functions of time that can be 

determined in advance but fort> t their determination requires complete 
g 
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solution of the problem. However, by using well-chosen independent variables 

it is possible to solve the partial differential equation without making ex­

plicit use of the first moments. This solution holds for all values of time, 

irrespective of possible gelation. Assuming a known generating function the 

first moments can be determined in a simple manner. But in reality for 

t > t the generating function which solves the partial differential equa-
g 

t~on contains µ 1(t) and µ2(t) still as unknown functions. Thus there exists 

an implicit way of determining these moments. Eventually we arrive at solu­

tions of µ 1(t) and µ2 (t) which are different in form before and after the 

gelpoint but with a continuous transition at t = t. In a similar way, we 
g 

may derive an expression for the zeroth moment µ(t), which measures the 

total number of free molecules reacting with each other and an expression 

for the total number M of elementary units. Up to the gelpoint Mis con­

stant as it should be, but fort> t Mis decreasing with time. This means g 
that the total mass initially present in the mixture is now divided between 

the reacting molecules and the gel which in a sense may be seen as a mole­

cule with an infinity of functional groups. 

The contents of this paper may be sunnnarized as follows. The most im­

portant formulae and results are summed up in the second section. The reader 

who wants to work out some specific case will find here all relevant mater­

ial. In the third section we consider the infinite set of kinetic equations 

in the form considered by Pis'men and Kuchanov. It is shown that from these 

equations the zeroth moment µ(t) and the first moments µ 1(t),µ 2 (t) can 

be determined only under the condition of fini~e second moments. In the 

fourth section a general solution is obtained by means of the technique of 

the generating function. Expressions for the first few moments and the to­

tal mass are given. In the fifth section the solution for the period t < t 

is worked out. Explicit formulae for the gelpoint are given. Our results 

fully agree with those obtained by Pis'men and Kuchanov. In the sixth sec­

tion an essentially new addition to the theory, the case t > t, is dis-
g 

cussed at length. A method has been developed by means of which all inter-

g 

esting functions such as the first few moments can be determined in terms 

of suitable auxiliary variables. Eventually this leads to a single ordinary 

differential equation which can be solved analytically in specific cases 

of course. In the seventh and last section the theory is applied to the 
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important case of a mixture containing initially nolecules of type c3 (3,O) 

and c1(0,2) only. For this case considered earlier by FLORY[!] a complete 

and explicit analytical solution is obtained. The symmetric case is worked 

out numerically. 

2. SUMMARY OF THE RESULTS 

In order to facilitate further applications of the theory we surmnarize 

the most important formulae. The concentration of molecules of type Ck(a 1,a2) 

at time tis denoted by Ck(a 1,a2 ,t). They are all combined in the generating 

function 

(2.1) 

The initially given mixture is described by 

(2.2) 

The zeroth momentµ, the first momentsµ. and the total amount of elementary 
1 

units Mare defined by (3.3), (3.4) and (3.6). Their initial values follow 

at once from the given polynomial h. Fort~ t they are explicitly given 
g 

by (3.14), (3.11) or in the symmetric case µ 1 = ii 2 by (3.13), (3.15) i.e. 

(2.3) 

(2.4) p ( t) 
t 

= µ(O) - 8(t+8) 

t ~ t ' g 

t ~ t . 
g 

The gelpoint: t can be calculated from (5.11) in the general case or from 
g 

(5.13) in the symmetric case. However, in some cases a gelpoint is absent 

what betrays itself in an imaginary value. 

For the period t > tg we need auxiliary parameters c1,c2 and an auxili­

ary time variable v. Using the notations 
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32 
hi! = --2 h (J,c 1,c2), 

ax! 
etcetera, 

we have (cf. 6.11) 

\1 = h - vh 1h2 

(2.5) \11 = Clhl - vh 1h2 

).l 2 = C2h2 - vh 1h2 ' 
and 

(2.6) M -- -1_ h (I,C 1,c2). 
as 

The functions c1 (v), c2(v) follow from (6.8) and (6.9) or 

(2. 7) 1
f v (h I 2 + ✓h I I h2 2) = 

~~ dC I = ✓h22 dC2 

I ' 

where c 1 = C = I at the gelpoint v = v determined by 
2 g 

The relation between v and the real time tis given by the integral (6.10) 

or (6.12) viz. 

