STICHTING
 MATHEMATISCH CENTRUM

2e BOERHAAVESTRAAT 49
AMSTERDAM
AFDELING ZUIVERE WISKUNDE

ZW 1967-003

On convex sublattices of
 distributive lattices

May 1967

The Mathematical Centre at Amsterdam, founded the 11th of February, 1946, is a non-profit institution aiming at the promotion of pure mathematics and its applications, and is sponsored by the Netherlands Government through the Netherlands Organization for the Advancement of Pure Research (Z.W.O.) and the Central Organization for Applied Scientific Research in the Netherlands (T.N.O.), by the Municipality of Amsterdam and by several industries.

1. Introduction

In this paper we study some properties of convex sublattices of distributive lattices.
The family of all convex sublattices of a lattice L will be denoted by $C(L)$.
Section 2 contains some definitions and preliminary lemma's. The first result of section 3 is the following: Let L be a distributive lattice and let $A, B \in C(L)$ with $A \subset B, A \neq \varnothing$. In theorem 1 we prove that the family of all elements of $C(L)$ which have the intersection A with B has a largest element, by means of an explicit construction of this element from A and B. The next theorems are concerned with congruence relations. Let $C \in C(L)$. We construct the smallest congruence relation such that C is one of its congruence classes, and the largest congruence relation such that all elements of C are incongruent with respect to this congruence relation. Next, these results are related to the construction of theorem 1 .
In section 4 we consider the lattice ($C(L), C$), i.e. the family of all convex sublattices of L, partially ordered by inclusion. We prove that in a distributive relatively complemented lattice L, all intervals $[\phi, A]$ of $(C(L), C)$ are complemented. A necessary and sufficient condition that $(C(L), C)$ be relatively complemented, is that L is also discrete (i.e., all intervals of L have finite lenght).
In section 5 we introduce an ordering \leq on $\bar{C}(L)$ (i.e., the family of all non-empty convex sublattices of L), which is a variant of the ordering by inclusion. We prove that $\mathbb{C}(L), \leq)$ is a distributive lattice, if L is distributive. Next we consider the lattices $\bar{C}^{2}(L)=\bar{C}(\bar{C}(L)), \ldots$, $\bar{C}^{i}(L)$. We prove that $\bar{C}^{i}\left(B_{j}\right)$, where B_{j} is the Boolean algebra with 2^{j} elements, is isomorphic with the direct union of j factors F_{i}, where F_{i} is the free distributive lattice with i generators, with an extra zero and unit element adjoined. Section 6 is concerned with a ternary function which can be used to characterize convex sublattices of distributive relatively complemented
lattices. Finally, we exhibit a set of axioms for distributive relatively complemented lattices in terms of this ternary function.

I am indebted to A.B. Paalman-de Miranda for several helpful suggestions.

2. Definitions

Definition 1. Let X be a subset of a lattice L. The sets X_{1}, X_{r} are defined as follows:

$$
\begin{aligned}
& X_{1}=\{a \in L \mid \exists x \in X \text { such that } a \leq x\} \\
& X_{r}=\{a \in L \mid \exists x \in X \text { such that } a \geq x\}
\end{aligned}
$$

It is easily seen that:

1. I and r are closure-operators, i.e. for all $X, Y \subset L$ we have:
$X \subset X_{1}, X_{1}=X_{1.1},(X \cup Y)_{1}=X_{1} \cup Y_{1}$, and similarly for r.
2. $X_{l r}=X_{r l}=L$.
3. If X is closed with respect to $V(\Lambda)$ then $X_{l}\left(X_{r}\right)$ is a V-ideal
(\wedge-ideal)
4. If X is a V-ideal (\wedge-ideal) then $X=X_{1}\left(X=X_{r}\right)$.

Definition 2. Let X, Y be non-empty subsets of a lattice L. The sets $X \wedge Y, X \vee Y$ are defined as follows:

$$
\begin{aligned}
& X \wedge Y=\{x \wedge y \mid x \in X \text { and } y \in Y\} \\
& X \vee Y=\{x \vee y \mid x \in X \text { and } y \in Y\}
\end{aligned}
$$

Clearly, for all $X, Y \subset L$ we have $(X \wedge Y)_{I}=X_{I} \wedge Y_{I}$, and $(X \vee Y)_{r}=X_{r} \vee Y_{r}$. It is also easy to prove that $(X \vee Y)_{1}=X_{1} \vee Y_{1}$, for all $X, Y \subset L$, if and only if L is distributive (and dually).

Definition 3. A subset of a lattice L is called convex if and only if $X_{l} \cap X_{r} \subset X$.

In this paper we are only interested in convex sublattices. The family of all convex sublattices of L will be denoted by $C(L)$. The family of all V-ideals (\wedge-ideals) of L will be denoted by $I(L)(Y(L))$. Some of the simplest properties of $C(L)$ are:

1. $I(L) \subset C(L)$ and $J(L) \subset C(L)$.
2. The intersection of a family of convex sublattices is a convex sublattice.
3. If A is closed with respect to V and B is closed with respect to \wedge then $A_{1} \cap B_{r} \in C(L)$.
4. A subset C of L is a convex sublattice of L if and only if it has the following property: For all $c_{1}, c_{2} \in C$ and all $x \in L$ we have: $c_{1} \wedge\left(x \vee c_{2}\right) \in C$ and $c_{1} \vee\left(x \wedge c_{2}\right) \in C$.

Clearly, if $C \in C(L)$ then $C=C_{l} \cap C_{r}$. Hence, each convex sublattice can be written as the intersection of a \vee-ideal and a \wedge-ideal. The following lemma proves that this "decomposition" is unique:

Lemma 1. Let $C \in C(L), C \neq \varnothing$, and suppose that $C=I \cap J$, where I is a v-ideal and J is a \wedge-ideal. Then $I=C_{1}$ and $J=C_{r}$.

Proof. $C=I \cap J \subset I$, hence $C_{1} \subset I_{l}=I$. Also, $I \vee(I \cap J)=C$; hence, $I=I_{1} \subset\{I \vee(I \cap J)\}_{I}=C_{1}$. Thus $I=C_{I}$. Similarly, $J=C_{r}$.

From this lemma it follows that if $C, D \in C(L)$, and $C \cap D \neq \varnothing$, then $(C \cap D)_{1}=C_{1} \cap D_{1}$, and $(C \cap D)_{r}=C_{r} \cap D_{r}$.

Definition 4. Let $C, D \in C(L)$. The smallest convex sublattice of L that contains C and D is denoted by CuD.

From this definition it follows that if $C \neq \varnothing, D \neq \varnothing$, than $C \sqcup D=$ $(C \wedge D)_{r} \cap(C \vee D)_{1}$.

The following two lemma's state some properties of convex sublattices that will be used later.

Lemma 2. Let $A, B, C \in C(L)$, with $A \cap B \neq \varnothing, B \cap C \neq \varnothing$, and $C \cap A \neq \varnothing$. Then $A \cap B \cap C \neq \varnothing$.

Proof. Let $x \in A \cap B, y \in B \cap C$ and $z \in C \cap A$. Since $x, y \in B$ and $x, z \in A$, we have $x \wedge(y \vee z) \in A \cap B$.

Now consider the element $\{x \wedge(y \vee z)\} \vee(y \wedge z)$.
We have: $x \wedge(y \vee z)$ and y are elements of B,
$x \wedge(y \vee z)$ and z are elements of A, $y \vee z \quad$ and $y \wedge z$ are elements of C.
Therefore, $\{x \wedge(y \vee z)\} \vee(y \wedge z) \in A \cap B \cap C$.

Two consequences of this lemma are:

1. If $A_{i} \in C(L), 1 \leq i \leq n$, and $\bigcap_{i=1}^{n} A_{i}=\varnothing$, then $A_{i} \cap A_{j}=\varnothing$, for some i, j with $1 \leq i, j \leq n$.
2. If $A_{i} \in C(L), i \leq i \leq n$, and $\bigcap_{\substack{i=1 \\ i \neq j}}^{n} A_{i} \neq \emptyset$ for three values of j $(1 \leq j \leq n)$, then $\bigcap_{i=1}^{n} A_{i} \neq \varnothing$.

Lemma 3. Let L be a distributive lattice and let $C, D \in C(L)$ with $C \cap D=\varnothing$. Then there exist $C^{\prime}, D^{\prime} \in C(L)$, such that $C \subset C^{\prime}, D \subset D^{\prime}$, $C^{\prime} \cap D^{\prime}=\varnothing$ and $C^{\prime} \cup D^{\prime}=L$. Moreover, either C^{\prime} is $V-i d e a l$ and D^{\prime} is a \wedge-ideal or conversely.

