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\BSTRACT

If a population, which consists of individuals having genetic varia-
:ion at one locus, with two alleles A and a, evolves under the influence of
ligration and selection, gradients in the distribution of alleles may arise.
le consider the effect of asymmetry in the migration, and spatial dependence

f the selection process, upon the emergence and stability of such gradients.
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1. INTRODUCTION

Consider a population, distributed over a habitat containing genetic
variation at one locus with two alleles, A and a. Then the possible
genotypes are AA, Aa and aa. If the individuals of one genotype enjoy a
selective advantage in one part of the habitat and a disadvantage else-
where, it may happen that due to the combined effects of migration and
selection a gradient in the frequency with which one allele occurs in
the population is established. Huxley [13] first used the word cline for
a gradient in phenotype. In the present context we shall use this word
for a gradient of the frequency of alleles.

The occurrence of clines in habitats in which selection varies from
one part to another, was first studied mathematically by Haldane [12].
His work was based on a model proposed by Fisher [10], to describe the
effects of migration and selection on the evolution of a population.

Following Haldane, we assume that the habitat  is effectively one-
dimensional (as may be the case along a river bank), and we define the
position of a point in the habitat by a scalar variable x ¢ 9. Let
u(x,t) denote the fraction of alleles of type a amongst the total number
of alleles in the population at the point x in the habitat, at time t.
Then it was shown by Haldane that if the migration is independent
of the genotype the evolution of u with time can be described by the

equation

(1.1) ut = uxx + f£(x,u) Xxe Q, t>0,
in which subscripts denote differentiation. The change in u due to the
migration of individuals is represented by the térm u It is obtained
by drawing an analogy between the movement of individuals and the move-
ment of particles in a diffusion process. The change in u due to selection
is given by the function £, which is derived from the deathrates of
the three genotypes; the variable x reflects the inhomogeneity of the
habitat.

In deriving (1.1) Haldane assumed that migration was random and

vithout preferential direction, and therefore symmetric in x. However,




ions exist in which this is not so. For instance, a gradient in the
ility of the habitat due to the availability of food or existing
atures may cause migration to be asymmetric. For plants, asymmetry
migration may be caused by prevailing winds or the movement of
ating insects, etc. It was shown by Nagylaki [16] that if migration
owed to be asymmetric, but still independent of genotype, equation

must be modified as follows:

u =u + mu + f(x,u) x e @, t > 0.
t XX X

| is a constant, which can be regarded as a measure for the asymmetry
+ migration.

jince Haldane, equation (1.1) has been studied by Nagylaki 15,161,

» [5], Fleming [11], Fife and Peletier [8,9], Anderson [1], Peletier
;nd Saut and Scheurer [20]. This has led to an understanding of the
:ions on © and f which ensure the existence, monotonicity,

;ness and stability of clines in the presence of symmetric migration.
.s paper we shall extend a number of these results to situations
migration is not symmetric. In order to focus attention on the rdle
| by m and f we shall only consider clines in a habitat which is

ided at both ends, i.e. We choose @ = R.

he first mathematical study of clines in the pfesence of asymmetric
:ion was carried out by Nagylaki [16]. He investigated the ability of
rironmental pocket - an area where one genotype enjoys an advantage,
otherwise hostile environment - to sustain a cline.

lo interpret our results, it is instructive first to consider the

-s of selection and symmetric migration in a spatially uniform

it. For this situation, (1.1) becomes

u =u + f(u) xe R, t>0
XX

£(0) = £(1) 0. It is well known that this equation may have a sol-

of the form

u(x,t) ¢ (x-ct),




the function ¢(z) increases monotonically from ¢ = 0 at z = -
1 at z = », and ¢ = c*(f), where c* is a number associated with
.s solution represents a wave with a constant profile, which moves
. constant speed c¢ through the habitat. Ahead of the wave, the
ition consists entirely of one of the homozygotes, and behind

. consists exclusively of the other.

.f we now consider asymmetric migration, and add the term muX to
.ght hand side of (1.3), the function ¢ (x-ct) is still a solution,

w the wave speed c has changed into
*
c=c¢ (f) - m,

-he wave moves forward if c* > m and backward if c* < m. Thus,
:lection process- which determines c*— and the drift in the migrat:
‘'ed by m, can be regarded as being in competition with each other.
.t us finally return to a habitat in which the selection process

ls on the location. We shall usually assume that

- +
lim f(x,u) = £ (u) and 1lim f(x,u) = f (u).
X> — ® X> ®

‘e now that

£y <m o< * ().

‘ar to the left a wave like the one given by (1.4) would move forwe

x to the right, such a wave would move backward (Fig.1).
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e shall find that (1.5) and (1.6) are essentially the conditions
insure the existence of a cline. In addition it will appear that
large class of functions f, the condition on m is both necessary
fficient.
t is interesting to observe here that the sign of c*(f—) and
does not enter into the conditions for existence. Thus it can happen
lthough one allele is favoured in the entire habitat (c*(f_) and
have the same sign), a cline is established as a consequence of
symmetry of the migration.
'he plan of the paper is the following. In section 2 we shall collect
here necessary, derive some results about equilibrium solutions of
on (1.2), when f does not depend explicitly on x. These results are
n section 3 to obtain conditions for the existence, monotonicity
iqueness of clines. This section closes with a theorem giving
dons on £ and m, which exclude the existence of clines.
'inally, in section 4 we turn to the question of stability. Let

e the cline we found in section 3, and let

u = u(x,t;P) xe R, t=0
» frequency profile, which evolves from a given initial profile

u(x,0;¢9) = ¥(x) X e R.

re shall obtain criteria for Y(x), which guarantee that
u(x,t;¥) > ¢(x) as t > », x € R.

‘ticular, we shall show that if [y (x) - ¢(x)| is sufficiently small
rery x € R then u(x,t;y) converges exponentially towards ¢ (x)

» o for every x € R . Thus, if for some reason, the frequency profile
> cline is slightly disturbed, the mechanisms of migration and

:ion, as described in this model, will tend to restore the profile

» original cline.

'he presentation of the results, in particular their accessibility
>logists, owes much to the careful reading of the manuscript by Dr.

naap. It is a pleasure to thank her.



). PRELIMINARIES

In this section we consider the autonomous problem

2.1a) Ju" + cu' + f(u) =0 X € R
'2.1b) D u==) =0, u#wo) = 1

-n which we shall make the following assumptions about the function
(0,11 >~ R:

. £ o€ cl([o,lj);

2. £(0) = 0 and £(1) = 0;

3. f satisfies one of the following sets of conditions:

da € (0,1) such that

f(u) < 0 on (0,a), f(u) > 0 on (a,l)s
£f'(0) <O and f'(1) < 0.

he set of functions f which satisfy these conditions will be denoted by
-

; f(u) >0 on (0,1) and £'(0) >0, £'(1) < 0.

'he set of such functions f will be denoted by F2.

II. £(u) < 0 on (0,1) and £'(0) < 0O, £'(1) > 0.

'he set of such functions f will be denoted by F3.

ote that if in Problem I, f € F3, then we can transform Problem I by

eplacing u by 1-U, x by -X and -f(1-u) by T(J) to one in which T e F2.
Problem I has been the subject of many studies. Below we shall

ummarize, adapt and generalize a few results, drawing mainly upon the

ork of Aronson and Weinb' rger [2,3], Fife and McLeod [7] and Fife [6].

n particular, we shall discuss the dependence of the solution of Problem

, and the set of values of ¢ for which a solution exists, on the function f.