(2.9) 

V 

t -- tg = f 
V 

g 

The full distribution function or generating function is determined by 

(4.J4). HowevE~r, the parameters c1 ,c2 have a more general meaning since 

they also depend on s, x 1 and x2• Therefore we modify the expression as 

follows 

I g = h(s,AI,A2) - vhl(s,Al,A2)h2(s,Al'A2), 

(2.10) xlc,2 = Al - vh2 ( s, A I , A 2) , 

1 X2(J I = A2 - vhl (s,Al ,A2)' 



where cr 1(t), cr 2(t) and v(t) are determined by (4.7), (4.8) as 

t 

(2. 11) 

cri(t) = exp - I µi(,) d,, 

0 

t 

v(t) = f cr 1cr 2d,. 

0 

5 

Fort< t a.(t) and v(t) are simple functions as given by (5.1) and (5.2). 
g 1. 

However, fort> tg cr 1 and a2 can only be expressed as a function of v in 

the following way. In addition to (2.5) we have 

(2. 12) 

The following example, worked out in more detail in section 7, shows 

the manner in which these formulae can be applied. Starting from the sym­

metric mixture with monomers of type c3 (3,0) and c1(0,2) we have 

(2.13) 

Using 

2 3 3 1 2 
h = 9 s x 1 + 3 sx2 

5 
µ(O) = 9 and µ I (O) 

we obtain from (2.3) and (2.4) for the first period 

'l 

I µ I (t) µ2(t) = 
.. 

= 2t + 
(2. 14) 

l µ(t) 15 - 2t 
= 9(2t+3) ' 

The gelpoint is 

t = 1_ ( I +/2) = 3. 62. 
g 2 

From (2.7) we obtain fort> t 
g 

3 ' 
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(2.15) 
9 -2 cl =av , 9 -3 2 rn c2 = B v + I - "j" v2 

Then using (2.5) we obtain for µ 1 and µ 2 

(2.16) { :: : 
The relation between v and t has been determined by (7.22). _It appears 

that the equality of µ 1 and µ 2 stops at the gelpoint. Fort+~ µ 1 tends 

to zero whereas µ 2 has a non-vanishing limit. In the limit situation the 

gel has consumed all trifunctional monomers but a small amount of molecules 

of type c1(0,2) is still present. 

Of course we should realize that the mathematical model considered 

here is an idealization of the chemical situation. It may be expected that 

with the formation of more and more complex polymers the model departs 

gradually from the chemical reality. However, the merits of the mathema­

tical model can only be assessed by comparing the mathematical results 

with chemical experiments. 

3. THE KINETIC EQUATIONS 

Let the symbol Cn(a 1,a2) denote a polymer molecule with n units, a 1 
functional groups of a first type I and a 2 functional groups of a second 

type II. The reaction scheme is assumed to be of the form (cf. PK I) 

(3.1) 

With a dimensionless time scale the kinetic equations are (cf. PK 3) 

(3.2) 



7 

where Cn(a 1,a2,t) is the concentration of molecules Cn(a 1,a2) at time t, 

and where the summations are taken with b 1 + c 1 = a 1 + 1, b2 + c2 = a 2 + 1, 

k + £ = n. For a fixed value oft and n,a1,a2 running through the set of 

the natural numbers the concentrations Cn(a1,a2,t) determine the concen­

tration distribution function. Its first few moments are of considerable 

importance both in theory and practice. 

The zeroth moment 

(3. 3) 

measures the total number of polymer chains. The first moment of either 

kind 

(3.4) i = 1,2, 

measures the total number of free functional groups of type I or II. The 

three second moments µ 11 ,\1 12 = JJ 21 ,JJ 22 are defined as 

(3.5) i,j = 1,2. 

They measure in a sense the broadness of the concentration distribution 

function. 

