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The number of lattice points contained in certain convex domains

. by

J. van de Lune

ABSTRACT

For some specific sequences of convex domains D(n), n ¢ N, the oscil-
latory behaviour of E(n) = A(n) - P(n) is studied. Here A(n) denotes the
area of D(n) whereas P(n) is the number of Gaussian lattice points contained

in D(n).
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0. INTRODUCTION

. . )
In this note we consider certain sequences of (convex) domains {Dn}n_1

in the plane IR2. The area of Dn will be denoted by A(n) and the number of
(Gaussian) lattice points contained in Dn by P(n).

The "error" E(n) is defined by
(0.1) E(n) = A(n) - P(n).

The main purpose of this note is to investigate the frequency (= natu-

ral density) of the occurrence
(0.2) E(n) > 0.

In addition we will (in some cases) establish upper- and lower bounds for

E(n) as a function of n.

1. THE PARABOLIC CASE

Let a € R be fixed and for n ¢ IN let the domain Dn be defined by

JIXIS\/—%:

(1.1)
1 2
0 < y <n - oxX .

Then we have

O%\,
=]} =)

(1.2) A =2 | (radyex = 4 0/2
and

t 2
(1.3) P(n) =n + 2 z [n-ak™ ]

=1



where
(1.4) r=r(n) = [vfg} .
Writing

(1.5) 0 = 0(n) = Vféi- T
ve have

(1.6) n = a(r+0)?

so that (1.2) may also be written as
(1.7) A(m) = 3 a(r+0)”.
. . *
Defining o € [0,1) by
*

(1.8) o = -a - [-a]

we obtain from (1.3) that

r

(1.9) P(n) =n + 207 + 2 ) [-ak] =
k=1
L *x. .2
=n + 2nr + 2 z [([=al+a )k™] =
k=1
T T
=n + 2nr + 2[-o] z k2 + 2 z [a*kzj.
k=1 k=1
*
CASE 1. a =0 (EaclN).

From (1.9) it is clear that in this case

(1.10) P(n) = n + 2nr - 20 é—r(r+l)(2r+1)

so that



(1.11) E(n) = % 0 (r+0)3 - a(r+0)> - 2ra(r+0)> + S r(r+1) (2r+1) =
- ar(2@2—2®+%) + a(-;ie3-ez).

It follows that the event E(n) > O is equivalent to

2 1 3

1,24
(1.12) 20 2€)+3>;(O 39 ).
Now we recall a theorem of FEJER (cf. [1; p.89] or [3; p.72, 2371):
If the differentiable (real) function f is such that f' is positive and
monotonic on ﬂ§+ and f(x) > », f'(x) > 0, xf'(x) > » for x > «, then the

sequence {f(n)}:= is uniformly distributed (mod 1).

1
. . + . .
It is clear that for any fixed 0 ¢ R this theorem applies to f(x) =

+
=m/;c-,x€]R, so that

(1.13) 0(n) = vfg - [V(E]

o

is uniformly distributed on the interval [0,1). From this observation and
the fact that the right-hand side of (1.12) tends to zero as n - « it is
easily seen that the probability of the event E(n) > 0 is equal to the pro-
bability of the event

2 1

(1.14) 20° - 20 + 3 > 0.

The roots of the left-hand side of (1.14) are

(1.15) e]=%-——l—and 0, =
2/3 2/3

Nl

so that

(1.16) 0 < Ol <8, < 1.

Since © = 0(n) is uniformly distributed on the interval [0,1) it fol-

lows that



(1.17) Prob {E(n) > 0} =v®1 + (]—92) = 1 -1

V3
which, surprisingly enough, does not depend on a (e N).
From (1.11) we also obtain that
E(n) 2 4 3 2

_ _ 1, 1(4.3_
= 20 20 + +r\3® O)

(1.18) o 3

from which it is clear that

(1.19) lim sup Em) _ lim sup(202—2®+l\ =1
. ar 3 / 3
n--«o N>
and
(1.20) lim inf E(n) _ lim inf(202—29+1) = —l,
oar 3 6
n->o n-rw