Proof. (This proof is due to P.C. Baayen).

1. Either $C_{1} \cap D_{r}=\emptyset$, or $C_{r} \cap D_{1}=\varnothing$. For, suppose that there exist $c_{1}, c_{2} \in C$ and $d_{1}, d_{2} \in D$ with $c_{1} \leq d_{1}$ and $c_{2} \geq d_{2}$.
Then $c_{1} \leq d_{1} \wedge\left(c_{1} \vee d_{2}\right) \leq c_{1} \vee c_{2}$; hence, $d_{1} \wedge\left(c_{1} \vee d_{2}\right) \in C \cap D$, a contradiction.
2. Suppose $C_{1} \cap D_{r}=\emptyset$. We can then apply Stone's theorem [10] to the \wedge-ideal D_{r}.

3. Congruence relations

Theorem 1. Let L be a distributive lattice, let $A, B \in C(L)$ with $A \subset B$, $A \neq \varnothing$. Let C be defined as:
$C=\left(A_{r} \backslash\left(B \backslash A_{1}\right)_{r}\right)_{1} \cap\left(A_{1} \backslash\left(B \backslash A_{r}\right)_{1}\right)_{r}$.
Then:

1. $c \in C(L)$.
2. $B \cap C=A$.
3. $D \in C(L)$ and $D \cap B=A$ imply $D C C$.

Proof.

1. In order to prove that $C \in C(L)$ it is sufficient to prove that $A_{r} \backslash\left(B \backslash A_{1}\right)_{r}$ is closed with respect to V. Let $a_{1}^{\prime}, a_{2}^{\prime} \in A_{r} \backslash\left(B \backslash A_{1}\right)_{r}$. Clearly, $a_{j}^{\prime} \vee a_{2}^{\prime} \in A_{r}$. Suppose that $a_{1}^{\prime} \vee a_{2}^{\prime} \geq b$ for some $b \in B \backslash A_{1}$. Since $a_{1}^{\prime} \in A_{r}$, there exists $a_{1} \in A$ such that $a_{1}^{\prime} \geq a_{1}$. Then $b \geq b \wedge a_{1}^{\prime} \geq b \wedge a_{1}$. Sine $A \subset B$ and B is a convex sublattice, we have $b \wedge a_{1} \in B$, and $b \wedge a_{1}^{\prime} \in B$. Since $a_{1}^{\prime} \geq b \wedge a_{1}$, and $a_{1}^{\prime} \notin\left(B \backslash A_{1}\right)_{r}$, we see that $b \wedge a_{1}^{\prime} \in A_{1}$, so that there exists $a_{3} \in A$, with $a_{3} \geq b \wedge a_{1}^{\prime}$. Similarly, there exists $a_{4} \in A$ such that $a_{4} \geq b \wedge a_{2}^{\prime}$. Thus, $a_{3} \vee a_{4} \geq$ $\left(b \wedge a_{1}^{\prime}\right) \vee\left(b \wedge a_{2}^{\prime}\right)=b \wedge\left(a_{1}^{\prime} \vee a_{2}^{\prime}\right)=b$, which contradicts $b \in B \backslash A_{1}$. We conclude therefore that $a_{1}^{\prime} \vee a_{2}^{\prime} \in A_{r} \backslash\left(B \backslash A_{1}\right)_{r}$, where $A_{r} \backslash\left(B \backslash A_{1}\right)_{r}$ is closed with respect to V (it is easy to prove that $A_{r} \backslash\left(B \backslash A_{1}\right)_{r}$ is even a convex sublattice).
2.1. In order to prove that $A \subset B \cap C$ it is sufficient to prove that $A \subset A_{r} \backslash\left(B \backslash A_{1}\right)_{r}$. It is clear that $A C A_{r}$. Also, it is impossible that there exists $a \in A$ such that $a \geq b$ for some $b \in B \backslash A_{1}$.
2.2. Let $b \in B \cap C$. Then there exist $a^{\prime} \in A_{r} \backslash\left(B \backslash A_{1}\right)_{r}$ and $a " \in A_{1} \backslash\left(B \backslash A_{r}\right)_{1}$ such that $a^{\prime \prime} \leq \mathrm{b} \leq \mathrm{a}^{\prime}$. From $\mathrm{a}^{\prime} \geq \mathrm{b}$ and $\mathrm{a}^{\prime} \notin\left(\mathrm{B} \backslash A_{1}\right)_{r}$ we see that $\mathrm{b} \in \mathrm{A}_{1}$. Similarly, from $\mathrm{a} " \leq \mathrm{b}$ we infer that $\mathrm{b} \in \mathrm{A}_{\mathrm{r}}$. Hence $\mathrm{b} \in \mathrm{A}_{1} \cap \mathrm{~A}_{\mathrm{r}}=\mathrm{A}$, from which we conlcude that $B \cap C C A$.
2. Suppose $D \in C(L)$ and $D \cap B=A$. We have to prove that $D \subset C$. It is sufficient to show that for each $d \in D$ and $a \in A: d \vee a \in A_{r} \backslash\left(B \backslash A_{I}\right)_{r}$. Clearly, $d \vee a \in A_{r}$. Suppose that $d v a \geq b$ for some $b \in B \backslash A_{1}$. Then $b=b \wedge(d \vee a) \leq(b \wedge d) \vee a$. Since $A \subset B$ and $A \subset D$, we have $(b \wedge d) \vee a \in B$ and $(b \wedge d) \vee a \in D$; hence, $(b \wedge d) \vee a \in A$. This contradicts $b \in B \backslash A_{I}$.

Corollary. Let L be a distributive lattice, let $A, B \in C(L)$ with $A \subset B$, $A \neq \emptyset$, and let $C(A, B)$ be the largest element of $C(L)$ which has the intersection A with B. Then $C(A, B)=C(A, C(A, C(A, B)))$.

Proof. Since $C(A, C(A, B))$ is the largest convex sublattice which has the intersection A with $C(A, B)$, and since $B \cap C(A, B)=A$, we have $B \subset C(A, C(A, B))$. Thus, $B \cap C(A, C(A, C(A, B)))=B \cap C(A, C(A, B)) \cap$ $C(A, C(A, C(A, B)))=B \cap A=A$.

Since $C(A, B)$ is the largest convex sublattice which has the intersection A with B, we have
$C(A, C(A, C(A, B))) \subset C(A, B)$.
Since $C(A, B) \cap C(A, C(A, B))=A$, and since $C(A, C(A, C(A, B)))$ is
the largest convex sublattice which has the intersection A with $C(A, C(A, B))$, we have
(2) $C(A, B) \subset C(A, C(A, C(A, B)))$. From (1) and (2) the assertion follows.

Remarks:

1. From this corollary it follows that $C(A, C(A, B))$ is the largest element of the family of all elements $B^{\prime} \in C(L)$ such that $C(A, B)=$ C(A, $\left.B^{\prime}\right)$:
a. If $B^{\prime}=C(A, C(A, B))$ then $C\left(A, B^{\prime}\right)=C(A, C(A, C(A, B)))=C(A, B)$.
b. If $C(A, B)=C\left(A, B^{\prime}\right)$, then $B^{\prime} \subset C\left(A, C\left(A, B^{\prime}\right)\right)=C(A, C(A, B))$.
2. In section 4 we shall derive a sufficient condition for L in order that for each $A, B \in C(L)$ with $A \subset B, A \neq \emptyset$, we have $B=C(A, C(A, B))$.
3. Clearly, the corollary can be formulated more generally as a statement on sets instead of on lattices.

The next theorems are concerned with congruence relations.
In theorems 2 and 3 we investigate some general properties of congruence relations in distributive lattices, and in theorem 5 we relate these properties to the construction of theorem 1 .

Theorem 2. Let L be a distributive lattice and let K be a sublattice of L. Let the relation R_{K} be defined as follows:
$\mathrm{xR}_{\mathrm{K}} \mathrm{y}$ if and only if there exist $\mathrm{k}_{1}, \mathrm{k}_{2} \in \mathrm{~K}$ such that $\mathrm{k}_{1} \wedge \mathrm{x}=\mathrm{k}_{1} \wedge \mathrm{y}$ and $k_{2} \vee x=k_{2} \vee y$.
Then R_{K} is the smallest congruence relation that contains K in one of its congruence classes.