Equation (2.la) can be written as the system




du

dp
ax

Il

-cp - f(u)

and a solution u of Problem I can be viewed as an orbj
connecting the critical points (0,0) and (1,0). Since
Problem I is strictly increasing [7], we may introduce

variable. This leads to the problem

}P'+—f—§9—)+c=0

(2.2) (IO) 1
p(0) = 0.

It can be shown that the problem: find a solution p(u)

0 <ucx<1

that p(l1) = 0 is equivalent with Problem I [7].
Following Aronson and Weinberger [3] we consider

pc(u;v) of the regular problem

Jp'+—fé3)+c=o u >0

in a neighbourhood of the point (0,v). We can continue
as long as pc(u;v) > 0. This defines p_ on an interval
we wish to define P, on [0,1], we set pc(u;v) =0on [
that u N < 1. Now we let v + 0. Then for each u ¢ [0,

monotonically. Moreover pc(u;v) 2 0 for all v > 0 and

the limit

IA

p _(u) = lim pc(u;v) 0]
v+¥0

axists. It can be shown that if pc(u) > 0 on (0,a) for

the (u,p)-plane
>lution of

an independent

oblem IO such

»lution

v) for u > 0

). Since -
.3 in the event
(u;v) decreases

',1]. Hence

a e (0,17,




then pc(u) is the maximal solution of Problem IO. Still following Aronson

and Weinberger [3] we now define the set
T, ={wp:0<u<t, p>0, p =p_(a)}.

Clearly it may happen that pc(u) = 0 on [0,1]. In that case Tc = @. Define
D, () ={ce R: Tc;égé).

dne obtains from the standard theory of ordinary differential equations
chat if f € F1 i F3, Dy(f) = R, and that if f F2, D, (f) =
(-, =2{£'(0) }"1.

Next, we define the set
Ko(f) = {c € Do(f): pc(u) >0 on (0,11}.

This set is nonempty because c € Ko(f) if -c is large enough [3], and it

ls bounded above as we shall show later. In addition we define
cO(f) = sup{c: ¢ € Ko(f)}.

£ f e F2, Do(f) is alproper subset of R and we have two possibilities:
‘a) co(f) < -2{f'(0)}°. In this case pCO(u) vanishes at some point
ue (0,1].
‘b) co(f) = —2{f'(0)}%. In this case pco(u) may or may not vanish at some
point u € (0,11].
le shall denote the set of functions f € F2, for which possibility (a)

wolds by F,, and the set .or which possibility (b) holds by Fop-

EMMA 2.1, (i) (-<v,co(f)) c Ko(f), (ii) pc(u) depends continuously on
: for c € Ko(f).

'ROOF. (i) Let c € Ko(f) and let c < ;. Then ¢ € Do(f) and, because p~(u) > 0
B c
m (0,11, it follows from Lemma 2.5 of [7] that




u) > <u<1.
pc( ) pa(u) for O u 1

Thus pc(u) > 0 on (0,1], whence c ¢ Ko(f), i.e. (-»,c] c Ko(f). The res

now follows from the definition of co.

(ii) This can be proved as in Proposition 4.5 of [3]

LEMMA 2.2. If c = co(f), Problem I has a strictly increasing solution.

PROOF. By definition there exists a sequence {cn} c Ko(f) such that
c +c,asn->o. If ¢ < c_, then by Lemma 2.5 of [7]
n 0 n m

p . (u) 2p (u) for 0 <uc<x<i,
Cn Cm

whence {p_. } is a nonincreasing sequence. Since Pe. 2 0 for all n > 1 or
n n

[0,1], we may define a function

g(u) = lim pcn(u) for 0 <u < 1.

n-> o

Moreover g is a solution of the problem

+c =0 q(0) =0

on any right-neighbourhood of u = 0 in which q > 0.

We distinguish two cases:

(1) £ € Fl u an U F3. By the definition of CO’ and the continuous
dependence of pc(u) on c, for c € Ko(f), there exists an a € (0,1]

such that
g(@) =0, g(u) >0 for 0 < u < a.

As in the proof of Theorem 4.1 of [3] one can show that o = 1.

(ii) £ € F2b' Since pcn(u) 2 0 on [0,1] for all n 2 1, it follows that
gu) 20 for 0 £u <1,

If g(a) = 0 for some a ¢ (0,11, we can complete the proof as in case (i




assume that
g(u) > 0 for O <u £ 1.

‘he unique orbit (u,p) which approaches the singular point (1,0)

h the set
S ={(u,p): 0 <u<1l1l, p>o0}

1lly enter S from the singular point (0,0). This establishes the
mce of an orbit connecting (0,0) and (1,0) and hence, of a solution

blem I.

Let ¢(x) be a solution of Problem I, in which c = CO' Then the

.on u(x,t) = ¢(x-c~t) is a travelling wave solution of the equation
o g q

rave speed c If f € Fl U F3 then Do(f) = IR and if f ¢ F2, then

0"
1
= (-« ,2{£f'(0)}?]. Following Stokes [21] we say that if
1
2{£'(0)}°, i.e. f € an, the corresponding wave ¢ if a pushed wave,

1
e = -2{£'(0)}?, i.e. f € F2b’ ¢ is a pulled wave.

lext, we consider the problem

) o'+ f (u)

o S tc=0 p(l) =0

:fine the function §c(u) on [0,1] as the limit of solutions

1) of the problem

- , f(u)
(I\)) P +—~——p

0 p(l) = v,

v > 0. Then §c(u) is the maximal solution of Problem I Proceeding

0"
Problem IO, we define

EC= {(up): 0 <u<1, p>o0, p={>c(u>}




5 D, (f) {ce R: T # @}
| 1 c

K, (£) {c € D, (f): f)c(u) >0 on [0,1)}

1
cl(f) = inf{c: c € Kl(f)}'

1
If f ¢ Fl U F2, then D, (f) = R, but if f ¢ F3, D, (f) = [2{f' (1)} 7%, =),

2 can distinguish two possibilities:

L _

1(f) > 2{f'(1)}2. In this case pc (u) vanishes at some point
1

e [0,1).

1(f)

>int u € [0,1).

I

1 —
2{f'(1)}%. In this case pcl(u) may or may not vanish at some

se (a), we say that f € F3a and in case (b) we say that f € F3b'
[n a manner, entirely analogous to the one used to prove Lemma's

id 2.2 we prove

2.3. (i) (cl(f),m) c Kl(f)’ (ii) ﬁc(n) depends continuously on c

€ Kl(f)'
2.4. If c = cl(f), Problem I has a strictly increasing solution.

"inally, we relate the two wave speeds 5 and cy- Suppose 4d € Ko(f).

because trajectories in the phase portrait cannot intersect,

L(f)' Thus, Ko(f) n Kl(f) = @, whence, by Lemma's 2.1 and 2.3:

<
0 = %1
't cO = Cl' This is the content of the next Lemma.
2.5. =
5 cO c1

If £ € Fl’ the equality for o and <y follows from the uniqueness
: traveling wave solution [7].

suppose f € F3. For convenience we write PCO = p, and 501 =Py Then

0

Py(0) =0,  py(1) =0




Pl(O) z 0, pl(l) = 0.

Suppose that o < cy- Then if pl(O) = 0, it follows from Lemm:
chat po(u) > pl(u) on (0.1). However, a local analysis near the si
oint (1,0) reveals that po(u) < pl(u) in a left neighbourhood of
1 = 1, whence we have a contradiction.

On the other hand, if pl(O) > 0, then f ¢ F3b' i.e. c, = 2{f"'
‘n order to have an orbit (u,po) connecting (0,0) and (1,0), (1,0)

L

e a node. Since cO < c1 this is only possible if cO < =2{f'(1)3}=.
‘or such values of c, the principal directions of (1,0) do not poil
-he set S, whence we have a contradiction.

