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1. Introduction

In this paper we study some properties of convex sublattices of distribu-
tive lattices.
The family of all convex sublattices of a lattice L will be denoted by
C(v).
~ Section 2 contains some definitions and preliminary lemma's.
The first result of section 3 is the following: Let L be a distributive
lattice and let A,BeC(L) with ACB, A # #. In theorem 1 we prove that
the family of all elements of C(L) which have the intersection A with B
has a largest element, by means of an explicit construction of this
element from A and B. The next theorems are concerned with congruence
relations. Let CeCG(L). We construct the smallest congruence relation
such that C is one of its congruence classes, and the largest congruence
relation such that all elements of C are incongruent with respect to
this congruence relation. Next, these results are related to the con-
struction of theorem 1.
In section 4 we consider the lattice (C(L), <), i.e. the family of all
convex sublattices of L, partially ordered by inclusion. We prove that
in a distributive relatively complemented lattice L, all intervals
[@, A] of (C(L), C) are complemented. A necessary and sufficient condi-
tion that (C(L), <) be relatively complemented, is that L is also dis-
crete (i.e., all intervals of L have finite lenght).
In section 5 we introduce an ordering < on C(L) (i.e., the family of
all non-empty convex sublattices of L), which is a variant of the
ordering by inclusion. We prove that (L), <) is a distributive lattice,
if I is distributive. Next we consider the lattices C 2(L) =C(C(L)), ...
,Ff'i(L). We prove thatlcfi(Bj), where Bj is the Boolean algebra with
oJ elements, is isomorphic with the direct union of j factors Fi’ where
Fi is the free distributive lattice with 1 generators, with an extra
zero and unit element adjoined.
Section 6 is concerned with a ternary function which can be used to

characterize convex sublatbices of distributive relatively complemented



lattices. Finally, we exhibit a set of axioms for distributive relative-

ly complemented lattices in terms of this ternary function.

I am indebted to A.B. Paalman-de Miranda for several helpful suggestions.

2. Definitions

Definition 1. Let X be a subset of a lattice L. The sets X Xr are

l’

defined as follows:

Xy

X
r

{ aeL|Jx€X such that a < x},
{ a€L|jx€X such that a ix}.

It is easily seen that:

1. 1 and r are closure-operators, i.e. for all X, YcL we have:

XcX;, X, =X 4, (XUY)l = X,VUY,, and similarly for r.

2. Xlr = Xrl = L.

3. If X is closed with respect to V(A) then Xl(Xr) is a Vv -ideal
(A-ideal).

4y, If X is a V-ideal (A-ideal) then X = X, (X = xr).

1

Definition 2. Let X, Y be non-empty subsets of a lattice L. The sets
XAY, XVY are defined as follows:

Ny
XVvy

{x AY|x€X and er},

{xvy|x€X and yE:Y}.

Clearly, for all X, YCL we have (xmr):L = X;AY,, and (va)r = er Y.

It is also easy to proveé that (X VY)l = X,V Y, for all X, YCL, if

1
and only if L is distributive (and dually).

Definition 3. A subset of a lattice L is called convex if and only if

cX.
le\Xr X

In this paper we are only interested in convex sublattices. The family
of all convex sublattices of L will be denoted by C(L). The family of
all V-ideals (A-ideals) of L will be denoted by I(L) (Y(L)). Some of
the simplest properties of C(L) are:



1. I(L)eC(L) and J(L)cC(L).

2. The intersection of a family of convex sublattices is a convex sub-
lattice.

3. If A is closed with respect to VvV and B is closed with respect to A
then A, NB €C(L).

4, A subset C of L is a convex sublattice of L if and only if it has
the following property: For all Cqs C € C and all x€L we have:

)e C.

2

c1/\(x vcg)é C and c1v(x Ae,

Clearly, if C€C(L) then C = le\Cr. Hence, each convex sublattice can
be written as the intersection of a V-ideal and a A-ideal. The follo-

wing lemma proves that this "decomposition" is unique:

Lemma 1. Let CeC(L), C # ¢ , and suppose that C = INJ, where I is a

Vv-ideal and -J is a A-ideal. Then I = Cl and J = Cr.

Proof. C = INJCI, hence ClCIl = I. Also, IV(INJ) = C; hence,

I=1,c{Iv(Ing)}, =c . Thus I =C,. Similarly, J = C,..

From this lemma it follows that if C, D€C(L), and CND # @, then
(an)l = C,ND,, and (an)r = C.ND_.

Definition 4. Let C, DEC(L). The smallest convex sublattice of L that

contains C and D is denoted by CuD.

From this definition it follows that if C # ¢, D # @, than CULD =
(cAD) N(CcvD),.

The following two lemma's state some properties of convex sublattices

that will be used later.

Lemma 2. Let A, B, CeC(L), with AnB # ¢, BOC # @, and CNA # @.
Then ANBNC # @.

Proof. Let x€ANB, y¢ BNC and z€CNA. Since x, y€B and x,z&€A, we
have x A(y vz)€ANB.



Now consider the element {x Alyvz)lviyaz).
We have: X,N(y Vv2z) and y are elements of B,
x A(y vz) and z are elements of A,
YV 2z and yA z are elements of C.
Therefore, {xA(yVvz)} Vv (y Az)EANBNC.