Proof. It is clear that $\mathrm{xR}_{\mathrm{K}} \mathrm{x}$ and that $\mathrm{xR}_{\mathrm{K}} \mathrm{y}$ implies $\mathrm{yR}_{\mathrm{K}} \mathrm{x}$. Now suppose that $\mathrm{xR}_{\mathrm{K}} \mathrm{y}$ and $\mathrm{yR}_{\mathrm{K}} \mathrm{z}$ hold. This means that there exist $\mathrm{k}_{1}, \mathrm{k}_{2}, \mathrm{k}_{3}, \mathrm{k}_{4}$ such that $k_{1} \wedge x=k_{1} \wedge y, k_{2} \vee x=k_{2} \vee y, k_{3} \wedge y=k_{3} \wedge z$ and $k_{4} \vee y=k_{4} \vee z$. Hence, $k_{1} \wedge k_{3} \wedge x=k_{1} \wedge k_{3} \wedge z$ and $k_{2} \vee k_{4} \vee x=k_{2} \vee k_{4} \vee z$. Since K is a sublattice, we see that $x R_{K} z$. It is easy to verify that if $x R_{K} y$ and
$t \in L$ than $x \wedge t R_{K} y \wedge t$ and $x \vee t R_{K} y \vee t$. Clearly, all elements of K are congruent with respect to R_{K}. There remains the proof that R_{K} is the smallest congruence relation with this property. Suppose S is a congruence relation such that for all $k_{1}, k_{2} \in K: k_{1} S k_{2}$.
We prove that $R_{K} \leq S$, i.e., $x R_{K} y$ implies x S.y. From $x R_{K} y$ we see that there exist k_{1}, k_{2} such that $k_{1} \wedge x=k_{1} \wedge y$ and $k_{2} \vee x=k_{2} \vee y$. From $k_{1} S k_{2}$ it follows that $x \wedge k_{1} S x \wedge k_{2}$; hence, $y=y \vee\left(y \wedge k_{1}\right)=y \vee\left(x \wedge k_{1}\right) S y \vee\left(x \wedge k_{2}\right)$. also, $y \wedge k_{1} S y \wedge k_{2}$; hence, $x=x \vee\left(x \wedge k_{1}\right)=x \vee\left(y \wedge k_{1}\right) S x \vee\left(y \wedge k_{2}\right)$. Thus, $y S y \vee\left(x \wedge k_{2}\right)=(y \vee x) \wedge\left(y \vee k_{2}\right)=(y \vee x) \wedge\left(x \vee k_{2}\right)=x \vee\left(y \wedge k_{2}\right) S x$.

Corollary. 1. Let a, b be two elements of a distributive lattice L, with $a \leq b$. The smallest congruence relation $R[a, b]$ with the property that $[a, b]$ is one of its congruence classes, can be defined as follows:

$$
x R[a, b]^{y} \text { if and only if } a \wedge x=a \wedge y \text { and } b \vee x=b \vee y
$$

2. Let I be a V-ideal of the distributíve lattice L. The smallest congruence relation R_{I} which has I as one of its congruence classes can be defined as follows:

$$
x R_{I} y \text { if and only if there exists } i \in I \text { such that } x \vee i=y \vee i \text {. }
$$

Proof.

1. $a \wedge x=a \wedge y$ and $b \vee x=b \vee y$ is equivalent to the existence of two elements $c_{1}, c_{2} \in[a, b]$ with $c_{1} \wedge x=c_{1} \wedge y$ and $c_{2} \vee x=c_{2} \vee y$. It can be verified directly that $[a, b]$ is a congruence class of $R[a, b]^{\circ}$.
2. It is only necessary to prove that there exists $i_{1} \in I$ with $\vec{i}_{1} \wedge x=$ $i, \wedge y$. However, for each $i \in I$ we have $(i \wedge x \wedge y) \wedge x=(i \wedge x \wedge y) \wedge y$, and $i \wedge x \wedge y \in I$.

Remark: Grätzer and Schmidt $[4]$ have given another definition of $R\left[\begin{array}{l}{[4}\end{array}\right]$
which requires a more complicated proof. Corollary 2 aiso occurs in $[4]$, again with a more elaborate proof.

Theorem 3. Let L be a distributive lattice and let K be a sublattice of L. We define the relation θ_{K} as follows:

$$
\begin{array}{r}
x \theta_{K} y \text { if and only if for all } k_{1}, k_{2} \in K: k_{1} \wedge\left(x \vee k_{2}\right)=k_{1} \wedge \\
\left(y \vee k_{2}\right)
\end{array}
$$

Then ${ }_{K}$ is a congruence relation such that different elements of K belong to different congruence classes of θ_{K}. If K is aiso convex, then ${ }_{\mathrm{K}}$ is the largest congruence relation with this property.

Proof. It can be verified directly that θ_{K} is a congruence relation. Suppose $k_{1} \theta_{K} k_{2}$ for some $k_{1}, k_{2} \in K$. Then by the definition of θ_{K} :

$$
\begin{aligned}
& k_{1} \wedge\left(k_{1} \vee k_{2}\right)=k_{1} \wedge\left(k_{2} \vee k_{2}\right) \text { and } \\
& k_{2} \wedge\left(k_{1} \vee k_{1}\right)=k_{2} \wedge\left(k_{2} \vee k_{1}\right) .
\end{aligned}
$$

Hence, $k_{1} \leq k_{2}$ and $k_{2} \leq k_{1}$. Thus, $k_{1}=k_{2}$.
Suppose that K is also convex, and let θ^{\star} be a congruence relation such that all elements of K belong to different congruence classes of θ^{*}. We prove that $\theta^{*} \leq \theta_{K}$. Let $x \theta^{*} y$. Then for all $k_{1}, k_{2} \in K$: $k_{1} \wedge\left(x \vee k_{2}\right) \theta^{*} k_{1} \wedge\left(y \vee k_{2}\right)$.
Since $k_{1} \wedge\left(x \vee k_{2}\right) \in K$ and $k_{1} \wedge\left(\underset{k_{2}}{ }\right) \in K$ we have $k_{1} \wedge\left(x \vee k_{2}\right)=$ $k_{1} \wedge\left(y \vee k_{2}\right)$, by the definition of $\theta^{*^{2}}$.
This means that $\mathrm{x}^{\theta}{ }_{K}{ }^{y}$.
Definition 5. Let L be a lattice. The zero element of the lattice of all congruence relations of L will be denoted by Ω, the unit element of this lattice will be denoted by U.

Corollary. Let K be a sublattice of a distributive lattice. Let R_{K} and θ_{K} be defined as in theorems 2 and 3. Then $R_{K} \wedge \theta_{K}=\Omega$ 。

Proof. Suppose $x R_{K} \wedge{ }^{\theta}{ }_{K} y$, i.e., $x R_{K} y$ and $x \theta{ }_{K} y$ both hold.
From $\times R_{K} y$ it follows that there exist $k_{1}, k_{2} K$ such that $k_{1} \wedge x=k_{1} \wedge y$ and $k_{2} \vee x=k_{2} \vee y$. However, from $x{ }_{K} y$ we see that $k_{2} \wedge\left(x \vee k_{1}\right)=k_{2} \wedge$ $\left(y \vee k_{1}\right)$. Also, $k_{2} \vee\left(x \vee k_{1}\right)=k_{2} \vee\left(y \vee k_{1}\right)$. Since L is distributive, we have $x \vee k_{1}=y \vee k_{1}$. Together with $x \wedge k_{1}=y \wedge k_{1}$, this yields $x=y$.
For the proof of theorem 5-we need a theorem of J. Hashimoto.
Definition 6. A lattice is called discrete if and only if all its intervals have finite lenght.

Theorem 4. The lattice of all congruence relations of a lattice L is a Boolean algebra if and only if L is distributive and discrete.

Proof. See [6], theorem 8.4.
Theorem 5. Let L be a distributive lattice and let $\mathrm{C} \in \mathrm{C}(\mathrm{L}), \mathrm{C} \neq \varnothing$. For $c \in C$, let C_{c} be the largest convex sublattice of L which has the intersection $\{c\}$ with C. Let the relation Γ_{C} be defined as follows:
$x^{\Gamma} C_{C} y$ if and only if there exists $c \in C$ such that $x \in C_{c}$ and $y \in C_{c}$.
Then:

1. $\mathrm{c}_{c_{1}} \cap \mathrm{c}_{c_{2}}=\varnothing$, if $c_{1} \neq c_{2}$.
2. If $x \in C_{c_{1}}$ and $y \in C_{c_{2}}$, then $x \wedge y \in C_{c_{1} \wedge c_{2}}$ and $x \vee y \in C_{c_{1} \gamma c_{2}}$.
3. If C is an interval then Γ_{C} is a congruence relation.
4. If Γ_{C} is a congruence relation, then Γ_{C} is equal to the congruence relation θ_{C} as introduced in theorem 3.
5. If L is also relatively complemented then the following two assertions are equivalent:
a) L is discrete.
b) Γ_{C} is a congruence relation for each $C \in C(L)$.