Since r = v[§:+ 0(1), (n>>) it follows that

(1.21) lim sup 20 _ 1=
nse /o 3

and
(1.22) lim inf 20) _ —é/E
N> Vo
CASE 2. a* is irrational.
From (1.9) we obtain
T2
(1.23) P(n) =n + 2nr + 2[-o] 2 k™ +
k=1
r
-2 ¥ (@ KP[a™ k21—l +
k=1



=n+ 2nr - r - 2qér(r+1)(2r+l) - 2A

1

. where

r
O R T
k=1

(1.24)
Using (1.6) we obtain after some simplification

(1.25)  E() = ur<202—20+é+%> ¥ a(§e3-ez) + 28,

Hence, the event E(n) > 0 is equivalent to

2 94l 1, 1245328
(1.26) 20 20 + o + 3> r(@ 30 a ) .

k=1
(mod 1) (cf. [1; p.95, 84]) so that (cf. [1; p.91, §3])
r . 1
(1.27) lim 2 = 1im %- y (a*kz—[a*kzj-%) = J (x-3)dx = 0.
neo T T k=1 0

. * . . . 2 * . . . .
Since a 1is irrational, the sequence {k“a } is uniformly distributed

It follows that the right-hand side of (1.26) tends to zero as n - «. From
this and the uniform distribution of © = 0(n) on [0,1) it follows easily

that

(1.28) Prob {E(n) > 0} = Prob {20% - 20 + §-+ %-> 0}.

The discriminant D of the polynomial in (1.28) is

- 4f1_2)
(1.29) D= 4<§ 2)

so that

(1.30) Prob {20% - 20 +-é +-% >0} =1 if a < 6.

If o > 6 then the roots of the polynomial in (1.28) are



/1_2 12
=1 - /-2 =1 L i_z
(1.31) O] 3 V37, and 02 ;3 t 3 375
so that
(1.32) 0 < e] < 92 < 1.
Similarly as before it follows that
(1.33) Prob {E(n) > 0} = 0, + (1-0,) = I - -2, @e).

From (1.25) and (1.27) it also follows that

(1.34) lim sup E@m) _ (l+é> Vo

we AV
and

.. . E@ _ (_2.1)
(1.35) 11:%inf —;%?-_ \"3%) Va.

CASE 3. a* is rational and # 0. From the definition of a* it is clear that

*
a € [0,1) so that we mav assume that

(1.36) o with p,q ¢ N, p < g, (p,q) = I.

1}
a o

From (1.9) we obtain

r

(1.37) P(n) = n + 2nr + 2[-a] z k2 +
k=1
r r
-2 ) (a*kz—[a*k2]> + 24" ) K2 =
k=1 k=1

r
=n+2nr - = r(r+1)(2r+l) - 2 ) {k?B}
3 k=1 ¢ 9

where in the last line {k?%} denotes the fractional part of k?Eu Similarly

as before it follows that



(1.38) E(n) = (2@ —2@+%) + a(;e —92) + 2 § }

_ Since the sequence {k?%}, k ¢ IN, is periodic with period q we have

r q
(1.39) lim 1+ {sz} =1y {kZR}
e Dk=1 Y Ty LA

Defining

(1.40) s(p,q) = — % }

it follows from (1.38) and the uniform distribution of © = 0(n) on [0,1)
that

(1.41) Prob {E(n) > 0} = Prob {2@2 - 20 + —_l)— +§ S(p,q) > o} :

The discriminant D of the polynomial in (1.41) is

(1.42) D = 4(%-—§S(p,q)> .
so that

(1.43a) D <0 & S(p,q) 2 f%
and

(1.435) D > 0 & 5(p,q) <75
Hence, if S(p,q) = f% then
(1.44) Prob {E(n) > 0} =

If S(p,q) < _5 then the roots of the polynomial in (1.41) are

(1.45) 0 = %(1 + 14 S(p,q)>

3 o



so that
(1.46) Prob {E(n) > 0} = 1 = V %-g s(p,q) -

From (1.38) it also follows easily that

u E) _ (1,2 \
(1.47) lli;iup = = \34-a S(p,q)/ Yo
and
(1.48) lim inf BE@ _ (1,2 S(p,q)) Ja.
-0 \/.1’_1— \ 6 Q