Two consequences of this lemma are:

n
1. If.Afi(Z(L), 1 <1 <mn, and Ai = @, then Aif\Aj = @, for some

i=1

1,5 with 1 <1, § <
2. If Aié(z(L), 1 <1i<mn, and J% Ai # @ for three values of j

1=1
1#]-

(1 <j <mn), then () A. # 0.
- i

o]

n_)s
'_l

Lemma 3. Let L be a distributive lattice and let C, DEC(L) with
CND = @. Then there exist C', D'€C(L), such that CCC', DCD',
C'MD' = ¢ and C'UD' = L. Moreover, either C' is ay-ideal and D' is

a A-ideal or conversely.

Proof. (This proof is due to P.C. Baayen).
1. Either c,Nd, = @, or c.ND, = @. For, suppose that there exist
A > d,.

Cyo ¢.eC and 4 d.eD with c _<_d_| and c5 5
A (e vd2)€CﬂD , a

2 12 72 1
Then c, _<_<it1 /\(01\/d2) <cyves;
contradiction.

hence, 4

1 1

2. Suppose le\Dr = . We can then apply Stone's theorem [10] to the
N-ideal D_.
r

3. Congruence relations

Theorem 1. Let L be a distributive lattice, let A, B€C(L) with A CB,
A # @. Let C be defined as:

c = (ANG\A) ) NANB\A)) .

Then:
1. ceC(L).
2. BNC = A.

3. DeC(L) and DNB. = A imply DCC.



Proof.
1. In order to prove that C€ C(L) it is sufficient to prove that
3 : 1 ]
Ar\(B\Al)r is closed with respect to V. Let a}, a2€Ar\(B\Al)r.

1 1 1 !
Y a2€Ar. Suppose that aj Va2 > Db for some bEB\Al.

Since aj€A , there exists a,€A such that al > a,.

Then b > b/\a% f_b/\a1. Sine ACB and B is a convex sublattice, we

have bAa,€B, and bAa'€ B. Since a! ib/\a,l, and a.,'I & (B\Al)r’

1 1 1
we see that bA a'€Al, so that there exists a ‘ib/\a%.

1 3 3
Similarly, there exists aheA such that ahib/\a'. Thus, a3v a), >

2
(b/\a!I ') = b, which contradicts b€ B\Al.

2
1 1
We conclude therefore that a}lva) eAr\(B\Al)r, where Ar\(B\Al)r

Clearly, a

€A, with a
)V (b/\aé) = b/\(a%va

is closed with respect to V (it is easy to prove that Ar\(B\Al)r
is even a convex sublattice).

2.17. In order to prove that ACBNC it is sufficient to prove that
ACAr\(B\Al)r' It is clear that ACA . Also, it is impossible that
there exists a€A such that a > b for some bE.B\Al.

2.2. Let beBNC. Then there exist a'€A \(B\A) and a"€ Al\(B\Ar)l
such that a" < b < a'. From a' > b and a' & (B\Al)r we see that
bEAl. Similarly, from a'" < b we infer that beAr. Hence beAlﬂ Ar = A,
from which we conlcude that BNC CA.

3. Suppose DeC(L) and DNB = A. We have to prove that DcC. It is
sufficient to show that for each d€D and a€A: dVaéAr\(B\Al)r.
Clearly, 4V aeAr. Suppose that dva > b for some beB\Al. Then
b=bAn(dva) < (bAd)Va. Since ACB and ACD, we have (bAd)V a€B

and (bAdVa€D; hence, (bAd)V a€A. This contradicts "bGB\Al.

Corollary. Let L be a distributive lattice, let A, BEC(L) with ACB,
A # ¢, and let C(A, B) be the largest element of C(L) which has the
intersection A with B. Then C(A, B) = C(A, C(A, C(A, B))).

Proof. Since C(A, C(A, B)) is the largest convex sublattice which has
the intersection A with C(A, B), and since BNC(A, B) = A, we have
BcC(A, C(A, B)). Thus, BNC(A ,C(A, c(a, B))) = Bnc(a, c(a, B)) N
c(a, c(a, C(A, B))) = BNA = A,

Since C(A, B) is the largest convex sublattice which has the intersection

A with B, we have



(1) c(a, c(a, c(4, B)))cC(A, B).
Since C(A, B)NC(A, C(A, B)) = A, and since C(A, C(A, C(A, B))) is
the largest convex sublattice which has the intersection A with
c(a, c(A, B)), we have

(2) c(a, B)cC(A, C(A, C(a, B))).

From (1) and (2) the assertion follows.

Remarks:
1. From this corollary it follows that C(A, C(A, B)) is the largest
element of the family of all elements B'€C(L) such that C(A, B) =
Cc(A, B'):
a. If B' = Cc(a, C(A, B)) then C(A, B') = C(A, C(A, C(A, B))) = C(A, B).
b. If c(A, B) = C(A, B'), then B'<C(A, C(A, B'")) = C(A, C(A, B)).
2. In section L we shall derive a sufficient conditioﬁ for L in order
that for each A, BeC(L) with AcB, A # @, we have B = C(4, C(A, B)).
3. Clearly, the corollary can be formulated more generally as a state-

ment on sets instead of on lattices.

The next theorems are concerned with congruence relations.
In theorems 2 and 3 we investigate some general properties of congruence
relations in distributive lattices, and in theorem 5 we relate these

properties to the construction of theorem 1.