Next, suppose f € F2. By defining the variables u = 1-u, p(3J)

‘(W) = -£(1-4), € = -c, equation (2.2) becomes
o+ H Ly
P

lote that f € F3 and

d € Ky(f) &= -d ¢ Kl(E)

d e K () = -d ¢ 1;0(%).
lence
(F) = _cl(f) and cl(f) = —Co(f)-

.e. co(f) < Cl(f) implies co(%) < cl(%). Thus, we are back at the

andled above. This completes the proof.

Henceforth we shall wite
c (f) = cl(f) = c*(f).
EMMA 2.6a. Let p1 and p2 be the maximal solutions of the problems

£, (u)
2.3) p' + —

+ c, = 0 p(0) =0 i=1,2

11

[7]




12

and let pi >0 on (0,1). Suppose £, < £, on (0,1) and ¢, < c.. Then if

1 2 1 2
E2 € Fl U F2,

(1) P, 2 P, on [0,1];
(ii) if fl < f2 on (a,B) < (0,1), then Py > p, on (0.,17;

(iii) if c, < c

1 o then P, > p, on (0,117.

SROOF. (i) Let v > 0 and let P,y be the solution of the problem
14

fl(u)

+c, - v=20, p(0) = v.

p’ + 1

p
lhen by Lemma 4.1 of [3]
>
pl,v 2 p, on [0,11].
Jow let v + 0. Then Py ¥ P, and hence
14

>
P, 2 P, on [o,117.

(ii) and (iii). Write z = P, = Py- Then

2 2 1
(2.4) z' - z = - +c., - cC,.
p,p, p, 2 1
“hoose ug € (0,1), and define
u
(2.5) ®(u) = z(u)exp J {-fz(t)/Pl(t)pz(t)}dt.
u
0
hen
[ fz(u) - fl(u) ] u
o' (u) = I : rl(u) + c2—c1J exp fu {—fz(t)/pl(t)pz(t) }at
0
3y (i)

®' > 0 on (0,1)




and

' > 0 on (o,R) in case (ii),

' > 0 on (0,1) in case (iii).

Thus
®(u) > 0 on (a,1].

3ince f2(u) > 0 near u = 1, the factor of z(u) i:

vhence z(u) > 0 on (ao,1].

LEMMA 2.6b. Let P, and P, be the .naximal solutic

f. (v

p' + +c, =0 p(l) =0

and let p. >0 on (0,1). Suppose £, < £, on (0,1

17 72
f1 € Fl U F3,

(i) P, < p, on [0,11;

(ii) 4if f1 < f2 on (a,B) < (0,1) then P, < p, ¢
(iii) if ¢, < c, then p1 <p

) 9 on [0,1).

2

PROOF. The transformation G = 1-u, B(E) = p(l—a)
yields

Since f, € Fl U F2, we may now apply Lemma 2.6a
result.

) is bounded,

the problems

c1 < c¢c,. Then if

) = £, (1-1),
1

:ain the desired




2.7. Suppose f1 < f2 on [0,1] and £, < f2 on some int

ret £. ¢ F, v F., then
s € Fu v Py when
if f2 £ F2b' C*(fl) > c*(fz);
, S L L.
if f2 € F2b’ c (fl) > c (f2), and, if in addition,
Ei(O) < fé(O)i we have strict inequality.
ret £, ¢ F, v F_, then
i 1 3

, * *
if f1 ¢ F3b' c*(fl) > c*(fz),
if f1 € F3b’ c (fl) > c (f2), and, if in addition,

Ei(l) > fé(l), we have strict inequality.

Let £, € F3 and f

* *
1 € F2. Then c (fl) > c (f2).

2
.(al). Let P, and p, be the maximal solutions of Probl

1 2
¢ F2b’ pl(l) = p2(1) = 0. However by Lemma 2.6a (ii),

sponding to respectively £, and £, and c*(fl) and c*(f

ve have a contradiction. If f1 € sz, we have by defin

Il

* \ L e L *
c (fl) -2{f1(0)} > —2{f2(0)} > c (f2).

In this case

* . 5 , 5 * .
c (fl) —2{f1(0)} > —2{f2(0)} > c (f2).

ly, if fi(O) < fé(O), we have strict inequality. Parts

roved similarly.

2.8. Let {fn} c Cl([0,1]) be a nonincreasing (nondecr
nctions satisfying Al - A3, which converges in Cl([O,l
ion f € Cl([O,lj)'which also satisfies Al - A3. Then c

*
n) ¥ ¢ (f)) as n > o,

. Suppose that {fn} is nonincreasing. Then by Lemma 2.




cX(f) <c®f ) < c*(f) for all n > 1.
n n+

1
c*(fn) 4 E, where ¢ < c*(f), and it remains to prove that c = c*(
Suppose to the contrary that c < cX(f). If £ ¢ Fl U F2 it follows
Lemma 2.1 that c e Ko(f), whence the maximal solution pa(u,f) of

am T belonging to c and f satisfies

OI
pa(u,f) >0 for 0 < u< 1.

Proposition 4.5 of [3] it can be shown that pc(u,f) depends
nuously on f in the Cl—topology and on c. Hence (2.6) implies that

large enough,

<
pc*(f )(u,fn) >0 for 0 <u = 1.
n
suppose f € Fl u an. Then we assert that f e Fl u F2a for n large
1. If f e Fl' this is plainly true. If f ¢ an, it follows from tt
‘hat if, to the contrary there exists a sequence {fu} c {fn} such

?u € F2b for every u = 1, then on the one hand

.1

-2{f}'1 ()} > =2{£' (0)}? as u + =,

*
c (£ )
u
1 the other:
- 1
c*(fu) o< (E) < —2{£'(0)} 7.

rontradiction proves the assertion. But if fn € F1 u F2a'

p *(f)(1,£) =0

contradicts (2.7).
lext suppose that f € F2b' We now distinguish two cases:
€ sz for n large enough;

‘here exists a sequence {fu} c {fn} such that fu € F._ for all u =

2a




In case (i)

c = lim c*(fn) = -2 lim {fr'l(O)}”z = —2{£'(0)}° = ¥ (f)

n->e n-o

. - *
. contradicts the assumption c < c¢ (f).

In case (ii)
(1,fu) =0 for all u 2 1,

pc*(f )
u

. contradicts (2.7).

If f € }%, we find that the solution g of the problem
q-+9&(-u-')~ +c=0 q(0) = 0

f and ¢ = ¢, and depends continuously on

sitive on (0,1] if g

c, when ¢ is near c. Thus, if g f, c= c and n is large

n
h, the corresponding solution a, is also positive on (0,1]. However,

= 0 for all n 21, i.e. we have a contradiction.

ISTENCE, UNIQUENESS AND MONOTONICITY OF CLINES

We now turn to the study of equilibrium solutions of equation (1.2).

fically we consider the problem

) f u" + mu' + £(x,u) =0 X € R
(I u=e) =0, u(+e) =1.

the function f£:R x [0,1] R in this problem we shall make the

wing hypotheses.

has continuous derivatives fX and fu and is, together with fx and
0’ uniformly bounded in R x [0,1].
(x,0) = £(x,1) = 0 for all x € R.
. + -
here exist functions £ ,f : [0,1] + R which satisfy the assumptions

1 - A3, and a constant N > 0 such that
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f(x,u) < f_(u) for x £ -N, 0

<u<1,
+
f(x,u) =2 £ (u) for x =2 N, 0 <ucx<1
111 write
- - + +
c = c*(f ) and ¢ = c*(f ).

iM 3.1. Let f satisfy the hypotheses H1 - H3, and let c+ < c .