Proof.

1. Since $\mathrm{C}_{\mathrm{n}} \mathrm{C}_{\mathrm{c}_{1}} \cap \mathrm{c}_{\mathrm{c}_{2}}=\left\{\mathrm{c}_{1}\right\} \cap\left\{\mathrm{c}_{2}\right\}=\varnothing$, and since $\mathrm{C} \cap \mathrm{c}_{\mathrm{c}_{1}}=\left\{\mathrm{c}_{1}\right\}, \mathrm{C} \cap \mathrm{c}_{\mathrm{c}_{2}}=$ $\left\{c_{2}\right\}$, we conclude that $\mathrm{C}_{\mathrm{c}_{1}} \cap \mathrm{c}_{\mathrm{c}_{2}}=\varnothing$, by lemma 2 .
2. Let $x \in C_{c_{1}}, y \in C_{c_{2}}$. We only prove that $x \wedge y \in C_{c_{1} \wedge C_{2}}$. By theorem 1 , there exist $s \in\left\{c_{1}\right\}_{r} \backslash\left(c \backslash\left\{c_{1}\right\}_{1}\right)_{r}$, and $t \in\left\{c_{2}\right\}_{r} \backslash\left(c \backslash\left\{c_{2}\right\}_{1}\right)_{r}$, such that $x \leq s$ and $y \leq t$. We show that $s \wedge t \in\left\{c_{1} \wedge c_{2}\right\}_{r}\left(c \backslash\left\{c_{1} \wedge c_{2}\right\}_{1}\right)_{r}$. Since $s \geq c_{1}$ and $t \geq c_{2}$, we have $s \wedge t \geq c_{1} \wedge c_{2}$. Suppose $s \wedge t \in\left(c \backslash\left\{c_{1} \wedge c_{2}\right\}_{1}\right)_{r}$. This means that there exists $\bar{c} \in C$ such that $s \wedge t \geq \bar{c}$, but $\bar{c} \notin$ $\left\{c_{1} \wedge c_{2}\right\}_{1}$. As in the proof of theorem 1, we have: $c_{1} \geq \bar{c} \wedge s$ and $c_{2} \geq \bar{c} \wedge t$; hence, $c_{1} \wedge c_{2} \geq \bar{c} \wedge s \wedge t=\bar{c}$, a contradiction. Thus, $s \wedge t \in$ $\left\{c_{1} \wedge c_{2}\right\}_{r} \backslash\left(c \backslash\left\{c_{1} \wedge c_{2}\right\}_{1}\right)_{r}$. Since $x \leq s$ and $y \leq t$ we have $x \wedge y \leq s \wedge t$, whence $x \wedge \mathcal{Y} \in\left(\left\{c_{1} \wedge c_{2}\right\}_{r} \backslash\left(c \backslash\left\{c_{1} \wedge c_{2}\right\}_{1}\right)_{r}\right)_{1}$. Similarly, it can be shown that $x \wedge y \in\left(\left\{c_{1} \wedge c_{2}\right\}_{1} \backslash\left(c \backslash\left\{c_{1} \wedge c_{2}\right\}_{r}\right)_{1}\right)_{r}$. We conclude that $x \wedge y$ $\in C_{c_{1} \wedge c_{2}}$.
3. Let C be an interval, say $C=\{x \in L \mid a \leq x \leq b\}$. By 1 and 2 , in order to prove that Γ_{C} is a congruence relation, we only have to show that $\bigcup_{C \in C} C_{c}=L$. By the maximality of the sets C_{c}, it is sufficient to show that for each $z \in L$ there exists a convex sublattice containing z, the intersection of which with C contains precisely one element. Let $D=\{y \in L \mid b \wedge z \leq y \leq a \vee z\}$. Then D has the required property: if $t \in C \wedge D$, then $a \leq t \leq b$ and $b \wedge z \leq t \leq a \vee z$; hence, $a \vee(b \wedge z) \leq t \leq b \wedge(a \vee z)$. Since L is distributive, we have $a \vee(b \wedge z)$ $=t=b \wedge(a \vee z)$.
4. Let Γ_{C} be a congruence relation. Clearly, all elements of C belong to different congruence classes of Γ_{C}. By theorem $3, \Gamma_{C} \leq{ }_{C}$. We prove that also $\theta_{C} \leq \Gamma_{C}$. Suppose $x{ }_{C}{ }_{C}$, and let $x \in C_{C_{1}}, y \in C_{C_{2}}$. Since $c_{1} \wedge\left(x \vee c_{2}\right)=c_{1} \wedge\left(y \vee c_{2}\right)$, we have $c_{c_{1}} \wedge\left(c_{1} \vee c_{2}\right)=c_{c_{1}} \wedge\left(c_{2} \vee c_{2}\right)$, i.e., $c_{1} \wedge\left(c_{1} \vee c_{2}\right)=c_{1} \wedge\left(c_{2} \vee c_{2}\right)$ or $c_{1} \leq c_{2}$. Similarly, $c_{2} \leq c_{1}$, from which $x \Gamma_{C} y$ follows.
5. Let L be distributive and relatively complemented.
a. Suppose L is discrete. We prove that Γ_{C} is a congruence relation for each $C \in C(L)$. As in 3, it is sufficient to show that for each $x \in L$ there exists a convex sublattice C^{*}, containing x, which meets C in precisely one point. Let $x \in L$. Consider the congruence relation R_{C}. By theorem $4, R_{C_{*}}$ has a complement R_{C}^{*}. Let c be an arbitrary element of C. Then $x R_{C} \vee R_{C}^{*}$. Since L is relatively complemented, we have $x R_{C}^{*} R_{C} c$, i.e., there exists $t \in L$ with $x R_{C}^{*} t$ and $t R_{C} c$. Let C^{*} be the congruence class of R_{C}^{*} which contains both x and t. It follows that $C \cap C^{*}=\{t\}$; hence, C^{*} has the desired property. (We see that $R_{C}^{*}=\Gamma_{C}$; this can be shown as follows:
α. By the corollary of theorem 3, we have $R_{C} \wedge \Gamma_{C}=\Omega=R_{C} \wedge R_{C}^{*}$.
B. By 4, $R_{C}^{*} \leq \Gamma_{C}$. Since $R_{C} \vee R_{C}^{*}=U$, we have $R_{C} \vee \Gamma_{C}=I I=R_{C} \vee R_{C}^{*}$.
γ. Since the lattice of all congruence relations of a lattice is distributive, we conclude that $\Gamma_{C}=R_{C}^{*}$).
b. Suppose that L is distributive and relatively complemented and that Γ_{C} is a congruence relation for each $C \in C(L)$. We prove that L is discrete. By theorem 4, it is sufficient to prove that each
congruence relation of L has a complement. Let R be a congruence relation of L and let C be one of its congruence classes. Since in a distributive relatively complemented lattice each convex sublattice is congruence class of precisely one congruence relation [4] we have $R=R_{C}$. We show that Γ_{C} is the complement of $R_{C} \cdot \Gamma_{C} \wedge R_{C}=\Omega$ was proved already. Let x, y be two arbitrary elements of L, and suppose $x \in C_{c_{1}}, y \in C_{c_{2}}$, with $c_{1}, c_{2} \in C$. Then $x \Gamma_{C} c_{1}, c_{1} R_{C} c_{2}$ and $c_{2} \Gamma_{C} y$; hence, $x R_{C} \vee \Gamma_{C}^{2} y$, from which we conclude that $R_{C} \vee \Gamma_{C}=U$, i.e., Γ_{C} is the complement of $R_{C}=R$.

4. The lattice ($C(L), C$)

Let L be a lattice. In this section we study some properties of the lattice $(C(L), C)$ i.e., tha lattice of all convex sublattices of L, partially ordered by inclusion. The join operation in $(C(L), C)$ is denoted by $U($ definition 4.).