The arithmetical nature of the sums S(p,q) seems to be rather obscure.
However, in [4] WILLIAMS discussed the case in which q is prime. One of his
results is that if q is a prime such that q = 1 (mod 4) and (p,q) = 1 then
S(p,q) = %i%w He also gives a remarkable formula for S(p,q) in case q is a
prime such that q = 3 (mod 4). In the last case S(p,q) appears to depend on
the class number h(-q). |

For q ¢ IN let H(q) denote the number of different values of S(p;q)

when p runs through all positive integers not exceeding q and such that

(p,q) = 1. From [4] it follows that if q is prime then
1 if g = 1 (mod &)

(1.49) H(q) =
2 if q = 3 (mod 4).

We constructed the following table of the arithmetical function H:

n H(n) n H(n) n H(n) n H(n) n H(n)
1 1 8 4 15 22 2 29 1
2 1 9 2 16 4 23 2 30 4
3 2 10 1 17 1 24 8 31 2
4 2 11 2 18 2 25 1 32 4
5 1 12 4 19 2 26 1 33 4
6 2 13 1 20 4 27 2 34 1
7 2 | 14 2 21 4 28 4 35 4




n H(n) n H(n) n H(n) n H(n) n H(n)
36 4 69 4 102 4 135 168 16
>37 1 70 4 103 2 136 169 1
38 2 71 2 104 8 137 1 170 1
39 4 72 8 105 6 138 4 171 4
40 6 73 1 106 1 139 2 172 4
41 1 74 1 107 2 140 6 173 1
42 4 75 4 108 4 141 4 174 4
43 2 76 4 109 1 142 2 175 4
44 4 77 3 110 4 143 4 176 8
45 4 78 4 111 4 144 8 177 4
46 2 79 2 112 6 145 1 178 1
47 2 80 8 113 1 146 1 179 2
48 8 81 2 114 4 147 4 180 8
49 2 82 1 115 4 148 4 181 1
50 1 83 2 116 4 149 1 182 4
51 4 84 8 117 4 150 4 183 4
52 4 85 1 118 2 151 2 184 8
53 1 86 2 119 4 152 8 185 1
54 2 87 4 120 12 153 4 186 4
55 4 88 8 121 2 154 3 187 4
56 8 89 1 122 1 155 4 188 4
57 4 90 4 123 4 156 8 189 4
58 1 91 4 124 4 157 1 190 4
59 2 92 4 125 1 158 2 191 2
60 8 93 4 126 4 159 4 192 8
61 1 94 2 127 2 160 6 193 1
62 2 95 4 128 4 161 4 194 1
63 4 96 8 129 4 162 2 195 6
64 4 97 1 130 1 163 2 196 4
65 1 98 2 131 2 164 4 197 1
66 4 99 4 132 6 165 8 198 4
67 2 100 4 133 3 166 2 199 2
68 4 101 1 134 2 167 2 200 6
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The following observations may illustrate the erratic behaviour of H.

Since

(1.50) H(3) = 2, H(5) =1 and H(I5) = 4
it follows that H is not multiplicative. Since
(1.51) H(40) = 6 (and H(77)=3)

H(n) is not always a power of 2.

Although in most cases one has

(1.52) H(u) -H(v) < H(uv) if (u,v) =1

it follows from an example such as

(1.53) H(7) = 2, H(l1) =2 and H(77) = 3

that H does not always satisfy (1.52).

More generally one may ask for the arithmetical behaviour of the sums

1
(1.54) Sa(P’q) = a'k

where a,p,q € N, p < q, (p,q) = 1.

The case a = | is easily dealt with:

-l
(1.55) S](P’Q) Zq'

2., THE DOUBLE PARABOLIC CASE

. + . . .
Again let a ¢ R be fixed and for n ¢ N define the convex domain Dn

by
x| < \/g
(2.1)

IA
j=]

I
%

[yl
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Defining A(n), P(n), E(n), r(n), 0(n) and o" as in section 1 one may

verify that we have

CASE 1. o =0 (& aeN).