The total number of monomer units involved in the reactions is 

measured by 

(3.6) 

It is to be expected that M does not change in time. However, we shall 

soon see that this so-called conservation law is not unconditionally im­

plied by the equations (3.2). 

If the equations (3.2) are surrnned with respect to n,a 1,a2 we obtain 

without difficulty the single ordinary differential equation 

(3. 7) 

If the equation (3.2) is multiplied by a 1 then summation gives 
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However, the summations can only be justified under the condition of the 

convergence of the second moments (3.5). Thus, only if µ .. (t) <~the 
1J 

equation obtained above is true and can be replaced by 

(3.8) 

and similarly 

(3.9) 
dµ2 -
dt - -µ1µ2. 

The conservation law, M = constant, can be derived in an analogous way. 

In particular we obtain the result 

(3. JO) 
dM 
dt = O 

provided 

and 

Generally speaking there is a moment t = t, the gelpoint, where some or 
g 

all second moments become infinite and where the relations (3.8), (3.9) 

and (3.10) are no longer true. The relation (3.7) remains true, however, 

also fort~ t • 
g 

During the initial period up to the gelpoint the momentsµ, µ 1 and µ2 

can be determined from the equations (3.7), (3.8) and (3.9). A simple in­

tegration shows that 

(3. 11) = ;\.exp - ;\.(t+e) 
sinh ;\.(t+e) 

where A and e are constants of integration. 

;\.exp A ( t+e) = _,, ..... _...,...._.,.. 
sinh ;\.(t+6) ' 

Of course to (3.2) a given initial distribution should be added. 

From this we may obtain µ(O), µ1(0), µ2 (0) as given constants. Then (3.11) 

gives 

(3.12) 



For a stoichiometric mixture we have a symmetrical situation with A= 0. 

Then (3.11) can be replaced by 

(3.13) 

From (3.7) we obtain 

(3.14) A sinh At 
µ(t) = µ(O) - sinh A6 sinh A(t+e) ' 

and in the symmetrical case 

(3.15) µ(t) t 
= µ(O) - 6(t+6) 

Assuming the validity of (3.11) and (3.14) for all values oft we 

would find fort ➔ oo 

µ(oo) 

or 

(3.16) 

According to (3.3) and (3.4) this would lead to a negative value of µ( 00 ) 

in many situations. If there are molecules of mixed type only, i.e., of 

type Cn(a1,a2) with a 1 ~ I, a 2 ~ 1, (3.16) would give µ( 00 ) s O with the 

equality sign for a 1= a 2 = I only. The obviou~ conclusion is that a nega­

tive value of the right-hand side of (3.16) implies the existence of a 

gelpoint and the restricted validity of (3.11) and (3.14). 

4. THE METHOD OF THE GENERATING FUNCTION 

According to the method followed by Pis'men and Kuchanov in their 

paper we introduce the generating function (cf. PK I) 

(4.1) 

9 
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Since from (3.3) 

(4.2) µ(t) = g(l,1,1,t), 

the convergence of the right-hand side of (4.1) is guaranteed in the cube 

lx1 I :s; I, l:~2 1 :s; I, Isl :s; I. The next moments (3.4) can be derived from 

(4.1) as 

(4.3) a µ.(t) = -...,- g(l,1,1,t) • 
1 ox. 

1 

The total amount of monomer units (3.6) is given as 

(4.4) a M(t) = as g(l,1,1,t). 

The second moments (3.5) follow in a similar way from (4.1) but we may 

expect infinity fort~ t. By multiplying each of the equations (3.2) by 
n al a2 g 

s x 1 x2 and summing them with respect ton, a 1,a2 we arrive at the partial 

differential equation (cf. PK 13) 

(4.5) 

To this we may add an initial condition 

(4.6) 

where his a given polynomial. 