Lemma 4. Let L be a distributive lattice, and let $A, B, C \in C(L)$. Then:

1. If $A \cap B \neq \varnothing$ and $A \cap C \neq \varnothing$, then $A \cap(B \sqcup C)=(A \cap B) \cup(A \cap C)$.
2. If $B \cap C \neq \varnothing$, then $A \sqcup(B \cap C)=(A \sqcup B) \cap(A \sqcup C)$.

Proof.

1. Clearly, $A \cap(B \sqcup C) \supset(A \cap B) \sqcup(A \cap C)$. In order to prove that $A \cap(B \sqcup C)$
$C(A \cap B) \sqcup(A \cap C)$, assume that $a \in A$ and $a \in B U C$. This means that there exist $b_{1}, b_{2} \in B$ and $c_{1}, c_{2} \in C$ such that $b_{1} \wedge c_{1} \leq a \leq b_{2} \vee c_{2}$. Let $s \in A \cap B$ and $t \in A \cap C$. Then: $a \leq a \vee s \vee t=\left(a \wedge b_{2}\right) \vee\left(a \wedge c_{2}\right) \vee s \vee t$. However, $\left(a \wedge b_{2}\right) \vee s \in A \cap B$ and $\left(a \wedge c_{2}\right) \vee t \in A \cap C$. Thus,
$a \in\{(A \cap B) \vee(A \cap C)\}$. Similarly, $a \in\{(A \cap B) \propto(A \cap C)\}_{r}$.
This proves that $a \in(A \cap B) \cup(A \cap C)$.
2. Similar to part 1.

Theorem 6. Let I be a distributive relatively complemented lattice. Let $C, D \in C(L)$ with $C \subset D$. There exists $C^{\prime} \in C(L)$ such that $C \cap C^{\prime}=\varnothing$, $C L C^{\prime}=D$ 。

Proof.

1. First we prove that for each $C \in C(L)$ there exists C^{\prime} such that $C \cap C^{\prime}$ $=\varnothing$ and $C \sqcup C^{\prime}=L$. If $C=L$ then $C^{\prime}=\varnothing$. Otherwise, let $x \in L \backslash C$. Application of lemma 3 to the disjoint convex sublattices C and $\{x\}$ yields a prime ideal I, say a V-ideal, such that $C \cap I=\varnothing$. Since L is relatively complemented, I is maximal. We prove that CLI $=L$. $I \subset C \sqcup I \subset(C \sqcup I)_{r}$; hence, $I_{r}=L \subset(C \sqcup I)_{r}$. Thus, $(C \sqcup I)_{r}=L$, i.e. $C \sqcup I=(C L I)_{1}$. Since $I \subset(C \sqcup I)_{1}$ and since I is maximal, we have $(C \sqcup I)_{I}=I$ or $(C \sqcup I)_{I}=L \cdot(C \sqcup I)_{I}=I$ contradicts $C \cap I=\emptyset$. We conclude therefore that $(C \amalg I)_{1}=C L I=L$.
2. Let $C, D \in C(L)$ with $C \subset D$. Since D is a convex sublattice, D is a relatively complemented (and distributive) lattice. We can therefore apply part 1 , which yields a set C^{\prime} such that:
a. $C \cap C^{\prime}=\varnothing$.
b. The smallest convex sublattice of D that contains C and C^{\prime} is D. c. C^{\prime} is a V-ideal of D.

From b. it follows that $C L^{\prime}=D$ (since each convex sublattice of L which is contained in D is a convex sublattice of D). Also, C^{\prime} is a convex sublattice of L : It is clear that C^{\prime} is a sublattice. Suppose that $c_{1}^{\prime} \leq x \leq c_{2}^{\prime}$, for some $c_{1}^{\prime}, c_{2}^{\prime} \in C^{\prime}, x \in L$. Since $c_{1}^{\prime}, c_{2}^{\prime} \in C$ $C D$, we have $x \in D$. Together with the fact that C^{\prime} is a V-ideal of D and $x \leq c_{2}^{\prime}$, this gives $x \in C^{\prime}$; hence, C^{\prime} is convex.

Theorem 6 asserts that if L is distributive relatively complemented lattice then each interval $[\varnothing, C]$ of $(C(L), C)$ is complemented. Theorem 8 shows that an extra condition is necessary (and sufficient) in order that each interval $[C, D]$ of $(G(L), C)$ be complemented (i.e., in order that $(C(L), C)$ be relatively complemented).
For the proof of theorem 8 we need the following theorem of J. Hashimoto:

Theorem 7. The lattice of all V-ideals (\wedge-ideals) of a lattice L is distributive and relatively complemented if and only if L is distributive, relatively complemented and discrete.

Proof. See [6], theorem 4.3.

Theorem 8.

1. Let L be a distributive lattice ($G(L), C$) is relatively complemented if and only if L is relatively complemented and discrete.
2. Let L be a distributive lattice. Let $A, B, C \in C(L)$ with $A \subset B \subset C$, $A \neq \emptyset$. Then: B has at most one complement in $[A, C]$.

Proof.

1.1. Suppose L is distributive, relatively complemented and discrete.

Let A, B, C be elements of $G(L)$ with $A \subset B \subset C$. We prove that there exists $B^{*} \in C(L)$ such that $B \cap B^{*}=A$ and $B \cup B^{*}=C$. We may assume that $A \neq \varnothing$, since the case that $A=\varnothing$ was already treated in theorem 6. $A \subset B \subset C$ implies $A_{1} \subset B_{1} \subset C_{1}$ and $A_{r} \subset B_{r} \subset C_{r}$. Let $\mathcal{J}(L)$ be the family of all V-ideals of L and $\mathscr{Y}(L)$ the family of all 1 -ideals. By theorem $7,(M(L), C)$ and $(Y(L), C)$ are relatively complemented. Therefore, there exists $B_{1}^{*} \in \mathscr{M}(L)$ such that $B_{1} \cap B_{1}^{*}=A_{1}$ and such that C_{1} is the smallest V-ideal that contains B_{1} and B_{1}^{*}. Since L is distributive, this means that $b_{1} \vee B_{1}^{*}=C_{1}$. Similarly, there exists $B_{r}^{*} \in Y_{*}(L)$ such that $B_{r} \cap B_{r}^{*}=A_{r}$ and $B_{r} \wedge B_{r}^{*}=C_{r}$. We prove that $B_{1}^{*} \cap B_{r}^{*}$ is the relative complement of B in the interval [$\left.A, C\right]$. Clearly, $B_{1} \cap B_{r} \cap B_{1}^{*} \cap B_{r}^{*}=A_{\perp} \cap A_{r}=A$. Also, $B \amalg\left(B_{1}^{*} \cap B_{r}^{*}\right)=$ $\left\{B \wedge\left(B_{1}^{*} \cap B_{r}^{*}\right)\right\}_{r} \cap\left\{B \vee\left(B_{1}^{*} \cap B_{r}^{*}\right)\right\}_{l}=\left(B_{r} \wedge\left(B_{1}^{*} \cap B_{r}^{*}\right)_{r}\right) \cap\left(B_{1} \vee\left(B_{1}^{*} \cap B_{r}^{*}\right)_{1}\right)=$ $\left(B_{r} \wedge B_{r}^{*}\right) \cap\left(B_{1} \vee B_{1}^{*}\right)=C_{r} \cap C_{1}=C$.
1.2. Let L be distributive and suppose that $(C(L), C)$ is relatively complemented. We show that then $\mathcal{Y}(L)$ is also relatively complemented. Theorem 7 then gives the desired result. Let $I_{1} \subset I_{2} \subset I_{3}$ be three elements of $\mathcal{Y}(L)$. There exists $C \in G(L)$ such that $C \cap I_{2}=I_{1}, C U U_{2}=$ I_{3}. Since $I_{1} \subset C$ we have $I_{1} \subset C_{r}$; hence, $I_{12}=L \subset C_{r}$. This means that $C=C_{1}$; i.e., C is a V-ideal, from which we conclude that $M(L)$ is relatively complemented.
2. Let L be distributive, let $A \subset B \subset C \in C(L)$ with $A \neq \varnothing$, and suppose that B has two relative complements B_{1}^{*} and B_{2}^{*} in $[A, C]$. As above, it follows that B_{11}^{*} and B_{21}^{*} are two relative complements (in $M_{(L)}$) of B_{1} in the interval $\left[A_{A}, C_{1}\right]$. Since $M(L)$ is distributive, we have $B_{11}^{*}=B_{21}^{*}$. Similarly, $B_{1 r}^{*}=B_{2 r}^{*}$, whence $B_{1}^{*}=B_{2}^{*}$.