(2.2) Prob {E(n) > 0} =0 for a = 1,2,3.
(2.3) Prob {E(n) >0} =1 -V %u*%- for a > 4.
(2.4) lim sup 20 _ (% - %) Jo  for all o e IN.
noo Vn
(2.5) lim inf Em) _ <%-+ %) Yo for all a € NN.
n->o /o
CASE 2. a* is irrational.
(2.6) Prob {E(n) > 0} =1 - —Lu
s
2.7) lim sup E(m) =-% Va.
o /n
(2.8) lim inf 28 _ - 1 /.
N> /n
CASE 3. a*=%,0 <p <q, (p,q) = 1.
(2.9) Prob {E(n) > 0} = 0  if S(p,q) = 9‘1‘“76 ,
(2.10) Prob {E(n) > 0} = | - \/13 R % _ é Sy if S(p.q) < 9%@_ .
(2.11) lim sup E@ _ (% - g-+ 4 S(p,q)) Va.
neo ‘/r—l [0 a
(2.12) lim inf 20 - _ <%+_2_-3 s(p,q)> Va.
oo /‘H a a
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3. THE CIRCULAR CASE

For any t € R let Dt be the domain defined by

IA

| x| t,

/t2-x2.

Denoting the area of Dt by A(t) and the number of lattice points contained

in Dt by P(t) we have that the error E(t) det A(t) - P(t) changes sign in-

(3.1)

IA

[yl

finitely often. More precisely, it was shown by HARDY that (cf. [2; p.236,
Satz 5361])

(3.2) lim sup 2(E) 5 ¢
t>o vVt

and

(3.3) lim inf 28 o,
£>o0 /t

Since all lattice points of the plane lie on circles with radius vk for cer-
tain k ¢ IN U {0} it seems natural to ask for the natural density of those
n ¢ IN for which, for example, one has E(vn) > 0.

We were not able to give a satisfactory answer to this question. How-
ever, numerical computations, performed by H.J.J. TE RIELE suggest that the
probability of the event E(/n) > O is less than }.

Another related question is the following: Are there infinitely many
n € IN such that E(n) < 07

Numerical computations reveal that there are 64 values of n < 20,000

with the property E(n) < 0. We list these values of n in the following tabié.



All ne N, n < 20,000 with E(n) < O.

i 489 4771 11456

2 725 4885 11570

3 730 5559 11722

5 | 1073 5949 12019
10 | 1310 | 6203 12024
15 | 1865 6411 13243
20 | 1997 7045 14650
35 | 2480 7084 15857
51 2831 7410 16234
52 | 3072 7605 17030
85 | 3424 8931 17306
100 | 3750 9308 17429
230 | 3861 9435 17589
247 | 3921 9646 17970
370 | 4025 10829 18508
425 | 4339 | 10930 19619

4. THE TRUNCATED CIRCULAR CASE

+
For t ¢ R let Dt be the domain defined by

x < t
(4.1)
0<vyc< Velx?,
Then
|2
(4.2) A(t) = 37t

and (cf. [2; p.271, Satz 558])

(4.3) P(t) = %ntz -t + O(tze), (t+o)

for some 0 <

W
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It follows that

(4.4) E(e) = t + 0(t20) = £ + o),  (tow)

so that there exists a to such that

(4.5) E(t) > 0 for all t > to.

Numerical computations indicate that one always has E(vn) > 0, (neIN),

except for n = 5.

5. QUESTION
We conclude this note by proposing the following (unsolved?!)

PROBLEM. Does there exist a bounded set V in the plane such that all Euclid-
ian transformations of V contain the same number of (Gaussian) lattice

points?
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Addendum.

- Continuation of section 3.

During the preparation of this report we extended our computations
with respect to the occurrence E(n) < O.

We found 85 values of n < 40,000 such that E(n) < O.

Extension of the table on p.l13

20229 34186
20635 35695
21885 36533
22299 36868
23592 36873
24725 ' 37037
24795 37875
26333 38732
28662 38935
31043 39490
32810
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