+ - , ,
‘or each m € (c ,c ) there exists a solution of Problem II.

{. Observe that in [8], where m = 0, the conditions on f were such

‘unctions f+ and £ could be found such that c+ <0<c .

As in [8] we establish the existence of a solution by constructing
sr solution u and a sub solution u such that u > uon R:

jince m < c_, it follows from Lemma 2.1 that m € KO(f—)° Hence

exists a function ¢: (-« ,-N] - (0,1] such that
¢" +mp' + £ (¢) =0 -o < x< -N
{ $p(-») =0, $(-N) =1

(x) > 0 on (-« ,-N). Define

_ f ¢ (x) for - ® < x < =N
u(x) = 1

1 for -N £ x < o,
m (- ,-N) we have, in view of H3:
u" + mu' + £(x,u) < 6" + mp' + £ (¢) =0
i (=N,®), a" + mu' + f(x,ﬁ) = 0. Finally, u has a concave corner at
. Thus u is a super solution of Problem IT.

+ +
lext, sincem > ¢ , it follows from Lemma 2.3 that m € Kl(f ).

‘ore we can find a function y: [N,») = [0,1) such that




o, N < x < o,

1,

Vo mp o+ £ (P)
{ Y(N) = O, P ()

'(x) > 0 on (N,»)., It is now easily verified that the function

I 0 for -» < x <N

E‘_(X) =1 w(x) for N < x < @

subsolution of Problem II. Clearly u > u, whence the existence of

ion of Problem II follows from [19].
If f(x,u) tends to a limit in Cl([O,lj) as x >+ and as x > -,
btain a result in terms of the limit functions. We replace H3 by:

. + -
There exist functions £ , £ : [0,1] =+ R which satisfy the assumpt

o +
%3, and in addition, if f € fl, then df /du > 0 as u = a, such th

lim £(x,u) = £ (u)
X—>0
lim f(x,u) = £ (u)

X>— o

) Cl([O,l]) norm. We write again
- _ *
c = c*(f ) and c+ = C (f+).

. +
EM 3.2. Let f satisfy the hypotheses H1, H2 and H3*, and let ¢ <

+ - .
for each m € (¢ ,c ), there exists a solution of Problem II.

. Define

IA

max {f(x,u): x £}

£(&,u)

£(g,u) = min {f(x,u): x > £}.
*
oy H3 , as & » o,

F(-E,u) ¥ £ (W) and £(E,u) + £ (u).




ver, for & large enough, f(-£,u) and f(g,u) satisfy assumptions

A3. Hence, by Lemma 2.8, as & » o,
c*(f(~a,-)) + ¢ and ¢*(£(E,+)) ¥ ¢
for £ large enough
c(E(E,*)) <m < F(E(-E,4)).

nstruction,

f(x,u) 2 £(&,u) for x =2 §&, 0

IA
o

IA
—

IA
o

IA
—_

f(x,u) < £(-£,u) for x < - g, 0

fore the conditions of Theorem 3.1 are satisfied, and we may concl

1 cline exists.

If f does not depend explicitly on x, it is well known that a solu
oblem II, if it exists,. is strictly increasing. We shall show that

property is preserved if fx 2 0. The proof proeceeds in two steps.

_3.3. Suppose f satisfies H1 and f (x,u) 20o0on R X [0,1]. If u
solution of Problem II, it has the following properties:
uppose there exists an interval (a,b), a 2 -, b < =, such that
> 0 on (a,b) and u'(b) = 0. Then (i) u"(b) < 0 and (ii) if m < O,
exists a ¢ > b such that u(c) < u(a).
1ppose there exists an interval (b,c), b > —o, ¢ £ o guch that
>0 on (b,c) and u'(b) = 0. Then (i) u"(b) > 0 and (ii) if m > O
exists an a < b such that u(a) > u(c).

(a) Set a = Xy b = X, and u(xi) = u., i=1,2. Since u' >0
|7X,) we can define the inverse function y1:[u1,u2] - [xl’XZJ by
2)) = x.

2
[f we multiply (3.1a) by 2e ™0 and integrate we obtain




u
{emxu'(x)}2 =2 f e2my1(s)f(y1(s),s)ds X € (Xl’x2)

u(x)

eance, ifm# 0

. u2 U2 1
_ _ -7
Liamx_o Mgy _ f {2 J ezmyl(s)f(y (s),s)ds1 at.
m 1 J
u(x) t

[8] it can now be shown that if u"(x2)'= 0

l%e—mx_e—mxz) s o
m

is not possible. If m = 0, the situation is as in [8] and again
) < 0.
Since u"(xz) < 0, there exists a right neighbourhood of x_, in which

2
< 0. Let (x2,x3) be the maximal interval in which u' < 0. Since

»1 as x > =, X4 < o, We shall show that u3 = u(x3) < u, if m < O.
Suppose to the contrary that u3 > ul, and let & € [Xl’x2) be such that
= u3. Then N

X3 2

-{u'(g)}2 + 2m J {u'(x)}zdx + 2 J {f(yi(s),s) - f(y2(s),s)}ds =0
: 2,

y2 is the inverse of u on [x ,x3]. Since fx >0, f(yl(s),s) <

2
5) ,s8) . Hence the first term and the third are nonpositive. If
, the second term is negative, and we have a contradiction. It
< .
vs that u3 u1 ,
Che second part of the lemma can be proved in an entirely analogous

-~

iM 3.4. Suppose f satisfies H1 and fx(x,u) >0on R x [0,1].

be a solution of Problem II. Then u'(x) > 0 for all x € R.

. Let u, € (0,1), and let x, be the largest value of x such that

0 0
= Uy Then u(x) > uO’ for all x > Xqe
Suppose there exists a £ € (x,,®) such that u'(g) = 0. Then one can

0




distinguish two cases:

(i) There exists an x1 > XO such that u'(x) > 0 on (x

(ii) There exists a sequence {En} c (x

0'¥) -
,®) such that En - x _and

0 0

u'(gn) = 0 for all n > 1.

- In case (i) it follows from Lemma 3.3 that if m < 0, there exists
an x, > 3 such that u(x2) < u(xo) = Uy, which contradicts the definitic
of xo. In case (ii) it follows from Lemma 3.3 that xO is the limit from
the right of a sequence of points {En} at which u attains a local minimu
Moreover, if m < O, u(€5+1) > u(gn) for n 2 1, and hence, by the continu
of u, u(En) < u(xo) = uo. Since En > xo this contradicts the definition
xo. Thus we have a contradiction if m < 0. Because uy was arbitrary this
implies that u'(x) > 0 for all x € R, provided m < 0.

Next, let yO be the smallest value of x such that u(x) = uo. Then
1(x) < Uy for all x < yo. Proceeding as above, we find that u'(x) > 0 fo
all x € R, provided m > O.

Finally, if m = 0, we are back at the case treated in [8]. This
completes the proof.

Next we turn to the question of uniqueness. We begin with two

>reliminary lemmas.

JEMMA 3.5. Let f satisfy Hl1 and let fx(x,u) 2 0on R x [0,1]. Suppose
there exist two solutions u1 and u2 of Problem II, with u1 < u, on an
interval (a,b), where - » < a < b < o, and ul(a) = u2(a), ul(b) = u2(b).

"Then a = - gand b = + o,

’ROOF. To begin with we shall show that a and b cannot both be finite.

'or suppose that —® < a < b < ®», then
3 1 ] )
'3.3) ul(a) < ué(a), ul(b) > u2(b).