Theorem 2. Let L be a distributive lattice and let K be a sublattice

of L. Let the relation RK be defined as follows:

xRKy if and only if there exist k1, kge:K such that k1/\x = k1/\y
and k2VX = kQVy.
Then RK is the smallest congruence relation that contains K in one of

its congruence classes.

Proof. It is clear that xRKx and that XRKy implies yRKx. Now suppose
that XRKy and yRKz hold. This means that there exist kT’ kg, k3, kh

2

1/\k3/\x = k,l/\k3/\z and k2v thx = k2VKMVZ. Since K 1s a

sublattice, we see that xRKz. It is easy to verify that if x RKy and

such that k1 AX = kT/\y, k,vx = kg\/y, k3/\y = k3/\z and kyVvy = kh\/z.

Hence, k



t€ L than x/\tRKy At and X\/tRKy'Vt. Clearly, all elements of K are

K’ There remains the proof that RK is the
smallest congruence relation with this property. Suppose S is a con-

congruent with respect to R

gruence relation-such that for all k1,k2eK : k1Sk2.

We prove that R, < S, i.e., xRKy implies xSy. From xR _y we see that

K K
there exist kq,k2 such that k1/\x = k1/\y and k2Vx = k2v y. From k18k2
it follows that x/\k1 Sx Ak2; hence,
y = yv(y/\k1) = yV(x/\k1)S yV(X/\kg). also, yAk, S yAk,; hence,

x=xv(x/\k1) xv(y/\k,l)S xv(y/\kz). Thus,

(yvx)n(yvk,) = (y vx) N(x vk

=XV (y/\kg)S X.

ySy\/(x/\kg) 2)

Corollary. 1. Let a,b be two elements of a distributive lattice L,
with a < b. The smallest congruence relation R[a

b] with the property
b
that ]:a,b:[ is one of its congruence classes, can be defined as follows:

era b]y if and only if aAx = aAy and bVx = b Vy.
2

2. Let I be a V-ideal of the distributive lattice L. The smallest congru-
ence relation RI which has I as one of its congruence classes can be

defined as follows:

xRI‘ y 1if and only if there exists 1i€1I such that xVvi =yvi.

Proof.
1. aAx = aAy and bvx = byy is equivalent to the existence of two

elements c¢ 12 c2é |:a,b-} with c1/\x =c.,Ny and c,VX = c,VYYy. It can

1 2 2
be verified directly that ]:a,b] is a congruence class of R[a b:['
2

2. It 1s only necessary to prove that there exists i1€I with i, Ax =

1
ijl\y. However, for each i€ I we have (iAxAy)Ax = (1AXAY)A Y, and

iANxAyel.

Remark: Gr&tzer and Schmidt [:h:[ have given another definition of R R
which requires a more complicated proof. Corollary 2 also occurs 1in tlt],

again with a more elaborate proof.

Theorem 3. Let L be a distributive lattice and let K be a sublattice

of L. We define the relation eK as follows:

X 0,y if and only if for all k k2éK T ko A(x \/k2) =k, /N

1? 1

(yVk,).



Then eK is a congruence relation such that different elements of K

belong to different congruence classes of 6_. If K is also convex,

K

then eK is the largest-congruence -relation with this property.

Proof. It can be verified directly that 6 1s a congruence relation.

K

Suppose k, eK k, for some k1,k2€K. Then by the definition of 6

AN
k, (k1

kg/\(kj vk1)

K
\/k2) = k1/\(k2\/k2) and

k2/\(k2Vk1).
< =
Hence, k1 < k2 and k2 < k1. Thus, kT kg—.
Suppose that K is also convex, and let 6 be a congruence relation

such that all elements of K belong to different congruence classes of

X— > *
6 . We prove that 6 < g+ Let x 6 y. Then for all k,,k, € K:
>
kA (kag) G k1/\(yv1<2).
Since k‘l A (x Vk2) €K and k1 A(ka2)€K we have k, N(xVk
- |
LIWA (v VKQ), by the definition of 6 .

19

o) =

This means that 'xef‘Ky'.

Definition 5. Let L be a lattice. The zero element of the lattice

of all congruence relations of L will be denoted by £, the unit element
of this lattice will be denoted by [J.

Corollary. Let K be a sublattice of a distributive lattice. Let RK

and eK be defined as in theorems 2 and 3. Then RK/\GK = Q,

xY and xeK
From x RKy it follows that there exist k1,k2 K such that k1 AX = k1/\ y
2/\(X\/k1) = k2/\

and kEVX = kg\/y. However, from XGKy we see that k
(YVKT)’ Also, k,V (x vkq) = kzv(y vk1). Since L is distributive, we

Proof. Suppose x RK/\ eKy, i.e., X R vy both hold.

have xVk, = yvk, . Together with XAk, = yAk,, this yields x = y.

For the proof of theorem 5-we need-a theorem of J. Hashimoto.

Definition 6. A lattice is called discrete if and only if all its

intervals have finite lenght.



Theorem 4. The lattice of all congruence relations of a lattice L is a

Boolean -atgebra if and only 1if L is distributive and discrete.
Proof. See [6], theorem 8.k.