Remark: In the assertion that complementation in each interval [A,C] of $G(L)$ is unique (for L distributive), we may not omit the condition that $A \neq \emptyset$. This can be seen as follows: Suppose that complementation in the whole of $G(L)$ is unique, for L distributive. If L is also relatively complemented and discrete, we would have: $(G(L), C)$ is a lattice in which complements always exist and unique. Together with the atomicity of $(G(L), C)$ this would give the result that $(G(L), C)$ is distributive ($[7]$, p. 57), which is clearly not the case.

Corollary 1. Let L be a distributive lattice, let $A, B \in G(L)$ with $A \subset B$, $A \neq \varnothing$, and let $C(A, B)$ be the largest element of $C(L)$ that has the intersection A with B (theorem 1). Then $B L C(A, B)=L$ for all A, B, if and only if E is relatively complemented and discrete.

Proof.

1. Let L be distributive relatively complemented and discrete. Let $A \subset B$, $A \neq \varnothing(A, B \in G(L))$, and let B^{*} be the complement of B in the interval $[A, L]$. Then $B \cap B^{*}=A$. By the definition of $C(A, B): B^{*} C C(A, B)$; hence, $B \operatorname{BL}(A, B) \supset B \cup B^{*}=L$ 。
Thus, $B \cup C(A, B)=L$.
2. Let L be distributive and suppose that for each $A, B \in G(L)$ with $A \subset B, A \neq \varnothing$, we have $B \cup C(A, B)=L$. In particular, if I and H are two V-ideals of L with $I C H$, we have $I L C(I, H)=L$. By theorem 1 , $C(I, H)=\left(I_{1} \backslash\left(H \backslash I_{r}\right)_{I}\right)_{r} \cap\left(I_{r} \backslash\left(H \backslash I_{I}\right)_{r}\right)_{I}=\left(I \backslash(H \backslash L)_{I}\right)_{r} \cap\left(L \backslash(H \backslash I)_{r}\right)_{i}=$ $L \cap\left(L \backslash(H \backslash I)_{r}\right)_{I}=\left(L \backslash(H \backslash I)_{r}\right)_{I}$. Thus, $C(I, H)$ is a V-ideal and we see that each interval $[I, L]$ of $M(L)$ is complemented. Since (L and) $M(L)$ is distributive, $M(L)$ is relatively complemented. By theorem 7, L is then relatively complemented and discrete.

Corollary 2. Let L be a distributive relatively complemented and discrete lattice, let $A, B \in C(L)$ with $A \subset B, A \neq \varnothing$. Let $C(A, B)$ be defined as in corollary 1. Then we have: $C(A, C(A, B))=B$.

Proof. By corollary 1, we have

$$
\begin{aligned}
B \cap C(A, B) & =A \quad \text { and } \quad B \cup C(A, B)=L, \\
C(A, C(A, B)) \cap C(A, B) & =A \quad \text { and } \quad C(A, C(A, B)) \cup C(A, B)=I .
\end{aligned}
$$

Uniqueness of complementation in $[A, L]$ yields $B=C(A, C(A, B))$.

5. The lattice $(G), \leq)$

In this section we study a partial ordering on ${ }^{-}$(L) which is a variant of the ordering by inclusion. $(\bar{G}(L)$ is used to denote the family of all non-empty convex sublattices of L).

Definition 7. Let L be a lattice and let $C, D \mathcal{E}^{-}(L)$. We define the partial ordering \leq as follows:

$$
C \leq D \text { if and only if } C D_{1} \text { and } D C C_{r}
$$

Lemma 5. is a partial ordering on (L).

Proof. We prove only anti-symmetry. Let $C, D \in \bar{G}(L)$, with $C \leq D$ and $D \leq C$. Then $C \subset D_{1}, D \subset C_{r}, D \subset C_{1}$ and $C \subset D_{r}$. Hence, $C \subset D_{1} \cap D_{r}=D$ and $D \subset C_{1} \cap C_{r}$ $=C$, which gives $C=D$.

Lemma 6. Let $C \in \bar{G}(L) . C$ is a V-ideal (\wedge-ideal) of L if and only if $C \leq L(C \geq L)$.

Proof.

1. From $C \leq I$ we see that $L C_{r}$, whence $C=C_{1} M L=C_{1}$.
2. Let I be a -ideal. Clearly, $I L_{1}=L$. Also, $L \mathcal{I}_{r}$, since $L=I_{l_{r}}=I_{r}$.

Lemma 7. Let $C, D \in \bar{C}(L)$. Then $C \leq D$ if and only if $C \wedge D=C(C \backslash D=D)$.

Proof. Follows directly from the definitions.

Theorem 9. Let L be a distributive lattice. Then $(\vec{C}(L), \leq)$ is a distributive lattice.

Proof.

1. $C, D \in \bar{C}(L)$ implies $C \wedge D \in \bar{C}(L)$:
a. Clearly, $\left(c_{1} \wedge d_{1}\right) \wedge\left(c_{2} \wedge d_{2}\right) \in C \wedge D$.
b. $\left(c_{1} \wedge d_{1}\right) \vee\left(c_{2} \wedge d_{2}\right)=\left\{c_{1} \vee\left(c_{2} \wedge d_{2}\right)\right\} \wedge\left\{d_{1} \vee\left(c_{2} \wedge d_{2}\right)\right\} \in C \wedge D$.
c. Suppose $c_{1} \wedge d_{1} \leq x \leq c_{2} \wedge d_{2}$, for some $x \in L$. Then:
$c_{1} \leq x \vee c_{1} \leq c_{1} \vee\left(c_{2} \wedge d_{2}\right)$; hence, $x \vee c_{1} \in C$. Also, $x \vee d_{1} \in D$,
whence $x=x \vee\left(c_{1} \wedge d_{1}\right)=\left(x \vee c_{1}\right) \wedge\left(x \vee d_{1}\right) \in C \wedge D$.
2. Similarly, $C \vee D \in \bar{C}(L)$.
3. The commutative. associative and absorption laws follow directly.
4. Distributivity is proved by showing that, for $C, D, E \in \bar{C}(L)$:
$C \wedge(D \vee E)=(C \wedge D) \vee(C \wedge E)$.
a. It is clear that $C \wedge(D \vee E) \subset(C \wedge D) \vee(C \wedge E)$.
b. Let $\left(c_{1} \wedge d\right) \vee\left(c_{2} \wedge e\right) \in(C \wedge D) \vee(C \wedge E)$. Then:

$$
\begin{aligned}
& \left(c_{1} \wedge d\right) \vee\left(c_{2} \wedge e\right)=\left\{\left(c_{1} \wedge d\right) \vee c_{2}\right\} \wedge\left\{\left(c_{1} \wedge d\right) \vee e\right\}= \\
& c_{3} \wedge\left\{\left(c_{1} \wedge d\right) \vee e\right\}=c_{3} \wedge\left\{\left(c_{1} \vee e\right) \wedge(d \vee e)\right\}=c_{4} \wedge(d \vee e) \in C \wedge(D \vee E)
\end{aligned}
$$

Corollary. Let L be a distributive lattice. Then ($Y(L)$, \leq) is a V-ideal of $(\bar{C}(L), \leq)$ and $Y(L), \leq)$ is a \wedge-ideal of $(\bar{C}(L), \leq)$.

Proof. Follows from lemma 6 and theorem 9.

In the remainder of this section we shall omit indication of the partial ordering \leq on $\bar{C}(L)$, i.e., when we write $\bar{C}(L)$, we mean $(\bar{C}(L)$, \leq).

Theorem 10. Let $\mathrm{F}_{\mathrm{i}}(\mathrm{i} \geq 0)$ be the free distributive lattice with i generators, with an (extra) zero and unit element adjoined. Let $\mathrm{B}_{j}(j \geq 1)$ be the Boolean algebra with 2^{j} elements. For L distributive, we define $\bar{C}^{0}(L)=L$ and $\bar{C}^{i}(L)=\bar{C}\left(\bar{C}^{i-1}(L)\right),(i \geq 0)$. Then we have: $\bar{C}^{i}\left(B_{j}\right)$ is isomorphic with the direct union of j factors F_{i} (cf. [1], chapter IX, section 10).

Proof. We use induction on i.