5y Theorem 3.4, u, and u, are both strictly increasing. Hence we can

lefine the inverse functions vy

yi(ui(x)) = X.



define
fi(u)=f(yi(u),u) ul(a) < u < ul(b).

the function pi = ui satisfies

£, ()

p' + + m=20 on (a,B),
a = ul(a) = u2(a) and B = ul(b) = u2(b). Moreover, by

pl(a) < p2(a).

in addition fl(u) 2 f2(u) on (a,B), because Yy = Yor

an easy refinement of Lemma 4.1 of [3] that
pl(u) < p2(u) on [a,B]
n particular

p, (B) = p,(B),

ui(b) < ué(b),

contradicts (3.3).
Thus, the function u1 - u2 can have at most one finite
denote it by c. Suppose

> < < f - >
u1 u2 for x c and u1 u2 or x c,

we may have to relabel the two functions. Then 0 < ui

t follows from Lemma 4.1 of [3] that

pl(u) < p2(u) on (vy,1),

Jlows

We

u, (c)
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there v = ui(c).
Suppose m = 0. Then if we multiply (3.1a) for p, by 2pi and integrate
rom y to 1, we obtain after subtraction
1 1
2[p2(y) - p- ()] + 2m | (p,-p)du + 2 | (£,~£)du = 0
¥
since the first term is positive and the second and third are nonnegative,
7e have a contradiction.
Next, suppose m 2 0. Then proceeding as before, but integrating over

:0,Y) we also obtain a contradiction. This completes the proof.

Let u:R -+ (0,1) be a solution of Problem II. Then, by Theorem 3.4,
1'(x) > 0 for all x € R. Hence we can define the inverse yv:(0,1) > R

x, and the function

f u by y(u(x))

3.5) g(u) f(y(u),u) ue (0,1)-

n addition we define
3.6) g(0) = 0, g(l) = 0.

n the following lemma we derive a number of properties of the function g
efined by (3.5) and (3.6). However, to obtain sufficient smoothness near

Ll =0 and U = 1, we need to strengthen the hypothesis HI1.

*
1 . f satisfies Hl and there exist constants N > 0 and v > 0 such that
XXu(-,O) is continuous and bounded in (-« ,-N) U (N,®) and fyyu is
ontinuous and bounded in (-« ,-N) x [0,v) and (N,®) x (1-v,1].

EMMA 3.6. Let u be a solution of Problem II in which f satisfies H1%*, H2,
3*. Then the function‘g defined by (3.5) and (3.6) has the properties

- +
i) g € Cl([O,lj) and (ii) g'(0) = fu(O), g'(l) = fu(l).

ROOF. Clearly g € C(0,1). Moreover, since u(x) - 0 as x + -,

lim g(u) = lim g(u(x)) = lim f(x,u(x)) = f_(O) =0,
u>0 X>— X¥— ©




we have used H3*. Sim.larly, since u(x) - 1 as x » o,

lim g(u) = lim g(u(x)) = f+(1) = 0.
u~>1 X> o

’ by (3-6)/ g € C([Orl]).
Next,

g'(u) = fx(y(u),u)y'(u) + fu(y(u),u),

(1

g' € C(0,1). Thus, it remains to investigate the behaviour of g'

+ 0 and as u + 1. Observe that

fx(x,u(x)) 0 (x)
g'(u(x)) ) © T (%) + fu(x,u(x)).
*
lim f (x,u(x)) = £ (0).
u u
X+ — ®

g e c([0,1]), lim u(x)/u'(x) exists ([4], pP. 371). Also by the
x> =
value theorem

f (x,u(x)) = £ (x,v(x))u(x),
X Xu
0 < v(x) < u(x), and, using the mean value theorem again,

fxu(x,V(X)) = f XWX v(x) + £ (X0,
0 < w(x) < v(x). Since fqu is bounded for - x large and w(x) sma
irst term vanishes as x - -, Since fu(x,O) is decreasing as x
ases, and bounded below by f;(O), the boundedness of fxxu(x,o)

s that £ + 0 as x > —o_, Thus

xu(x,0)

1im f (x,v(x)) =0
xu
X> = ®




lim  g'(u(x)) = £_(0).
X> — v
Similarly
+
lim g'(u(x)) = fu(l).

X> + ®

To ensure uniqueness of solutions of Problem II, it is not er
just to require that fx(x,u) >0 in R x [0,1]. For instance, if
= 0 in R x [0,1], and a solution exists, then any of its translat
also a solution. A less trivial example of nonuniqueness is given

To remove this possibility, we introduce the following hypothesis.

H4. fx(x,u) 2 0 for x € R and u € [0,1], and one of the following
statements holds.

(i) There exists an interval I ¢ IR such that
fX(x,u) >0 for x € T and u € (0,1).

(ii) There exists an interval J < (0,1) such that
fx(x,u) >0 for x € R and u € J.

- +
In addition, if £ ¢ F2 or £ e F_, we need to restrict the c

3
idmissible solutions of Problem II to insure uniqueness.

_ - L
JEFINITION. Suppose f ¢ F2 and m < —2{fu(0)}2. Then we shall deno

" the set of functions £: R (0,1) with the property:

-£
lim sup e X;(x) < o,
X > - ® '
’here

L2 s - %m—%{m2—4f;(0)}%.

+ + 5 +
similarly, if £ ¢ F3 and m > 2{fu(1)}2, we shall denote by S the

25

1)




ions £: R - (0,1) with the property

) 2ty
lim sup e “{1-¢(x)} < o,
x>+
+ + L
25> mm - B -ag (1)}
Suppose u(x) is a solution of Problem II, then

u" + mu' + g(u) = 0,

g is defined by (3.5) and (3.6). Since g € Cl([O,lj) by Lemma 3.6
1 —
Llows that, if m < —2{g'(0)}’2 = —2{fu(0)}%, then

. u'(x) _ + -
lim TG - L€ {LO,LO},
X> — ©

+ -

L. = - %m + %{m2—4f (0)}%.

0 u

- - +

is given that u € § , L cannot be equal to LO’ whence L = LO. This

in particular that the orbit (u(x),p(x)) associated with u(x) is
i . . +

11l. In a similar manner, solutions u belonging to § correspond to

iximal orbit entering (1,0) from S.

+
iM 3.7. Let f satisfy the hypotheses of Theorem 3.2 and ¢ < m < cC

'ff € F2’ Problem IT has a solution in S~

F £ e F3’ Problem IT has a solution in S'.

Let f € F2. We shall show that the solution constructed in Theorem
'tually belongs to S . Note that because m < ¢ < -2{f;(0)}%, S is
lefined.

lecall that in the proof of Theorem 3.2, a supersolution ﬁ(-;&) was




constructed, which satisfied

{a-- + mu' + £(£,u) = 0 on (- ,£)

u(-;g) =0, u(g;E) =1.

dere u corresponds to the maximal orbit entering the singular point (0,0

in the (u,u') plane. For this orbit we know that

1im u' (x;8)

2 5
= -km + %{m“-4f (£,0)}
- u
x> - u(x;&)

2 - L
> -4m - L{m -4fu(0)}

lor -£ large enough. Since u(°*) < G(-,g) for some large value of - £, it
‘ollows that u € S .

The proof of part (ii) is similar.

We are now in a position to discuss the uniqueness of solutions of

>roblem IT.

'HEOREM 3.8. Let f satisfy the hypotheses H1*, H2, H3* and H4.
‘a) If f ¢ Fl U F3 and £ ¢ Fl U F2, Problem II has a unique solution.
'b) If £ € F2 and m < cn, Problem IT has at most one solution in S,

+ + L ot
‘c) If £ € F3 and m > ¢ , Problem II has at most one solution in S .