Theorem 5. Let L be a distributive lattice and let CeC(L), C # 8.
For ce(C, let Cc be the largest convex sublattice of L which has the

intersection {c} with C. Let the relation FC be defined as follows:
xTCy if and only if theré exists ce€C such that xeC, and yeC,.
Then: ;
1. CcynCep = @5 if c, # c,.
2., If XGCC1 and yech, then x/\ychv\c2 and xVyechcg.
3. If C is an interval then FC is a congruence relation.

4, If ', is a congruence relation, then I', is equal to the congruence

C
relation ©

C
o as introduced in theorem 3.
5. If L is also relatively complemented then the following two asser-
tions are equivalent:
a) L is discrete.

b) T, is a congruence relation for each CeC(L).

C

Proof.
1. Since CNCe NCep = {e fnie,]
{02}, we conclude that CC1nCc2 = @, by lemma 2.

= @, and since Cch1 = {c1}, Cr\Cc2 =

2. Let xeCC1, yeccz. We only prove that x/\yeCC1,\c2. By theorem 1,
. Il 1 i
there exist s e{c1}r\(C\Lc1}l)r, and te {cg}r\(C\{ce}l)r, such that

x < s and y < t. We show that sl\te{c1/\c2}r (C\{c1/\02} Since

l)r'

s2>c,andt >c,, ve have sAt > ciACye Suppose s/\te(C\{c1/\c

1
This means that there exists ce C such that sAt > c, but ¢ &

2}l)r'

{CT/\CZ}l' As in the proof of theorem 1, we have: c., > c As and

1

c iE/\t; hence, c1l\c2 _>_E As ANt = ¢, a contradiction. Thus, sAt &€

2
leyncyt,
whence xl\'ye’({c1/\c2}r\(0\{c1/\ CE}l)r)l' Similarly, it can be

\(C\{c1/\02}l)r. Since x < s and y < t we have xAy < sAt,

shown that xAy e({c1/\cg}l\(0\{c1 /\ce}r)l)r. We conclude that XAy

cc )
€4NnCy



10

3. Let C be an interval, say C = {xe.L|a < x <bl. By 1 and 2, in or-

der to prove that [ is a congruence relation, we only have to

show that gejc Cc = E By the maximality of the sets Cc, it is suf-
ficient to show that for each z €L there exists a convex sublattice
containing z, the intersection of which with C contains precisely
one element. Let D = {yeL|b/\z <y = a\/z}. Then D has the required
property: if t€CAD, then a <t < b and bAzZ < t < aVvz; hence,
av(baz) <t < bA(aVvz). Since L is distributive, we have av (bAz)
=t =DbA(avz).

L. Let FC be a congruence relation. Clearly, all elements of C belong
to different congruence classes of T <8

We prove that also 6 < T

o By theorem 3, FC o

. Suppose x ch, and-let xe Cc ) yeCc

C 1 X

C

Since c, A(xwve,.) =c.A (yvce), we have Cc =C

b
1 2 1 1’\(c1vc2) c1f\(c2\/c2)
i.e., c, A(c1\/c2) =c, /\(C2\/C2) or ¢, = c,.

Similarly, c from which x Tcy follows.

2 i C,],
5. Let L be distributive and relatively complemented.

a. Suppose L is discrete. We prove that I' | is a congruence relation

C
for each CeC(L). As in 3, it is sufficient to show that for each

° . * . . 3 N
x€L there exists a convex sublattice C , contalning x, which meets
C in precisely one point. Let x€ L. Consider the congruence rela-

tion R, By theorem L, RC has a complement R-Z

£V
element of C. Then XRCVRCC' Since L is relatively complemented,
x .
we have x RCRCc, i.e., there exists teL with x RZt and t Rcc.

Let C be the congruence class of R: which contains both x and t.

. Let ¢ be an arbitrary

It follows that CnC* = {t}; hence, ¢ has the desired property.
>
(We see that RC = FC; this can be shown as follows:

o, By the corollary of theorem 3, we have RC/\TC =Q = RC/\ R-XC_.

- > >

. < T . 1 = ' = U = .

B. By L, Ry < Ty Since R, VR, T, we have Ry VT R, VR,

Y. Since the lattice of all congruence relations of a lattice is
distributive, we conclude that I, = RZ).

b. Suppose that L is distributive and relatively complemented and

that FC is a congruence relation for each Ce(C(L). We prove that

L is discrete. By theorem 4, it is sufficient to prove that each
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congruence relation of L has a complement. Let R be a congruence

relation of L and let C be one of its congruence classes. Since in
a distributive relatively complemented lattice each convex sublat-
tice is congruence class of precisely one congruence relation I:h:[

we have R = RC. We show that FC is the complement of RC' I“C/\RC = Q
was proved already. Let x,y be two arbitrary elements of L, and

suppose xECc yec, » with ¢,s¢,€ C. Then x r s C R.c, and

, 2 c C
¢, TCy; hencej X Rcv%éy, from which we conclude that R.v T, =17,

C C
is the complement of R, = R.

i.e., T c

C

L. The lattice (C(L), )

Let L be a lattice. In this section we study some properties of the
lattice (O(L), c) i.e., tha lattice of all convex sublattices of L,
partially ordered by inclusion. The join operation in (C(L), c) is
denoted by {J(definition 4. ).