It should be realized that the equation (4.5) holds for all values of 

t but that the first moments are known in advance only for the period up 

to the gelpoint. Therefore we shall solve (4.5) by a method which does not 

use the explicit form of µ.(t) such as (3.11). We introduce the auxiliary 
1 

functions 

(4. 7) 

t 

cri(t) = exp - I µi(T)dT, 

0 

and new independent variables u,v determined by 

i = 1,2, 



(4.8) 

If now g is considered as a function of s,u 1,u2 and v the equation (4.5) 

takes the following simple form 

(4.9) ag - ag ag 
·av - au} au2 ' 

with the initial condition 

(4. IO) for v = 0. 

I I 

The equation (4.9) can be solved by the standard method of Charpit-Lagrange. 

The characteristics of (4.10) are determined by 

(4.11) 
du 

I --- = 
P2 

where 

du2 = dv dg 
pl ::-r - q -

q = ~ 
av 

dpl dp2 dq 
o=o =a, 

Integration gives 

q = B, 

(4.12) 

g + Bv = D, 

where A., B, C. and Dare constants of integration. 
1. 1. 

Fitting of the initial condition (4.10) requires 

(4.13) 

where 

ah 
hi= au. ' 

1. 

i = 1,2. 
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The final solution is determined by (4.12) and (4.13). Using c1 and c2 as 

independent parameters we obtain the following result (cf. PK 21~22) 

(4.14) 

Elimination of c1 and c2 can be carried out explicitly in a few special 

cases only. The determination of the first few moments is much simpler. The 

zeroth moment (4.2) is determined by (4.14) for s = x 1 = x2 = I. This means 

that u1 = cr 2 (t) and u2 = cr 1(t). Thus we have 

(4.15) 

with 

(4.16) 

For the first moments we haye from (4.3), (4.12) and (4.13) 

a 
µ 1 = axl g(J,1,1,t) 

so that 

(4.17) 

where c1,c2 satisfy the equations (4.16). 

If we are in the initial phase of the process of polymerisation the 

form of µ 1(t) and µ 2(t) is known in advance. So (4.17) only may confirm 

the expressions (3.11). But in the subsequent phase of gelation no such 

knowledge is available. Then the equations (4.16) and (4.17) can be used 

to determine µ 1 and µ 2 fort> tg. 
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The total amount of monomer units follows from (4.4) and (4.14). By 

the second and third relations of (4.14) c1 and c2 are determined as func­

tions depending also on s. Thus we proceed as follows. Starting from 

we differentiate with respect to s. This gives 

ah The right-hand side simplifies to as so that eventually 

(4.18) 

5. THE INITIAL PERIOD UP TO THE GELPOINT 

During the initial phase of the polymerisation process the second 

moments (3.5) are finite and the first moments are given by (3.11). Then 

for the auxiliary functions (4.7) we obtain the explicit expressions 

(5. 1) 
sinh ).0. ~At 

0 t(t) = sinh A(t+e) ' 

. -At 
() s,.nh A0.e 

0 2 t = sinh A(t+e) ' 

For v(t) we obtain without difficulty the fol~owing expression 

(5.2) v(t) = 
sinh A0.sinh At 

A sinh A(t+e) 

t ~ t • 
g 

t ~ t • 
g 

The known expressions of µ.(t), o.(t) and v(t) should be compatible 
l. l. 

with the system (4.16) and (4.17). It follows at once that 

(5.3) 
o2 + vµ/o 1, 

0 t + vµl/cr2. 

A simple calculation gives the rather surprising result that 
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(5.4) 

However, this result can be obtained in a much simpler way. If the first 

equation (4. 16) is differentiated with respect tot we find 

but in view of (4.17) we have 

With a similar argument for the second equation we obtain 

J 
( J-vh 1 2)c 1 

. 
= vh22C2, 

(5.5) 

l . . 
(l-vh 12)c2 = vh!ICI. 

This set has the almost trivial solution with constant values of c 1 and c 2 . 

For t = 0 wei have a 1= a2 = I and v = 0 so that (4. 16) gives c 1 = c 2 = I. 

But, this is not the only solution of (5.5). There may exist a second 

solution where c 1 and c 2 are changing in time and where 

(5.6) 

We shall soon see that this second solution holds for the period after the 

gelpoint. 