1. $\bar{C}^{0}\left(B_{j}\right)$ is clearly isomorphic with the direct union of j factors F_{0},
since $F_{0} \cong B_{1} \quad 1$)
2. Suppose $\bar{C}^{i}\left(B_{j}\right) \cong F_{i}^{j}$ (The direct union of two lattices L_{1}, L_{2} is denoted by $L_{1} \times L_{2}$; the direct union of j factors L is denoted by $\left.L^{j}\right)$: In order to prove that $C^{i+1}\left(B_{j}\right) \cong F_{i}^{j+1}$, we have to prove that $\bar{C}\left(F_{i}^{j}\right) \cong F_{i+1}^{j}$. However, it is easy to verify that for two finite distributive lattices L_{1}, L_{2} we have $\bar{C}\left(L_{1} \times L_{2}\right) \cong \bar{C}\left(L_{1}\right) \times \bar{C}\left(L_{2}\right)$. Therefore, there remains the proof of $\overline{\mathcal{G}}\left(F_{i}\right) \cong F_{i+1}$. Let $C=\left\{f_{i} \in F_{i} \mid a \leq f_{i}\right.$ $\leq b\}$ be an element of $\bar{C}\left(F_{i}\right)$, where a and b are finite joins of meets of the generators, say $x_{1}, x_{2}, \ldots, x_{i}$, of F_{i}. (Verification of the following argument in the case that a or b is the zero or unit element of F_{i} is straight forward and is therefore omitted). We define the isomorphism $\psi: \bar{G}\left(F_{i}\right) \rightarrow F_{i+1}$ as follows: We introduce $y\left(\neq x_{1}, x_{2}\right.$, \ldots, x_{i}) as the $i+1-t h$ generator of F_{i+1}. Consider the element ($\mathrm{b} \wedge \mathrm{y}$) \vee a of F_{i+1}. It may be possible to "reduce" this element: E.g., let $b=x_{1} \vee x_{2}$, and $a=x_{1}$. Then $(b \wedge y) \vee a=\left(\left(x_{1} \vee x_{2}\right) \wedge y\right) \vee x_{1}$ can be reduced to $\left(x_{2} \wedge y\right) \vee x_{1}$. Clearly, however, each element $(b \wedge y) \vee a$ has an "irreducible" form. From now on we assume that all elements of F_{i+1} are in reduced form. We then define $\psi(c)$ as $(b \wedge y) \vee a$. We prove that ψ is an isomorphism:
Let $C_{1}=\left\{f_{i} \in F_{i} \mid a \leq f_{i} \leq b\right\}$ and $C_{2}=\left\{f_{i} \in F_{i} \mid c \leq f_{i} \leq d\right\}$. Then:
$C_{1} \wedge C_{2}=\left\{f_{i} \in F_{i} \mid a \wedge c \leq f_{i} \leq b \wedge d\right\}$, and
$c_{1} \vee C_{2}=\left\{f_{i} \in F_{i} \mid a \vee c \leq f_{i} \leq b \vee d\right\}$.
$\psi\left(C_{1}\right) \wedge \psi\left(C_{2}\right)=\{(b \wedge y) \vee a\} \wedge\{(d \wedge y) \vee c\}=$
$(b \wedge d \wedge y) \vee(a \wedge d \wedge y) \vee(b \wedge c \wedge y) \vee(a \wedge c)=(b \wedge d \wedge y) \vee(a \wedge c)=\psi\left(C_{1} \wedge C_{2}\right)$
$\psi\left(C_{1}\right) \vee \psi\left(C_{2}\right)=\{(b \wedge y) \vee a\} \vee\{(d \wedge y) \vee c\}=\{(b \vee d) \wedge y\} \vee(a \vee c)=\psi\left(C_{1} \vee C_{2}\right)$
Suppose $\psi\left(C_{1}\right)=\psi\left(C_{2}\right)$. This means that $(b \wedge y) \vee a=(d \wedge y) \vee c$.
From the irreducibility of $(b \wedge y) \vee a$ and $(d \wedge y) \vee c$, it follows that $a=c$ and $b=d$. Hence, ψ is $1-1$.
Also, ψ is onto: Each element of F_{i+1} can be written as $(a \wedge y) \vee b$, with $a, b \in F_{i}$. However, $(a \wedge y) \vee b$ is the image of the convex sublattice $\left\{f_{i} \in F_{i} \mid b \leq f_{i} \leq a \vee b\right\}$ of F_{i}. This follows from $\{(a \vee b) \wedge y\} \vee b=$ $(a \wedge y) \vee b$ 。
This completes the proof of theorem 10.
1)

\cong is used to denote isomorphism.

Remark: Let K_{n} be the chain of n elements. We state without proof the following formulae:
Let $\gamma_{n}^{(i)}$ be the number of elements of $\bar{C}^{(i)}\left(K_{n}\right), i=1,2,3$.
Then $\gamma_{n}^{(1)}=\sum_{i=1}^{n}(n-i+1)=\frac{1}{2} n(n+1)$,

$$
\begin{aligned}
& \gamma_{n}^{(2)}=\sum_{i=1}^{n}(n-i+1) i^{2}=\frac{1}{12} n(n+1)^{2}(n+2) \\
& \gamma_{n}^{(3)}=\frac{1}{120} \sum_{i=1}^{n}(n-i+1)\left(8 i^{6}+24 i^{5}+35 i^{4}+30 i^{3}+17 i^{2}+6 i\right)
\end{aligned}
$$

6. A ternary function in distributive relatively complemented lattices

Theorem 11. Let L be a distributive relatively complemented lattice. Let $f: L^{3} \rightarrow L$ be defined as follows: $f(a, b, c)$ is the relative complement of a in the interval $[a \wedge b, a \vee c]$. Then we have:
A subset C of L is an element of $C(L)$ if and only if $f(L, C, C) \subset C$.

Proof.

1. Suppose that $f(L, C, C) \subset C$. Clearly, $f\left(c_{1}, c_{2}, c_{1}\right)=c_{1} \wedge c_{2} \in C$, and $f\left(c_{1}, c_{1}, c_{2}\right)=c_{1} \vee c_{2} \in C$; hence, C is a sublattice. Also, if $c_{1} \leq x$ $\leq c_{2}$, then $x=f\left(x, c_{2}, c_{1}\right) \in C$.
2. Suppose $C \in C(L)$. Let $f\left(x, c_{1}, c_{2}\right)$ be an element of $f(L, C, C)$.

We prove that $f\left(x, c_{1}, c_{2}\right)$ (abbreviated to $\left.x^{*}\right)$ is an element of C. We have $x \wedge x^{*}=x \wedge c_{1}$ and $x \vee x^{*}=x \vee c_{2}$.
Hence,

$$
\begin{aligned}
& x^{*}=x^{*} \vee\left(x \wedge c_{1}\right)=\left(x^{*} \vee x\right) \wedge\left(x^{*} \vee c_{1}\right)=\left(x \vee c_{2}\right) \wedge\left(x^{*} \vee c_{1}\right)= \\
& \left\{x \wedge\left(x^{*} \vee c_{1}\right)\right\} \vee\left\{c_{2} \wedge\left(x^{*} \vee c_{1}\right)\right\}=\left\{\left(x \wedge x^{*}\right) \vee\left(x \wedge c_{1}\right)\right\} \vee c_{3}= \\
& \left(x \wedge c_{1}\right) \vee c_{3} \in C .
\end{aligned}
$$

Theorem 12. A set L is a distributive relatively complemented lattice if and only if there exists a function $f: L^{3} \rightarrow L$ with the following properties: For all $a, b, c, a, e \in L$:
P1. $f(a, a, a)=a$.
P2.1. $f(a, b, a)=f(b . a \cdot b)$
P2.2. $f(a, a, b)=f(b, b, a)$.

P3. $\quad f(a, f(a, b, c), f(a, d, e))=f(a, b, e)$,
P4.1. $f(a, f(b, b, c), a)=f(f(a, b, a), f(a, b, a), f(a, c, a))$.
P4.2. $f(a, a, f(b, b, c))=f(f(a, a, b), f(a, a, b), f(a, a, c))$.

Proof.