Lemma 4., Let L be a distributive lattice, and let A,B,CeC(L).
Then:

1. If ANB # ¢ and ANC # @, then An(BUWC) = (ANB)L(ANC).
2. If BNC # @, then ALI(BNC) = (AUB) N(A LIC).

Proof.
1. Clearly, AN(BUC)>(ANB)W(ANC). In order to prove that AN(BLC)
Cc(AnB)U(ANC), assume that a€A and acBUC. This means that there

< a< b,ve,. Let

)
s€AﬂB1and t€ANC. Then: a < avsVt = (a1/\b2)\/(a2/\c2§Vs Vt.
However, (a/\bg)VseAnB and (aAc,)Vt€ANC. Thus,
ael(anB)v(anc)l . similarly,

acl(anB)A(an0)} .

This proves that ac(ANB)Y(ANC).

exist b b2€.B and c1,c2€C such that bTAC

5)

2. Similar to part 1.
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Theorem 6. Let L be a distributive relatively complemented lattice.
Let C, De &(L) with CCD. There exists C'« (L) such that CAC' = @,
CLC' = D.

1. First we prove that for each C&€((L) there exists C' such that CNC'
= @ and CLUC' = L. If C =L then C' = @#. Otherwise, let x<L\C.
Application of lemma 3 to the disjoint convex sublattices C and {x}
yields a prime ideal I, say a Vv-ideal, such that CNI = @. Since L
is relatively complemented, I is maximal. We prove that CLII = L.
ICcLJIc(CLJI)r; hence, I = LC(CI_}I)r. Thus, (CL_II)r =1, i.e.
cuI = (CLJI)l. Since Ic(C l_ll)l and since I is maximal, we have
(CLI); = I or (CuI); =L. (CUI); = I contradicts CNI = 0. Ve
conclude therefore that (CLJI)l =CyI = L.

2. Let C,De(C(L) with CcD. Since D is a convex sublattice, D is a re-
latively complemented (and distributive) lattice. We can therefore
apply part 1, which yields a set C' such that:

a. CNC' = @.

b. The smallest convex sublattice of D that contains C and C' is D,
c. C' is a y-ideal of D.

From b. it follows that CLJC' = D (since each convex sublattice of
L which is contained in D is a convex sublattice of D). Also, C' 1is
a convex sublattice of L: It 1s clear that C' is a sublattice.
Suppose that ¢! < x < ¢!, for some c%, céeC', xelL. Since c;,céEC
CD, we have xeD. Together with the fact that C' is a wv-ideal of D

and x = c'2,

this gives x &€C'; hence, C' 1s convex.

Theorem 6 asserts that if L is distributive relatively complemented
lattice then each interval [Q,CJ of (C(L), ¢) is complemented.
Theorem 8 shows that an extra condition is necessary (and sufficient)
in order that each interval EC,DJ of (G(L), <) be complemented (i.e.,
in order that ((C (L), C) be relatively complemented).

For the proof of theorem 8 we need the following theorem of J. Hashimoto:
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Theorem 7. The lattice of all V-ideals (A-ideals) of a lattice L is

distributive and relatively complemented if and only if L is distri-

butive relatively complemented and -discrete.

Proof. See- [6}, theorem L.3.

Theorem 8.

1.

2.

Let L be a distributive lattice (G (L), ) is relatively complemen-
ted if and only if L is relatively complemented and discrete.

Let L be a distributive lattice. Let A,B,CeC(L) with AcBcCC,

A # @+ Then: B has at most one complement in @.,C:I.

Proof.

1.1. Suppose L is distributive relatively complemented and discrete.

Let A,B,C be elements of (3(L) with ACBCC. We prove that there
exists B*E_G(L) such that BAB = A and BUB = C. We may assume
that A # @, since the case that A = @ was already treated in theo-
rem 6. ACBCC implies A/ B, CC) and A CB CC . Let N(L) be the
family of all V-ideals of L and g(L) the family of all A-ideals.
By theorem 7, (Z(L), c) and (Q(L), C) are relatively complemented.
Therefore, there exists B eY(L) such that B,N B, = A and such

1 1 1 "1

that Cl 1s the smallest VY-ideal that contains Bl and B;(_—. Since L

. ° . * . .
is distrlbutlve, this means that b, v B = C ., Similarly, there

1 1 1°
- .
exists B E’J such that B F\B = A and B /\B* = C . We prove

>

that Blr\B is the relatlve complement of B in the 1nterval [A C:[

Clearly, B /‘)BrmB ﬂB; = Alﬂ Ar A. Also, B\._I(B ﬁB ) =
{B/\(BlnB )}rm,{Bv(BlnB )}l = (8, /\(B NB )r)ﬂ(B V(B B )l) =

>
(Br/\Br)ﬂ(Blv B,) = C,NC, =C.

1.2. Let L be distributive and suppose that (G (L), ) is relatively

complemented. We show that then JJ(L) is also relatively complemen-
ted. Theorem 7 then gives the desired result. Let ICI CI be three

3
elements of M(L). There exists CQG(L such that C(‘iI2 1, c 5 =
13. Since 11cc we have I1CCr_; “hence, 112 = LCCr. This means that

C=0Cps i.e., C is a v-ideal, from which we conclude that M(L) is

relatively complemented.,



1h

2. Let L be distributive, let AcBcCe((L) with A # @, and suppose

that B has two relative complements BT and Bé* in [:A,C] . As above,
it follows that BTl,and le are two relative complements (in M(L))

of Bl in the interval EA:L,Cl] . Since Q(L) is distributive, we have
ol ,

»* >
B =B

1 K Slmllarly', B

1y = Bpyo Whence = .