'ROOF. Let uy and u, be two different solutions of Problem II. Then by

.emma 3.5, we may assume, without loss of generality, that uy < u, on R

et vy be the inverse of u, and let gi(u) = f(yi(u),u) for 0 <u<1.
‘hen by H4
3.7) gl(u) > gz(u) for 0 £ u <1,

nd there exists an interval (a,B) < (0,1) such that
3.8) gl(u) > gz(u) for a < u < B.

The functions uy and u, satisfy the system of equations




! - -
p' = -mp - g, (u)
gi(u)
p'+p +m=0 0<uc<i1 i=1,2
) p(0) = p(1) = 0.

all denote the solutions of (3.19) and (3.10), which correspond wi
ol u, s by Pi and Py

- +
Suppose f € Fl u F3 and £ e Fl u F_. Then g, € Fl and p, and p

ly maximal solutions entering (O,O).2The same is true if f ¢ FZ?
" and u, € S7. This means that we can apply Lemma 2.6a to conclude
(3.7) and (3.8) that p2(1) > pl(l), which contradicts (3.10).
finally suppose that f e F3. Then either f£@ ¢ Fl U F2, in which ¢
Fl and P, and p, are evidently maximal solutions entering (1,0), o
F3 and the fact that pl'and p, are maximal is ensured by the fact
n > c+ and u, € S+. The result follows now from an application of
2.6b.

o conclude this section we explore the existence of clines when
:+,c_), and of clines which do not belong to S™ (when f e F2) or

+
1en £ € F3).

iM 3.9. Let f satisfy hypotheses H1*, H2, H3* and H4. Then Problem

10t have a solution f one of the following sets of conditions is

fFied.

TeF uF,f eF uF and m ¢ (c+ c );

) 1 3’ _1 2 ! !
€ F2 and m > c ;

+
g € F3 and m < c .

Suppose to the contrary that u is a solution, y its inverse and



[N

g(u) = f£(y(u),u). In view of hypothesis H4, we have
- +
(3.12) f (u) £ g(u) < £ () 0O=<uc=<l1i,

where for some values of u, the inequalities are strict.
(a) It follows from (3.11) that g € Fl' Hence m = ¢*(g) [6], and
therefore, by Lemma 2.7,

+ -
c =c*(f+)<m<c*(f)=c,

which contradicts the assumption about m.
(b) Now we may conclude from (3.12) that g € F2. Hence by Theorem 2.4 of

[7] and Theorem 4.15 of [6] m < c*(g). Thus, using Lemma 2.7 again, we

find that
* - -
mSC(g)SC(f)=C,

which contradicts the assumption about m.

The case (c) is proved similarly.

REMARKS. We may deduce from the monotonicity hypothesis H4 that
. - +
(a) if £ « Fl U F3 and f ¢ Fl U F2, then

(b) if £ e F2 or £ ¢ F , then

3

+ -
c < c.

- + - +

PROOF. By H4, £ < f and £ < f on some interval (a,B) < (0,1). Thus
+ -—

Lemma 2.7 may be applied, and it follows that ¢ < c .

(a) Suppose f e F,. Then if f+ € Fl' the result follows from part (al)

1
>f Lemma 2.7 and if f+ € F2, it follows from part (a2) because
- +

E (0) <0 < £ (0).

u u

Next, suppose that £ e F3.




+
To see that we cannot expect a better result than ¢ < ¢ , we

ler the function

f(x,u) = u(l-u) {1l + s(x)u(i-u)}
s € Cl(Ii), s' > 0 and

s(-») =0, s(«®) € (0,1),
(%,°) € F2b for any x € R and

c*(f(x,°)) = -2, for all x ¢ R.

£ f € F2, Theorems 3.8 and 3.9 still leave the possibility of

.ons of Problem II, which do not belong to S ifm<c . Similarly
€ F3, Theorems 3.8 and 3.9 do not exclude the existence of solutic
olem II, which do not belong to S+ ifm > c+. In the next theorem
111 show that if m < ¢ (f e F2) or m > c+ (f+ € F3), an infinite

- +
: of clines exists which do not belong to S or S, respectively.

M 3.10. Let f satisfy the hypothesis H1*, H2 and H3* and suppose
). Suppose one of the following sets of conditions is satisfied.
"€ F2 and m < c ;

e F3 and m > c+;

'roblem II has an. infinite number of solutions.

ARY 3.11. Of the solutions constructed in Theorem 3.10 only one c

rto S (case(a)) and only one can belong to S+ (case b)) .
To begin with we consider the problem

u" + mu' + £(x,u) = 0, x e (M,®),
(P) {

u(M) = a, u(e) =1,

a € (0,1) is so chosen that
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(3.12) fu(x,u) <0Oon R x (a,1]
and -M is so large that
(3.13) m < c*(£(M,°)).

We shall first show that'Problem P has a solution. Let uy and u, be

functions which satisfy

u," + mu

v + _
1 5 + f (ul) = 0,

u2" + mu,. + f(M,u2) = 0,

N

ul(M) = u2(M) = qa, ul(m) = u, () =1,

Let Yi = {(ui(x), u{(x)): x € R} be the orbits which enter the point
(1,0) in the phase plane, coming from the region S = {(u,p): 0 < u < 1,
p > 0}. Since both f+(u) >0 as £(M,u) >0 for 0 < u < 1, Y; can only
enter S through the half-line {(O,p)lp > 0}. This implies that for some
value X, € R, ui(xi) = 0. By an appropriate shift of the variable we
thus obtain the function u, and u.,.

1 2

+
Because f(M,u) < f(x,u) < £ (u) for x > M, u, is a supersolution of

Problem P and u2 is a subsolution. Moreover, it fillbws from (3.12) and
the maximum principle that ul(x) > uz(x) for all x > M. Thus we may conclude
that Problem P has a solution ¢a' Since at stationary points ¢a" <0,
¢a can have no minima and thus ¢a' > 0 for x =2 M.
Denote by y the inverse of the function 9, while ¢a' > 0 and introduce

— 4 . .
pu(u) = ¢a (y(u)). Then P, satisfies

g(u)

(3.14) o+
P p

"+ m =0, p(l) =0,

where g(w = f(y(u),u). Let Y, denote the orbit {(¢a(x)r¢a'(x))= % ¢ R}
Clearly Yy enters S from (1,0) and cannot leave S through the line-,
segment { (u,0): 0 < u < 1} because f£(M,u) > 0 on (0,1).

To bound Y above, we consider the maximal solution ﬁ of the problem
o




pr+ MW oo, B =0
1Y

m < c*(f(M,-)), m € Ko(f(M,-)) and hence ﬁ(l) > 0. Let us set
w,p(w)): 0 <u < 1}.

yince the orbits Yy enter (1,0) at an angle, which does not depend
it is possible to choose o so close to 1 that ¢&(M) < ﬁ(a). Thus if
.ersects Q, it must do so at some u* € (0,a), and hence at some

I. At,u*, we would have g' > p&. However,
f(x,u) < £(M,u) for x < M.
by (3.14) and (3.15), we woul@ have, on the contrary, that
B' (%) < p! (u*).
wroves part (a). Part (b) is proved in a similar manner.

\BILITY

‘n this section we shall investigate the stability of the family of
; ¢ which belong to S~ if £ e F2 and to ST if £ e F3. Under the
tion that f satisfies H1*, H2, H3* and H4, and that ct <m< c_, we
ssured that a cline ¢ exists, and that it is uniquely determined

ind m.