So far nothing new has been found. The first moments are already known 

in advance. Also the zeroth moment µ(t) can be determined without making 

use of the solution (4.14). However, checking of the conservation law and 

the calculation of the second moments necessitate the use of the full so­

lution (4.l~f). Let us try to calculate the moment µ 11 (t). This requires 

. a2 a 
knowledge of --2 g(I,a2,a 1,t) but, since augl = h 1, it is sufficient to 

~ au] 
determine a~~ h 1(s,c 1,c2) for s = I, u 1 = a2 , u2 = a 1• From (4.14) we ob­

I 
tain by differentiation with respect to u 1 
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( l-vh 12) 
ac 1 ac2 

I ' -- - vh22 au2 = au) 

(5.7) 

vhl I 
ac 1 

(1-vh12) 
ac2 o. au 1 - clu2 = 

This set has to be considered for s = I, u1 = a 2, u2 = a 1 • But this means 
ac 1 ac2 

that also c 1 = c2 = I. The corresponding values of aul and au2 which are 

needed for the calculation of the second moments can be solved from (5.7). 

However, the solution breaks down when the determinant of the system 

vanishes at some time. This happens when 

or when 

,(5.8) 

2 {I - vh 12 (t,1,J)} 

,---,----,.--,--- -) 
v = { h I 2 ( 1 , I , I) + ✓h I I ( I , I , I) h22 ( I , 1 , I)} • 

The function v(t) increases monotonously from v(O) = 0 to a finite value. 

In fact, assuming the validity of (5.2) for all t we would have 

v(00) = 1 - exp - 2IAl6 <_ 
21 Al I. 

Thus there may be a value t = t for which v equals the right-hand side of 
g 

(5.8). If this happens there is an instant at which the second moments be-

come infinite, i.e. the gelpoint is determined by (5.8) (cf. PK 45). 

From (5.2) and (5.8) a formula can be derived which expresses t in 
g 

terms of the h-derivatives. We obtain in the first place from (5.2) 

(5.9) cth At+ cth A6 =-AV 

Using the relations (3.12) or 

(5. JO) { 

µ I (0) 

-µ 1 (O) 
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we arrive at the following expression for the gelpoint (cf. PK 46) 

( 5. 11) 
h 12 (t,1,1) + lh 11 (t,1,l)h22 (t,1,l) - µ 1(0) 

In--------------------
h12(t,1,l) + lh 11 (t,1,l)h22 (t,1,1) - µ2(0) 

In the symmetric case there are a number of simplifications. From 

(3.13) and (5.1), (5.2) we have for A ➔ 0 

t + e ' 
(5.12) 

Next (5.8) may be written as (cf. PK 47) 

e = o2 (t) = -­
t + e ' 

(5. 13) e 
t =-------------------

g 9{h12 (t,l,1) + ✓h 11 (t,t,l)h 12 (t,l,1)} - 1 

6. THE SUBSEQUENT PERIOD AFTER THE GELPOINT 

The solution (4.14) is also valid fort~ t. The only problem is 
g 

that the form of µ.(t), o.(t) and v(t) is not known beforehand. We repeat 
1 1 

that u 1, u2 and v are given'by 

( 6. l) 

In section 4 we have shown that the first moments are implicitly determined 

by (4.16) and (4.17). We shall start from these relations using the auxi­

liary variables w. determined by 
1 

(6.2) 
µ] 

w = -
l er ' 2 

Further we shall take v as an independent time variable. Then (4.16), 

(4. 17) can be replaced by (cf. 5.3) 

{ Cl = 02 + vw2, 
(6.3) 

c2 = 01 + vwl, 



and 

(6.4) 

From the definition of o. and v we obtain by differentiation 
1 

(6.5) 
. 
o 1 = -o 1 o 2 w 1 , 

. 
V = 

By taking appropriate combinations we have 

(6.6) 

17 

These relations can be used to eliminate o 1, o2, w1, w2 in (6.3) and (6.4). 