1 2

Remark: In the assertion that complementation in each interval [A,C]

of (L) is unique (for L distributive), we may not omit the condition
that A # @. This can be seen as follows: Suppose that complementation
in the whole of G‘(L) is unigue, for L distributive. If L is also
relatively complemented and discrete, we would have: QGL), c) is a
lattice in which complements always exist ‘and unique. Together with the
atomicity of (B(L), <) this would give the result that (Q(L), <) is
distributive | [73 5 Pe 57 )J; Which"is clearly not- the case.

Corollary 1. Let L be a distributive lattice, let A,Be(G(L) with ACB,
A # @, and let C(A,B) be the largest element of ((L) that has the
intersection A with B (theorem 1). Then BULC(A,B) = L for all A,B, if

and only if L is relatively complemented and discrete.

Proof.

1. Let L be distributive relatively complemented and discrete. Let ACB,
A#¢ (A,BeB(L)), and let B be the complement of B in the interval
[A,1]. Then_‘BﬂB% = A. By the definition of C(A,B) : B*CC(A,B); hence,
BLIC(A,B) DBUB = L. '

Thus, BUC(A,B) = L.

2. Let L be distributive and suppose that for each A,Be((L) with
ACB, A # ¢, we have BUC(A,B) = L. In particular, if I and H are
two V-ideals of L with IcH, we have iuC(I,H) = L. By theorem 1,
C(1,8) = (L \(E\1,);) N (LT ) )y = (INE\L) ) A (L\(E\1) ), =
LN(L\(E\I) ), = (L\(H\I)r)l. Thus, C(I,H) is a \-ideal and we see
that each interval [1,1)] of (L) is complemented. Since (L and) M(L)
is distributive, ﬂ(L) is relatively complemented. By theorem T, L

is then relatively complemented and discrete.
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Corollary 2. Let L be a distributive relatively complemented and dis-
crete lattice, let A,Be (L) with A< B, A # @. Let C(A,B) be defined
as in corollary 1. Then we have: C(A,C(A,B)) = B.

Proof. By corollary 1, we have

BOC(A,B)

A and BLIC(A,B) =1L,

C(A,C(A,B))VC(A,B) = A and C(A,C(A,B)) IC(A,B) = L.
Uniqueness of complementation in {A,LJ yields B = C(A,C(A,B)).

5. The lattice (T(L), =)

In this section we study a partial ordering on (.(L) which is a variant
of the ordering by inclusion. (-(L) is used to denote the family of

all non-empty convex sublattices of L).

Definition 7. Let L be a lattice and let C,Dé .(L). We define the

partial ordering < as follows:

C <D if and only if C< D, and DC”Cr'

1

Lemma 5. < is a partial ordering on .(L).

Proof. We prove only anti-symmetry. Let C,D€G(L), with C < D and D < C.

- . - = M
Then CcD DC:Cr, DcCC, and CC_Dr Hence, C DlﬂDr D and DCCl Cr

1 1

= C, which gives C = D.

Lemma 6. Let C<((L). C is a v-ideal (A-ideal) of L if and only if
c <L(Cc>1L).

Proof.
1. From C < L we see that L er, whence C = le\L = Cl.
2. Let I bte a -ideal. Clearly, Ig;Ll = L., Also, L kir, since L = llr = 1

Lemma 7. Let C,Dc(L). Then C < D if and only if CAD = C (C\D = D).

Proof. Follows directly from the definitions.
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Theorem 9. Let L be a distributive lattice. Then (G(L), <) is a dis-

tributive lattice.

Proof.

1. ¢,DeC(L) implies CADel(L):

» 1/\d1)/\(ce/\d2)€C/\D.m

b. (01/\d1)v(02/\d2) = {cjv(cg/\ de)}/\ {div (c2/\d2)}€ CAD.

c. Suppose c,l/\d <x < chdg’ for some x L. Then:
1€C.Awo,xV%eD,

xv(c1/\d1) = (xvc1)/\(xvd1)€C/\D.

2. Similarly, CVv De G(L).

a. Clearly, (c

1
Y (cel\dg); hence, xVe

whence x

3. The commutative. associative and absorption laws follow directly.
L. Distributivity is proved by showing that, for C,D,E€ G(L):
CA(DVE) = (CAD) v (CAE).
a. It is clear that CA(DVE)C(CAD) v(C AE).
b. Let (c.l/\d)\/(cg/\e)e(CAD)V(C/\E). Then:
(c,nd)vicyne) = {{e,nd)ve,fa{le,Ad)vel =

esafle,nd)vel = cinflcve)nlavel} = c Aldve) €CA(DVE).

Corollary. Let L be a distributive lattice. Then ((L), <) is a V-ideal
of G(1), <) andg(L), <) is a A-ideal of (B(L), <).

Proof. Follows from lemma 6 and theorem 9.

In the remainder of this section we shall omit indication of the par-

tial ordering < on G(L), i.e., when we write G(L), we mean (G(L), <).

Theorem 10. Let Fi (i > 0) be the free distributive lattice with i
generators, with an (extra) zero and unit element adjoined. Let BJ.(j > 1)
be the Boolean algebra with 2J elements. For L distributive, we define
7°(L) = L ana GH(L) =G@ (L)), (i > 0). Then we have: c‘:i(Bj) is
isomorphic with the direct union of J factors Fi (cf. [1:[, chapter IX,

section 10).