1. The condition is sufficient.

We define $a \wedge b=f(a, b, a)$ and $a \vee b=f(a, a, b)$.
1.1. The commutativity of Λ and \vee follows from P2.
1.2. $a \wedge(a \vee b)=f(a, f(a, a, b), a)=f(a, f(a, a, b), f(a, a, a))=$ $=f(a, a, a)=a, b y P 1, P 3$ and $P 1$. Similarly, $a \vee(a \wedge b)=a$.
1.3. In order to prove that $a \wedge(b \wedge c)=(a \wedge b) \wedge c$, we have to show that:

$$
\begin{aligned}
& f(a, f(b, c, b), a)=f(f(a, b, a), c, f(a, b, a)) . \\
& \text { Let } A=f(a, f(b, c, b), a) \text { and } B=f(f(a, b, a), c, f(a, b, a)) .
\end{aligned}
$$

First we prove that $a \wedge A=a \wedge B$ and $a \vee A=a \vee B$:

$$
\begin{aligned}
f(a, A, a) & =f(a, f(a, f(b, c, b), a), a)=f(a, f(b, c, b), a) b y P 3 \text { and } P 1 . \\
f(a, B, a) & =f(a, f(a, b, a), c, f(a, b, a)), a) \\
& =f(f(a, f(a, b, a), a), f(a, c, a), f(a, f(a, b, a), a)) \\
& =f(f(a, b, a), f(a, c, a), f(a, b, a)) \\
& =f(a, f(b, c, b), a) b y P 4 \cdot 1, P 1 \text { and P3, and P4.1. } \\
f(a, a, A) & =f(a, a, f(a, f(b, c, b), a))=a, b y \text { P1 and P3. } \\
f(a, a, B) & =f(a, a, f(f(a, b, a), c, f(a, b, a))) \\
& =f(f(a, a, f(a, b, a)), f(a, a, c), f(a, a, f(a, b, a))) \\
& =f(a, f(a, a, c), a)=a, b y P 4.2, P 1 \text { and P3. }
\end{aligned}
$$

The rest of the proof that $A=B$ is standard:

$$
\begin{aligned}
A & =A \vee(A \wedge a)=A \vee(B \wedge a)=(A \vee B) \wedge(A \vee a) \\
& =(A \vee B) \wedge(B \vee a)=B \vee(a \wedge A)=B \vee(a \wedge B)=B,
\end{aligned}
$$

by application of $P 2$ and P4.2.
For the proof of $(a \vee b) \vee c=a \vee(b \vee c)$ we need the dual equalities of P4.1 and P4.2, i.e:
(1) $f(a, f(b, b, c), a)=f(f(a, b, a), f(a, b, a), f(a, c, a))$ and
(2) $f(a, a, f(b, b, c))=f(f(a, a, b), f(a, a, b), f(a, a, c))$.
(1) is established as usual:

$$
\begin{aligned}
(a \wedge b) \vee(a \wedge c) & =\{(a \wedge b) \vee a\} \wedge\{(a \wedge b) \vee c\} \\
& =a \wedge\{(a \wedge b) \vee c\}=a \wedge\{(a \vee c) \wedge(b \vee c)\} \\
& =\{a \wedge(a \vee c)\} \wedge(b \vee c)=a \wedge(b \vee c)
\end{aligned}
$$

by the associativity of Λ and P 4.2 .
To prove (2), we consider:
$\{a \vee(b \vee c)\} \wedge\{(a \vee b) \vee(a \vee c)\}=$
$[a \wedge\{(a \vee b) \vee(a \vee c)\}] \vee[(b \vee c) \wedge\{(a \vee b) \vee(a \vee c)\}]=$
$[\{a \wedge(a \vee b)\} \vee\{a \wedge(a \vee c)\}] \vee[(b \wedge\{(a \vee b) \vee(a \vee c)\}) \vee$
$(c \wedge\{(a \vee b) \vee(a \vee c)\})]=a \vee[(\{b \wedge(a \vee b)\} \vee\{b \wedge(a \vee c)\})$
$\vee(\{c \wedge(a \vee b)\} \vee\{c \wedge(a \vee c)\})]=a \vee[(b \vee\{b \wedge(a \vee c)\}) \vee$
$(\{c \wedge(a \vee b)\} \vee c)]=a \vee(b \vee c)$
and:
$\{a \vee(b \vee c)\} \wedge\{(a \vee b) \vee(a \vee c)\}=$
$[\{a \vee(b \vee c)\} \wedge(a \vee b)] \vee[\{a \vee(b \vee c)\} \wedge(a \vee c)]=$
$[a \vee\{(b \vee c) \wedge b\}] \vee[a \vee\{(b \vee c) \wedge c\}]=$
$(a \vee b) \vee(a \vee c)$.
Hence, $a \vee(b \vee c)=(a \vee b) \vee(a \vee c)$.
Finally, the proof of the associativity of V is now dual to the proof of the associativity of \wedge.
1.4. The distributivity of L follows from $P 4.2$ and (1).
1.5. Let $a \leq c \leq b$. Then:
$c \wedge f(c, a, b)=f(c, f(c, a, b), c)=f(c, a, c)=c \wedge a=a$ and
$c \vee f(c, a, b)=f(c, c, f(c, a, b))=f(c, c, b)=c \vee b=b$.
Thus, $f(c, a, b)$ is the relative complement of c in the interval $[a, b]$.
2. The condition is necessary.

Let L be a distributive relatively complemented lattice. Let $f(a, b, c)$ be the relative complement of a in the interval $[a \wedge b, a \vee c]$. Then $f(a, b, c)$ has the properties P1 to P4.

We prove only P2. 1 and P3.
Clearly, the relative complement of a in the interval $[a \wedge b, a]$
is $a \wedge b$. Thus, $f(a, b, a)=a \wedge b=b \wedge a=f(b, a, b)$.

Furthermore, by the definition of f,
$a \wedge f(a, f(a, b, c), f(a, d, e))=a \wedge f(a, b, c)=a \wedge b$ and
$a \wedge f(a, b, e)=a \wedge b$.
$a \vee f(a, f(a, b, c), f(a, d, e))=a \quad f(a, d, e)=a \vee e$ and
$a \vee f(a, b, e)=a y e$.
Hence, $f(a, f(a, b, c), f(a, d, e))=f(a, b, e)$.
This completes the proof of theorem 12.
Finally we mention some properties of the function f that can be verified directly from its definition:

P5. $f(b, a, a)=a$.
P6. $f(a, b, f(a, b, c))=f(a, f(a, b, c), c)=f(f(f(a, b, c), b, c), b, c)=$ $f(a, b, c)$.
P7. $f(f(a, b, c), b, c)=(a \wedge b) \vee(b \wedge c) \vee(c \wedge a)$.
P8. $f(a, f(b, c, d), f(b, e, g))=f(b, f(a, c, e), f(a, d, g))$.

Remarks:

1. The function f has been used to define Boolean algebra's and distributive relatively complemented lattices with zero in [3].
2. From $P 7$ we see that the function f is related to the well-known ternary function $(a \wedge b) \vee(b \wedge c) \vee(c \wedge a)$, which has been used for the axiomatics of distributive lattices by several authors (these investigations started with [5]; for recent results see [9]).
3. From P3, P5 and P8 we see that f is one of the "selection functions" as studied in [2]. In particular, if L is the Boolean algebra with two elements, then f coincides with the "conditional Boolean expression" if a then b else c, as used in the programming language ALGOL 60 [8].

References

1. G. Birkhoff Lattice Theory. American Math. Society, New York, 1948.
2. A. Caraccialo di Forino
3. R.M. Dicker
4. G. Grätzer and
E.T. Schmidt
5. A.A. Grau
6. J. Hashimoto
7. H. Hermes
8. P.Naur (Ed.)
9. B. Sobocinski
10. M.H. Stone

N-ary selection functions and formal selective systems. Part I.
Calcolo, 1964, vol. 1, pp 49-81.
A set of independent postulates for Boolean algebra.
Proc. London Math. Soc. (3), 1963, vol. 3, pp 20-30.

Ideals and congruence relations in lattices. Acta Math. Acad. Sci. Hung., 1958, vol. 9, pp 137-175.

Ternary Boolean algebra.
Bull. Amer. Math. Soc. 1947, vol. 53, pp 567-572.
Ideal Theory for Lattices.
Math. Japonicae, 1952, vol. 2, pp 149-185.
Einführung in die Verbandstheorie. Springer-Verlag, Berlin, 1955.

Revised Report on the Algorithmic Language ALGOL 60.
Regnecentralen, Copenhagen, 1962.
Six new sets of independent axioms for distributive lattices with 0 and I.
Notre Dame J. of Formal logic, 1962, vol. 3, pp 187-192
Topological representations of distributive lattices and Brouwerian logics.
Casopics Pest. Mat. Fyz. 1937-'38. vol. 67, pp 1-25.