'hus in this section we consider the problem

u, = + + £ R, t >
J & uxx muX (x,u) X € s 0

(IID)  w(x,0) = ¥(x) X € R
Y € C(RR) takes on values in the interval [0,1]. The assumptions
juarantee that this problem has a unique classical solution, which

; for all time t = 0 and takes on values in the interval [0,1] [14].




To emphasize its dependence on y, we shall write it as
u = u(x,t;y).

In Theorem 3.2, we obtained ¢ by constructing appropriate sub - and
supersolutions of Problem II. It is well known that this construction
implies that ¢ is stable - in some sense - provided ¢ is unique. Thus,
whereas the stability of ¢ is not really in gquestion, we shall direct
our attention to two problems:

1. Find conditions on y such that
(4.2) lu(e,t;9) - ¢l >0 as t » =,

where I+l denotes the supremum norm on C(R).

2. Obtain an estimate for the rate of convergence in (4.2).

We begin with a simple result.

THEOREM 4.1. Let u(x,t;y) be the solution of Problem III in which f
satisfies H1*, H2, H3*, H4 and ct < ¢, and let m € (c+,c"). Suppose the

exists a number h ¢ R ' such that
(4.3) ¢ (x-h) < P (x) < ¢(x+h) Xx e R.
Then
lu(e,t;9) - ¢l >0 as t » = .
PROOF. As in [8] it can be shown that if h > 0, ¢_h(x) = ¢(x-h) is a

subsolution and ¢+h(x) = ¢ (x+h) is a supersolution of Problem III. Hence

by a monotonicity argument due to Aronson and Weinberger [3]

u("t;¢~h) 4 ¢1 ’ u(',t;¢+h) ¥ ¢2 as t > o

where ¢1 and ¢2 are both solutions of Problem II. Clearly
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Suppose f ¢ F2. Then ¢+h € S and hence ¢1,¢2 e S”. Similarly, if £ e F3,

+ +
¢—h € § and hence ¢1,¢2 € S . Therefore by Theorem 3.8, ¢1 = ¢

-

2
Since by the maximum principle

u(',t;¢_h) <u(e,t;y) < u(',t;¢+h) for all t = 0
it follows that
la(e,t;9) - ¢l >0 as t » o,

where we have written ¢1 = ¢2 = ¢.

The conditions imposed on Yy in Theorem 4.1 are quite severe, and can

be considerably weakened. This will be done in the next theorem. Define

max{u € [0,1]: £ (s) < 0 for s € [0,ul}

Q
I

min{u ¢ [0,1]: f+(s) >0 for s € [u,11}.

o
1

Thus a € (0,1) if £ ¢ Fl' a =0if f € F., a =1 if £ « F3, and

2’
+
similarly for £ .

THEOREM 4.2. Let u(x,t;y) be the solution of Problem III in which f
. - + + -
satisfies H1*, H2, H3*, H4 and ¢ < c  and let m € (c ,c ). Suppose that

Y satisfies the following conditions:

(1)

(4.4) lim sup Y (x) < a ifa >0
X > —®

or

Y(x) < ¢ (x) for some h ¢ R if a =0




(ii)

+

(4.5) lim inf ¥(x) > a if a’

X >+ ®
or

P(x) 2 ¢h(x) for some h € IR if a+
Then

Ta(e,t;9) - ¢l -0 as t
REMARK. Suppose a = 0. Then f e F2 and hence c

since m < ¢ , the set S is well defined. Simila

S+ is well defined.

- +
PROOF. If a > 0 and a < 1, the proof proceeds

of the proof of Theorem 4 in [8], so we need not
Thus let us consider first the case a = 0.

on Y, it immediately follows from the proof of T

(4.6) lim sup ulx,t;y) < ¢(x) for x € R
t >

Fherefore it is sufficient to prove that

(4.7) lim inf u(x,t;y) =2 ¢(x) for x € R
t >

Jince £ «¢ F2 and fy 2 0, £t e F2 as well and he
(4.5)

lim inf Y(x) = 2v > 0
X > ®

aind there exists a constant El > 0 such that

min{¢ (x),P(x)} > v if x > gy.




ma 2.8 we can choose a 52 > 0 such that
Cl(f(izl')) <m.

1 define EO = max{El,Sz}. Then by Lemma 2.7 E(EO,~)) < m, when
(f(EO,-)). This implies that the problem

u" + mu' + f(go,u) =0
{ u(0) =0,u(») =1

unique solution v(x). Following [7] we nov that there exist
.ve functions £(t) and g(t) such that
z(x,t) = max{0,v(x-E(t)) - q(t)}

iwbsolution of (4.1).
‘hoose g(0) = 1-v and &£(0) = £_.. Then

0
z(x,0) < Y (x) on R.
fu(Eo,l) < 0, there exist constants §,u > 1 that
f(EO,u-q) - f(Eolu) 2 ug

<u<1and 0 £ g < 1-v. Hence, if z > 0,

L(z)

z + mz + f(x,z) - 2z
XX X (x,2) t

1\

v" + mv' + f(EO,V-q) + v'g' +

-— — L} i
£(Eqrv) + £(E4,v-q) + V'E' +
> ug + v'g' + gq'
ed 1-§ < v <1and 0 <q < 1-v. If £' > 0 (t) = q(0)e "t

ain when z > 0




L(z) =20

z is a subsolution if 1-§ £ v £ 1.
[f O €£v £ 1-6, there exists a constant B > 0 such that v'(x) = B.

l(Eo,u) > -k for all u € [0,1]. Then if z > 0
L(z) =2 BE' - (k+u)q.

, if we choose

E(t) = £(0) +l:16“5 q(0) (1-e~

Ut)

1ieve that L(z) = 0 when z > 0. Clearly, L(z) = 0 if z = O.
‘ore, with £(t) and g(t) as defined above, z is a subsolution of

ifon (4.1). In view of (4.8) this implies that

lim inf u(x,t;y) = v(x-E(«)).

t > e
it large values of x, the function z(x,t) lifts u(x,t;¥) up to 1.
This action of z enables us to construct a new subsolution under
1Y) at some sufficientl& large time t. The function w, which we

» for this purpose, satisfies
w" + mw' + f(EO,W) =0

interval (xl,xz), where x1< 0 < x2, and

wix,) = w(x,) =0, w(x) > 0 on (xl,x

1 ), w(0) = 1-2p.

2
se m > cl(f(EO,')) there exists a constant o such that if
< Py’ such a function exists (see [2], p.31).

"X p € (O,po) so that p £ 1-v and define t1 > 0 such that

p = q(tl).




‘or n large enough,
w(x-n) < z(x,tl).
inction
w(x) = max{0,w(x-n)} X € R

ubsolution of(4.1). Hence u(x,t;w) is strictly increasing. Since

bounded above by ¢ it converges to a solution ¢* of (3.l1a) and
w(x) < ¢*(x) < ¢(x).

e ¢ €8S, ¢*(-») = 0 and ¢* € S~. Also f(x,$*(x)) > 0 for x ¢ R
implies, together with (4.10) that ¢*'(x) > 0 and hence, using

again that ¢*(«) = 1. Thus ¢* is a solution of Problem II which
s to S . Since ¢ is also such a solution, and, by Theorem (3.8),
exists only one, we have ¢* = ¢.

'inally, since

alx, £ 10 2 z(x,t) > wix),
d that

lim inf u(x,t;y) 2 ¢(x),

t > o

we wanted to prove.