Proof. We wuse induction on 1.

1. (__‘,O(Bj) is clearly isomorphic with the direct union of j factors FO,
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1)
0t °1 .
Suppose C (B.) = F‘? (The direct union of two lattices L

denoted by L1
LJ). In order to prove that Gl 1( j) = FJ 1, we have to prove that

since F, = B
12 L2 1s
X L2, the direct union of j factors L is denoted by

C(F‘;) FJ . However, it is easy to verlfy that for two finite dis-

1+1
tributive lattices L ,L, we have (?(L1 x L) = é(L1) x C(Lz). There-

fore, there remains the proof of(_Z(Fi) = F;,,- Let C= {f‘i e_Fi|a < £

< b} be an element of é(Fi), where a and b are finite joins of meets

of the generators, say X1s X cees Xio of Fi' (Verification of the

>
following argument in the case that a or b is the zero or unit ele-
ment of Fi is straight forward and is therefore omitted). We define
the isomorphism y: C_§(F.) - Fi+1 as follows: We introduce y(# X5 X
coss xi) as the i+1-th generator of F . Consider the element

o
+1

(bAy)va of F. .. It may be p0531ble to "reduce" this element: E.g.,

1+7

let b = X,V Xp) and a = x,. Then (bAy)va = ((x1vx2)/\y)Vx1 can

1
be reduced to (x2/\ y)vx1. Clearly, however, each element (bAy)Va

has an "ibreducible" form. From now on we assume that all elements
of F are in reduced form. We then define ¥(C) as (bAy)va. We

+1
prove that ¢ is an isomorphism:

Let C, = {f.eF;|a < f; < Db} and C={fi@F |ec < f; < d}. Then:

C,AC, = {f.eF. lanc < £, < bad}, and

c,ve, = {f f.e Fylave < 1, < byad}.

v(C )Aw(C,) = {(bAy)vala{(any) vel} =
(b/\d/\y)v(a/\d/\y)v(b/\c/\y)v(a/\c) = (bAdAy)V(anc) = w(C1/\02)
v(c,)vu(c,) = {(bAay)valvi(@aay) vel = {(bva)ay}viave) = y(c ve
Suppose ¥(C ) = w(Ce). This means that (bAy)va = (dAy)ve.

From the 1rreducibility of (bAy)va and (dAy)Vve, it follows that
a =cand b = d. Hence, ¥ is 1-1.

Also, ¥ is onto: Each element of F,. 141 can be written as (aAy)Vvhb,
with a,b éFi. However, (aAny)Vyb is the image of the convex sub-
lattice {fie Fi|b < f < a Vb} of F.. This follows from {(avbd)Ay}v
(aAy) VDb,

This completes the proof of theorem 10.

1)

= is used to denote isomorphism.

b

2

)
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Remark: Let K be the chain of n elements. We state without proof the
following formulae:

(1) e the number of elements of C(l)(Kn), i=1,2,3.

Let Yn
ten v 2 T (meie1) = 3
en Y = ) (n-i+1) = zn(n+1),
n i=1
n
y(z) = ) (n—i+1)i2 = n(n+1)2(n+2)
n i=1 12
n
302 T (meie) (818 ¢ 243% 4 3510+ 303 4 17i% 4 6i).

K-
—

6. A ternary function in distributive relatively complemented lattices

Theorem 11. Let L be a distributive relatively complemented lattice.
Iet f: L3 + L be defined as follows: f(a,b,c) is the relative comple-
ment of a in the interval [aAD, aye]. Then we have:

A subset C of L is an element of (L) if and only if £(L,C,C)CC.

Proof.
1. Suppose that f(L,C,C)<C. Clearly, f(GT’c2’CT) = c A c,€C, and
€ C; hence, C is a sublattice. Also, if c
JJEc.
2. Suppose Ce C(L). Let f(x, c »e

f(c1,c1,c2) =c,ve, =x

< c,, then x = f(x, CpsC

1

2) be an element of f(L,C,C).

We prove that f(x, c1,c2)(abbreviated to k*) is an element of C.

> >
We have x Ax = )cl\c1 and X ¥yx = ch2.

Hence,

x*==i*v(xA01)=(x*Vx)A(i*vcﬂ =(xvc2)A(i*vc1)=
{XINX*ch)}v{CEA(X*Vc1H ={(XAX*)V(XAC1)}V03=

(X/\C.])VC3€C.

Theorem 12. A set L is a distributive relatively complemented lattice

3, L with the following

if and only if there exists a function f: L
properties: For all a,b,c,d,e<l:

P1. f(a,a,a)
P2.1. f(a,b,a)

P2.2. f(a,a,b)

a.
f(b.a.b)
f(b,b,a).
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P3. f(a,f(a,b,C), f(a,d,e)) = f(a3bse)a
P4.1. f(a,f(b,b,c),a) = £f(f(a,b,a), f(a,b,a), fla,c,a)).
P4.2. f(a,a,f(b,b,e)) = f(f(a,a,b), f(a,a,b), fla,a,c)).