Differentiation of the first relation of (6.3) with respect to v gives 

Thus we arrive at the following pair of equations (cf. 5.5) 

(6. 7) 

Also this system holds for all values oft. Fort< t we had the trivial 
g 

solution c1 = c2 = 1 but fort> tg we have a second solution where c1 and 

c2 may vary with v. From the vanishing of the determinant of the system we 

obtain in view of (5.6) and (5.8) 

(6.8) - = 
V 

which in contrast to (5.8) should be considered as a time dependent rela­

tion between c1(v) and C2(v). We know already that fort= tg, and accord­

ingly v = vg, c 1 = c2 = 1. From (n.7) we may derive a second independent 

equation 
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or 

(6.9) 

The equations (6.8), (6.9) enable us to determine c 1 and c 2 as func­

tions of v. Of course the integration can be carried out explicitly in a 

few simple cases only. As soon as c 1(v) and c 2(v) are.known the auxiliary 

variables w1(v) and w2(v) can be determined using (6.4). Next o 1(v) and 

o 2(v) follow from (6.3). At this stage it is possible to recover the real 

time by determining v as a function oft from (6.5) as 

(6. 1 O) 

V 

t - tg = J 
V 

g 

dw 

In practical applications one might be interested only in the time 

behaviour ofµ, µ 1, µ2 and M. In that case it is not necessary to use ex­

plicit expressions of o1, o2, w1 and w2• By (6.8) and (6.9) c 1 and c2 are 

determined as functions of v. Next from (4.15), (4.16), (4.17) and (4.18) 

we have 

µ = h(t,c 1,c2) - vh 1(t,c1,c2)h2 (1,c 1,c2) 

µI = cl hl (I ,Cl ,c2~ - vh 1(1,c 1,c2)h2(t,c1,c2) 
(6.11) 

µ2 = c2hz<t ,c1 ,c2) - vh 1(1,c 1,c2)h2(t,C 1;c2) 

cl 
M = as h(l ,Cl ,C2) 

Finally from (4.16) and (6.10) 

V 

( 6. 12) t - tg = f (C 1-vh2)-1(c2-vh1)-ldv. 

7. A SPECIAL CASE 

V 
g 

, 

, 

We consider the polymerisation of a mixture consisting initially in 

monomers of type c3(3,0) and c 1(0,2). Thus fort= 0 the generating func-
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tion is g:Lven as 

(7. 1) 

The stoichiometric case corresponds with a= b. For future use we note that 

(7. 2) h 1 (t ,x1 ,x2) 2 2 h2(1,x 1,x2) 
. 2 

= 3 axl, = 3 bx2, 

and 

(7.3) h 1 I (1 'x I 'x2) 
4 

h12(1,xl,x2) h22(1,xl,x2) = 3 ax 1, = o, 

According to (3.12) we have 

(7.4) I A= 3 (b-a), 

so that 

(7.5) 

Next from (5.1) and (5.2) 

(b-a)e H 
(7. 6) a I ( t) = 

b H -H e - ae 
and 

(7. 7) v(t) 3 sinh H = 
H -H 

be - ae 

' 

ne b 
= ln -

a 

2b>-e -H 

b H -H 
e - ae 

-H 
(b-a)e 

a 2 (t) = ------
b H -H 

e - ae 

The possible gelpoint is given by (5.11) as 

(7.8) t 
g 

_ - 3/2 la( ill - /a) 
- --- In ------

b - a ,.- rn- ,.-
vb ( v 2a - vb) 

There is only a real value under the conditions 

(7. 9) _!_ b <a< 2b. 
2 

2 
= 3 b. 

Thus only when there are enough monomers of either kind gelation is possible. 

It may be of interest to construct a table which shows the values oft for 
g 
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various combinations of a and b. In the following table we have given the 

values of (a+b)t for a number of values of b/a. 
g 

(a+b)t 
g b/a 

00 0.5 

9.88 0.6 

8.24 0.7 

7.59 0.8 

7.32 0.9 

7.24 J.0 

7.30 ).] 

7.47 ]. 2 

8. ] ] ] • 4 

9.29 1.6 

]J.66 1.8 

00 2.0 

Table I 

It appears that a minimum is reached for a symmetric mixture. 