'hus, we have proved that

lim u(x,t;¥) = ¢(x).

t>
not difficult to see that the limit in Lemma 4.2 and in (4.11) is
m with respect to x € R. This completes the case a =0.
'he remaining case: a+ = 1 (which implies a = 1) can be

d in an identical manner.




de now turn to an investigation of the rate of convergence.
we show that under suitable conditions on £, the cline ¢ is
rly stable.
Ne write

u(x,t;y) = ¢(x) + vix,t)

ubstitute into (4.1). This yields

Lv + h(x,v),

<
1l

Iv=v +mv + f (x,0(x))v
XX X u

h(x,v) = £(x,¢(x)+v) - £(x,¢(x)) - fu(x,cb(x))v.

assume instead of H1*:

f satisfies H1* and fﬁu is continuous and bounded in R x [
readily shown that

2
sup|h(x,v)| < Mivl®,
R

M = %sup{lfuu(x,u)lzx e R, ue [0,1]}.

Je shall construct a function z(x,t) such that

z >0 in R x [0,x).

z is a supersolution and -z is a subsolution of (4.12).
z(e,t) > 0 as t > ® exponentially, in some sense.

this function z, we shall have shown that if




IW(X) - ¢(X)l < z(x,0) for x € R

u(e,t;9) > ¢ as t > o«

antially in the same sense as z(°,t) - 0 as t -~ o,

As in [8] we begin with the equation
(L-\)y = 0

ransform to a symmetric form by introducing the new dependent

dle y(x) = exp(%mx).;(x). This yields

) (M-A)y = 0,

2
My = y" + {f (x,4(x))-%n"}y.
>nvenience we shall write
2

g(x) = fu(x,¢(x)) - Hm".

:hat by Lemma 3.6

q = 1lim q(x) = £ (0) - 3m?
+ s 2
qg = lim g(x) = f+(1) - 4m"

X> ® 4

-— + -
sert that g < 0 and g < 0. If fu(O) < 0 it is obvious that
), thus assume that f;(O) > 0. Then ¢ < —2{f;(0)}%. By assumption

. Hence

m < —2{f'(0)}li
u
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and therefore
n® > 4£7(0)
u
- +
i.e. g < 0. That g < O follows in a similar fashion. Thus
* _ -+
(4.14) q* = max{q ,q } < 0.

We now consider (4.13) as an eigenvalue problem in LZ(IU, and denote
its spectrum by o(M). Since M is symmetric o(M) ¢ R and, following

[8], one can show that

AO = max{A:X ¢ o(M)} < O.

Choose A € (AO,O) and a function g € CE(IU such that g 2 0 on R and
g(x) Z 0. Then the equation

(M-\)w = —g

has a unique solution w € Hl(IU such that w(x) > 0 for all x ¢ R [8].

We adjust g so that sup w(x) = 1.
R
We distinguish three cases

(a) £(0) <0 and £ (1) < 0;

u u +
(b) £(0) > O (and hence £ (1) < 0);
(c) f3(1) > 1 (and hence £_(0) < 0).

Here we have assumed that fx = 0.

Case (a). Define

z(x,t) = le” " Fux) + yre ML,

Note that in view of the asymptotic behaviour of w as le > ®©

-1
e ™y(x) > 0 as ]xl > o, if IAI is chosen sufficiently small. Proceeding

’

as in [8] we can find constants B,y and u so that z is a supersolution of

equation (4.1). Thus, there exist constants §, K > 0 such that if ly-¢l < §,
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then

la(e,t:9) - ol < ke Mt for t = 0.

Case(b) . Observe that in this case f(x,u) > 0 in R x (0,1)

*
m < 0. Let qo € (g ,0). Then there exists a constant £ > 0

q(x) < 9, if x < -f. Define ;(x) = e—%mxw(x) and

-%mx} -ut

{ B{w(x) + ve e if x < -¢
t = ~ +L -
z(x,t) 1 B{w(x) + ye zmg}e ut if x > -F.
Note that z(x,t) is continuous at x = -E.
(i) x < -f. We obtain upon substitution

Nz = Lz + h(x,z) - z,

(4.15)
e+%mc-ut

IA

B {(A+w) + Y (u+qg) + BM(1+Y)2}-

Choose 0 < py < min{—A,—qO}, and B < B,, where 81 is defined

1

2
Y(qo+u) + BlM(1+Yl = 0.
Then
Nz <0 if x < - and t > 0.

+
Let -a € (fu(l),O). Then there exists a constant n > 0

fu(x,¢(x)) < -0 if x > n.

(ii) x > n. We now obtain

SIETMEL e TmE Ly s eudalan )

Nz = R

and we choose y € (0,a) and B < 62, where

v (—o4u) + BZM(";"+Y)2 = 0.

<




-€ < x < n. Since w is positive and continuous
v = min{w(x): - < x <n} >0 .
lore

Nz < ge "L+ v + Y (k+u) + BM("§"+Y)2},

N
I

max{fu(x,¢(x)): xe R} .

min(a,—qo) - u

m (Il 24y 2

)< min{Bl,Bz} and
Nz < Be—ut[(A+u)v + v{k + min(u,—qo)}].
if we choose
y = —(A+u){K+min(a,q0)}—1,
'e achieved that
Nz <0 if -§ < x < 7, t > 0.
'inally, observe that z has a concave corner at 3
. a supersolution of equation (4.12). Similarly -

12). Thus if

v (x) - ¢(x)]| < z(x,0) x € R




4.17) lux,t;9) - ¢(x)| < z(x,t) xe R, t >0.

At this point it is convenient to introduce the following weic

orm (see also ROTHE [18]). Let

1
Lmx
.

p (x) max{1,e

hen we define

4.18) Ilhllp = sup{p(x)[h(x)l: x € R}.
Let
4.19) H¢-¢Hp < §,

g

L
here § = Byezm . Then we shall see that (4.16) is satisfied. To wve

his we inspect the intervals (-« ,-£), [-£,0]and (0,®) in turn.

i) If x € (-»,-£) we have by definition

-6 | < Bye ™ < gy T o 4,0y,
ii) If x e [-g,01,

lv(x) - o(x)]| < Bye%m(g_X) < Bye%mg < z(x,0).
iii) If x € (0,«),

[V (x) - ¢(x)]| < Bye%mg < z(x,0).

hus, we may conclude that (4.17) is satisfied. This means that

i) if x € (-»,-&),

Lmx ut

e%mx z(x,t) < B(l+y)e_ ;

lu(x,t;9) - ¢(x)| < e




(ii) if x € [-g,017,

1
mx
e’ Iu(x,t;w)

(iii) if x > 0

|u(x,t;¥)

|
RSy

Thus, (4.17) implies tha

(4.20) la(e,t;9)

|
S

where
K = Blmax{1,l

Case(c). In this case £f(
therefore m > 0. Arguing
find positive constants

Thus we have proved

THEOREM 4.3. Let u(x,t;y
satisfies the hypotheses

+ -
mne (¢c ,c).

(i) Suppose f;(O) <0 a

u,8 and K such that ly-¢
"LI(‘rt;lP) - ¢

(ii) Suppose either f;(O

~onstants u,8§ and K such

Lm (x+8)

IA

) | B(w(x) + ye )

B(1+Y)e_ut;

IA

L B{w(x) + yle Mt
t

Cg(lwl + \()e—u

vl.

O for all x € R and u
ly as in case (b) it is
K such that (4.19) impli

ollowing result.

he solution of Problem I

H2, H3*, H4 and c' < ¢~

1) < 0. Then there exist

implies

or fl(l) > 0. Then there

H¢—¢Hp < § implies
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Tu(e,t;9) - ¢"p < Ke for t > 0,

in which "."p has been defined in (4.18).
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