Proof.
1. The condition is sufficient.
We define aAb = f(a,b,a) and aVvb = f(a,a,b).
1.1. The commutativity of A and V follows from P2.
1.2. an(avdb) = f(a, f(a,a,b),a) = f(a, f(a,a,b), fla,a,a)) =
= f(a,a,a) = a, by P1, P3 and P1.
Similarly, av(aAnb) = a.
1.3. In order to prove that aA(bAc) = (anAb)Ac, we have to show
that:
f(a, f(b,c,b), a) = f(f(a,b,a), ¢, f(a,b,a)).
Let A = f(a, f(b,c,b), a) and B = f(f(a,b,a), c, f(a,b,a)).
First we prove that aAA = aAB and avA = aVB:
f(a,A,a) = £(a, f(a, f(b,c,b), a), a) = £(a, f(b,c,b), a) by P3 and P1.
f(a,B,a) = f(a, f(a,b,a), ¢, f(a,b,a)), a)
= f(f(a, f(a,b,a), a), f(a,c,a), f(a, f(a,b,a), a))
(f(a,b,a), fla,c,a), f(a,b,a))
= f(a, f(b,c,b), a) by P4h.1, P1 and P3, and Pk.1.
f(a,a,A) = f(a a, f(a, f(b,c,b), a)) = a, by P1 and P3.
(a,
(f
(a,

f(a,a,B) = f f(f(a,b,a), ¢, f(a,b,a)))
= f (a, a, f(a,b,a)), f(a,a,c), f(a,a, f(a,b,a)))

= f a, by PLt.2, P1 and P3.

f(a,a,c), a)

The rest of the proof that A B is standarad:
A=AV (AAna) = AV(BAa) = (AVB)A(AVa)
= (AVB)A(Bva) = By(aAA) = BV(aAB) = B,

by application of P2 and PL.2.

For the proof of (avb)yc = ay(bvc)we need the dual equalities
of Ph.1 and PL.2, i.e:

(1) f(a, f(b,b,c), a) =
(2) f(a, a, f(b,b,c))

] 1
hc |
TR
)
v o
)
s
H
)
B
B
o
> ®
2
EL
T
a,
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(1) is established as usual:
(anb) vianc) = {(and) vala{(aab)vel
Aaab)vel =an{lave)a(bve)}
fan (ave)ln(bve) =an(bve),

I}

by the associativity of A and PL.2.

To prove (2), we consider:

fav (bve)la{(avb)v(ave)l =

[an{(avb)Vv(ave) ]V (bve)A{(ayb)v(ave)l}] =
Haa(avb)lvi{an(ave)l]v(pA{(avd)v(ave)})v
(c/\{(aVb) (ave)D] = av({balavd)}lvipba(ave)})
V({calavb)}vicalave))] = av[(b vibAa(ave)})v
({en(avp)}v c:| = av(bye)

and:

lav(dve)la{(avb)v (ave)} =
Hav(bve)la(avb)]v[{av (bve)la(ave)] =
lav{(bve)avl]lv av{(bve)Aacl] =
(avb) v (awve)

Hence, a Vv(bwve) = (avb) v(ave).
Finally, the proof of the associativity of V¥ is now dual to
the proof of the associativity of A.

1.4. The distributivity of L follows from P4.2 and (1).

1.5. Let a < ¢ < b. Then:
¢ Af(c,a,b) = f(c, f(c,a,b),c) = f(c,a,c) = cAa = a and
cvf(e,a,b) = f(ec, ¢, f(c,a,b)) = f(ec,c,b) = cV¥b =
Thus, f(c,a,b) is the relative complement of c in the interval

]:a,b] .

2. The condition is necessary.
Let L be a distributive relatively complemented lattice. Let f(a,b,c)
be the relative complement of a in the interval [aAb, a\/c] .
Then f(a,b,c) has the properties P1 to Ph.
We prove only P2.71 and P3.
Clearly, the relative complement of a in the interval [a/\b, a.]
is aAb. Thus, f(a,b,a) = aAb = baa = f(b,a,b).
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Furthermore, by the definition of T,

a Af(a, f(a,b,c), fla,d,e)) = aAf(a,b,c) = aAb and
anf(a,b,e) = aAb.
avf(a, fla,b,e), fla,d,e)) = a f(a,d,e) = aVve and

avf(a,b,e) = ave.
Hence, f(a, f(a,b,c), f(a,d,e)) = f(a,b,e).
This completes the proof of theorem 12.

Finally we mention some properties of the function £ that can be

verified directly from its definition:

P5. f(b,a,a) = a.

P6. f(a,b,f(a,b,e)) = f(a, fla,b,c), c) = £( £( f(a,b,ec),b,c),b,c) =
f(a,b,c).

P7. f(f(a,b,c),b,c) = (anb)v(bnac)vicAa).

P8. f(a, f(b,c,d), f(b,e,g)) = f(b, f(a,c,e), fla,d,g)).

Remarks:

1.

2.

The function f has been used to define Boolean algebra's and distributive
relatively complemented lattices with zero in [3:] .

From P7 we see that the function f is related to the well-known

ternary function (aAb)v(bac)v(caa), which has been used for

the axiomatics of distributive lattices by several authors (these
investigations started with [5]; for recent results see [9])

From P3, P5 and P8 we see that f is one of the "selection functions"

as studied in [2] . In particular, if L is the Boolean algebra with

two elements, then f coincides with the "conditional Boolean ex-
pression” if a then b else c, as used in the programming language

ALGOL 60 [8].
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