If we consider the spec1al case a= b = I we have from (5.12) and 

(5.13) 

(7. 10) 

and 

(7. I 1) 

{ 

µt(t) = 

3t v(t) = ---2t + 3' 

2 
2t + 3' 

t = 12 (I + fi) = 3.62. 
g 

a 1(t) = 

From (3.15) we obtain for the total number of molecules 

(7.12) ]J (t) 
5 4t = - - ----,--.,... 9 3(2t+3) • 

3 
2t + 3 ' 

Next we analyse the situation in the second period but we shall con-
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sider herE~ the symmetric case a= b = I only. From (6.8) and (6.9) we obtain 

(7.13a) 

and 

(7.13b) 

V 

dC I _1 
-= (2CI) 2 dC2 

This gives at once 

(7.14a) Cl 
9 -2 =-v 8 

and 

(7.14b) c2 
9 -3 

+ C =av , 

where C is a constant of integration. But we know that at the gelpoint 
3 v = -- = 1.061 we should have c 2 = I. This gives 

g 2v'2 

(7.15) C = -lfi=o.051. 
3 

Next from (6.4) we obtain 

(7. I 6) 

From (6.2) there follows 

- 5 -3 
= 32 v +C, 

(7.17) 
3 -2 2 

= B v - ) Cv 

Combining (7.16) and (7.17) we find for the first moments the expressions 

81 -6 9 -3 
= 256 v - 16 Cv ' 

(7.18) 
27 -6 15 -3 + 1 c2 

= 128 v + 16 Cv 3 
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The zeroth moment can be obtained from (4.16), (7.1), (7.2) as 

(7. 19) 

The total amount of free monomers participating in the reactions is deter­

mined by (4.18) and (7.1) as 

(7.20) M = I c2 + .!. c 
3 I 3 2. 

We note that the relations (7.17), (7.18), (7.19) and (7.20) are valid at 

all times. Fort~ tg we have simply c 1 = c2 = I which incidentally gives 

M = 1, but fort~ tg c 1 and c2 are dependent on tin a way yet to be de·· 

termined. 

The real time scale follows from (6.10) as 

V 

(7.21) f dv 
t - t = ------

g (~ v-3 + C)(i v-2 - ±. Cv) 
V 32 8 3 

g 

This is an elementary integral. A simple calculation shows that 

(7.22) t = 1 ln (9 + 32Cv3)-I (9 -16Cv3)-2 + constant. 
6C 2 

In table 2 we have combined v, 

her of values either fort~ t 

Fort-+ co we 

v(co) = 

µ (co)-
I 

= 

observe the 
I 

(..!.§_C)-3= 
9 

o, 

g 

µ.,µ,Min their dependence on t for a num-
1. 

as fort~ t. 
g 

following behaviour 

2.143, 

µ (co) = 3C2 = 0.010, 2 

µ (co) = c2 = 0.0033, 

M(co) 2 = 6C = 0.020. 
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t V µ1 µ2 µ M 

0 0 0.67 0.67 0.56 

0.5 0.38 0.50 0.50 0.39 

0.60 0.40 0.40 0.29 

1.5 0.75 0.33 0.33 0.22 

2 0.86 0.29 0.29 0~18 

2.5 0.94 0.25 0.25 0.14 

3 1.00 0.22 0.22 o. 1 1 

t 1.06 0.20 0.20 0.08 
g 

4 J.09 0.16 0.17 0.07 0.85 

4.5 ]. 13 0.13 0.14 0.06 0.71 

5 ]. 16 0. 1 1 o. 13 0.05 0.61 

5.5 1. 18 0.10 0. 1 1 0.05 0.53 

6 1.21 0.08 o. 10 0.04 0.47 

6.5 J. 23 0.07 o. 10 0.04 0.42 

7 J.25 0.07 0.09 0.03 0.38 

7.5 1. 27 0.06 0.09 0.03 0.35 

8 1. 29 0.06 0.08 0.03 0.33 

00 2. 14 0 0.01 0.00 0.02 

Table 2 
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